JP6753717B2 - Corrosion degree estimation method, corrosion degree estimation device and program - Google Patents

Corrosion degree estimation method, corrosion degree estimation device and program Download PDF

Info

Publication number
JP6753717B2
JP6753717B2 JP2016145483A JP2016145483A JP6753717B2 JP 6753717 B2 JP6753717 B2 JP 6753717B2 JP 2016145483 A JP2016145483 A JP 2016145483A JP 2016145483 A JP2016145483 A JP 2016145483A JP 6753717 B2 JP6753717 B2 JP 6753717B2
Authority
JP
Japan
Prior art keywords
potential
corrosion
measured
steel material
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016145483A
Other languages
Japanese (ja)
Other versions
JP2018017517A (en
Inventor
道彦 上澤
道彦 上澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2016145483A priority Critical patent/JP6753717B2/en
Publication of JP2018017517A publication Critical patent/JP2018017517A/en
Application granted granted Critical
Publication of JP6753717B2 publication Critical patent/JP6753717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、コンクリート中の鋼材の腐食度の推定を行う腐食度推定方法、腐食度推定装置およびプログラムに関する。 The present invention relates to a corrosion degree estimation method, a corrosion degree estimation device, and a program for estimating the corrosion degree of a steel material in concrete.

老朽化した鉄筋コンクリート構造物においては、コンクリート中の鋼材(鉄筋とも表記する。)の定量的な腐食進行度合いを評価したいという要望が存在している。その一方で、コンクリート中の鉄筋が腐食することにより変化する鉄筋表面の電位を測定することにより、鉄筋腐食の可能性を評価する非破壊調査法の一つとして自然電位測定方法が知られている。自然電位測定方法は、鉄筋コンクリート構造物の躯体の鉄筋が腐食環境下にあるか否かを評価する方法として活用されている(例えば、特許文献1から3参照。)。 In aged reinforced concrete structures, there is a demand to evaluate the quantitative degree of corrosion progress of steel materials (also referred to as reinforcing bars) in concrete. On the other hand, the natural potential measurement method is known as one of the non-destructive investigation methods for evaluating the possibility of reinforcing bar corrosion by measuring the potential of the reinforcing bar surface that changes due to the corrosion of the reinforcing bars in concrete. .. The natural potential measuring method is utilized as a method for evaluating whether or not the reinforcing bars of the skeleton of a reinforced concrete structure are in a corrosive environment (see, for example, Patent Documents 1 to 3).

自然電位測定方法は、公益社団法人土木学会がJSCE-E601「コンクリート構造物における自然電位測定方法」として測定方法を規定している。また、自然電位測定方法の公的な評価基準としてASTMインターナショナル(旧称:米国材料試験協会)がASTM C876として規定した基準も知られている(図7参照。)。 As for the natural potential measurement method, the Japan Society of Civil Engineers defines the measurement method as JSCE-E601 "Natural potential measurement method for concrete structures". In addition, a standard defined by ASTM International (formerly known as the American Society for Testing and Materials) as ASTM C876 as a public evaluation standard for the natural potential measurement method is also known (see FIG. 7).

特開2012−181130号公報Japanese Unexamined Patent Publication No. 2012-181130 特開2000−044364号公報Japanese Unexamined Patent Publication No. 2000-044364 特開平10−221292号公報Japanese Unexamined Patent Publication No. 10-22192

しかしながら、上述のASTM C876として規定した評価基準には、鉄筋腐食の可能性が不確定な領域も存在している。そのため、老朽化した鉄筋コンクリート構造物に対して、自然電位方法を用いて自然電位を測定しても、不確定の領域に含まれる測定点が数多く発生してしまうという問題があった。 However, in the evaluation criteria defined as ASTM C876 described above, there are some regions where the possibility of reinforcing bar corrosion is uncertain. Therefore, even if the natural potential of an aged reinforced concrete structure is measured by using the natural potential method, there is a problem that many measurement points included in an uncertain region are generated.

さらに、このように鉄筋腐食の可能性が不確定な領域が存在すると、老朽化した鉄筋コンクリート構造物の整備を計画する際に整備の優先順位を策定することが困難になるという問題があった。 Furthermore, if there is such an area where the possibility of reinforced concrete corrosion is uncertain, there is a problem that it becomes difficult to set the priority of maintenance when planning the maintenance of an aged reinforced concrete structure.

本発明は、上記の課題を解決するためになされたものであって、鉄筋腐食の可能性を推定できる範囲を広げることにより、老朽化した構造物の整備優先順位の策定を容易にすることができる腐食度推定方法、腐食度推定装置およびプログラムを提供することを目的とする。 The present invention has been made to solve the above problems, and by expanding the range in which the possibility of reinforcing bar corrosion can be estimated, it is possible to facilitate the formulation of maintenance priorities for aging structures. It is an object of the present invention to provide a corrosion degree estimation method, a corrosion degree estimation device and a program capable of performing the corrosion degree estimation method.

上記目的を達成するために、本発明は、以下の手段を提供する。
本発明の第1の態様に係る腐食度推定方法は、コンクリート部材に埋設された鋼材と電位測定部の一方の端子とを電気的に接続し、照合電極と前記電位測定部の他方の端子とを電気的に接続した照合電極部を前記コンクリート部材の測定範囲における複数の測定点に押し当てて電位を測定する測定ステップと、前記測定範囲に含まれる複数の前記測定点で測定された電位のうちの最大電位と最小電位との差である電位変化量を算出し、算出した前記電位変化量および所定の電位変化量閾値に基づいて前記鋼材が腐食しているか否かを推定する電位変化量に基づく腐食度推定ステップと、を有することを特徴とする。
In order to achieve the above object, the present invention provides the following means.
In the method for estimating the degree of corrosion according to the first aspect of the present invention, the steel material embedded in the concrete member and one terminal of the potential measuring unit are electrically connected, and the collation electrode and the other terminal of the potential measuring unit are connected. A measurement step of pressing a collation electrode portion electrically connected to a plurality of measurement points in the measurement range of the concrete member to measure the potential, and a measurement step of measuring the potential at the plurality of measurement points included in the measurement range. The amount of potential change that is the difference between the maximum potential and the minimum potential is calculated, and the amount of potential change that estimates whether or not the steel material is corroded based on the calculated potential change amount and the predetermined potential change amount threshold. It is characterized by having a degree of corrosion estimation step based on.

