JP2000044364A - Detection of repair-needing portion of concrete structure and its repair - Google Patents

Detection of repair-needing portion of concrete structure and its repair

Info

Publication number
JP2000044364A
JP2000044364A JP10221132A JP22113298A JP2000044364A JP 2000044364 A JP2000044364 A JP 2000044364A JP 10221132 A JP10221132 A JP 10221132A JP 22113298 A JP22113298 A JP 22113298A JP 2000044364 A JP2000044364 A JP 2000044364A
Authority
JP
Japan
Prior art keywords
concrete
steel material
repair
concrete structure
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10221132A
Other languages
Japanese (ja)
Inventor
Koichi Ishibashi
孝一 石橋
Yoshito Hara
与司人 原
Kazuhiro Aigo
一博 藍郷
Junichi Tanaka
淳一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
East Japan Railway Co
Original Assignee
Denki Kagaku Kogyo KK
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK, East Japan Railway Co filed Critical Denki Kagaku Kogyo KK
Priority to JP10221132A priority Critical patent/JP2000044364A/en
Publication of JP2000044364A publication Critical patent/JP2000044364A/en
Pending legal-status Critical Current

Links

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for detecting the repair-needing portion of a concrete structure, capable of highly accurately evaluating the corroded state and corroded portion of a steel material and detecting the repair-needing portion without chipping the concrete to expose the steel material, by bringing at least two ends for measuring and detecting electric potentials into contact with the surface of the concrete structure and measuring the difference between the natural electric potentials of the steel material sites in the concrete structure at two or more places. SOLUTION: Water is sprayed on the surface of the concrete 1 of a concrete structure 3 having a steel material 2 in the concrete 1 to wet the surface. Two or more detection ends 4a, 4b having electrodes, respectively, are brought into contact with the surface of the concrete 1 at a constant distance, and the difference between the natural electric potentials of the steel material sites 2a, 2b in two or more concrete sites 1a, 1b is measured. The detection ends are moved on the surface of the concrete 1 along the steel material 2 at the constant distance, and the differences between the natural electric potentials of the steel material sites are detected. As a judgment method, a site having a measured natural electric potential difference of >=100 mV (absolute value) is determined as a site to be repaired on the basis of the corrosion of the steel material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンクリート中に
鋼材を有するコンクリート構造物の要補修部分を検出す
る方法およびその補修方法に関し、特にコンクリート構
造物中の鋼材腐食をもたらす劣化に関する要補修部分の
位置決め方法およびその要補修部分の補修方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of detecting a repaired portion of a concrete structure having steel in concrete and a repairing method thereof, and more particularly to a method of detecting a repaired portion relating to deterioration of a concrete structure causing corrosion of steel in a concrete structure. The present invention relates to a positioning method and a method for repairing a required repair portion.

【0002】[0002]

【従来の技術】コンクリート中に鋼材を有するコンクリ
ート構造物において、コンクリートは、一般には、種々
の環境に対する抵抗力が強く、また、強アルカリ性であ
るので、その内部にある鋼材は、鋼材表面に不動態被膜
を形成して腐食から保護され、そのために、コンクリー
ト構造物は耐久性のある永久構造物であると考えられて
きた。
2. Description of the Related Art In a concrete structure having steel in concrete, concrete generally has a strong resistance to various environments and is strongly alkaline. It has been considered that concrete structures are durable permanent structures because they form a dynamic coating and are protected from corrosion.

【0003】しかしながら、この永久構造物と考えられ
てきたコンクリート構造物も、中性化や塩害などの原因
により鋼材が腐食し、その機能を失うことで構造物とし
ての寿命に疑問がなげかけられる様になってきた。
[0003] However, concrete structures which have been considered to be permanent structures also have a problem in that their life as a structure is questioned due to the corrosion of the steel material due to the cause of neutralization and salt damage and the loss of its function. It has become

【0004】この様なコンクリート構造物はコンクリー
ト内部の鋼材の発錆、コンクリートのひび割れ、さらに
はコンクリートの欠落という現象を引き起こし構造的に
も、また外観的にも大きな問題となっている。
[0004] Such a concrete structure causes a phenomenon of rusting of the steel material inside the concrete, cracking of the concrete, and further, a lack of the concrete, which is a serious problem both in terms of structure and appearance.

【0005】この様に劣化したコンクリート構造物の補
修方法としては、コンクリートのひび割れや欠落部分に
ついてはその部分のコンクリートをハツリ取った後に新
しいコンクリートやモルタルを充填する「断面修復法」
が主体であった。
[0005] As a method of repairing a concrete structure deteriorated in this way, for a crack or a missing portion of the concrete, a "cross-section repair method" in which the concrete in the portion is removed and then filled with new concrete or mortar.
Was the subject.

【0006】しかしながら、この断面修復法では鋼材の
錆により生じる錆汁やコンクリートのひび割れ、欠落と
いう外観的に確認できる部分にのみ適用可能であった。
また、外観的には劣化が現れていなくても潜在的にコン
クリートの劣化が進行している部分の補修方法として電
気化学的な手法を用いた補修工法が提案されている(特
開平1−176287号公報、特開平2−302384
号公報)。
[0006] However, this cross-section repair method was applicable only to those parts which can be visually confirmed, such as rust juice caused by rust of steel materials and cracks and lack of concrete.
In addition, a repair method using an electrochemical method has been proposed as a repair method of a part where deterioration of concrete is potentially progressing even if the appearance is not deteriorated (JP-A-1-176287). Gazette, JP-A-2-302384
No.).

【0007】しかし、これらの補修方法を適用するにあ
たってその補修部分を決める際には断面補修工法の場合
は、外観上変状の認められる部分についてしか補修部分
を特定できず、また潜在的な劣化部分を特定する際に
も、コンクリートの一部を破壊して内部の鋼材を露出さ
せ、その部分に導線を接続してコンクリート表面からコ
ンクリート内部の鋼材の自然電位を測定し、その自然電
位の値から鋼材の腐食程度を推定し補修部分の位置決め
を行う必要があった。
However, when these repair methods are applied, when the repair portion is determined, in the case of the cross-section repair method, the repair portion can be specified only for the portion where the appearance is deformed, and the potential deterioration When identifying the part, part of the concrete is destroyed to expose the steel material inside, a conductor is connected to that part, the natural potential of the steel material inside the concrete is measured from the concrete surface, and the value of the natural potential Therefore, it was necessary to estimate the degree of corrosion of the steel material and determine the position of the repaired part.

