JP6753072B2 - Seismic isolation device - Google Patents

Seismic isolation device Download PDF

Info

Publication number
JP6753072B2
JP6753072B2 JP2016031745A JP2016031745A JP6753072B2 JP 6753072 B2 JP6753072 B2 JP 6753072B2 JP 2016031745 A JP2016031745 A JP 2016031745A JP 2016031745 A JP2016031745 A JP 2016031745A JP 6753072 B2 JP6753072 B2 JP 6753072B2
Authority
JP
Japan
Prior art keywords
seismic isolation
trigger
isolation column
restoration
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016031745A
Other languages
Japanese (ja)
Other versions
JP2017150521A (en
Inventor
晃祥 大豊
晃祥 大豊
佐藤 祐二
祐二 佐藤
浩祐 岩本
浩祐 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2016031745A priority Critical patent/JP6753072B2/en
Publication of JP2017150521A publication Critical patent/JP2017150521A/en
Application granted granted Critical
Publication of JP6753072B2 publication Critical patent/JP6753072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Warehouses Or Storage Devices (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、立体倉庫、ボイラ鉄骨、立体パーキング、荷役設備等の構造物に適用して構造物の揺れを低減するための免震装置に関するものである。 The present invention relates to a seismic isolation device for reducing the shaking of a structure by applying it to a structure such as a three-dimensional warehouse, a boiler steel frame, a three-dimensional parking lot, and cargo handling equipment.

一般に、立体倉庫は、複数の鋼鉄製の柱と複数段の鋼鉄製の梁を用いて複数のラック(棚)を立体的に組み立てた構成を有している。大規模な地震が発生した場合には、立体倉庫が損壊する可能性があり、又、地震により立体倉庫のラックに格納された荷が落下して荷が損傷する可能性があることから、立体倉庫に免震装置を備えて地震に対処することが考えられている。 Generally, a three-dimensional warehouse has a configuration in which a plurality of racks (shelf) are three-dimensionally assembled by using a plurality of steel columns and a plurality of stages of steel beams. In the event of a large-scale earthquake, the three-dimensional warehouse may be damaged, and the load stored in the rack of the three-dimensional warehouse may fall and damage the load due to the earthquake. It is considered to equip the warehouse with a seismic isolation device to deal with the earthquake.

立体倉庫の柱の免震装置としては、立体倉庫を構成する複数の柱の各下端部と基礎との間に、積層ゴムからなる免震装置を備えたものがある(特許文献1)。因みに、特許文献1のように、多数の柱が設けられる立体倉庫の各柱の下端に積層ゴムによる免震装置を備えた場合には、基礎の増設が必要なことや積層ゴムが比較的高価であることから立体倉庫の設備コストが増加する問題があった。又、立体倉庫の柱を上下の途中位置で切断した構成として、上側の二本の柱の下端を水平な第1水平部材で連結し、上側の二本の柱に対応する下側の二本の柱の上端部を、前記第1水平部材と係合可能な水平な第2水平部材で連結することにより、前記第1水平部材と第2水平部材を長手方向へ低摩擦部材を介してスライド可能とし、前記第1水平部材と第2水平部材とを粘弾性体で接続したものがある(特許文献2)。更に又、立体倉庫ではないが、走行クレーンの支持脚に、上下に分割して互いに連結できるようにした上下のフランジ部を設け、該上下のフランジ部の左右側部位置を、弾性部材を介して連結具により連結したものがある(特許文献3)。 As a seismic isolation device for pillars of a three-dimensional warehouse, there is one provided with a seismic isolation device made of laminated rubber between each lower end of each of a plurality of pillars constituting the three-dimensional warehouse and the foundation (Patent Document 1). By the way, as in Patent Document 1, when a seismic isolation device using laminated rubber is provided at the lower end of each pillar of a three-dimensional warehouse where a large number of pillars are provided, it is necessary to add a foundation and the laminated rubber is relatively expensive. Therefore, there is a problem that the equipment cost of the three-dimensional warehouse increases. In addition, as a configuration in which the pillars of the three-dimensional warehouse are cut in the middle of the upper and lower positions, the lower ends of the upper two pillars are connected by a horizontal first horizontal member, and the lower two pillars corresponding to the upper two pillars are connected. By connecting the upper end portion of the pillar with a horizontal second horizontal member that can engage with the first horizontal member, the first horizontal member and the second horizontal member slide in the longitudinal direction via the low friction member. There is one in which the first horizontal member and the second horizontal member are connected by a viscoelastic body (Patent Document 2). Furthermore, although it is not a three-dimensional warehouse, the support legs of the traveling crane are provided with upper and lower flange portions that are divided into upper and lower parts so that they can be connected to each other, and the left and right side portions of the upper and lower flange portions are positioned via elastic members. Some of them are connected by a connecting tool (Patent Document 3).

特開2006−104883号公報Japanese Unexamined Patent Publication No. 2006-104883 特開2013−039989号公報Japanese Unexamined Patent Publication No. 2013-039989 特許第4536895号公報Japanese Patent No. 4536895

しかしながら、特許文献2においては、前記第1水平部材と第2水平部材を設け、更に、前記第1水平部材と第2水平部材とを接続する粘弾性体を設ける必要があるために、構造が複雑となって立体倉庫の設備コストが増加する問題があった。 However, in Patent Document 2, it is necessary to provide the first horizontal member and the second horizontal member, and further to provide a viscoelastic body for connecting the first horizontal member and the second horizontal member. There was a problem that it became complicated and the equipment cost of the three-dimensional warehouse increased.

又、特許文献3では、傾斜時の変位が大きくなる大変位時においても、弾性部材による復元力は大きくならずに一定であり、改善の余地が残されていた。 Further, in Patent Document 3, even in the case of a large displacement in which the displacement at the time of inclination becomes large, the restoring force by the elastic member is constant without increasing, and there is room for improvement.

本発明は、上記従来の問題点に鑑みてなしたもので、簡単な構成で構造物に作用する揺れを、大変位時には復元力を大きくして免震柱の過度な傾斜を抑えつつ免震できる免震装置を提供しようとするものである。 The present invention has been made in view of the above-mentioned conventional problems, and seismic isolation is performed while suppressing excessive inclination of the seismic isolation column by increasing the restoring force at the time of large displacement to prevent the shaking acting on the structure with a simple configuration. It is intended to provide a seismic isolation device that can be used.

本発明は、上側部材と下側部材との間に傾斜自在に配設され且つ上下端部に張出部が形成された免震柱と、
該免震柱の張出部と上側部材との間並びに前記免震柱の張出部と下側部材との間を弾性部材を介して締結し且つ前記免震柱が傾斜し始めるトリガ荷重を設定するトリガ締結機構と、
前記免震柱の傾斜角度が設定値を超えた際に圧縮が開始されるよう配設され且つ前記免震柱に対し傾斜状態から直立状態への復元力を付与する弾性補助機構と
を備え、
前記弾性補助機構は
前記上側部材と下側部材の少なくとも一方から上下方向へ延びる復元補助縦壁部と、該復元補助縦壁部の先端から前記張出部と平行に延びる復元補助横壁部とを備えた復元補助係止片と、
該復元補助係止片の復元補助横壁部と張出部との間に初期隙間が形成されるよう配設され且つ前記免震柱の傾斜角度が設定値を超えた際に圧縮が開始される復元補助弾性体と
を備えている免震装置にかかるものである。
The present invention relates to a seismic isolation column which is slantably arranged between an upper member and a lower member and has an overhanging portion formed at an upper and lower end portions.
A trigger load is applied between the overhanging portion of the seismic isolation column and the upper member and between the overhanging portion of the seismic isolation column and the lower member via an elastic member and the seismic isolation column begins to tilt. Trigger fastening mechanism to set and
It is provided with an elastic assisting mechanism that is arranged so that compression is started when the inclination angle of the seismic isolation column exceeds a set value and gives a restoring force to the seismic isolation column from an inclined state to an upright state.
The elastic auxiliary mechanism,
A restoration assisting clerk including a restoration assistance vertical wall portion extending in the vertical direction from at least one of the upper member and the lower member, and a restoration assistance horizontal wall portion extending in parallel with the overhanging portion from the tip of the restoration assistance vertical wall portion. With a piece,
Compression is started when the restoration auxiliary locking piece is arranged so as to form an initial gap between the restoration auxiliary side wall portion and the overhanging portion and the inclination angle of the seismic isolation column exceeds the set value. With restoration auxiliary elastic body
It is related to the seismic isolation device equipped with .