本発明の第2の態様に係る腐食度推定装置は、電位測定部と、コンクリート部材に埋設された鋼材と前記電位測定部の一方の端子とを電気的に接続する接続部と、前記電位測定部の他方の端子と電気的に接続され、前記コンクリート部材の測定範囲における測定点に押し当てられる照合電極部と、前記測定範囲に含まれる複数の前記測定点で測定された電位のうちの最大電位と最小電位との差である電位変化量を算出し、算出した前記電位変化量および所定の電位変化量閾値に基づいて前記鋼材が腐食しているか否かを推定する演算部と、が設けられていることを特徴とする。 The corrosion degree estimation device according to the second aspect of the present invention includes a potential measuring unit, a connecting portion that electrically connects a steel material embedded in a concrete member and one terminal of the potential measuring unit, and the potential measurement. The maximum of the collation electrode portion electrically connected to the other terminal of the portion and pressed against the measurement point in the measurement range of the concrete member and the potential measured at the plurality of measurement points included in the measurement range. A calculation unit is provided that calculates the amount of potential change, which is the difference between the potential and the minimum potential, and estimates whether or not the steel material is corroded based on the calculated amount of potential change and a predetermined potential change amount threshold. It is characterized by being.

本発明の第3の態様に係るプログラムは、一方の端子がコンクリート部材に埋設された鋼材と電気的に接続され、他方の端子が前記コンクリート部材の測定範囲における複数の測定点に押し付けられる照合電極部と電気的に接続される電位測定部により測定される電位に基づいて前記鋼材の腐食を推定するプログラムであって、コンピュータに前記電位測定部により測定された電位を取得させる取得機能と、前記測定範囲に含まれる複数の前記測定点で測定された電位のうちの最大電位と最小電位との差である電位変化量を算出し、算出した前記電位変化量および所定の電位変化量閾値に基づいて前記鋼材が腐食しているか否を推定する電位変化量に基づく腐食度推定機能と、を実現させることを特徴とする。 In the program according to the third aspect of the present invention, one terminal is electrically connected to a steel material embedded in a concrete member, and the other terminal is pressed against a plurality of measurement points in the measurement range of the concrete member. A program that estimates the corrosion of the steel material based on the potential measured by the potential measuring unit that is electrically connected to the unit, and has an acquisition function that causes a computer to acquire the potential measured by the potential measuring unit. The amount of potential change, which is the difference between the maximum potential and the minimum potential among the potentials measured at the plurality of measurement points included in the measurement range, is calculated, and based on the calculated potential change amount and the predetermined potential change amount threshold. It is characterized by realizing a corrosiveness estimation function based on a potential change amount for estimating whether or not the steel material is corroded.

本発明の第1の態様に係る腐食度推定方法、第2の態様に係る腐食度推定装置、および、第3の態様に係るプログラムによれば、算出した電位変化量と所定の電位変化量閾値に基づいて鋼材が腐食しているか否か推定するため、測定した電位のみでは鋼材の腐食度が推定できない場合であっても、腐食度を推定可能となる。 According to the corrosion degree estimation method according to the first aspect of the present invention, the corrosion degree estimation device according to the second aspect, and the program according to the third aspect, the calculated potential change amount and the predetermined potential change amount threshold value. Since it is estimated whether or not the steel material is corroded based on the above, the degree of corrosion can be estimated even when the degree of corrosion of the steel material cannot be estimated only from the measured potential.

上記発明の第1の態様においては、前記測定ステップと前記電位変化量に基づく腐食度推定ステップとの間に、前記測定された電位の値が第1閾値よりも大きい場合には、前記鋼材は所定の確率で腐食していないと推定し、前記測定された電位が前記第1閾値よりも値の小さな第2閾値と以下の場合には、前記鋼材は所定の確率で腐食していると推定する電位に基づく腐食度推定ステップを有し、前記測定された電位の値が第1閾値以下であり、且つ、前記測定された電位が前記第2閾値よりも大きい場合には、前記電位変化量に基づく推定ステップにおいて前記鋼材の腐食が推定されることが望ましい。 In the first aspect of the above invention, if the value of the measured potential is larger than the first threshold value between the measurement step and the corrosion degree estimation step based on the potential change amount, the steel material is It is presumed that the steel material is not corroded with a predetermined probability, and if the measured potential is equal to or less than the second threshold value smaller than the first threshold value, the steel material is presumed to be corroded with a predetermined probability. When there is a corrosion degree estimation step based on the potential to be used, the value of the measured potential is equal to or less than the first threshold value, and the measured potential is larger than the second threshold value, the amount of change in the potential is increased. It is desirable to estimate the corrosion of the steel material in the estimation step based on.

上記発明の第2の態様において前記演算部は、前記測定された電位の値が第1閾値よりも大きい場合には、前記鋼材は所定の確率で腐食していないと推定し、前記測定された電位が前記第1閾値よりも値の小さな第2閾値と以下の場合には、前記鋼材は所定の確率で腐食していると推定し、前記測定された電位の値が第1閾値以下であり、且つ、前記測定された電位が前記第2閾値よりも大きい場合には、算出した前記電位変化量および前記所定の電位変化量閾値に基づいて前記鋼材が腐食しているか否かを推定することが望ましい。 In the second aspect of the above invention, the calculation unit estimates that the steel material is not corroded with a predetermined probability when the measured potential value is larger than the first threshold value, and the measurement is performed. When the potential is equal to or less than the second threshold value smaller than the first threshold value, it is estimated that the steel material is corroded with a predetermined probability, and the measured potential value is equal to or less than the first threshold value. Moreover, when the measured potential is larger than the second threshold value, it is estimated whether or not the steel material is corroded based on the calculated potential change amount and the predetermined potential change amount threshold value. Is desirable.

上記発明の第2の態様においては、前記取得機能と前記電位変化量に基づく腐食度推定機能との間に、前記測定された電位の値が第1閾値よりも大きい場合には、前記鋼材は所定の確率で腐食していないと推定し、前記測定された電位が前記第1閾値よりも値の小さな第2閾値と以下の場合には、前記鋼材は所定の確率で腐食していると推定する電位に基づく腐食度推定機能を有し、前記測定された電位の値が第1閾値以下であり、且つ、前記測定された電位が前記第2閾値よりも大きい場合には、前記電位変化量に基づく腐食度推定機能により前記鋼材が腐食しているか否かを推定することが望ましい。 In the second aspect of the above invention, when the measured potential value is larger than the first threshold value between the acquisition function and the corrosion degree estimation function based on the potential change amount, the steel material is used. It is presumed that the steel material is not corroded with a predetermined probability, and if the measured potential is equal to or less than the second threshold value smaller than the first threshold value, the steel material is presumed to be corroded with a predetermined probability. It has a corrosion degree estimation function based on the potential to be applied, and when the measured potential value is equal to or less than the first threshold value and the measured potential is larger than the second threshold value, the potential change amount. It is desirable to estimate whether or not the steel material is corroded by the corrosion degree estimation function based on.