【0008】しかしながらこれらの方法では、外観上か
らのみ判断する場合には潜在的に劣化の進行している部
分の特定ができず、また自然電位測定による判断では測
定の際にコンクリートの一部をハツリ出す必要があるた
めに場合によっては健全な部分のコンクリート構造物を
痛めてしまい劣化を促進させる原因ともなりコンクリー
ト構造物を維持する観点からは好ましくない。
[0008] However, in these methods, when judging only from the appearance, it is impossible to identify a part where deterioration is potentially progressing, and in the judgment by self potential measurement, a part of concrete is not measured at the time of measurement. In some cases, it is necessary to sharpen the concrete structure, which may damage a sound portion of the concrete structure and accelerate deterioration, which is not preferable from the viewpoint of maintaining the concrete structure.

【0009】また、コンクリートの一部を破壊するため
には専用の道具を用いる必要があり、鋼材のかぶり深さ
が深い場合や、対象とするコンクリートの面積が広い場
合はより多くの部位の鋼材を露出させる必要があり非常
に多くの労力を要すると言う課題があった。
In order to destroy a part of the concrete, it is necessary to use a special tool. When the covering depth of the steel material is large or when the area of the concrete to be covered is large, the steel material of more parts is required. However, there is a problem that it is necessary to expose the camera and a great deal of labor is required.

【0010】[0010]

【発明が解決しようとする課題】本発明者らは、前記課
題を解決すべく種々検討した結果、コンクリート鋼材へ
の導線の接続が不要であるため、コンクリート中の鋼材
をハツリ出す必要が無く精度良くコンクリート中の鋼材
の腐食状態と腐食部分を評価できる方法を見い出し、ま
たその腐食部分の補修を行なうことにより、前記課題を
解決し得ることを知見し、本発明を完成するに至った。
The inventors of the present invention have conducted various studies to solve the above-mentioned problems. As a result, since it is not necessary to connect a conductive wire to the concrete steel material, it is not necessary to remove the steel material in the concrete, and the accuracy is reduced. The present inventors have found a method capable of evaluating the corrosion state and the corroded portion of a steel material in concrete well, and have found that the above problem can be solved by repairing the corroded portion, thereby completing the present invention.

【0011】[0011]

【課題を解決するための手段】即ち、本発明は、少なく
とも2個以上の電位測定検出端をコンクリート構造物の
表面に接触させ、2箇所以上のコンクリート構造物中の
鋼材の自然電位の差を測定し、該自然電位の差の値から
鋼材の腐食状態を診断してコンクリート構造物の要補修
部分を検出する方法である。
That is, according to the present invention, at least two or more potential measuring and detecting ends are brought into contact with the surface of a concrete structure, and the difference in the natural potential of the steel material in the two or more concrete structures is determined. This is a method of measuring the value of the difference in the natural potential, diagnosing the corrosion state of the steel material, and detecting a repaired portion of the concrete structure.

【0012】また、本発明は、少なくとも2個以上の電
位測定検出端をコンクリート構造物の表面に接触させ、
2箇所以上のコンクリート構造物中の鋼材の自然電位の
差を測定し、該自然電位の差の値から鋼材の腐食状態を
診断してコンクリート構造物の要補修部分を検出し、該
要補修部分を補修することを特徴とするコンクリート構
造物の補修方法である。
[0012] In addition, the present invention provides at least two or more potential measurement detecting ends in contact with the surface of a concrete structure,
The difference between the natural potentials of the steel materials in the two or more concrete structures is measured, the state of corrosion of the steel material is diagnosed from the value of the difference in the natural potentials, and the repaired portion of the concrete structure is detected. The method for repairing a concrete structure is characterized by repairing a concrete structure.

【0013】本発明において、コンクリート構造物の要
補修部分は、同種類の電位測定検出端により測定された
自然電位の差の絶対値が100mV以上の部分を要補修
部分とするか、または同種類の電位測定検出端により各
測定された自然電位の差の測定データ(x)と、該測定
データ(x)の値の大きい方から5〜20%の平均値の
基準値(xg)との差の絶対値(xs)=|xg−x|
が150mV以上の部分を要補修部分とするのが好まし
い。
In the present invention, the part requiring repair of the concrete structure is a part requiring an absolute value of a difference of 100 mV or more of the natural potential measured by the same type of potential measurement detecting end, or a part requiring repair. Between the measured data (x) of the difference between the self-potentials measured by the potential measurement detecting end and the reference value (xg) of the average value of 5 to 20% from the larger value of the measured data (x) Absolute value of (xs) = | xg−x |
It is preferable to make a portion having a value of 150 mV or more a repair required portion.

【0014】また、コンクリート構造物の補修方法は、
断面修復工法、表面被覆法または電気化学的補修工法で
行なうのが好ましい。また、コンクリート構造物の補修
方法において、補修を行った後に、少なくとも2個以上
の電位測定検出端をコンクリート構造物の非補修表面と
補修表面に接触させ、2箇所以上のコンクリート構造物
中の鋼材の自然電位の差を測定し、該自然電位の差の値
からコンクリート構造物の補修を確認するのが好まし
い。
[0014] The repair method of the concrete structure is as follows.
It is preferable to use a cross-section repair method, a surface coating method or an electrochemical repair method. In the method for repairing a concrete structure, after repairing, at least two or more potential measurement detecting ends are brought into contact with a non-repaired surface and a repaired surface of the concrete structure, and the steel material in the two or more concrete structures is repaired. It is preferable to measure the difference in the natural potential of the concrete structure and confirm the repair of the concrete structure from the value of the difference in the natural potential.

【0015】[0015]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のコンクリート構造物の要補修部分を検出する方
法は、コンクリート構造物中の鋼材の自然電位の測定を
行える電位測定検出端(以下、本検出端という)を少な
くとも2個用い、コンクリート構造物の表面に接触さ
せ、2箇所以上のコンクリート中の鋼材の自然電位の差
を測定することによりコンクリート構造物中の鋼材の腐
食を診断し、コンクリート構造物の要補修部分を検出す
ることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The method for detecting a repair-required portion of a concrete structure according to the present invention comprises the steps of: using at least two potential measurement detecting ends (hereinafter referred to as main detecting ends) capable of measuring a natural potential of a steel material in a concrete structure; The corrosion of steel in concrete structures by measuring the difference in the natural potential of steel in two or more places by contacting the surface of concrete, and detecting the repaired parts of the concrete structure. I do.