前記免震装置においては、前記免震柱が特定方向へ傾斜し始めるトリガ荷重を前記免震柱が特定方向以外の方向へ傾斜し始めるトリガ荷重より大きくするトリガ荷重増加機構を備えても良い。 The seismic isolation device may include a trigger load increasing mechanism that makes the trigger load at which the seismic isolation column begins to tilt in a specific direction larger than the trigger load at which the seismic isolation column begins to tilt in a direction other than the specific direction.

前記トリガ荷重増加機構は、
前記上側部材と下側部材の少なくとも一方から上下方向へ延びる傾斜抑制縦壁部と、該傾斜抑制縦壁部の先端から前記張出部と平行に延びる傾斜抑制横壁部とを備えた傾斜抑制係止片と、
該傾斜抑制係止片の傾斜抑制横壁部と張出部との間に介装される傾斜抑制弾性体と
を備えても良い。
The trigger load increasing mechanism is
An inclination suppressing vertical wall portion extending in the vertical direction from at least one of the upper member and the lower member, and an inclination suppressing horizontal wall portion extending in parallel with the overhanging portion from the tip of the inclination suppressing vertical wall portion. With a piece,
An inclination suppressing elastic body interposed between the inclination suppressing lateral wall portion and the overhanging portion of the inclination suppressing locking piece may be provided.

又、前記トリガ荷重増加機構は、前記免震柱が特定方向へ傾斜し始めるトリガ荷重を設定する前記トリガ締結機構の弾性部材のバネ定数を、前記免震柱が特定方向以外の方向へ傾斜し始めるトリガ荷重を設定する前記トリガ締結機構の弾性部材のバネ定数より大きくすることによって構成されても良い。 Further, the trigger load increasing mechanism tilts the spring constant of the elastic member of the trigger fastening mechanism that sets the trigger load at which the seismic isolation column starts to incline in a direction other than the specific direction. It may be configured by making the starting trigger load larger than the spring constant of the elastic member of the trigger fastening mechanism.

更に又、前記トリガ荷重増加機構は、前記免震柱が特定方向へ傾斜し始めるトリガ荷重を設定する前記トリガ締結機構の弾性部材の設置数を、前記免震柱が特定方向以外の方向へ傾斜し始めるトリガ荷重を設定する前記トリガ締結機構の弾性部材の設置数より大きくすることによって構成されても良い。
又、本発明は、上側もしくは下側に位置する部材に対面する張出部を備えた免震柱と、
前記部材と前記免震柱とを圧縮力が付与された弾性部材と共に締結したトリガ締結機構と、
前記部材もしくは前記免震柱に配置された復元補助弾性体と、
前記免震柱が傾斜していない状態で、前記復元補助弾性体と初期隙間をもって離隔した復元補助係止片とを備え、
前記免震柱の傾斜により前記復元補助弾性体と復元補助係止片とが当接可能となっている免震装置にかかるものである。
Furthermore, the trigger load increasing mechanism tilts the number of installed elastic members of the trigger fastening mechanism for setting the trigger load at which the seismic isolation column starts to incline in a direction other than the specific direction. It may be configured by increasing the number of installed elastic members of the trigger fastening mechanism to set the trigger load to be started.
Further, the present invention includes a seismic isolation column having an overhanging portion facing a member located on the upper side or the lower side.
A trigger fastening mechanism for fastening the member and the seismic isolation column together with an elastic member to which a compressive force is applied.
With the restoration auxiliary elastic body arranged on the member or the seismic isolation column,
In a state where the seismic isolation column is not tilted, the restoration auxiliary elastic body and the restoration auxiliary locking piece separated by an initial gap are provided.
This applies to a seismic isolation device in which the restoration assisting elastic body and the restoration assistance locking piece can come into contact with each other due to the inclination of the seismic isolation column.

本発明の免震装置によれば、簡単な構成で構造物に作用する揺れを、大変位時には復元力を大きくして免震柱の過度な傾斜を抑えつつ免震できるという優れた効果を奏し得る。 According to the seismic isolation device of the present invention, it has an excellent effect that the shaking acting on the structure with a simple configuration can be seismically isolated while suppressing the excessive inclination of the seismic isolation column by increasing the restoring force at the time of large displacement. obtain.

本発明の免震装置の第一実施例を示す概要構成図であって、(a)は正面図、(b)は図1(a)のIb−Ib断面図(平断面図)、(c)は側面図、(d)は図1(b)のId−Id断面図(正断面図)である。It is a schematic block diagram which shows 1st Example of the seismic isolation device of this invention, (a) is a front view, (b) is the Ib-Ib sectional view (plan sectional view) of FIG. 1 (a), (c ) Is a side view, and FIG. 1D is a sectional view (normal sectional view) of Id-Id of FIG. 1B. 本発明の免震装置の第一実施例における大規模な地震発生時の状態を示す正断面図である。It is a front sectional view which shows the state at the time of the occurrence of a large-scale earthquake in the 1st Example of the seismic isolation device of this invention. 本発明の免震装置の第一実施例における水平変位と復元力との関係を示す線図である。It is a diagram which shows the relationship between the horizontal displacement and the restoring force in the 1st Example of the seismic isolation device of this invention. (a)は本発明の免震装置を適用する構造物の一例である立体倉庫の正面図、(b)は側面図である。(A) is a front view of a three-dimensional warehouse which is an example of a structure to which the seismic isolation device of the present invention is applied, and (b) is a side view. 本発明の免震装置の第一実施例の変形例を示す概要構成図であって、(a)は正面図、(b)は図1(a)のIVb−IVb断面図(平断面図)、(c)は側面図、(d)は図1(b)のIVd−IVd断面図(正断面図)である。It is a schematic block diagram which shows the modification of the 1st Example of the seismic isolation device of this invention, (a) is the front view, (b) is the IVb-IVb sectional view (plan sectional view) of FIG. 1 (a). , (C) is a side view, and (d) is an IVd-IVd sectional view (normal sectional view) of FIG. 1 (b). 本発明の免震装置の第一実施例の変形例における大規模な地震発生時の状態を示す正断面図である。It is a front sectional view which shows the state at the time of the occurrence of a large-scale earthquake in the modified example of the 1st Example of the seismic isolation device of this invention. 本発明の免震装置の第二実施例を示す概要構成図であって、(a)は正面図、(b)は図7(a)のVIIb−VIIb断面図(平断面図)、(c)は側面図、(d)は図7(b)のVIId−VIId断面図(正断面図)である。It is a schematic block diagram which shows the 2nd Example of the seismic isolation device of this invention, (a) is a front view, (b) is a VIIb-VIIb sectional view (plan sectional view), (c) of FIG. 7 (a). ) Is a side view, and FIG. 7D is a sectional view (normal sectional view) of VIId-VIId of FIG. 7B. 本発明の免震装置の第二実施例における大規模な地震発生時の状態を示す正断面図であって、(a)は免震柱が特定方向(スタッカクレーン側)へ傾斜する状態を示す図、(b)は免震柱が特定方向以外の方向(反スタッカクレーン側)へ傾斜する状態を示す図である。It is a front sectional view which shows the state at the time of the occurrence of a large-scale earthquake in the 2nd Example of the seismic isolation device of this invention, and (a) shows the state which the seismic isolation column tilts in a specific direction (stacker crane side). FIG. 3B is a diagram showing a state in which the seismic isolation column is tilted in a direction other than a specific direction (anti-stacker crane side). 本発明の免震装置の第二実施例における水平変位と復元力との関係を示す線図である。It is a diagram which shows the relationship between the horizontal displacement and the restoring force in the 2nd Example of the seismic isolation device of this invention. 本発明の免震装置の第二実施例の変形例における大規模な地震発生時の状態を示す正断面図であって、(a)は免震柱が特定方向(スタッカクレーン側)へ傾斜する状態を示す図、(b)は免震柱が特定方向以外の方向(反スタッカクレーン側)へ傾斜する状態を示す図である。It is a normal cross-sectional view which shows the state at the time of the occurrence of a large-scale earthquake in the modification of the 2nd Example of the seismic isolation device of this invention, and (a) is the seismic isolation column tilting in a specific direction (stacker crane side). The figure which shows the state, (b) is the figure which shows the state which the seismic isolation column tilts in the direction other than the specific direction (the anti-stacker crane side). 本発明の免震装置の第二実施例の他の変形例を示す概要構成図であって、(a)は正面図、(b)は図11(a)のXIb−XIb断面図(平断面図)、(c)は側面図である。It is a schematic block diagram which shows the other modification of the 2nd Embodiment of the seismic isolation device of this invention, (a) is a front view, (b) is the XIb-XIb cross-sectional view (plan section) of FIG. 11 (a). (Fig.) And (c) are side views. 本発明の免震装置の第二実施例の他の変形例における大規模な地震発生時の状態を示す正断面図であって、(a)は免震柱が特定方向(スタッカクレーン側)へ傾斜する状態を示す図、(b)は免震柱が特定方向以外の方向(反スタッカクレーン側)へ傾斜する状態を示す図である。It is a front sectional view which shows the state at the time of the occurrence of a large-scale earthquake in the other modification of the 2nd Example of the seismic isolation device of this invention, and (a) is the seismic isolation column in a specific direction (stacker crane side). The figure which shows the inclined state, (b) is the figure which shows the state which the seismic isolation column is inclined in the direction other than the specific direction (anti-stacker crane side).