このように測定した電位、第1閾値および第2閾値に基づいて鋼材の腐食度を推定できる範囲については、測定した電位を用いて鋼材の腐食度を推定し、測定した電位で鋼材の腐食度の推定が困難な範囲については、電位変化量を用いて鋼材の腐食度を推定することにより、さらに鋼材の腐食度を推定しやすくなる。 Regarding the range in which the degree of corrosion of steel can be estimated based on the potential measured in this way, the first threshold and the second threshold, the degree of corrosion of steel is estimated using the measured potential, and the degree of corrosion of steel is estimated at the measured potential. In the range where it is difficult to estimate, the degree of corrosion of the steel material can be more easily estimated by estimating the degree of corrosion of the steel material using the amount of potential change.

本発明の腐食度推定方法、腐食度推定装置およびプログラムによれば、算出した電位変化量と所定の電位変化量閾値に基づいて鋼材が腐食しているか否か推定するため、鉄筋腐食の可能性を推定できる範囲を広げることができ、老朽化した構造物の整備優先順位の策定を容易にできるという効果を奏する。 According to the corrosion degree estimation method, the corrosion degree estimation device and the program of the present invention, it is estimated whether or not the steel material is corroded based on the calculated potential change amount and the predetermined potential change amount threshold, so that there is a possibility of reinforcing bar corrosion. This has the effect of expanding the range in which the estimation can be made and facilitating the formulation of maintenance priorities for aging structures.

本発明による腐食度推定装置の一実施形態を説明する摸式図である。It is a schematic diagram explaining one Embodiment of the corrosion degree estimation apparatus by this invention. 図1の腐食度推定装置による鉄筋の腐食推定方法を説明するフローチャートである。It is a flowchart explaining the corrosion estimation method of a reinforcing bar by the corrosion degree estimation apparatus of FIG. 鉄筋コンクリート構造物の測定範囲における測定点の配置、および、測定により作成される電位分布図(等価電位図)の例を説明する模式図である。It is a schematic diagram explaining the arrangement of the measurement points in the measurement range of a reinforced concrete structure, and the example of the potential distribution map (equivalent potential map) created by the measurement. 腐食グレードと鉄筋の状況との対応を説明する表である。It is a table explaining the correspondence between the corrosion grade and the condition of the reinforcing bar. 図1の腐食度推定装置による測定結果、判定結果を説明するグラフである。It is a graph explaining the measurement result and determination result by the corrosion degree estimation apparatus of FIG. 図1の腐食度推定装置の他の実施形態を説明する模式図である。It is a schematic diagram explaining another embodiment of the corrosion degree estimation apparatus of FIG. ASTM C876として規定された評価基準を説明する表である。It is a table explaining the evaluation criteria defined as ASTM C876.

この発明の一実施形態に係る腐食度推定方法、腐食度推定装置およびプログラムについて、図1から図6を参照して説明する。本実施形態では本願発明の腐食度推定方法、腐食度推定装置およびプログラムを用いて鉄筋コンクリート構造物(コンクリート部材)50の躯体の鉄筋(鋼材)51が腐食しているか否かを推定、評価する場合に適用して説明する。ここで、鉄筋コンクリート構造物50としては、鉄筋コンクリートからなる建物や、橋梁などの構造物を例示することができる。 The corrosion degree estimation method, the corrosion degree estimation device, and the program according to the embodiment of the present invention will be described with reference to FIGS. 1 to 6. In the present embodiment, when the corrosion degree estimation method, the corrosion degree estimation device and the program of the present invention are used to estimate and evaluate whether or not the reinforcing bar (steel material) 51 of the skeleton of the reinforced concrete structure (concrete member) 50 is corroded. It is applied to and explained. Here, as the reinforced concrete structure 50, a building made of reinforced concrete or a structure such as a bridge can be exemplified.

また、本実施形態では、JSCE-E601「コンクリート構造物における自然電位測定方法」として規定されている自然電位測定方法を用いて自然電位(電位)を測定する例に適用して説明を行う。 Further, in the present embodiment, the description will be given by applying to an example in which the natural potential (potential) is measured by using the natural potential measuring method defined as JSCE-E601 “Method for measuring natural potential in concrete structure”.

本実施形態の腐食度推定装置1は、図1に示すように、自然電位の測定に用いられる電位差計(電位測定部)10、接続部11、および、プローブ(照合電極部)12と、鉄筋51の腐食の推定を行う推定部(演算部)20と、が主に設けられている。 As shown in FIG. 1, the corrosion degree estimation device 1 of the present embodiment includes a potentiometer (potential measuring unit) 10, a connecting unit 11, a probe (reference electrode unit) 12, and a reinforcing bar used for measuring the natural potential. An estimation unit (calculation unit) 20 for estimating corrosion of 51 is mainly provided.

電位差計10、接続部11およびプローブ12としては、JSCE-E601「コンクリート構造物における自然電位測定方法」として規定されている自然電位測定方法が行えるものであればよく、公知の市販されている機器を用いることができる。本実施形態の説明では、プロセク社のcanin+を用いて測定した自然電位に基づいて説明を行う。 As the potentiometer 10, the connecting portion 11, and the probe 12, any known commercially available device may be used as long as it can perform the natural potential measuring method specified as JSCE-E601 "Method for measuring natural potential in concrete structure". Can be used. In the description of this embodiment, the description will be based on the natural potential measured using canin + manufactured by Prosec.

電位差計10は一方の端子に接続部11が接続され、他方の端子にプローブ12が接続されるものであり、鉄筋コンクリート構造物50に設定された測定範囲に位置する測定対象である鉄筋51の自然電位差の測定に用いられるものである。 In the potentiometer 10, the connecting portion 11 is connected to one terminal and the probe 12 is connected to the other terminal, and the natural reinforcing bar 51, which is the measurement target located in the measuring range set in the reinforced concrete structure 50, is naturally connected. It is used for measuring the potential difference.

接続部11は、鉄筋コンクリート構造物50における表面のコンクリートをはがし(はつり)、外部に露出させた鉄筋51と一方の端部が電気的に接続され、他方の端部が電位差計10の端子に接続されるものである。例えば、一方の端部が鉄筋51を挟むクリップ状の端部であり、他方の端部が電位差計10の端子と接続されるコネクタであり、両者の間を電気信号の導通が可能なリード線で接続される例を挙げることができる。 In the connecting portion 11, the concrete on the surface of the reinforced concrete structure 50 is peeled off (chipping), one end is electrically connected to the reinforced concrete 51 exposed to the outside, and the other end is connected to the terminal of the potentiometer 10. Is to be done. For example, one end is a clip-shaped end that sandwiches the reinforcing bar 51, and the other end is a connector that is connected to the terminal of the potentiometer 10, and a lead wire capable of conducting an electric signal between the two. An example of being connected with is given.