【0016】本発明では、コンクリート中に鋼材を有す
るコンクリート構造物を対象とするものである。測定前
には、コンクリート表面に散水し、コンクリートを湿潤
状態にする。コンクリート内部の鋼材の電気的な連続性
を確認したいコンクリート中の任意の鋼材近傍上のコン
クリート表面に本検出端を少なくとも2個同時に接触さ
せ、一方を特定の部位に固定し、もう一方を一定間隔で
移動させ自然電位差の測定を行い、対象とする構造物の
2次元的な電位差の分布状態の測定を行う。この測定の
際に、固定する本検出端の設置位置は特に限定されない
が構造物の外観検査から判断して最も劣化が進んでいる
と判断される点、又は最も劣化していないと判断される
点に設置することが好ましい。
The present invention is directed to a concrete structure having a steel material in concrete. Before the measurement, water is sprinkled on the concrete surface to make the concrete wet. Want to check the electrical continuity of the steel inside the concrete At least two of these detection ends contact the concrete surface near any steel in the concrete at the same time, fix one to a specific part, and the other at a fixed interval To measure the spontaneous potential difference, and measure the two-dimensional distribution of the potential difference of the target structure. At the time of this measurement, the installation position of the main detection end to be fixed is not particularly limited, but it is judged from the appearance inspection of the structure that the deterioration is judged to be the most advanced, or it is judged that the deterioration is the least deteriorated It is preferable to install at a point.

【0017】本発明を利用したコンクリート中鋼材の要
補修部分を検出する方法の例を図1に示す。図1は、本
発明で用いられる鋼材腐食測定装置の一例を示す説明図
である。同図において、本発明の検出方法は、コンクリ
ート1中に鋼材2を有するコンクリート構造物3のコン
クリート1の表面に、電極を備えた2個以上の本検出端
4a,4bを一定の間隔で接触させ、電位測定装置5に
より、2箇所以上のコンクリート1a,1b中の鋼材2
a,2bの自然電位の差を測定することにより、コンク
リート中の鋼材の腐食状況を診断し、コンクリート構造
物の要補修部分を検出する方法である。
FIG. 1 shows an example of a method for detecting a repaired portion of steel in concrete using the present invention. FIG. 1 is an explanatory diagram showing an example of a steel corrosion measurement apparatus used in the present invention. In the figure, in the detection method of the present invention, two or more main detection ends 4a and 4b provided with electrodes are brought into contact with a surface of a concrete structure 3 of a concrete structure 3 having a steel material 2 in the concrete 1 at regular intervals. The steel material 2 in two or more concrete 1a, 1b
This is a method of diagnosing the corrosion state of the steel material in the concrete by measuring the difference between the natural potentials a and 2b and detecting a repair required portion of the concrete structure.

【0018】本発明のコンクリート中の鋼材としては、
鉄筋コンクリート用棒鋼、PC棒鋼、PC鋼線、一般構
造用圧延鋼材、一般構造用溶接軽量H形鋼、一般構造用
角型鋼管、軟鋼線材、硬鋼線材、ピアノ線、ワイヤーロ
ープ、及び溶接金鋼等が挙げられる。
The steel material in the concrete of the present invention includes:
Steel bars for reinforced concrete, PC steel bars, PC steel wires, rolled steel materials for general structures, welded lightweight H-section steels for general structures, square steel pipes for general structures, mild steel wires, hard steel wires, piano wires, wire ropes, and welded steel And the like.

【0019】本発明で使用する本検出端には、通常、銀
/塩化銀電極、カロメル電極、銅/硫酸銅電極、などの
照合電極を備えたものを用いるが、白金や酸化ジルコニ
ウム、酸化ルテニウムを始めとする腐食されない貴金属
類あるいは貴金属メッキされた金属などの電位測定可能
な金属を備えたものでも可能である。
The detection end used in the present invention usually has a reference electrode such as a silver / silver chloride electrode, a calomel electrode, a copper / copper sulfate electrode, etc., and is usually platinum, zirconium oxide, ruthenium oxide. And a metal having a potential-measurable metal such as a noble metal or a metal plated with a noble metal.

【0020】本検出端の一方の電極は電位測定装置のプ
ラス側に、もう一方の電極はマイナス側に接続される。
プラス側、またはマイナス側に本検出端を複数個接続す
る場合は常にプラス側、マイナス側の各々1個づつ、2
極間の電位が測定できるように検出端の接続が切り替え
られる切替装置を備える。
One electrode of the detection end is connected to the positive side of the potential measuring device, and the other electrode is connected to the negative side.
When connecting multiple detection terminals to the plus side or the minus side, always connect one for each of the plus and minus sides.
A switching device is provided for switching the connection of the detection end so that the potential between the electrodes can be measured.

【0021】測定にあたっては、複数の本検出端の内、
1方の本検出端をコンクリート面に接触させ、他方の検
出端を順次コンクリート面に接触させてゆき、本検出端
間での自然電位差を測定しその測定値を記録する。
In the measurement, of the plurality of detection ends,
One of the detection ends is brought into contact with the concrete surface, and the other detection end is brought into contact with the concrete surface sequentially. The natural potential difference between the main detection ends is measured and the measured value is recorded.

【0022】次に、測定装置について説明する。まず、
本検出端について説明する。本発明で使用する本検出端
としては、脱脂綿やスポンジ等の保水材に塩化カリウム
や水酸化カルシウム等の電解質溶液を含浸させたもの、
あるいは、保水材の乾燥を防ぐために容器内に電解質溶
液を蓄え、保水材へ常に電解質溶液を供給できるものの
中に前記照合電極を備えたものを使用する。コンクリー
ト表面への電気的な接触が必要である為、湿潤部分であ
る保水材をコンクリート面に接触できる様にしておく必
要がある。
Next, the measuring device will be described. First,
The detection end will be described. As the present detection end used in the present invention, a water retaining material such as absorbent cotton or sponge impregnated with an electrolyte solution such as potassium chloride or calcium hydroxide,
Alternatively, an electrolyte solution is stored in a container in order to prevent the water retaining material from drying, and a device provided with the reference electrode among those capable of constantly supplying the electrolyte solution to the water retaining material is used. Since electrical contact with the concrete surface is required, it is necessary to allow the water retention material, which is a wet portion, to be able to contact the concrete surface.

【0023】本検出端の形状や大きさは、コンクリート
表面との接触面積が0.5cm2 以上確保できれば特に
限定されるものではない。本検出端の例としては、特開
昭59−217147号公報の可搬式電極部や特開昭6
3−163266号公報の腐食本検出端等の電極がある
が、本発明においては、電位測定のできるものであれば
いかような検出端でも使用可能である。
The shape and size of the detection end are not particularly limited as long as the contact area with the concrete surface can be secured to 0.5 cm 2 or more. Examples of the detection end include a portable electrode unit described in JP-A-59-217147 and JP-A-6-217147.
Although there is an electrode such as a corroded main detecting end described in Japanese Patent Application Laid-Open No. 3-163266, any detecting end capable of measuring potential can be used in the present invention.