以下、本発明の実施の形態を添付図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1〜図4は本発明の免震装置の第一実施例である。 1 to 4 are first examples of the seismic isolation device of the present invention.

図4(a)及び図4(b)は本発明の免震装置を適用する構造物の一例である立体倉庫を示しており、構造物としての立体倉庫100は、複数の鋼鉄製の柱1と複数段の鋼鉄製の梁2を備えることにより複数のラック3(棚)が立体的に組み立てられた構成を有している。立体倉庫100は、スタッカクレーン4を挟むように立設され、該スタッカクレーン4の走行方向に沿って延びる長さを有しており、スタッカクレーン4の走行方向と直交する方向には、格納される荷の大きさに対応した、前記長さと比較して短い幅を有している。前記立体倉庫100を構成する複数の柱1は、ラック3に格納される荷の重量を支持するために高い強度を有している。 4 (a) and 4 (b) show a three-dimensional warehouse as an example of a structure to which the seismic isolation device of the present invention is applied, and the three-dimensional warehouse 100 as a structure is a plurality of steel columns 1. A plurality of racks 3 (shelf) are three-dimensionally assembled by providing a plurality of stages of steel beams 2. The three-dimensional warehouse 100 is erected so as to sandwich the stacker crane 4, has a length extending along the traveling direction of the stacker crane 4, and is stored in a direction orthogonal to the traveling direction of the stacker crane 4. It has a width shorter than the above-mentioned length corresponding to the size of the load. The plurality of pillars 1 constituting the three-dimensional warehouse 100 have high strength to support the weight of the load stored in the rack 3.

そして、図4の立体倉庫100を構成する複数の柱1に本発明の免震装置5を設ける。該免震装置5は、図4に示す如く、立体倉庫100に備えられる柱1の同一高さ位置に設けられる。前記免震装置5は、該免震装置5より上部の立体倉庫100全体がロッキングする挙動を発生させないために、上から1/3〜1/2程度の高さ位置に設置することが好ましい。このように、前記免震装置5を立体倉庫100の上部に設置しても、免震の効果により、免震装置5より上側の揺れが小さくなることで、結果的に免震装置5より下側の構造物の揺れも小さくなることが本発明者等の研究により判明している。 Then, the seismic isolation device 5 of the present invention is provided on the plurality of pillars 1 constituting the three-dimensional warehouse 100 of FIG. As shown in FIG. 4, the seismic isolation device 5 is provided at the same height position of the pillar 1 provided in the three-dimensional warehouse 100. The seismic isolation device 5 is preferably installed at a height of about 1/3 to 1/2 from the top so that the entire three-dimensional warehouse 100 above the seismic isolation device 5 does not lock. In this way, even if the seismic isolation device 5 is installed above the three-dimensional warehouse 100, the seismic isolation effect reduces the shaking above the seismic isolation device 5, and as a result, it is below the seismic isolation device 5. It has been found by the studies of the present inventors that the shaking of the structure on the side is also reduced.

第一実施例の場合、前記免震装置5は、図1〜図4に示す如く、免震柱6と、トリガ締結機構70と、弾性補助機構80とを備えている。 In the case of the first embodiment, the seismic isolation device 5 includes a seismic isolation column 6, a trigger fastening mechanism 70, and an elastic assist mechanism 80, as shown in FIGS. 1 to 4.

前記免震柱6は、上側部材としての水平フランジ1Aと下側部材としての水平フランジ1Bとの間に、傾斜自在に配設されている。前記免震柱6の上下端部には、張出部としてのフランジ10及びフランジ11が形成されている。前記上側部材としての水平フランジ1Aは、免震柱6の上方に位置する柱1の下端部に設けられ、前記下側部材としての水平フランジ1Bは、免震柱6の下方に位置する柱1の上端部に設けられている。尚、前記柱1及び免震柱6は、水平断面が矩形形状を有する中空の角型鋼材であるが、該角型鋼材に限定されるものではなく、H型鋼材、I型鋼材、Z型鋼材、円筒型鋼材であっても良い。 The seismic isolation column 6 is arranged so as to be tiltable between the horizontal flange 1A as the upper member and the horizontal flange 1B as the lower member. Flange 10 and flange 11 as overhanging portions are formed at the upper and lower ends of the seismic isolation column 6. The horizontal flange 1A as the upper member is provided at the lower end of the pillar 1 located above the seismic isolation pillar 6, and the horizontal flange 1B as the lower member is the pillar 1 located below the seismic isolation pillar 6. It is provided at the upper end of the. The column 1 and the seismic isolation column 6 are hollow square steel materials having a rectangular cross section in horizontal cross section, but are not limited to the square steel materials, and are H-shaped steel materials, I-shaped steel materials, and Z-shaped steel materials. It may be a steel material or a cylindrical steel material.

前記トリガ締結機構70は、前記免震柱6の張出部としてのフランジ10と上側部材としての水平フランジ1Aとの間並びに前記免震柱6の張出部としてのフランジ11と下側部材としての水平フランジ1Bとの間を弾性部材71を介して締結することにより、前記免震柱6が傾斜し始めるトリガ荷重を設定するようになっている。前記弾性部材71としては、例えば、図1に示すような皿バネ、或いは圧縮コイルバネやゴム等を用いることができる。前記弾性部材71には、テンションロッド72によって圧縮力が与えられている。該テンションロッド72は、水平フランジ1A及びフランジ10と、水平フランジ1B及びフランジ11とをそれぞれ貫通し、その貫通孔(図示せず)は、テンションロッド72の径より大径としてあり、免震柱6の傾斜を許容するようになっている。尚、前記トリガ締結機構70は、図1(a)、図1(b)及び図1(c)に示す如く、矩形形状のフランジ10、11の四隅部に配置してあるが、この配置に関しては適宜選定することができる。 The trigger fastening mechanism 70 is provided between the flange 10 as the overhanging portion of the seismic isolation column 6 and the horizontal flange 1A as the upper member, and as the flange 11 as the overhanging portion of the seismic isolation column 6 and the lower member. By fastening the seismic isolation column 6 to the horizontal flange 1B via an elastic member 71, a trigger load at which the seismic isolation column 6 begins to incline is set. As the elastic member 71, for example, a disc spring as shown in FIG. 1, a compression coil spring, rubber, or the like can be used. A compressive force is applied to the elastic member 71 by a tension rod 72. The tension rod 72 penetrates the horizontal flange 1A and the flange 10 and the horizontal flange 1B and the flange 11, respectively, and the through hole (not shown) has a diameter larger than the diameter of the tension rod 72, and is a seismic isolation column. It is designed to allow an inclination of 6. The trigger fastening mechanism 70 is arranged at the four corners of the rectangular flanges 10 and 11 as shown in FIGS. 1 (a), 1 (b) and 1 (c). Can be selected as appropriate.