プローブ12は、内部に照合電極を有するものであり、鉄筋コンクリート構造物50に設定された測定範囲において、測定対象である鉄筋51が位置するコンクリート表面に押し付けられるものである。照合電極としてはJSCE-E601「コンクリート構造物における自然電位測定方法」に規定されている飽和硫酸銅電極、飽和カロメル電極、飽和塩化銀電極、および鉛電極のいずれを用いてもよい。 The probe 12 has a reference electrode inside, and is pressed against the concrete surface on which the reinforcing bar 51 to be measured is located in the measurement range set in the reinforced concrete structure 50. As the reference electrode, any of the saturated copper sulfate electrode, the saturated calomel electrode, the saturated silver chloride electrode, and the lead electrode specified in JSCE-E601 “Method for measuring natural potential in concrete structure” may be used.

推定部20は、電位差計10により測定された自然電位を取得して、測定対象である鉄筋51の腐食を推定するものである。本実施形態では、推定部20がCPU(中央演算処理ユニット)、ROM、RAM、入出力インタフェース等を有するコンピュータである例に適用して説明する。上述のROM等の記憶装置に記憶されているプログラムは、CPUを演算部21として機能させ、入出力インタフェース等を取得部22として機能させるものである。 The estimation unit 20 acquires the natural potential measured by the potentiometer 10 and estimates the corrosion of the reinforcing bar 51 to be measured. In the present embodiment, the estimation unit 20 will be described by applying it to an example of a computer having a CPU (central processing unit), ROM, RAM, input / output interface, and the like. The program stored in the storage device such as the ROM described above causes the CPU to function as the calculation unit 21 and the input / output interface and the like to function as the acquisition unit 22.

演算部21は、電位差計10により測定された自然電位に基づいて鉄筋51が腐食しているか否かを推定する、電位に基づく腐食度推定機能、および、電位変化量に基づく腐食度推定機能を実現するものである。電位に基づく腐食度推定機能、および、電位変化量に基づく腐食度推定機能による具体的な演算処理の内容については後述する。 The calculation unit 21 has a potential-based corrosion degree estimation function for estimating whether or not the reinforcing bar 51 is corroded based on the natural potential measured by the potentiometer 10, and a corrosion degree estimation function based on the amount of potential change. It will be realized. The details of the specific calculation processing by the corrosion degree estimation function based on the potential and the corrosion degree estimation function based on the amount of change in potential will be described later.

取得部22は、測定された自然電位を電位差計10から取得させる取得機能を実現するものである。電位差計10から自然電位を取得する具体的な方法は、有線または無線による通信を介して取得する方や、持ち運び可能な記録媒体を介して取得する方法など、公知の情報取得方法などを用いることができ、特定の方法に限定するものではない。 The acquisition unit 22 realizes an acquisition function of acquiring the measured natural potential from the potentiometer 10. As a specific method for acquiring the natural potential from the potentiometer 10, a known information acquisition method such as a method for acquiring the natural potential via wired or wireless communication or a method for acquiring the natural potential via a portable recording medium is used. It can be done, and it is not limited to a specific method.

また、本実施形態では、電位差計10および推定部20が別々の筺体に収められた例に適用して説明しているが、電位差計10および推定部20が一つの筺体に収められたものであってもよく、その形式を特に限定するものではない。 Further, in the present embodiment, the potentiometer 10 and the estimation unit 20 are housed in separate housings, but the potentiometer 10 and the estimation unit 20 are housed in one housing. There may be, and the format is not particularly limited.

次に、上記の構成からなる腐食度推定装置1における鉄筋51の腐食の推定方法について図2および図3を参照しながら説明する。
まず、測定対象とする鉄筋51が互いに電気的導通があるか確認する作業が行われる(S10)。電気的導通の確認が取れると、鉄筋コンクリート構造物50に設定された測定範囲のコンクリート表面に散水する作業が行われる(S11)。散水作業は、自然電位の測定前に水を噴霧散水し、コンクリート表面が湿潤状態となるように作業される。但し、コンクリート表面に浮き水が発生しない状態ともなるように作業される。
Next, a method of estimating the corrosion of the reinforcing bar 51 in the corrosion degree estimation device 1 having the above configuration will be described with reference to FIGS. 2 and 3.
First, work is performed to confirm whether the reinforcing bars 51 to be measured have electrical continuity with each other (S10). When the electrical continuity is confirmed, water is sprinkled on the concrete surface in the measurement range set in the reinforced concrete structure 50 (S11). The watering operation is performed so that the concrete surface becomes moist by spraying water before measuring the natural potential. However, the work is done so that no floating water is generated on the concrete surface.

その後、腐食度推定装置1の準備として電位差計10と接続部11との接続、および、電位差計10とプローブ12との接続が行われる(S12)。接続部11の端部は、図1に示すように測定対象の鉄筋51に電気的に接続される。このとき、鉄筋51の表面が錆などの絶縁物質で覆われている場合には、絶縁物質を除去した後に鉄筋51に接続部11が電気的に接続するように取り付けられる。 After that, as preparation for the corrosion degree estimation device 1, the potentiometer 10 and the connecting portion 11 are connected, and the potentiometer 10 and the probe 12 are connected (S12). The end of the connecting portion 11 is electrically connected to the reinforcing bar 51 to be measured as shown in FIG. At this time, when the surface of the reinforcing bar 51 is covered with an insulating substance such as rust, the connecting portion 11 is attached to the reinforcing bar 51 so as to be electrically connected after the insulating substance is removed.

そして、電位差計10によって、鉄筋コンクリート構造物50に設定された測定範囲において自然電位を測定する作業が行われる(測定ステップ:S13)。自然電位は、例えば図3に示すように、測定範囲内に配置された鉄筋51に沿って、電位分布図(等価電位図)が描けるように複数の測定点55で測定される。鉄筋51の配置位置は、市販の鉄筋探査機を用いて予め把握していることが好ましい。 Then, the potentiometer 10 performs the work of measuring the natural potential in the measurement range set in the reinforced concrete structure 50 (measurement step: S13). As shown in FIG. 3, for example, the natural potential is measured at a plurality of measurement points 55 so that a potential distribution map (equivalent potential map) can be drawn along the reinforcing bars 51 arranged within the measurement range. It is preferable that the arrangement position of the reinforcing bar 51 is grasped in advance using a commercially available reinforcing bar probe.