【0024】少なくとも2個の本検出端を用いて、本検
出端どうしが互いに接触しないようにコンクリート表面
に接触させ、順次測定点を移動させていく。測定の際に
本検出端が相互に接触した場合は、両方の本検出端で同
一部分を測定してしまうため異なる部分の自然電位差は
測定できなくなり測定値の変動はなくなり安定した数値
を示す。
Using at least two main detection ends, the main detection ends are brought into contact with the concrete surface so as not to contact each other, and the measuring points are sequentially moved. When the main detection ends come into contact with each other at the time of measurement, the same portion is measured by both main detection ends, so that the spontaneous potential difference at different portions cannot be measured, the measured value does not fluctuate, and a stable numerical value is shown.

【0025】次に、電位測定装置について説明する。本
検出端は導線により、電位測定装置に接続される。電位
測定装置は、センサーに照合電極を用いて一方をコンク
リート中の鋼材に接続し、コンクリート中鋼材の自然電
位測定に用いるハイテスタや電気化学的測定に用いられ
るポテンショスタット、ガルバノスタットなど信号の入
力抵抗が高い装置を用いることができる。
Next, the potential measuring device will be described. This detection end is connected to a potential measuring device by a conducting wire. The potential measurement device uses a reference electrode as a sensor and connects one side to steel in concrete.The input resistance of signals such as a high tester used for measuring the spontaneous potential of steel in concrete and a potentiostat or galvanostat used for electrochemical measurement is used. Can be used.

【0026】ここで用いる電位測定装置であるハイテス
タは電気回路の電圧測定にも用いられ、またポテンショ
スタット、ガルバノスタットはそれぞれ単独に用いら
れ、ポテンショスタットは、電圧制御による電流測定を
行う装置、ガルバノスタットは電流制御による電圧測定
を行う装置として一般に用いられている装置でもある。
通常現場での測定には、コンパクトで持ち運びの容易な
ハイテスタが使用される。
A high tester, which is a potential measuring device used here, is also used for measuring the voltage of an electric circuit, and a potentiostat and a galvanostat are used independently. A potentiostat is a device for measuring current by voltage control. The stat is also a device generally used as a device for performing voltage measurement by current control.
Usually, a compact and easy-to-carry high tester is used for on-site measurement.

【0027】次に、測定方法について説明する。測定に
際しては、コンクリートと本検出端との電気的な接触を
良好とする為、測定の前にコンクリート面を水道水や水
酸化カルシウムなどの電解質溶液で湿潤状態にしておく
ことが好ましい。
Next, a measuring method will be described. At the time of measurement, it is preferable that the concrete surface is wetted with an electrolyte solution such as tap water or calcium hydroxide before measurement in order to improve the electrical contact between the concrete and the main detection end.

【0028】この状態で全ての装置の接続を行い、本検
出端をコンクリート表面に接触させるとコンクリート中
の鋼材が電気的に導通している場合にはコンクリートを
介し本検出端とコンクリート中の鋼材とで安定な電気的
回路を形成し、各々の本検出端を接触させた部位のコン
クリート中の鋼材の自然電位が検出され、電位測定装置
にその測定部位での自然電位差が表示され、一定間隔で
測定を繰り返すことにより対象とする範囲の自然電位差
の分布を得ることができる。
In this state, when all the devices are connected and the main detecting end is brought into contact with the concrete surface, if the steel material in the concrete is electrically conductive, the main detecting end and the steel material in the concrete are connected via the concrete. A stable electric circuit is formed by this, the natural potential of the steel material in the concrete at the part where each of the detection ends is brought into contact is detected, the natural potential difference at the measurement part is displayed on the potential measuring device, and the constant By repeating the measurement, the distribution of the natural potential difference in the target range can be obtained.

【0029】次に、要補修部分の検出について説明す
る。コンクリート中の鋼材の自然電位は腐食の程度によ
り変化することが知られている。例えば、海洋構造物に
見受けられる塩害劣化を受けた構造物では、参照電極に
銅/硫酸銅電極(CSE)を用いた場合はASTM C
−876では以下の表1に示すような判定基準が定めら
れている。
Next, the detection of the part requiring repair will be described. It is known that the spontaneous potential of steel in concrete changes depending on the degree of corrosion. For example, in a structure suffering from salt damage deterioration found in an offshore structure, when a copper / copper sulfate electrode (CSE) is used as a reference electrode, ASTM C
In -876, criteria as shown in Table 1 below are defined.

【0030】[0030]

【表1】ASTM C−876による判定 [Table 1] Judgment by ASTM C-876

【0031】本測定法においても数種類の供試体につい
て自然電位差の測定結果と外観調査、及び鋼材をはつり
だし目視調査を行った。その結果、外観検査より鋼材の
腐食が進行し、コンクリート表面ににひび割れが生じて
いない部分を基準点とした場合は、基準点より自然電位
差が−100mVより高い部分では測定範囲の90%以
上に鋼材の腐食によるひび割れは認められなかった。
In this measurement method, the measurement results of the spontaneous potential difference and the appearance of several kinds of test specimens, and the visual examination were carried out by extracting a steel material. As a result, when the corrosion of the steel material progressed from the appearance inspection and the portion where the crack did not occur on the concrete surface was set as the reference point, the portion where the natural potential difference was higher than -100 mV from the reference point was 90% or more of the measurement range. No cracking due to corrosion of the steel was observed.

【0032】また、−100〜−150mVの範囲では
約10%の範囲にひび割れが認められ、約55%の範囲
には表面にひび割れは認められなかったがコンクリート
をはつり出して鋼材の目視観察を行った結果、鋼材の断
面欠損をともなう錆びや鋼材表面への錆びが認められ
た。
In the range of -100 to -150 mV, cracks were observed in about 10% of the area, and in the area of about 55%, no cracks were observed on the surface. As a result, rust accompanied by a cross-sectional defect of the steel material and rust on the surface of the steel material were observed.

【0033】さらに、自然電位差が−150mVより低
い部分では約25%のコンクリート表面部分にひび割れ
が認められ、鋼材をはつりだした結果では約92%の範
囲に鋼材表面への錆が認められた。本結果より判断して
構造物の崩壊をもたらすと考えられる要補修部分は自然
電位差により判断することができる。
Further, in a portion where the natural potential difference is lower than -150 mV, about 25% of the concrete surface had cracks, and as a result of pulling out the steel, rust on the steel surface was found in a range of about 92%. The repaired portion which is considered to cause the collapse of the structure as judged from the result can be judged by the natural potential difference.

【0034】本法を実構造物へ適用をする場合は、まず
調査範囲の中から任意の部位を基準点として基準側の電
極を設置する。次に、調査範囲の全範囲について任意の
間隔で測定を行う。この場合、測定する間隔としては構
造物の鋼材間隔がわかっている場合は、その間隔以下と
することが望ましく通常20cm〜50cmの間隔で行
うが、測定範囲が広い場合は、100cm程度の間隔で
格子状に測定を行う。
When the present method is applied to an actual structure, first, an electrode on the reference side is set with an arbitrary part in the investigation range as a reference point. Next, measurements are made at arbitrary intervals over the entire range of the survey. In this case, if the interval between the steel materials of the structure is known as the interval to be measured, the interval is desirably equal to or less than the interval. Usually, the interval is 20 cm to 50 cm, but when the measurement range is wide, the interval is about 100 cm. The measurement is performed in a grid.