前記弾性補助機構80は、復元補助係止片81と、復元補助弾性体82とを備えている。前記復元補助係止片81は、前記上側部材としての水平フランジ1Aから下方へ延びる復元補助縦壁部81aと、該復元補助縦壁部81aの先端から前記張出部としてのフランジ10と平行に延びる復元補助横壁部81bとを備えている。前記復元補助係止片81は、上下反転する形で、下側部材としての水平フランジ1Bにも設けられている。前記復元補助弾性体82は、前記復元補助係止片81の復元補助横壁部81bとの間に初期隙間δ(図1(d)参照)が形成されるよう配設されており、前記免震柱6の傾斜角度が設定値を超えた際に圧縮が開始されるようになっている。因みに、前記復元補助弾性体82は、前記張出部としてのフランジ10の下面と、前記張出部としてのフランジ11の上面とに接着されている。これにより、前記弾性補助機構80は、前記免震柱6の傾斜角度が設定値を超えた際に圧縮が開始されるよう配設され且つ前記免震柱6に対し傾斜状態から直立状態への復元力を付与するようになっている。尚、前記弾性補助機構80は、図1(a)及び図1(b)に示す如く、前記トリガ締結機構70の中間位置における四箇所に配置してあるが、この配置に関しては適宜選定することができる。又、前記弾性補助機構80は、必要に応じて上側部材としての水平フランジ1Aと下側部材としての水平フランジ1Bとのいずれか一方のみに設けるようにしても良い。 The elastic assisting mechanism 80 includes a restoring auxiliary locking piece 81 and a restoring auxiliary elastic body 82. The restoration auxiliary locking piece 81 is parallel to the restoration auxiliary vertical wall portion 81a extending downward from the horizontal flange 1A as the upper member and the flange 10 as the overhanging portion from the tip of the restoration auxiliary vertical wall portion 81a. It is provided with an extending restoration auxiliary side wall portion 81b. The restoration auxiliary locking piece 81 is also provided on the horizontal flange 1B as a lower member in a vertically inverted form. The restoration assisting elastic body 82 is arranged so that an initial gap δ (see FIG. 1D) is formed between the restoration assistance locking piece 81 and the restoration assistance side wall portion 81b, and the seismic isolation is provided. Compression is started when the inclination angle of the pillar 6 exceeds the set value. Incidentally, the restoration assisting elastic body 82 is adhered to the lower surface of the flange 10 as the overhanging portion and the upper surface of the flange 11 as the overhanging portion. As a result, the elastic assist mechanism 80 is arranged so that compression is started when the inclination angle of the seismic isolation column 6 exceeds a set value, and the seismic isolation column 6 is changed from an inclined state to an upright state. It is designed to give resilience. As shown in FIGS. 1A and 1B, the elastic assisting mechanisms 80 are arranged at four locations at intermediate positions of the trigger fastening mechanism 70, but the arrangements should be appropriately selected. Can be done. Further, the elastic assist mechanism 80 may be provided on only one of the horizontal flange 1A as the upper member and the horizontal flange 1B as the lower member, if necessary.

次に、上記第一実施例の作用を説明する。 Next, the operation of the first embodiment will be described.

地震が発生していない平常時には、図1に示す如く、免震柱6は鉛直に保持され、該免震柱6の上側の柱1に掛かる荷重は、水平フランジ1Aから、上下両端にフランジ10,11が設けられた免震柱6を介して下側の柱1に伝達される。 In normal times when no earthquake occurs, the seismic isolation column 6 is held vertically as shown in FIG. 1, and the load applied to the upper column 1 of the seismic isolation column 6 is from the horizontal flange 1A to the flanges 10 on both the upper and lower ends. , 11 are transmitted to the lower pillar 1 via the seismic isolation pillar 6 provided.

但し、図1において、中小規模の地震の発生により柱1に水平方向の比較的小さい加速度の揺れが発生した場合にも、前記免震柱6は鉛直に保持される。 However, in FIG. 1, the seismic isolation column 6 is held vertically even when the column 1 is shaken with a relatively small acceleration in the horizontal direction due to the occurrence of a small-to-medium-sized earthquake.

即ち、柱1に掛かる荷重と、トリガ締結機構70の弾性部材71の反発力とによって、前記水平フランジ1A及び水平フランジ1Bに対し免震柱6のフランジ10,11は圧着される。このとき、前記水平フランジ1A及び水平フランジ1Bには、免震柱6のフランジ10,11を締結するトリガ締結機構70が設けられているので、免震柱6が水平方向へ移動することは防止される。従って、中小規模の地震によって、水平方向に比較的小さい加速度の揺れが発生しても、免震柱6は鉛直に保持される。これは、水平方向の加速度により免震柱6を傾けようとするモーメントが、免震柱6によって支持されている鉛直方向の荷重と、前記トリガ締結機構70の弾性部材71の反発力とにより免震柱6を鉛直状態に保持しようとするモーメントを超えない限り、免震柱6は傾くことができないトリガ機能によるものである。 That is, the flanges 10 and 11 of the seismic isolation column 6 are crimped to the horizontal flange 1A and the horizontal flange 1B by the load applied to the column 1 and the repulsive force of the elastic member 71 of the trigger fastening mechanism 70. At this time, since the horizontal flange 1A and the horizontal flange 1B are provided with a trigger fastening mechanism 70 for fastening the flanges 10 and 11 of the seismic isolation column 6, the seismic isolation column 6 is prevented from moving in the horizontal direction. Will be done. Therefore, the seismic isolation column 6 is held vertically even if a relatively small acceleration sway occurs in the horizontal direction due to a small-to-medium-sized earthquake. This is because the moment to tilt the seismic isolation column 6 due to the horizontal acceleration is exempted by the vertical load supported by the seismic isolation column 6 and the repulsive force of the elastic member 71 of the trigger fastening mechanism 70. The seismic isolation column 6 is due to a trigger function that cannot be tilted unless the moment for holding the seismic column 6 in the vertical state is exceeded.

一方、大規模な地震の発生によって、水平方向へ大きな加速度の揺れが発生した場合、上側の柱1が慣性によりその場にとどまろうとするのに対し、下側の柱1は水平方向へ相対移動した状態となる。このとき、免震柱6のフランジ11は、前記トリガ締結機構70により水平方向へ移動することができない。しかし、前記免震柱6のフランジ10,11にトリガ荷重の範囲を超えた負荷が作用した場合には、図2に示す如く、前記免震柱6は、フランジ11の下端面の辺と、フランジ10の上端面の辺とを支点として傾きを開始する。このように免震柱6が傾く免震の効果により、水平左右方向(幅方向或いは奥行方向)への大きな地震力の伝達が低減される。 On the other hand, when a large-scale earthquake causes a large horizontal acceleration sway, the upper pillar 1 tries to stay in place due to inertia, while the lower pillar 1 moves relative to the horizontal. It will be in the state of At this time, the flange 11 of the seismic isolation column 6 cannot move in the horizontal direction by the trigger fastening mechanism 70. However, when a load exceeding the range of the trigger load acts on the flanges 10 and 11 of the seismic isolation column 6, the seismic isolation column 6 is formed on the side of the lower end surface of the flange 11 and as shown in FIG. Tilt starts with the side of the upper end surface of the flange 10 as a fulcrum. Due to the seismic isolation effect in which the seismic isolation column 6 is tilted in this way, the transmission of a large seismic force in the horizontal and horizontal directions (width direction or depth direction) is reduced.

ここで、図1(a)及び図1(b)に示す如く、前記トリガ締結機構70の中間位置における四箇所には、復元補助係止片81と復元補助弾性体82とを備えた弾性補助機構80が配置されている。前記復元補助弾性体82は、前記復元補助係止片81の復元補助横壁部81bとの間に初期隙間δ(図1(d)参照)が形成されるよう配設されており、前記免震柱6の傾斜角度が設定値を超えた際に圧縮が開始される。このため、前記免震柱6が過大に傾斜しようとしても、前記復元補助弾性体82が復元補助横壁部81bに接触して圧縮されることにより、前記免震柱6に対し傾斜状態から直立状態への復元力が付与される。これにより、免震柱6が限界傾斜角度位置を超えて傾斜することが阻止される。この結果、免震柱6が倒れる心配はなく、元の位置に確実に復帰可能となる。 Here, as shown in FIGS. 1 (a) and 1 (b), elastic assists provided with restoration assist locking pieces 81 and restoration assist elastic bodies 82 at four locations at intermediate positions of the trigger fastening mechanism 70. The mechanism 80 is arranged. The restoration assisting elastic body 82 is arranged so that an initial gap δ (see FIG. 1D) is formed between the restoration assistance locking piece 81 and the restoration assistance side wall portion 81b, and the seismic isolation is provided. Compression is started when the inclination angle of the pillar 6 exceeds the set value. Therefore, even if the seismic isolation column 6 tries to incline excessively, the restoration assisting elastic body 82 comes into contact with the restoration assistance side wall portion 81b and is compressed, so that the seismic isolation column 6 is in an upright state from an inclined state. Restoring power is given to. As a result, the seismic isolation column 6 is prevented from tilting beyond the limit tilt angle position. As a result, there is no concern that the seismic isolation pillar 6 will fall, and the seismic isolation pillar 6 can be reliably returned to its original position.