また、自然電位を測定する際には、プローブ12(照合電極)におけるコンクリート表面に押し付けられる端部に配置されたスポンジ等に水を含ませ、測定点55にプローブ12が押し付けられる。プロセク社のcanin+を用いて測定する場合、測定点55ごとにスティック状のプローブ12を押し当てて自然電位を測定してもよいし、測定点55が並ぶ線上にホイール状のプローブ12を回転させながら押し当てて自然電位を測定してもよい。 Further, when measuring the natural potential, water is impregnated in a sponge or the like arranged at the end of the probe 12 (reference electrode) pressed against the concrete surface, and the probe 12 is pressed against the measurement point 55. When measuring using canin + manufactured by Prosec, a stick-shaped probe 12 may be pressed at each measurement point 55 to measure the natural potential, or the wheel-shaped probe 12 may be rotated on the line where the measurement points 55 are lined up. You may measure the natural potential by pressing while pressing.

電位差計10により測定された自然電位は、取得部22により推定部20へ取得される。自然電位の取得は、測定点55において自然電位が測定されるごとに行われてもよいし、電位差計10に測定された自然電位の値が記憶され、複数の自然電位がまとめて推定部20に取得されてもよい。 The natural potential measured by the potentiometer 10 is acquired by the acquisition unit 22 to the estimation unit 20. The acquisition of the natural potential may be performed every time the natural potential is measured at the measurement point 55, or the value of the natural potential measured by the potentiometer 10 is stored, and the plurality of natural potentials are collectively estimated by the estimation unit 20. May be obtained in.

測定された自然電位を取得した推定部20は、演算部21において測定された自然電位の値が第1閾値よりも大きいか否かを判定する処理を行う(電位に基づく腐食度推定ステップ:S14)。判定に用いられる自然電位の値は、測定範囲内の複数の測定点55で測定された自然電位のうち、測定範囲を代表するとして選択された自然電位の値が用いられる。代表する自然電位の選択方法としては、測定された自然電位のうちの過半を占める自然電位を用いるなど、種々の方法を用いることができその方法を特に限定するものではない。 The estimation unit 20 that has acquired the measured natural potential performs a process of determining whether or not the value of the natural potential measured by the calculation unit 21 is larger than the first threshold value (potential-based corrosion degree estimation step: S14). ). As the value of the natural potential used for the determination, the value of the natural potential selected as representative of the measurement range from the natural potentials measured at the plurality of measurement points 55 within the measurement range is used. As a representative method for selecting the natural potential, various methods can be used, such as using the natural potential that occupies the majority of the measured natural potentials, and the method is not particularly limited.

また、本実施形態では、ASTM C 876の評価基準に従い第1閾値が−200mVである例に、後述する第2閾値が−350mVである例に適用して説明するが、他の機関が規定する評価基準に記載された値を用いてもよく、その値を限定するものではない。 Further, in the present embodiment, the first threshold value is −200 mV according to the evaluation criteria of ASTM C 876, and the second threshold value described later is applied to the example of −350 mV, which will be described by other organizations. The value described in the evaluation criteria may be used, and the value is not limited.

S14の判定において測定された自然電位の値が第1閾値よりも大きいと判定された場合(YESの場合)には、演算部21は測定範囲内において90%以上の確率で鉄筋51に腐食はないと推定する(S15)。 When it is determined that the value of the natural potential measured in the determination of S14 is larger than the first threshold value (YES), the calculation unit 21 has a probability of 90% or more that the reinforcing bar 51 is corroded within the measurement range. It is estimated that there is no such thing (S15).

S14の判定において測定された自然電位の値が第1閾値以下と判定された場合(NOの場合)には、演算部21は測定された自然電位の値が第2閾値以下か否かを判定する処理を行う(電位に基づく腐食度推定ステップ:S16)。測定された自然電位の値が第2閾値以下と判定された場合(YESの場合)には、演算部21は測定範囲内において90%以上の確率で鉄筋51に腐食ありと推定する(S17)。 When the value of the natural potential measured in the determination of S14 is determined to be equal to or less than the first threshold value (NO), the calculation unit 21 determines whether or not the measured natural potential value is equal to or less than the second threshold value. (Potential-based corrosion degree estimation step: S16). When it is determined that the measured natural potential value is equal to or less than the second threshold value (YES), the calculation unit 21 estimates that the reinforcing bar 51 is corroded with a probability of 90% or more within the measurement range (S17). ..

S16の判定において測定された自然電位の値が第2閾値よりも大きいと判定された場合(NOの場合)には、演算部21は、測定範囲内において電位変化量を算出する処理を行う(電位変化量に基づく腐食度推定ステップ:S18)。具体的には、測定範囲内の測定点55において測定された全ての自然電位のうち、最も電位が高い自然電位の値から、最も電位が低い自然電位の値を引くことにより電位変化量が求められる。 When it is determined that the value of the natural potential measured in the determination of S16 is larger than the second threshold value (NO), the calculation unit 21 performs a process of calculating the amount of potential change within the measurement range (in the case of NO). Corrosion degree estimation step based on the amount of potential change: S18). Specifically, the amount of potential change is obtained by subtracting the value of the natural potential having the lowest potential from the value of the natural potential having the highest potential among all the natural potentials measured at the measurement point 55 within the measurement range. Be done.

電位変化量が求められると、演算部21は、電位変化量が所定の電位変化量閾値以下であるか否かを判定する処理を行う(電位変化量に基づく腐食度推定ステップ:S19)。本実施形態では所定の電位変化量閾値が100mVである例に適用して説明するが、所定の電位変化量閾値を100mVに限定するものではなく、その他の値を採用してもよい。 When the potential change amount is obtained, the calculation unit 21 performs a process of determining whether or not the potential change amount is equal to or less than a predetermined potential change amount threshold value (corrosion degree estimation step based on the potential change amount: S19). In the present embodiment, the description will be given by applying to an example in which the predetermined potential change amount threshold value is 100 mV, but the predetermined potential change amount threshold value is not limited to 100 mV, and other values may be adopted.

S19の判定において電位変化量が所定の電位変化量閾値以下であると判定された場合(YESの場合)には、演算部21は、測定範囲内において90%以上の確率で鉄筋51に腐食なしと推定する(S20)。その一方で、電位変化量が所定の電位変化量閾値未満と判定された場合(NOの場合)には、演算部21は、測定範囲内において90%以上の確率で鉄筋51に腐食ありと推定する(S21)。以上で、測定範囲における鉄筋51の腐食の推定が終了する。 When it is determined in the determination of S19 that the potential change amount is equal to or less than the predetermined potential change amount threshold value (YES), the calculation unit 21 has a probability of 90% or more that the reinforcing bar 51 is not corroded within the measurement range. Is estimated (S20). On the other hand, when the potential change amount is determined to be less than the predetermined potential change amount threshold value (NO), the calculation unit 21 estimates that the reinforcing bar 51 is corroded with a probability of 90% or more within the measurement range. (S21). This completes the estimation of corrosion of the reinforcing bar 51 in the measurement range.