【0035】次に、測定データの値(x)の大きい方か
ら5〜20%程度の平均値を、調査範囲の良好部位の基
準値(xg)とする。良好部位の対象とするデータ数は
測定データ数により判断し決める。この際に明らかに異
常値と考えられる部分は除いて計算する。さらに、良好
部位の基準値(xg)と測定データ(x)との差の絶対
値(xs)= |xg−x|を計算し劣化程度の判断の
数値、即ち判断値(xs)とする。
Next, an average value of about 5 to 20% from the larger value (x) of the measurement data is set as a reference value (xg) of a good part in the investigation range. The number of data targeted for a good part is determined and determined based on the number of measured data. At this time, the calculation is performed excluding a portion considered to be an abnormal value. Further, the absolute value (xs) = | xg-x | of the difference between the reference value (xg) of the good part and the measurement data (x) is calculated and set as a numerical value for judging the degree of deterioration, that is, a judgment value (xs).

【0036】この判断値(xs)に、構造物の置かれて
いる環境や補修を行う際の経済性を考慮して補修対象の
範囲を決定する。
The range of the object to be repaired is determined based on the judgment value (xs) in consideration of the environment where the structure is placed and the economics of repair.

【0037】補修対象範囲を決める際には、将来の劣化
を考慮した予防保全の点から考えると判断値(xs)と
しては100mV程度が好ましいが、補修費用が限られ
ており劣化の激しい部分のみの補修を行う場合には、1
50mV程度あるいはそれ以上の値を判断値(xs)と
することも可能である。
When determining the repair target range, the judgment value (xs) is preferably about 100 mV from the viewpoint of preventive maintenance in consideration of future deterioration, but only the portion where the repair cost is limited and the deterioration is severe is limited. When repairing
A value of about 50 mV or more can be used as the judgment value (xs).

【0038】次に、補修効果の確認を行う方法について
述べる。鋼材に腐食をもたらす劣化には塩害劣化や中性
化劣化等が挙げられるが、それらの補修工法としては、
断面修復工法、表面被覆法や脱塩工法、再アルカリ化工
法などの電気化学的補修工法が適用される。
Next, a method for confirming the repair effect will be described. Deterioration that causes corrosion to steel materials includes salt damage deterioration and carbonation deterioration, etc.
Electrochemical repair methods such as cross-section repair, surface coating, desalination, and re-alkalization are applied.

【0039】要補修と判断された範囲に補修を行った後
に健全部分を基準点として補修部分の位置決めを行った
方法と同様の方法で表面電位の測定を行い、その自然電
位差の絶対値が100mVより低い値、好ましくは50
mVより低い値であれば良好な補修が行われたと判断す
ることができる。
After repairing the area determined to require repair, the surface potential was measured in the same manner as the method of positioning the repaired part with the healthy part as the reference point, and the absolute value of the natural potential difference was 100 mV. Lower value, preferably 50
If the value is lower than mV, it can be determined that good repair has been performed.

【0040】[0040]

【実施例】以下、本発明の実施例に基づいて説明する
が、本発明はこれに限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments, but the present invention is not limited to these embodiments.

【0041】実施例1 セメント280kg/m3 、水168kg/m3 、細骨
材860kg/m3 、、粗骨材1002kg/m3 、A
E減水剤0.7kg/m3 、および塩分量を塩化物イオ
ン量で0kg/m3 、8kg/m3 となるように練混ぜ
水に添加した配合にて縦60cm、横120cm、厚さ
10cmのコンクリート供試体において、横方向の両端
35cm部は塩分量0kg/m3 のコンクリートを、ま
た中央の50cm部分には塩分量を8kg/m3 含んだ
コンクリート表面からかぶり厚さ部分までを打設して部
分的な鋼材腐食を生じたコンクリート供試体(A)を作
製した。
[0041] Example 1 Cement 280 kg / m 3, water 168 kg / m 3, fine aggregates 860 kg / m 3 ,, coarse aggregate 1002kg / m 3, A
E water-reducing agent 0.7 kg / m 3, and salinity of 0 kg / m 3 in the chloride ion content, 8 kg / m 3 and comprising as Mixing longitudinal 60cm in addition to formulation into water, horizontal 120 cm, thickness 10cm Concrete specimens with a salt content of 0 kg / m 3 at 35 cm at both ends in the horizontal direction, and a concrete surface with a salt content of 8 kg / m 3 from the concrete surface containing the salt content of 8 kg / m 3 at the center 50 cm portion. Thus, a concrete specimen (A) in which partial corrosion of steel material occurred was produced.

【0042】尚、このコンクリート試験体の断面の深さ
5cmの所に公称径13mmの丸鋼鋼材を縦方向、横方
向共に鋼材間隔20cmとなるように埋設した。
A round steel material having a nominal diameter of 13 mm was buried at a depth of 5 cm in the cross section of the concrete specimen so that the steel material interval was 20 cm in both the vertical and horizontal directions.

【0043】試験用供試体は打設後28日間の湿空養生
を行った後、塩分を含む部分の鋼材の腐食を促進させる
ために1回/日の散水を繰り返しながら1ヶ月間室内に
放置した。供試体の概要を図2に示す。図2は、本発明
の実施例1で測定に用いたコンクリート供試体の一例を
示す平面図である。図3は、図2のAA線端面図であ
る。
The test specimen was left in a room for one month after being subjected to wet and dry curing for 28 days after casting and then repeatedly sprayed once a day to promote corrosion of the steel material containing salt. did. Fig. 2 shows the outline of the test specimen. FIG. 2 is a plan view showing an example of a concrete specimen used for measurement in Example 1 of the present invention. FIG. 3 is an end view taken along the line AA of FIG.

【0044】照合電極に鉛電極を用いて、供試体(A)
の(a)点を基準点として縦筋、横筋の重ならない部分
の中央での電位差測定を行った。供試体に対応させた測
定結果を表2に示す。
Specimen (A) using a lead electrode as a reference electrode
Using the point (a) as a reference point, the potential difference was measured at the center of the portion where the vertical and horizontal streaks did not overlap. Table 2 shows the measurement results corresponding to the test specimens.

【0045】[0045]

【表2】 [Table 2]

【0046】塩分を含むコンクリート部分では−150
mVより低い自然電位差であったのに対し塩分を含まな
い部分のコンクリート部分では最高で+24mVの自然
電位差であった。
In the concrete part containing salt, -150
While the natural potential difference was lower than mV, the natural potential difference of the portion not containing the salt was +24 mV at the maximum.