因みに、図3に示す如く、前記免震柱6単独の場合、水平変位が増加する(傾斜角度が大きくなる)に従って、免震柱6の傾斜状態から直立状態への復元力は減少していく。これに対し、前記水平変位が増加する(傾斜角度が大きくなる)に従って、弾性部材71は圧縮されるため、該弾性部材71の復元力はバネ定数に応じて増加していく。又、前記水平変位が増加しても(傾斜角度が大きくなっても)、前記初期隙間δが0になるまでは、復元補助弾性体82は圧縮されないため、該復元補助弾性体82の復元力は0であるが、前記初期隙間δが0になった後は、前記復元補助弾性体82は圧縮されるため、該復元補助弾性体82の復元力はバネ定数に応じて増加していく。これらを合成すると、totalとして示す線となり、トリガ荷重を一定に保持し、大規模な地震発生時に振動による入力を抑えつつ、フランジ10,11を大きくせずに免震柱6の過度な傾斜を抑制可能となる。又、変位が大きくなる場合には、弾性部材71による復元力に加えて復元補助弾性体82による復元力を作用させることで、大変形を抑制できる。更に又、前記復元補助係止片81の復元補助横壁部81bと張出部としてのフランジ10,11との間に配設される復元補助弾性体82の初期隙間δを調節することでトリガの範囲を任意に設定できる。 Incidentally, as shown in FIG. 3, in the case of the seismic isolation column 6 alone, the restoring force of the seismic isolation column 6 from the inclined state to the upright state decreases as the horizontal displacement increases (the inclination angle increases). .. On the other hand, as the horizontal displacement increases (the inclination angle increases), the elastic member 71 is compressed, so that the restoring force of the elastic member 71 increases according to the spring constant. Further, even if the horizontal displacement increases (even if the inclination angle becomes large), the restoring auxiliary elastic body 82 is not compressed until the initial gap δ becomes 0, so that the restoring force of the restoring auxiliary elastic body 82 Is 0, but after the initial gap δ becomes 0, the restoring auxiliary elastic body 82 is compressed, so that the restoring force of the restoring auxiliary elastic body 82 increases according to the spring constant. When these are combined, it becomes a line shown as total, which keeps the trigger load constant, suppresses the input due to vibration when a large-scale earthquake occurs, and suppresses the excessive inclination of the seismic isolation column 6 without enlarging the flanges 10 and 11. It can be suppressed. Further, when the displacement becomes large, a large deformation can be suppressed by applying the restoring force of the restoring auxiliary elastic body 82 in addition to the restoring force of the elastic member 71. Furthermore, by adjusting the initial gap δ of the restoration assisting elastic body 82 arranged between the restoration assistance side wall portion 81b of the restoration assistance locking piece 81 and the flanges 10 and 11 as the overhanging portions, the trigger can be triggered. The range can be set arbitrarily.

こうして、簡単な構成で構造物に作用する揺れを、大変位時には復元力を大きくして免震柱6の過度な傾斜を抑えつつ免震できる。 In this way, the shaking acting on the structure with a simple configuration can be seismically isolated while suppressing the excessive inclination of the seismic isolation column 6 by increasing the restoring force at the time of large displacement.

図5及び図6は本発明の免震装置の第一実施例の変形例であって、図中、図1〜図4と同一の符号を付した部分は同一物を表わしており、基本的な構成は図1〜図4に示す第一実施例と同様である。 5 and 6 are modifications of the first embodiment of the seismic isolation device of the present invention, and in the drawings, the parts having the same reference numerals as those in FIGS. 1 to 4 represent the same objects, which are basic. The configuration is the same as that of the first embodiment shown in FIGS. 1 to 4.

第一実施例の変形例では、前記復元補助弾性体82を、前記張出部としてのフランジ10の下面と、前記張出部としてのフランジ11の上面とに接着する(図1及び図2参照)代わりに、図5(a)、図5(b)及び図5(c)に示す如く、復元補助横壁部81bの側に接着し、前記張出部としてのフランジ10,11と復元補助弾性体82との間に初期隙間δ(図5(d)参照)が形成されるようにしてある。 In the modified example of the first embodiment, the restoration assisting elastic body 82 is adhered to the lower surface of the flange 10 as the overhanging portion and the upper surface of the flange 11 as the overhanging portion (see FIGS. 1 and 2). ) Instead, as shown in FIGS. 5 (a), 5 (b) and 5 (c), the restoration assisting lateral wall portion 81b is adhered to the flanges 10 and 11 as the overhanging portions and the restoration assisting elasticity. An initial gap δ (see FIG. 5D) is formed between the body and the body 82.

図5及び図6に示す第一実施例の変形例の場合、前記免震柱6が過大に傾斜しようとしても、前記復元補助横壁部81bの側に接着された復元補助弾性体82が張出部としてのフランジ10,11に接触して圧縮されることにより、前記免震柱6に対し傾斜状態から直立状態への復元力が付与される。これにより、免震柱6が限界傾斜角度位置を超えて傾斜することが阻止される。この結果、免震柱6が倒れる心配はなく、元の位置に確実に復帰可能となる。 In the case of the modified example of the first embodiment shown in FIGS. 5 and 6, even if the seismic isolation column 6 tries to incline excessively, the restoration auxiliary elastic body 82 adhered to the restoration auxiliary side wall portion 81b overhangs. By contacting and compressing the flanges 10 and 11 as portions, a restoring force from an inclined state to an upright state is given to the seismic isolation column 6. As a result, the seismic isolation column 6 is prevented from tilting beyond the limit tilt angle position. As a result, there is no concern that the seismic isolation pillar 6 will fall, and the seismic isolation pillar 6 can be reliably returned to its original position.

こうして、第一実施例の変形例においても、簡単な構成で構造物に作用する揺れを、大変位時には復元力を大きくして免震柱6の過度な傾斜を抑えつつ免震できる。 In this way, even in the modified example of the first embodiment, the shaking acting on the structure with a simple configuration can be seismically isolated while suppressing the excessive inclination of the seismic isolation column 6 by increasing the restoring force at the time of large displacement.

図7〜図9は本発明の免震装置の第二実施例であって、図中、図1〜図4と同一の符号を付した部分は同一物を表わしており、基本的な構成は図1〜図4に示す第一実施例と同様である。 7 to 9 are the second embodiments of the seismic isolation device of the present invention, and in the drawings, the parts having the same reference numerals as those in FIGS. 1 to 4 represent the same objects, and the basic configuration is as follows. This is the same as that of the first embodiment shown in FIGS. 1 to 4.

第二実施例の場合、図7(a)、図7(b)、図7(c)及び図7(d)に示す如く、前記免震柱6が特定方向へ傾斜し始めるトリガ荷重を前記免震柱6が特定方向以外の方向へ傾斜し始めるトリガ荷重より大きくするトリガ荷重増加機構90を備えた点を特徴としている。前記特定方向とは、図8(a)に示す如く、前記免震柱6がスタッカクレーン4の側へ傾斜する方向である。又、特定方向以外の方向とは、図8(b)に示す如く、前記免震柱6が反スタッカクレーン4の側へ傾斜する方向、並びに立体倉庫100の奥行方向(図7(c)参照)である。尚、免震装置5は立体倉庫100以外の構造物に設けることも可能であり、該構造物に接触を回避すべき隣接物が存在する場合、前記特定方向は、スタッカクレーン4を含む隣接物対峙方向となる。 In the case of the second embodiment, as shown in FIGS. 7 (a), 7 (b), 7 (c) and 7 (d), the trigger load at which the seismic isolation column 6 begins to incline in a specific direction is applied. The feature is that the seismic isolation column 6 is provided with a trigger load increasing mechanism 90 that makes it larger than the trigger load that starts to incline in a direction other than a specific direction. As shown in FIG. 8A, the specific direction is a direction in which the seismic isolation column 6 is inclined toward the stacker crane 4. Further, as shown in FIG. 8B, the directions other than the specific direction are the direction in which the seismic isolation column 6 is inclined toward the anti-stacker crane 4 and the depth direction of the three-dimensional warehouse 100 (see FIG. 7C). ). The seismic isolation device 5 can be provided in a structure other than the three-dimensional warehouse 100, and when there is an adjacent object to avoid contact with the structure, the specific direction is the adjacent object including the stacker crane 4. It will be in the opposite direction.