なお、第1閾値の−200mV、第2閾値の−350mV、および、電位変化量閾値の100mVは、図4に示す表におけるグレードIおよびIIが鉄筋51に腐食なし(健全)と推定され、グレードIIIおよびIVが鉄筋51に腐食ありと推定される値として定めている。 Regarding the first threshold value of -200 mV, the second threshold value of -350 mV, and the potential change amount threshold value of 100 mV, grades I and II in the table shown in FIG. 4 are estimated to have no corrosion (healthy) on the reinforcing bar 51, and are grades. III and IV are set as the values estimated to be corroded in the reinforcing bar 51.

次に、上記の構成からなる腐食度推定装置1における鉄筋51の腐食の推定した例について図5を参照しながら説明する。図5は、2つの異なる鉄筋コンクリート構造物50に対して行った鉄筋51の腐食の推定結果を示す図である。縦軸は、測定範囲の選択された代表の自然電位の値を示し、横軸は測定範囲内の自然電位の最大電位と最小電位の差である電位変化量を示している。 Next, an example of estimating the corrosion of the reinforcing bar 51 in the corrosion degree estimation device 1 having the above configuration will be described with reference to FIG. FIG. 5 is a diagram showing an estimation result of corrosion of the reinforcing bar 51 performed on two different reinforced concrete structures 50. The vertical axis shows the value of the selected representative natural potential in the measurement range, and the horizontal axis shows the amount of potential change which is the difference between the maximum potential and the minimum potential of the natural potential in the measurement range.

また、一方の鉄筋コンクリート構造物50における測定点55の測定結果を白抜きの図形で示し、他方の鉄筋コンクリート構造物50における測定点55の測定結果を黒塗りの図形で示している。鉄筋51の腐食の程度に応じて用いる図形の形状が3段階に分けられている。丸の図形は、腐食の程度が最も軽く、本実施形態の推定では腐食なし(健全)と判定される程度ものである。四角の図形は、腐食の程度が中程度である。三角の図形は、腐食の程度が最も重く、本実施形態では腐食ありと判断される程度のものである。 Further, the measurement result of the measurement point 55 in one reinforced concrete structure 50 is shown by a white figure, and the measurement result of the measurement point 55 in the other reinforced concrete structure 50 is shown by a black figure. The shape of the figure to be used is divided into three stages according to the degree of corrosion of the reinforcing bar 51. The circled figure has the lightest degree of corrosion, and is determined to be non-corrosive (healthy) in the estimation of the present embodiment. The square figure has a moderate degree of corrosion. The triangular figure has the highest degree of corrosion, and in the present embodiment, it is determined that there is corrosion.

図5に示す、自然電位が−200mVよりも大きな領域Aは、S14の判定において測定された自然電位の値が第1閾値よりも大きいと判定される領域(健全領域)に相当するものである。その一方で、自然電位が−350mV以下の領域Cは、S14の判定において測定された自然電位の値が第閾値以下と判定される領域(腐食領域)に相当するものである。 The region A in which the natural potential is larger than −200 mV shown in FIG. 5 corresponds to the region (healthy region) in which the value of the natural potential measured in the determination of S14 is determined to be larger than the first threshold value. .. On the other hand, the region C having a natural potential of −350 mV or less corresponds to a region (corrosion region) in which the value of the natural potential measured in the determination of S14 is determined to be equal to or less than the second threshold value.

また、自然電位が−350mVよりも大きく、かつ、−200mV以下の領域は、電位変化量が100mV以下の領域BAと、100mVよりも大きな領域BCとに分けられる。領域BAは、鉄筋51に領域Aと同様に健全領域と判定される領域であり、領域BCは、鉄筋51に領域Cと同様に腐食領域と判定される領域である。 Further, a region having a natural potential greater than −350 mV and less than −200 mV is divided into a region BA having a potential change amount of 100 mV or less and a region BC having a potential change amount larger than 100 mV. The region BA is a region where the reinforcing bar 51 is determined to be a healthy region like the region A, and the region BC is a region where the reinforcing bar 51 is determined to be a corroded region like the region C.

上記の構成によれば、測定した自然電位、第1閾値および第2閾値に基づいて鉄筋51の腐食度を推定できる範囲については、測定した自然電位を用いて鉄筋51が腐食しているか否か推定し、鉄筋51の腐食度の推定が困難な範囲については、算出した電位変化量と所定の電位変化量閾値に基づいて鉄筋51が腐食しているか否か推定している。そのため、測定した自然電位のみでは鉄筋51の腐食度が推定できない場合であっても、腐食度を推定可能となる。 According to the above configuration, in the range in which the degree of corrosion of the reinforcing bar 51 can be estimated based on the measured natural potential, the first threshold value and the second threshold value, whether or not the reinforcing bar 51 is corroded using the measured natural potential. In the range where it is difficult to estimate the degree of corrosion of the reinforcing bar 51, it is estimated whether or not the reinforcing bar 51 is corroded based on the calculated potential change amount and the predetermined potential change amount threshold. Therefore, even if the degree of corrosion of the reinforcing bar 51 cannot be estimated only from the measured natural potential, the degree of corrosion can be estimated.

言い換えると、鉄筋腐食の可能性を推定できる範囲を広げることが可能となり、老朽化した構造物の整備優先順位の策定を容易にすることができる。そのため、推定の結果を、鉄筋コンクリート構造物50の鉄筋腐食の定量的な劣化進行度として活用し、整備優先順位の策定の根拠、および建物を含めた鉄筋コンクリート構造物50の残存寿命の診断精度の向上を図ることができる。 In other words, it is possible to expand the range in which the possibility of reinforcing bar corrosion can be estimated, and it is possible to facilitate the formulation of maintenance priorities for aging structures. Therefore, the estimation result is used as the quantitative deterioration progress of the reinforced concrete structure 50 to improve the basis for formulating the maintenance priority and the diagnostic accuracy of the remaining life of the reinforced concrete structure 50 including the building. Can be planned.

また、鉄筋コンクリート構造物50の劣化度合いが定量化可能となることにより、当面改修が必要な鉄筋コンクリート構造物50の特定が可能となり、鉄筋コンクリート構造物50に対して必要な年度投資のコストダウンを図りやすくなる。 In addition, since the degree of deterioration of the reinforced concrete structure 50 can be quantified, it is possible to identify the reinforced concrete structure 50 that needs to be repaired for the time being, and it is easy to reduce the annual investment cost required for the reinforced concrete structure 50. Become.

なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、上記の実施形態ではコンクリートをはつり、外部に露出させた鉄筋51に接続部11を電気的に接続する例に適用して説明したが、接続部11を電気的に接続させる相手は、鉄筋51と電気的に導通している他の部材であってもよい。具体的には、図6に示すように、出入り口などの開口の周囲に設置される金属製部材であるサッシ枠56は、鉄筋51と電気的に導通されているものが多い。このサッシ枠56に接続部11を電気的に接続するようにしてもよい。 The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in the above embodiment, the concrete is hung and the connecting portion 11 is electrically connected to the reinforcing bar 51 exposed to the outside. However, the partner for electrically connecting the connecting portion 11 is the reinforcing bar. It may be another member that is electrically conductive with 51. Specifically, as shown in FIG. 6, many of the sash frames 56, which are metal members installed around openings such as doorways, are electrically conductive with the reinforcing bars 51. The connection portion 11 may be electrically connected to the sash frame 56.

1…腐食度推定装置、10…電位差計(電位測定部)、11…接続部、12…プローブ(照合電極部)、20…推定部(演算部)、21…演算部、50…鉄筋コンクリート構造物(コンクリート部材)、51…鉄筋(鋼材)、S13…測定ステップ、S14…電位に基づく腐食度推定ステップ、S16…電位に基づく腐食度推定ステップ、S18…電位変化量に基づく腐食度推定ステップ、S19…電位変化量に基づく腐食度推定ステップ 1 ... Corrosion degree estimation device, 10 ... Potential difference meter (potential measuring unit), 11 ... Connection unit, 12 ... Probe (matching electrode unit), 20 ... Estimating unit (calculation unit), 21 ... Calculation unit, 50 ... Reinforced concrete structure (Concrete member), 51 ... Reinforcing bar (steel material), S13 ... Measurement step, S14 ... Corrosion degree estimation step based on potential, S16 ... Corrosion degree estimation step based on potential, S18 ... Corrosion degree estimation step based on potential change amount, S19 … Corrosion degree estimation step based on the amount of potential change

Claims (6)

コンクリート部材に埋設された鋼材と電位測定部の一方の端子とを電気的に接続し、照合電極と前記電位測定部の他方の端子とを電気的に接続した照合電極部を前記コンクリート部材の測定範囲における複数の測定点に押し当てて電位を測定する測定ステップと、
前記測定された電位に基づいて、前記測定範囲に含まれる前記鋼材の腐食が不確定な領域を推定する電位に基づく腐食度推定ステップと、
前記不確定な領域に含まれる複数の前記測定点で測定された電位のうちの最大電位と最小電位との差である電位変化量を算出し、算出した前記電位変化量および所定の電位変化量閾値に基づいて前記鋼材が腐食しているか否かを推定する電位変化量に基づく腐食度推定ステップと、
を有することを特徴とする腐食度推定方法。
Measurement of the concrete member is performed by electrically connecting the steel material embedded in the concrete member and one terminal of the potential measuring unit, and electrically connecting the reference electrode and the other terminal of the potential measuring unit. A measurement step that measures the potential by pressing against multiple measurement points in the range,
A potential-based corrosion degree estimation step for estimating a region where corrosion of the steel material included in the measurement range is uncertain based on the measured potential, and
The amount of potential change, which is the difference between the maximum potential and the minimum potential among the potentials measured at the plurality of measurement points included in the uncertain region , is calculated, and the calculated potential change amount and the predetermined potential change amount are calculated. A step of estimating the degree of corrosion based on the amount of potential change for estimating whether or not the steel material is corroded based on a threshold, and
A method for estimating the degree of corrosion, which comprises having.
前記電位に基づく腐食度推定ステップは
前記測定された電位の値が第1閾値よりも大きい場合には、前記鋼材は所定の確率で腐食していないと推定し、
前記測定された電位が前記第1閾値よりも値の小さな第2閾値以下の場合には、前記鋼材は所定の確率で腐食していると推定し
前記測定された電位の値が第1閾値以下であり、且つ、前記測定された電位が前記第2閾値よりも大きい場合には、前記鋼材の腐食が不確定と推定することを特徴とする請求項1記載の腐食度推定方法。
The corrosion degree estimation step based on the potential is
When the value of the measured potential is larger than the first threshold value, it is estimated that the steel material is not corroded with a predetermined probability.
Wherein when the measured potential of small below the second threshold Ne以 value than the first threshold value, the steel is estimated when corroded with a predetermined probability,
When the value of the measured potential is equal to or less than the first threshold value and the measured potential is larger than the second threshold value, it is estimated that the corrosion of the steel material is uncertain. Item 1. The method for estimating the degree of corrosion according to Item 1.
電位測定部と、
コンクリート部材に埋設された鋼材と前記電位測定部の一方の端子とを電気的に接続する接続部と、
前記電位測定部の他方の端子と電気的に接続され、前記コンクリート部材の測定範囲における測定点に押し当てられる照合電極部と、
前記測定された電位に基づいて、前記測定範囲に含まれる前記鋼材の腐食が不確定な領域を推定し、前記不確定な領域に含まれる複数の前記測定点で測定された電位のうちの最大電位と最小電位との差である電位変化量を算出し、算出した前記電位変化量および所定の電位変化量閾値に基づいて前記鋼材が腐食しているか否かを推定する演算部と、
が設けられていることを特徴とする腐食度推定装置。
Potential measuring unit and
A connecting part that electrically connects the steel material embedded in the concrete member and one terminal of the potential measuring part,
A reference electrode unit that is electrically connected to the other terminal of the potential measurement unit and is pressed against a measurement point in the measurement range of the concrete member.
Based on the measured potential, the region where the corrosion of the steel material included in the measurement range is uncertain is estimated, and the maximum of the potentials measured at the plurality of measurement points included in the uncertain region is the maximum. A calculation unit that calculates the potential change amount, which is the difference between the potential and the minimum potential, and estimates whether or not the steel material is corroded based on the calculated potential change amount and the predetermined potential change amount threshold.
Corrosion degree estimation device characterized by being provided with.
前記演算部は、
前記測定された電位の値が第1閾値よりも大きい場合には、前記鋼材は所定の確率で腐食していないと推定し、
前記測定された電位が前記第1閾値よりも値の小さな第2値以下の場合には、前記鋼材は所定の確率で腐食していると推定し、
前記測定された電位の値が第1閾値以下であり、且つ、前記測定された電位が前記第2閾値よりも大きい場合には、前記鋼材の腐食が不確定と推定することを特徴とする請求項記載の腐食度推定装置。
The calculation unit
When the value of the measured potential is larger than the first threshold value, it is estimated that the steel material is not corroded with a predetermined probability.
Wherein when the measured potential of small under second Ne以 value than the first threshold, estimates that the steel is corroded with a predetermined probability,
When the value of the measured potential is equal to or less than the first threshold value and the measured potential is larger than the second threshold value, it is estimated that the corrosion of the steel material is uncertain. Item 3. Corrosion degree estimation device according to item 3 .
一方の端子がコンクリート部材に埋設された鋼材と電気的に接続され、他方の端子が前記コンクリート部材の測定範囲における複数の測定点に押し付けられる照合電極部と電気的に接続される電位測定部により測定される電位に基づいて前記鋼材の腐食を推定するプログラムであって、
コンピュータに
前記電位測定部により測定された電位を取得させる取得機能と、
前記測定された電位に基づいて、前記測定範囲に含まれる前記鋼材の腐食が不確定な領域を推定する電位に基づく腐食度推定機能と、
前記測定範囲に含まれる複数の前記測定点で測定された電位のうちの最大電位と最小電位との差である電位変化量を算出し、算出した前記電位変化量および所定の電位変化量閾値に基づいて前記鋼材が腐食しているか否を推定する電位変化量に基づく腐食度推定機能と、
を実現させることを特徴とするプログラム。
One terminal is electrically connected to the steel material embedded in the concrete member, and the other terminal is electrically connected to the reference electrode portion pressed against a plurality of measurement points in the measurement range of the concrete member. A program that estimates the corrosion of the steel material based on the measured potential.
An acquisition function that allows a computer to acquire the potential measured by the potential measuring unit, and
A potential-based corrosion degree estimation function that estimates a region in which the corrosion of the steel material included in the measurement range is uncertain based on the measured potential, and
The amount of potential change, which is the difference between the maximum potential and the minimum potential among the potentials measured at the plurality of measurement points included in the measurement range, is calculated, and the calculated potential change amount and the predetermined potential change amount threshold are set. A corrosion degree estimation function based on the amount of potential change that estimates whether or not the steel material is corroded based on the
A program characterized by realizing.
腐食度推定機能は、前記測定された電位の値が第1閾値よりも大きい場合には、前記鋼材は所定の確率で腐食していないと推定し、
前記測定された電位が前記第1閾値よりも値の小さな第2閾値以下の場合には、前記鋼材は所定の確率で腐食していると推定し
前記測定された電位の値が第1閾値以下であり、且つ、前記測定された電位が前記第2閾値よりも大きい場合には、前記鋼材の腐食が不確定と推定することを特徴とする請求項記載のプログラム。
The corrosion degree estimation function estimates that the steel material is not corroded with a predetermined probability when the measured potential value is larger than the first threshold value.
Wherein when the measured potential of small below the second threshold Ne以 value than the first threshold value, the steel is estimated when corroded with a predetermined probability,
When the value of the measured potential is equal to or less than the first threshold value and the measured potential is larger than the second threshold value, it is estimated that the corrosion of the steel material is uncertain. Item 5. The program according to item 5 .
JP2016145483A 2016-07-25 2016-07-25 Corrosion degree estimation method, corrosion degree estimation device and program Active JP6753717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016145483A JP6753717B2 (en) 2016-07-25 2016-07-25 Corrosion degree estimation method, corrosion degree estimation device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016145483A JP6753717B2 (en) 2016-07-25 2016-07-25 Corrosion degree estimation method, corrosion degree estimation device and program