【0047】自然電位差が−150mV程度の部分のコ
ンクリートをはつり取って内部の鋼材の錆の状態を観察
した結果、鋼材には部分的な膨張性の赤錆が認められた
が、45mV程度の部分では鋼材に錆は認められなかっ
た。
As a result of removing the concrete at a portion where the natural potential difference is about -150 mV and observing the state of rust of the steel material inside, a partial expansive red rust was observed in the steel material, but at a portion where the natural potential difference was about 45 mV. No rust was found on the steel.

【0048】 <使用材料> セメント :普通ポルトランドセメント、電気化学工業社製 水 :水道水 細骨材 :姫川産川砂 粗骨材 :姫川産砕石(Gmax=20mm) 精製塩 :99%塩化ナトリウム AE減水剤 :ポゾリスNo.70、エム・エム・ビー社製 鋼材 :公称径13mmの丸鋼鋼材<Material> Cement: ordinary Portland cement, manufactured by Denki Kagaku Kogyo Co., Ltd. Water: tap water Fine aggregate: Himekawa river sand Coarse aggregate: Himekawa crushed stone (Gmax = 20 mm) Purified salt: 99% sodium chloride AE water reduction Agent: Pozzolith No. 70, Steel products manufactured by MMB Co .: Round steel materials with a nominal diameter of 13 mm

【0049】 <測定機器> 検出端 :鉛電極PM−4、日本防食工業社製 電圧測定装置 :デジタルC・PチェッカーMT−400、日本防食工業社製<Measurement device> Detection end: Lead electrode PM-4, manufactured by Nippon Sanko Kogyo Co., Ltd. Voltage measuring device: Digital CP checker MT-400, manufactured by Nippon Sanko Kogyo Co., Ltd.

【0050】実施例2 試験用供試体にコンクリート全体に塩分を含まない配合
としたこと以外は実施例1と同様に行った。供試体に対
応させた測定結果を表3に示す。
Example 2 The same procedure as in Example 1 was carried out except that the test specimen was mixed so as not to contain salt in the entire concrete. Table 3 shows the measurement results corresponding to the test specimens.

【0051】[0051]

【表3】 コンクリート供試体全体での自然電位差は最高で−23
mVであった。
[Table 3] The spontaneous potential difference of the entire concrete specimen is -23 at the maximum.
mV.

【0052】実施例3 実施例1で測定したコンクリート供試体の−150mV
より低い部分より10cm幅広い部分のコンクリートを
鋼材の裏側まではつり取り、その部分に塩分を含まない
コンクリートを打設した。
Example 3 -150 mV of the concrete specimen measured in Example 1
Concrete of a portion 10 cm wider than the lower portion was suspended to the back side of the steel material, and concrete containing no salt was poured into the portion.

【0053】屋外暴露を1年間行った後に実施例1と同
様に自然電位差の測定を行った。測定結果を表4に示
す。
After one year of outdoor exposure, the self-potential difference was measured in the same manner as in Example 1. Table 4 shows the measurement results.

【0054】[0054]

【表4】 自然電位差は最高−39mVであり、その部分の鋼材を
はつり出し錆の状態を観察した結果膨張性の錆は認めら
れなかった。
[Table 4] The spontaneous potential difference was a maximum of -39 mV, and the steel material at that portion was pulled out and the state of rust was observed. As a result, no expansive rust was observed.

【0055】実施例4 実施例1で測定したコンクリート供試体の自然電位差の
低い部分を残すように、両端からそれぞれ45cmを残
し、中心部分で幅30cmはつり取り、その部分に塩分
を含まないコンクリートを打設した。
Example 4 To leave a low natural potential difference portion of the concrete specimen measured in Example 1, 45 cm was left from each end, and a width of 30 cm was hung at the center, and concrete containing no salt was removed. It was cast.

【0056】屋外暴露を1年間行った後に実施例2と同
様に自然電位差の測定を行った。その測定結果を表5に
示す。
After one year of outdoor exposure, the self-potential difference was measured in the same manner as in Example 2. Table 5 shows the measurement results.

【0057】[0057]

【表5】 [Table 5]

【0058】補修を行なわなかった部分では、自然電位
差が小さくなった部分が認められた。例えば(横/縦)
=(4/1)では、−148mVが−178mVに変化
した。また、補修を行った部分では自然電位差が大きく
なった部分が認められ(横/縦)=(6/5)では、−
163mVが−89mVとなった。
In the portion where no repair was performed, a portion where the natural potential difference became small was recognized. For example (horizontal / vertical)
= (4/1), -148 mV changed to -178 mV. In the repaired portion, a portion where the spontaneous potential difference became large was recognized (horizontal / vertical) = (6/5).
163 mV became -89 mV.

【0059】実施例5 塩害地帯にある、築後30年を経過した橋の梁下部の横
方向1.2m、縦方向7mの範囲を0.3m間隔で測定
した。測定点数は横方向4点、縦方向21点で合計81
点であった。測定点の最高値から10点を良好部位の基
準点(xg)として補修部位の範囲を決める判断値(x
s)を計算した場合、判断値が150mVの範囲が全量
域の約18%あり、コンクリート表面にひび割れも認め
られ、コンクリートをはつり内部鋼材を確認したところ
断面欠損を伴う腐食が認められた。また、100〜15
0mVの範囲は24%あり、コンクリート表面にひび割
れは認められなかったが3箇所について内部鋼材をはつ
りだしたところ、いずれの部位でも鋼材表面に腐食が発
生していることが確認された。
Example 5 A range of 1.2 m in the horizontal direction and 7 m in the vertical direction at the lower part of a bridge 30 years after construction in a salt-affected zone was measured at intervals of 0.3 m. The number of measurement points is 4 points in the horizontal direction and 21 points in the vertical direction, totaling 81 points.
Was a point. Judgment value (x) that determines the range of the repaired part with 10 points from the highest value of the measurement points as the reference point (xg) of the good part.
When s) was calculated, the judgment value was in the range of 150 mV in about 18% of the total amount area, cracks were also observed on the concrete surface, and when the concrete was peeled off and the internal steel material was confirmed, corrosion with a cross-sectional defect was observed. Also, 100-15
The range of 0 mV was 24%, and no cracks were observed on the concrete surface. However, when the internal steel material was taken out at three locations, it was confirmed that corrosion occurred on the steel material surface at all locations.