前記トリガ荷重増加機構90は、傾斜抑制係止片91と、傾斜抑制弾性体92とを備えている。前記傾斜抑制係止片91は、前記上側部材としての水平フランジ1Aから下方へ延びる傾斜抑制縦壁部91aと、該傾斜抑制縦壁部91aの先端から前記張出部としてのフランジ10と平行に延びる傾斜抑制横壁部91bとを備えている。傾斜抑制係止片91は、上下左右反転する形で、下側部材としての水平フランジ1Bにも設けられている。前記傾斜抑制弾性体92は、前記傾斜抑制係止片91の傾斜抑制横壁部91bと張出部としてのフランジ10,11との間に介装されている。尚、前記トリガ荷重増加機構90は、必要に応じて、特定方向側における上側部材としての水平フランジ1Aと、反特定方向側における下側部材としての水平フランジ1Bとのいずれか一方のみに設けるようにしても良い。 The trigger load increasing mechanism 90 includes an inclination suppressing locking piece 91 and an inclination suppressing elastic body 92. The inclination suppressing locking piece 91 is parallel to the inclination suppressing vertical wall portion 91a extending downward from the horizontal flange 1A as the upper member and the flange 10 as the overhanging portion from the tip of the inclination suppressing vertical wall portion 91a. It is provided with an extending inclination suppressing horizontal wall portion 91b. The tilt suppression locking piece 91 is also provided on the horizontal flange 1B as a lower member in a form that is vertically and horizontally inverted. The tilt suppressing elastic body 92 is interposed between the tilt suppressing lateral wall portion 91b of the tilt suppressing locking piece 91 and the flanges 10 and 11 as overhanging portions. The trigger load increasing mechanism 90 is provided on only one of the horizontal flange 1A as the upper member on the specific direction side and the horizontal flange 1B as the lower member on the anti-specific direction side, if necessary. You can do it.

次に、上記第二実施例の作用を説明する。 Next, the operation of the second embodiment will be described.

地震が発生していない平常時には、図7に示す如く、免震柱6は鉛直に保持され、該免震柱6の上側の柱1に掛かる荷重は、水平フランジ1Aから、上下両端にフランジ10,11が設けられた免震柱6を介して下側の柱1に伝達される。 In normal times when an earthquake does not occur, the seismic isolation column 6 is held vertically as shown in FIG. 7, and the load applied to the upper column 1 of the seismic isolation column 6 is from the horizontal flange 1A to the flanges 10 on both the upper and lower ends. , 11 are transmitted to the lower pillar 1 via the seismic isolation pillar 6 provided.

但し、図7において、中小規模の地震の発生により柱1に水平方向の比較的小さい加速度の揺れが発生した場合にも、前記免震柱6は鉛直に保持される。 However, in FIG. 7, the seismic isolation column 6 is held vertically even when a relatively small horizontal acceleration sway occurs in the column 1 due to the occurrence of a small-to-medium-sized earthquake.

即ち、柱1に掛かる荷重と、トリガ締結機構70の弾性部材71の反発力とによって、前記水平フランジ1A及び水平フランジ1Bに対し免震柱6のフランジ10,11は圧着される。このとき、前記水平フランジ1A及び水平フランジ1Bには、免震柱6のフランジ10,11を締結するトリガ締結機構70が設けられているので、免震柱6が水平方向へ移動することは防止される。従って、中小規模の地震によって、水平方向に比較的小さい加速度の揺れが発生しても、免震柱6は鉛直に保持される。これは、水平方向の加速度により免震柱6を傾けようとするモーメントが、免震柱6によって支持されている鉛直方向の荷重と、前記トリガ締結機構70の弾性部材71の反発力とにより免震柱6を鉛直状態に保持しようとするモーメントを超えない限り、免震柱6は傾くことができないトリガ機能によるものである。 That is, the flanges 10 and 11 of the seismic isolation column 6 are crimped to the horizontal flange 1A and the horizontal flange 1B by the load applied to the column 1 and the repulsive force of the elastic member 71 of the trigger fastening mechanism 70. At this time, since the horizontal flange 1A and the horizontal flange 1B are provided with a trigger fastening mechanism 70 for fastening the flanges 10 and 11 of the seismic isolation column 6, the seismic isolation column 6 is prevented from moving in the horizontal direction. Will be done. Therefore, the seismic isolation column 6 is held vertically even if a relatively small acceleration sway occurs in the horizontal direction due to a small-to-medium-sized earthquake. This is because the moment to tilt the seismic isolation column 6 due to the horizontal acceleration is exempted by the vertical load supported by the seismic isolation column 6 and the repulsive force of the elastic member 71 of the trigger fastening mechanism 70. The seismic isolation column 6 is due to a trigger function that cannot be tilted unless the moment for holding the seismic column 6 in the vertical state is exceeded.

一方、大規模な地震の発生によって、水平方向へ大きな加速度の揺れが発生した場合、上側の柱1が慣性によりその場にとどまろうとするのに対し、下側の柱1は水平方向へ相対移動した状態となる。このとき、免震柱6のフランジ11は、前記トリガ締結機構70により水平方向へ移動することができない。しかし、前記免震柱6のフランジ10,11に前記トリガ締結機構70によるトリガ荷重の範囲を超えた負荷が作用した場合、特定方向以外の方向(反スタッカクレーン4側)には、図8(b)に示す如く、前記免震柱6は、フランジ11の下端面の辺と、フランジ10の上端面の辺とを支点として傾きを開始する。このように免震柱6が傾く免震の効果により、特定方向以外の方向(反スタッカクレーン4側)への大きな地震力の伝達が低減される。尚、前記特定方向以外の方向としては、反スタッカクレーン4側だけではなく、図7(c)に示す如く、立体倉庫100の奥行方向も含まれ、該奥行方向への大きな地震力の伝達も低減される。 On the other hand, when a large-scale earthquake causes a large horizontal acceleration sway, the upper pillar 1 tries to stay in place due to inertia, while the lower pillar 1 moves relative to the horizontal. It will be in the state of At this time, the flange 11 of the seismic isolation column 6 cannot move in the horizontal direction by the trigger fastening mechanism 70. However, when a load exceeding the range of the trigger load by the trigger fastening mechanism 70 acts on the flanges 10 and 11 of the seismic isolation column 6, the direction other than the specific direction (anti-stacker crane 4 side) is shown in FIG. As shown in b), the seismic isolation column 6 starts tilting with the side of the lower end surface of the flange 11 and the side of the upper end surface of the flange 10 as fulcrums. Due to the seismic isolation effect in which the seismic isolation column 6 is tilted in this way, the transmission of a large seismic force in a direction other than a specific direction (anti-stacker crane 4 side) is reduced. The directions other than the specific direction include not only the anti-stacker crane 4 side but also the depth direction of the three-dimensional warehouse 100 as shown in FIG. 7 (c), and a large seismic force is transmitted to the depth direction. It will be reduced.

これに対し、特定方向(スタッカクレーン4側)には、図8(a)に示す如く、トリガ荷重増加機構90の傾斜抑制係止片91の傾斜抑制横壁部91bと張出部としてのフランジ10,11との間に介装された傾斜抑制弾性体92によってトリガ荷重が大きく設定されているため、前記免震柱6は傾斜しにくくなる。つまり、スタッカクレーン4側への大変位を抑制することができる。又、前記傾斜抑制弾性体92によるトリガ荷重の調節も行いやすくなる。 On the other hand, in a specific direction (stacker crane 4 side), as shown in FIG. 8A, the inclination suppressing side wall portion 91b of the inclination suppressing locking piece 91 of the trigger load increasing mechanism 90 and the flange 10 as an overhanging portion Since the trigger load is set large by the tilt suppressing elastic body 92 interposed between the and 11, the seismic isolation column 6 is less likely to tilt. That is, it is possible to suppress a large displacement toward the stacker crane 4. In addition, the trigger load can be easily adjusted by the tilt suppressing elastic body 92.