Publications (2)

Publication Number Publication Date
JP2018017517A JP2018017517A (en) 2018-02-01
JP6753717B2 true JP6753717B2 (en) 2020-09-09

Family

ID=61081709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016145483A Active JP6753717B2 (en) 2016-07-25 2016-07-25 Corrosion degree estimation method, corrosion degree estimation device and program

Country Status (1)

Country Link
JP (1) JP6753717B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6417463B1 (en) * 2017-11-20 2018-11-07 株式会社ナカボーテック Reference electrode, reference electrode unit, metal corrosion notification device and metal corrosion notification system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217147A (en) * 1983-05-25 1984-12-07 Nippon Kenchiku Sogo Shikenjo Method and apparatus for inspecting corrosion of steel material in concrete
JP2535177B2 (en) * 1987-07-21 1996-09-18 五洋建設株式会社 Deterioration determination method for reinforced concrete structure
JP3326587B2 (en) * 1996-01-16 2002-09-24 電気化学工業株式会社 Method for detecting corrosion points of steel in concrete
JP3096240B2 (en) * 1996-06-12 2000-10-10 財団法人鉄道総合技術研究所 Diagnosis method and apparatus for corrosion probability or degree of corrosion of reinforcing steel in concrete structure
JPH10221292A (en) * 1997-02-03 1998-08-21 Denki Kagaku Kogyo Kk Detecting method for steel material corrosion in concrete
JP2000044364A (en) * 1998-07-22 2000-02-15 Denki Kagaku Kogyo Kk Detection of repair-needing portion of concrete structure and its repair

Also Published As

Publication number Publication date
JP2018017517A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP2008224405A (en) Corrosion rate evaluating method
JPH0543268B2 (en)
JP2013242163A (en) Corrosion progress prediction method and corrosion progress prediction apparatus
JP6753718B2 (en) Corrosion degree estimation method, corrosion degree estimation device and program
CN112136039B (en) Alkalinity measurement of water samples
JP6828750B2 (en) Corrosion evaluation method
JP6812305B2 (en) Corrosion rate measuring device and corrosion rate measuring method
JP6753717B2 (en) Corrosion degree estimation method, corrosion degree estimation device and program
JP2010266342A (en) Metal corrosion diagnostic method
JP2011257245A (en) Corrosion amount estimation method, corrosion amount estimation device, and management method for reinforced concrete
WO2019225727A1 (en) Corrosion rate estimating device and method
JP4521066B2 (en) Prediction method of corrosion occurrence time of steel in concrete
JP6026055B2 (en) Method for measuring corrosion rate of metal bodies
JP2020153782A (en) Corrosion detection device, corrosion detection method, and corrosion detection program
JP2018204949A (en) Evaluation method for hydrogen embrittlement resistance characteristic of steel material
Cano et al. Electrochemical techniques for in situ corrosion evaluation of cultural heritage
Andrade et al. Techniques for measuring the corrosion rate (polarization resistance) and the corrosion potential of reinforced concrete structures
JP2002296213A (en) Corrosion evaluation method and database
Reichling et al. Method to determine electrochemical potential gradients without reinforcement connection in concrete structures
JP2008139138A (en) Electrochemical noise measuring method
JP2019100755A (en) Corrosion amount estimation device and method therefor
JP2006300590A (en) Method for estimating rate of thickness-reducing corrosion
JP5385319B2 (en) Corrosion location identification method and system
JP7455707B2 (en) Harsh environment chloride measurement system and harsh environment chloride measurement method
JP2006284280A (en) Method and apparatus for estimating corrosion

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200820

R150 Certificate of patent or registration of utility model

Ref document number: 6753717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250