【0060】さらに、100mV以下は58%であり、
3箇所の部分について鋼材をはつりだしたと、いずれも
内部鋼材には腐食は認められなかった。本調査結果よ
り、本構造物の補修方法は構造物の置かれている環境を
考慮して、電気化学的補修法である脱塩工法を適用する
事とし、判断値が100mV以上である全量域の約42
%の部分を補修対象範囲とした。
Further, 58% is 100 mV or less,
When the steel material was taken out at three places, no corrosion was observed in the internal steel material. Based on the results of this survey, the repair method for this structure was determined to apply the desalination method, which is an electrochemical repair method, in consideration of the environment where the structure is located. About 42
The portion of% was set as the repair target range.

【0061】電気化学的補修法である脱塩工法による補
修を行った3ケ月後に測定を行った際の自然電位差は、
全て100mV以下となっており、良好な補修が行われ
た事が確認できた。
The self-potential difference measured three months after repairing by the desalination method, which is an electrochemical repairing method, was:
All were below 100 mV, and it was confirmed that satisfactory repair was performed.

【0062】[0062]

【発明の効果】以上説明した様に、本発明によれば、コ
ンクリート中の鋼材をはつり出すことなく鋼材腐食に基
づく劣化部分で補修が必要とされる部分を検出するする
ことができ、従来の方法の様な鋼材露出の為のはつり作
業やコアリング作業を必要とせず、完全に非破壊でコン
クリート中鋼材の腐食に基づく要補修部分を検出するこ
とができる。
As described above, according to the present invention, it is possible to detect a portion which needs to be repaired in a deteriorated portion due to steel corrosion without removing the steel material in the concrete. The method does not require a hanging operation or a coring operation for exposing the steel material as in the method, and can detect a repaired part based on the corrosion of the steel material in the concrete completely without destruction.

【0063】また、要補修部分を補修し、補修後の補修
効果を確認することができる。この為、労力の軽減効果
があり、また、コンクリート構造物の破壊行為を必要と
しない利点がある。
Further, the repaired portion can be repaired, and the repair effect after the repair can be confirmed. For this reason, there is an advantage that the labor is reduced and the destruction of the concrete structure is not required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いられる鋼材腐食測定装置の一例を
示す説明図である。
FIG. 1 is an explanatory view showing an example of a steel corrosion measurement apparatus used in the present invention.

【図2】本発明の実施例で測定に用いたコンクリート供
試体の一例を示す平面図である。
FIG. 2 is a plan view showing an example of a concrete specimen used for measurement in an example of the present invention.

【図3】図2のAA線端面図である。FIG. 3 is an end view taken along the line AA of FIG. 2;

【符号の説明】[Explanation of symbols]

1、1a、1b コンクリート 2、2a、2b 鋼材 3 コンクリート構造物 4a,4b 本検出端 5 電位測定装置 1, 1a, 1b concrete 2, 2a, 2b steel 3 concrete structure 4a, 4b main detecting end 5 potential measuring device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 与司人 東京都千代田区有楽町1丁目4番1号 電 気化学工業株式会社本社内 (72)発明者 藍郷 一博 東京都渋谷区代々木2丁目2番2号 東日 本旅客鉄道株式会社内 (72)発明者 田中 淳一 東京都渋谷区代々木2丁目2番2号 東日 本旅客鉄道株式会社内 Fターム(参考) 2E176 AA01 BB38 4G028 AA00  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshito Hara 1-4-1, Yurakucho, Chiyoda-ku, Tokyo Denki Kagaku Kogyo Co., Ltd. (72) Inventor Kazuhiro Aigo 2 Yoyogi, Shibuya-ku, Tokyo (2-2) Inventor Jun-ichi Tanaka 2-2-2 Yoyogi, Shibuya-ku, Tokyo East Japan Railway Company F-term (reference) 2E176 AA01 BB38 4G028 AA00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも2個以上の電位測定検出端を
コンクリート構造物の表面に接触させ、2箇所以上のコ
ンクリート構造物中の鋼材の自然電位の差を測定し、該
自然電位の差の値から鋼材の腐食状態を診断してコンク
リート構造物の要補修部分を検出する方法。
At least two or more potential measurement detecting ends are brought into contact with the surface of a concrete structure to measure a difference in a natural potential of a steel material in two or more concrete structures, and the value of the difference in the natural potential is measured. Diagnosis of the corrosion state of steel materials from the method to detect the repaired parts of concrete structures.
【請求項2】 測定された自然電位の差の絶対値が10
0mV以上の部分を要補修部分とする請求項1記載のコ
ンクリート構造物の要補修部分を検出する方法。
2. The absolute value of the difference between the measured self potentials is 10
The method for detecting a repairable portion of a concrete structure according to claim 1, wherein a portion having 0 mV or more is a repairable portion.
【請求項3】 各測定された自然電位の差の測定データ
(x)と、該測定データ(x)の値の大きい方から5〜
20%の平均値の基準値(xg)との差の絶対値(x
s)=|xg−x|が150mV以上の部分を要補修部
分とする請求項1記載のコンクリート構造物の要補修部
分を検出する方法。
3. The measured data (x) of the difference between the measured self potentials and 5 to 5 from the larger value of the measured data (x).
The absolute value (x) of the difference between the average value of 20% and the reference value (xg)
2. The method according to claim 1, wherein a portion where s) = | xg-x | is 150 mV or more is a portion requiring repair.
【請求項4】 少なくとも2個以上の電位測定検出端を
コンクリート構造物の表面に接触させ、2箇所以上のコ
ンクリート構造物中の鋼材の自然電位の差を測定し、該
自然電位の差の値から鋼材の腐食状態を診断してコンク
リート構造物の要補修部分を検出し、該要補修部分を補
修することを特徴とするコンクリート構造物の補修方
法。
4. At least two or more potential measurement detecting ends are brought into contact with the surface of the concrete structure, and the difference in the natural potential of the steel material in the two or more concrete structures is measured, and the value of the difference in the natural potential is measured. A method of repairing a concrete structure, comprising: detecting a repaired portion of a concrete structure by diagnosing a corrosion state of a steel material from the sample; and repairing the repaired portion.
【請求項5】 補修を断面修復工法、表面被覆法または
電気化学的補修工法で行なう請求項4記載のコンクリー
ト構造物の補修方法。
5. The method for repairing a concrete structure according to claim 4, wherein the repair is performed by a sectional repair method, a surface coating method, or an electrochemical repair method.
【請求項6】 補修を行った後に、少なくとも2個以上
の電位測定検出端をコンクリート構造物の非補修表面と
補修表面に接触させ、2箇所以上のコンクリート構造物
中の鋼材の自然電位の差を測定し、該自然電位の差の値
からコンクリート構造物の補修を確認する請求項4記載
のコンクリート構造物の補修方法。
6. After repairing, at least two or more potential measuring and detecting ends are brought into contact with the non-repaired surface and the repaired surface of the concrete structure, and the difference in the natural potential of the steel material in the two or more concrete structures. 5. The method for repairing a concrete structure according to claim 4, wherein the repair of the concrete structure is confirmed from the difference in the natural potential.
JP10221132A 1998-07-22 1998-07-22 Detection of repair-needing portion of concrete structure and its repair Pending JP2000044364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10221132A JP2000044364A (en) 1998-07-22 1998-07-22 Detection of repair-needing portion of concrete structure and its repair