因みに、図9に示す如く、前記免震柱6単独の場合、水平変位が増加する(傾斜角度が大きくなる)に従って、免震柱6の傾斜状態から直立状態への復元力は減少していく。これに対し、前記水平変位が増加する(傾斜角度が大きくなる)に従って、弾性部材71は圧縮されるため、該弾性部材71の復元力はバネ定数に応じて増加していく。又、前記水平変位が特定方向へ増加する(傾斜角度が大きくなる)に従って、傾斜抑制弾性体92は圧縮されるため、該傾斜抑制弾性体92の復元力はバネ定数に応じて増加していく。但し、前記水平変位が特定方向以外の方向へ増加しても(傾斜角度が大きくなっても)、傾斜抑制弾性体92は圧縮されないため、該傾斜抑制弾性体92の復元力は0のまま変化しない。これらを合成すると、totalとして示す線となり、特定方向についてのみトリガ荷重を増加させ、大規模な地震発生時にスタッカクレーン4側への免震柱6の過度な傾斜を積極的に抑制可能となり、柱1や水平フランジ1Aがスタッカクレーン4に接触することが避けられる。又、特定方向以外の方向に関しては、柱1や水平フランジ1Aがスタッカクレーン4に接触する虞がないことから、前記トリガ荷重増加機構90の傾斜抑制弾性体92は作用しないように配置されているため、免震性能を維持できる。 Incidentally, as shown in FIG. 9, in the case of the seismic isolation column 6 alone, the restoring force of the seismic isolation column 6 from the inclined state to the upright state decreases as the horizontal displacement increases (the inclination angle increases). .. On the other hand, as the horizontal displacement increases (the inclination angle increases), the elastic member 71 is compressed, so that the restoring force of the elastic member 71 increases according to the spring constant. Further, as the horizontal displacement increases in a specific direction (the inclination angle increases), the inclination suppressing elastic body 92 is compressed, so that the restoring force of the inclination suppressing elastic body 92 increases according to the spring constant. .. However, even if the horizontal displacement increases in a direction other than the specific direction (even if the inclination angle becomes large), the inclination suppressing elastic body 92 is not compressed, so that the restoring force of the inclination suppressing elastic body 92 remains 0. do not do. When these are combined, it becomes a line shown as horizontal, the trigger load is increased only in a specific direction, and it becomes possible to positively suppress the excessive inclination of the seismic isolation column 6 toward the stacker crane 4 side in the event of a large-scale earthquake. It is possible to prevent the 1 and the horizontal flange 1A from coming into contact with the stacker crane 4. Further, in a direction other than the specific direction, since there is no possibility that the pillar 1 or the horizontal flange 1A comes into contact with the stacker crane 4, the tilt suppressing elastic body 92 of the trigger load increasing mechanism 90 is arranged so as not to act. Therefore, seismic isolation performance can be maintained.

こうして、第二実施例においては、簡単な構成で構造物に作用する揺れを、特定方向への免震柱6の過度な傾斜を積極的に抑えつつ免震できる。 In this way, in the second embodiment, the shaking acting on the structure with a simple configuration can be seismically isolated while positively suppressing the excessive inclination of the seismic isolation column 6 in a specific direction.

図10は本発明の免震装置の第二実施例の変形例であって、図中、図7〜図9と同一の符号を付した部分は同一物を表わしており、基本的な構成は図7〜図9に示す第二実施例と同様である。 FIG. 10 is a modification of the second embodiment of the seismic isolation device of the present invention, and in the drawings, the parts having the same reference numerals as those in FIGS. 7 to 9 represent the same objects, and the basic configuration is as follows. It is the same as the second embodiment shown in FIGS. 7 to 9.

第二実施例の変形例では、前記免震柱6が特定方向へ傾斜し始めるトリガ荷重を設定する前記トリガ締結機構70の弾性部材71のバネ定数を、前記免震柱6が特定方向以外の方向へ傾斜し始めるトリガ荷重を設定する前記トリガ締結機構70の弾性部材71のバネ定数より大きくすることによって、前記トリガ荷重増加機構90が構成されるようにしてある。 In the modified example of the second embodiment, the spring constant of the elastic member 71 of the trigger fastening mechanism 70 for setting the trigger load at which the seismic isolation column 6 starts to incline in a specific direction is set so that the seismic isolation column 6 does not have a specific direction. The trigger load increasing mechanism 90 is configured by making it larger than the spring constant of the elastic member 71 of the trigger fastening mechanism 70 that sets the trigger load that starts to tilt in the direction.

図10に示す第二実施例の変形例のように、トリガ荷重増加機構90を兼ねるトリガ締結機構70の弾性部材71のバネ定数を変化させても、特定方向(スタッカクレーン4側)には、図10(a)に示す如く、トリガ荷重が大きく設定されることになるため、前記免震柱6は傾斜しにくくなり、スタッカクレーン4側への大変位を抑制することができる。しかも、前記弾性部材71のバネ定数を変化させるだけで済み、部品点数を削減して構造を更にシンプル化する上で非常に有効となる。 Even if the spring constant of the elastic member 71 of the trigger fastening mechanism 70 that also serves as the trigger load increasing mechanism 90 is changed as in the modified example of the second embodiment shown in FIG. 10, the spring constant is changed in a specific direction (stacker crane 4 side). As shown in FIG. 10A, since the trigger load is set large, the seismic isolation column 6 is less likely to be tilted, and a large displacement toward the stacker crane 4 side can be suppressed. Moreover, it is only necessary to change the spring constant of the elastic member 71, which is very effective in reducing the number of parts and further simplifying the structure.

尚、前記免震柱6のフランジ10,11に前記トリガ締結機構70によるトリガ荷重の範囲を超えた負荷が作用した場合、特定方向以外の方向(反スタッカクレーン4側)には、図10(b)に示す如く、前記免震柱6がフランジ11の下端面の辺とフランジ10の上端面の辺とを支点として傾きを開始するため、該免震柱6が傾く免震の効果により、特定方向以外の方向(反スタッカクレーン4側)への大きな地震力の伝達が低減される。 When a load exceeding the range of the trigger load by the trigger fastening mechanism 70 acts on the flanges 10 and 11 of the seismic isolation column 6, the direction other than the specific direction (anti-stacker crane 4 side) is shown in FIG. As shown in b), since the seismic isolation pillar 6 starts tilting with the side of the lower end surface of the flange 11 and the side of the upper end surface of the flange 10 as fulcrums, the seismic isolation pillar 6 tilts due to the seismic isolation effect. The transmission of large seismic force in directions other than the specific direction (anti-stacker crane 4 side) is reduced.

こうして、第二実施例の変形例においても、簡単な構成で構造物に作用する揺れを、特定方向への免震柱6の過度な傾斜を積極的に抑えつつ免震できる。 In this way, even in the modified example of the second embodiment, the shaking acting on the structure with a simple configuration can be seismically isolated while positively suppressing the excessive inclination of the seismic isolation column 6 in a specific direction.

図11及び図12は本発明の免震装置の第二実施例の他の変形例であって、図中、図7〜図9と同一の符号を付した部分は同一物を表わしており、基本的な構成は図7〜図9に示す第二実施例と同様である。 11 and 12 are other modifications of the second embodiment of the seismic isolation device of the present invention, and in the drawings, the parts having the same reference numerals as those in FIGS. 7 to 9 represent the same objects. The basic configuration is the same as that of the second embodiment shown in FIGS. 7 to 9.

第二実施例の他の変形例では、図11(a)、図11(b)、図11(c)及び図12に示す如く、前記免震柱6が特定方向へ傾斜し始めるトリガ荷重を設定する前記トリガ締結機構70の弾性部材71の設置数を、前記免震柱6が特定方向以外の方向へ傾斜し始めるトリガ荷重を設定する前記トリガ締結機構70の弾性部材71の設置数より大きくすることによって、前記トリガ荷重増加機構90が構成されるようにしてある。 In another modification of the second embodiment, as shown in FIGS. 11 (a), 11 (b), 11 (c) and 12, the trigger load at which the seismic isolation column 6 begins to incline in a specific direction is applied. The number of installed elastic members 71 of the trigger fastening mechanism 70 to be set is larger than the number of installed elastic members 71 of the trigger fastening mechanism 70 for setting the trigger load at which the seismic isolation column 6 starts to incline in a direction other than a specific direction. By doing so, the trigger load increasing mechanism 90 is configured.

図11及び図12に示す第二実施例の他の変形例のように、トリガ荷重増加機構90を兼ねるトリガ締結機構70の弾性部材71の設置数を変化させても、特定方向(スタッカクレーン4側)には、図12(a)に示す如く、トリガ荷重が大きく設定されることになるため、前記免震柱6は傾斜しにくくなり、スタッカクレーン4側への大変位を抑制することができる。しかも、前記弾性部材71の設置数を変化させるだけで済み、弾性部材71自体は同じものを使用できるため、組み立て時の管理等も行いやすくなる。 Even if the number of installed elastic members 71 of the trigger fastening mechanism 70 that also serves as the trigger load increasing mechanism 90 is changed as in the other modified examples of the second embodiment shown in FIGS. 11 and 12, the stacker crane 4 is used. As shown in FIG. 12A, a large trigger load is set on the side), so that the seismic isolation column 6 is less likely to tilt, and a large displacement to the stacker crane 4 side can be suppressed. it can. Moreover, since it is only necessary to change the number of the elastic members 71 installed and the same elastic members 71 can be used, it becomes easy to perform management at the time of assembly.