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10221132A JP2000044364A (en) 1998-07-22 1998-07-22 Detection of repair-needing portion of concrete structure and its repair

Publications (1)

Publication Number Publication Date
JP2000044364A true JP2000044364A (en) 2000-02-15

Family

ID=16761967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10221132A Pending JP2000044364A (en) 1998-07-22 1998-07-22 Detection of repair-needing portion of concrete structure and its repair

Country Status (1)

Country Link
JP (1) JP2000044364A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416935B1 (en) * 2001-03-06 2004-01-31 학교법인 중앙대학교 Ladder system for corrosion Monitoring
JP2012181130A (en) * 2011-03-02 2012-09-20 Nippon Telegr & Teleph Corp <Ntt> Corrosion position specification method and system
JP2013002055A (en) * 2011-06-13 2013-01-07 Ps Mitsubishi Construction Co Ltd Corrosion suppressing method for pc tendon
JP2017125822A (en) * 2016-01-15 2017-07-20 株式会社コンステック Method and device for steel material potential measurement
JP2018004283A (en) * 2016-06-27 2018-01-11 株式会社ナカボーテック Reference electrode
JP2018017517A (en) * 2016-07-25 2018-02-01 株式会社Nttファシリティーズ Corrosion degree estimation method, corrosion degree estimation device and program
JP2018017518A (en) * 2016-07-25 2018-02-01 株式会社Nttファシリティーズ Corrosion degree estimation method, corrosion degree estimation device and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028733A (en) * 1988-04-04 1990-01-12 Nakagawa Boshoku Kogyo Kk Evaluation of corrosion of steel material in concrete
JPH02243951A (en) * 1988-07-26 1990-09-28 Advanced Technol Ind Diagnosis of corrosion of steel material within reinforced condrete
JPH09196876A (en) * 1996-01-16 1997-07-31 Denki Kagaku Kogyo Kk Detecting method for corroded spot of steel material in concrete
JPH09329568A (en) * 1996-06-12 1997-12-22 Railway Technical Res Inst Method and apparatus for diagnosis of corrosion probability or corrosion degree of reinforcing bar in concrete structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028733A (en) * 1988-04-04 1990-01-12 Nakagawa Boshoku Kogyo Kk Evaluation of corrosion of steel material in concrete
JPH02243951A (en) * 1988-07-26 1990-09-28 Advanced Technol Ind Diagnosis of corrosion of steel material within reinforced condrete
JPH09196876A (en) * 1996-01-16 1997-07-31 Denki Kagaku Kogyo Kk Detecting method for corroded spot of steel material in concrete
JPH09329568A (en) * 1996-06-12 1997-12-22 Railway Technical Res Inst Method and apparatus for diagnosis of corrosion probability or corrosion degree of reinforcing bar in concrete structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"ELECTRODE POTENTIAL MEASUREMENTS OF CONCRETE REINFORCEMENT FOR CORROSIN EVALUTION", CEMENT AND CONCRETE RESEARCH, vol. V24 N3, JPN4006025064, 1994, pages 401 - 412, ISSN: 0000827723 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416935B1 (en) * 2001-03-06 2004-01-31 학교법인 중앙대학교 Ladder system for corrosion Monitoring
JP2012181130A (en) * 2011-03-02 2012-09-20 Nippon Telegr & Teleph Corp <Ntt> Corrosion position specification method and system
JP2013002055A (en) * 2011-06-13 2013-01-07 Ps Mitsubishi Construction Co Ltd Corrosion suppressing method for pc tendon
JP2017125822A (en) * 2016-01-15 2017-07-20 株式会社コンステック Method and device for steel material potential measurement
JP2018004283A (en) * 2016-06-27 2018-01-11 株式会社ナカボーテック Reference electrode
JP2018017517A (en) * 2016-07-25 2018-02-01 株式会社Nttファシリティーズ Corrosion degree estimation method, corrosion degree estimation device and program
JP2018017518A (en) * 2016-07-25 2018-02-01 株式会社Nttファシリティーズ Corrosion degree estimation method, corrosion degree estimation device and program

Similar Documents

Publication Publication Date Title
Andrade et al. Corrosion rate monitoring in the laboratory and on-site
Elsener et al. Half-cell potential measurements—Potential mapping on reinforced concrete structures
Soleymani et al. Comparing corrosion measurement methods to assess the corrosion activity of laboratory OPC and HPC concrete specimens
Raupach et al. Monitoring system for the penetration of chlorides, carbonation and the corrosion risk for the reinforcement
JPH0743336B2 (en) Positioning method of repair area of reinforced concrete structure
Flis et al. Electrochemical measurements on concrete bridges for evaluation of reinforcement corrosion rates
JP2000044364A (en) Detection of repair-needing portion of concrete structure and its repair
JP2003107025A (en) Method for calculating corrosion rate of macrocell in concrete member
JPH10221292A (en) Detecting method for steel material corrosion in concrete
Mietz et al. Monitoring of concrete structures with respect to rebar corrosion
Gu et al. Techniques for corrosion investigation in reinforced concrete
Polder Electrochemical techniques for corrosion protection and maintenance
Pangrazzi et al. Cathodic polarization and protection of simulated prestressed concrete pilings in seawater
Gulikers Statistical interpretation of results of potential mapping on reinforced concrete structures
Novokshchenov Corrosion surveys of prestressed bridge members using a half-cell potential technique
JP3516587B2 (en) Method for detecting continuity of steel in concrete
JPH0422464B2 (en)
Salas et al. Final evaluation of corrosion protection for bonded internal tendons in precast segmental construction
JP2016024038A (en) Corrosion spot specifying method of steel material in concrete construction and potential difference measurement device for specifying corrosion spot
Presuel-Moreno Corrosion propagation of carbon steel rebar with different concrete covers and concrete/mortar compositions
ElSafty et al. CONCRETE REPAIR AND CATHODIC PROTECTION OF CORRODED REINFORCED CONCRETE STRUCTURE
JP7466866B2 (en) Methods for assessing the integrity of reinforced concrete structures
Martínez et al. Efficiency control of cathodic protection measured using passivation verification technique in different concrete structures
Choi et al. Corrosion evaluation of epoxy-coated bars by electrochemical impedance spectroscopy
Balasubramanian Initiation and propagation of corrosion in dry-cast reinforced concrete pipes

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070124