尚、前記免震柱6のフランジ10,11に前記トリガ締結機構70によるトリガ荷重の範囲を超えた負荷が作用した場合、特定方向以外の方向(反スタッカクレーン4側)には、図12(b)に示す如く、前記免震柱6がフランジ11の下端面の辺とフランジ10の上端面の辺とを支点として傾きを開始するため、該免震柱6が傾く免震の効果により、特定方向以外の方向(反スタッカクレーン4側)への大きな地震力の伝達が低減される。 When a load exceeding the range of the trigger load by the trigger fastening mechanism 70 acts on the flanges 10 and 11 of the seismic isolation column 6, the direction other than the specific direction (anti-stacker crane 4 side) is shown in FIG. As shown in b), since the seismic isolation pillar 6 starts tilting with the side of the lower end surface of the flange 11 and the side of the upper end surface of the flange 10 as fulcrums, the seismic isolation pillar 6 tilts due to the seismic isolation effect. The transmission of large seismic force in directions other than the specific direction (anti-stacker crane 4 side) is reduced.

こうして、第二実施例の他の変形例においても、簡単な構成で構造物に作用する揺れを、特定方向への免震柱6の過度な傾斜を積極的に抑えつつ免震できる。 In this way, also in the other modified examples of the second embodiment, the shaking acting on the structure can be seismically isolated while positively suppressing the excessive inclination of the seismic isolation column 6 in a specific direction.

そして、第一実施例及び第一実施例の変形例においては、前記弾性補助機構80は、前記上側部材としての水平フランジ1Aと下側部材としての水平フランジ1Bの少なくとも一方から上下方向へ延びる復元補助縦壁部81aと、該復元補助縦壁部81aの先端から前記張出部としてのフランジ10,11と平行に延びる復元補助横壁部81bとを備えた復元補助係止片81を備えている。更に、前記復元補助係止片81の復元補助横壁部81bと張出部としてのフランジ10,11との間に初期隙間δが形成されるよう配設され且つ前記免震柱6の傾斜角度が設定値を超えた際に圧縮が開始される復元補助弾性体82を備えている。このように構成すると、大規模な地震発生時に変位が大きくなる場合には、弾性部材71による復元力に加えて復元補助弾性体82による復元力を作用させることで、大変形を抑制できる。又、前記復元補助係止片81の復元補助横壁部81bと張出部としてのフランジ10,11との間に配設される復元補助弾性体82の初期隙間δを調節することでトリガの範囲を任意に設定できる。 Then, in the first embodiment and the modified example of the first embodiment, the elastic assist mechanism 80 is restored so as to extend in the vertical direction from at least one of the horizontal flange 1A as the upper member and the horizontal flange 1B as the lower member. A restoration auxiliary locking piece 81 having an auxiliary vertical wall portion 81a and a restoration auxiliary horizontal wall portion 81b extending in parallel with the flanges 10 and 11 as the overhanging portions from the tip of the restoration auxiliary vertical wall portion 81a is provided. .. Further, it is arranged so that an initial gap δ is formed between the restoration auxiliary side wall portion 81b of the restoration assistance locking piece 81 and the flanges 10 and 11 as overhanging portions, and the inclination angle of the seismic isolation column 6 is set. It includes a restoration assisting elastic body 82 that starts compression when the set value is exceeded. With this configuration, when the displacement becomes large when a large-scale earthquake occurs, large deformation can be suppressed by applying the restoring force of the restoring auxiliary elastic body 82 in addition to the restoring force of the elastic member 71. Further, the range of the trigger is adjusted by adjusting the initial gap δ of the restoration assisting elastic body 82 arranged between the restoration assistance side wall portion 81b of the restoration assistance locking piece 81 and the flanges 10 and 11 as the overhanging portions. Can be set arbitrarily.

又、第二実施例においては、前記免震柱6が特定方向へ傾斜し始めるトリガ荷重を前記免震柱6が特定方向以外の方向へ傾斜し始めるトリガ荷重より大きくするトリガ荷重増加機構90を備えている。このように構成すると、特定方向には、トリガ荷重増加機構90によってトリガ荷重が大きく設定されるため、前記免震柱6は傾斜しにくくなる。特に、立体倉庫100に適用すれば、スタッカクレーン4側への大変位を抑制することができ、柱1や水平フランジ1Aがスタッカクレーン4に接触することが避けられる。 Further, in the second embodiment, the trigger load increasing mechanism 90 is provided so that the trigger load at which the seismic isolation column 6 begins to incline in a specific direction is made larger than the trigger load at which the seismic isolation column 6 begins to incline in a direction other than the specific direction. I have. With this configuration, the trigger load is set large by the trigger load increasing mechanism 90 in the specific direction, so that the seismic isolation column 6 is less likely to tilt. In particular, when applied to the three-dimensional warehouse 100, it is possible to suppress a large displacement toward the stacker crane 4, and it is possible to prevent the pillar 1 and the horizontal flange 1A from coming into contact with the stacker crane 4.

又、第二実施例において、前記トリガ荷重増加機構90は、前記上側部材としての水平フランジ1Aと下側部材としての水平フランジ1Bの少なくとも一方から上下方向へ延びる傾斜抑制縦壁部91aと、該傾斜抑制縦壁部91aの先端から前記張出部としてのフランジ10,11と平行に延びる傾斜抑制横壁部91bとを備えた傾斜抑制係止片91を備えている。更に、前記傾斜抑制係止片91の傾斜抑制横壁部91bと張出部としてのフランジ10,11との間に介装される傾斜抑制弾性体92を備えている。このように構成すると、特定方向には、トリガ荷重増加機構90の傾斜抑制係止片91の傾斜抑制横壁部91bと張出部としてのフランジ10,11との間に介装される傾斜抑制弾性体92によってトリガ荷重を大きく設定でき、その調節も行いやすくなる。 Further, in the second embodiment, the trigger load increasing mechanism 90 includes an inclination suppressing vertical wall portion 91a extending in the vertical direction from at least one of the horizontal flange 1A as the upper member and the horizontal flange 1B as the lower member. An inclination suppressing locking piece 91 including an inclination suppressing horizontal wall portion 91b extending in parallel with the flanges 10 and 11 as the overhanging portions from the tip of the inclination suppressing vertical wall portion 91a is provided. Further, an inclination suppressing elastic body 92 interposed between the inclination suppressing side wall portion 91b of the inclination suppressing locking piece 91 and the flanges 10 and 11 as overhanging portions is provided. With this configuration, in a specific direction, the tilt suppression elasticity of the tilt suppression locking piece 91 of the trigger load increasing mechanism 90 is interposed between the tilt suppression side wall portion 91b and the flanges 10 and 11 as overhanging portions. The trigger load can be set large by the body 92, and the adjustment can be easily performed.

一方、第二実施例の変形例において、前記トリガ荷重増加機構90は、前記免震柱6が特定方向へ傾斜し始めるトリガ荷重を設定する前記トリガ締結機構70の弾性部材71のバネ定数を、前記免震柱6が特定方向以外の方向へ傾斜し始めるトリガ荷重を設定する前記トリガ締結機構70の弾性部材71のバネ定数より大きくすることによって構成される。このように構成すると、特定方向への免震柱6の傾斜抑制を前記弾性部材71のバネ定数の変化のみで実現でき、部品点数を削減して構造を更にシンプル化する上で非常に有効となる。 On the other hand, in the modified example of the second embodiment, the trigger load increasing mechanism 90 sets the spring constant of the elastic member 71 of the trigger fastening mechanism 70 for setting the trigger load at which the seismic isolation column 6 starts to incline in a specific direction. The seismic isolation column 6 is configured to be larger than the spring constant of the elastic member 71 of the trigger fastening mechanism 70 that sets the trigger load at which the seismic isolation column 6 begins to incline in a direction other than the specific direction. With this configuration, it is possible to suppress the inclination of the seismic isolation column 6 in a specific direction only by changing the spring constant of the elastic member 71, which is very effective in reducing the number of parts and further simplifying the structure. Become.

又、第二実施例の他の変形例において、前記トリガ荷重増加機構90は、前記免震柱6が特定方向へ傾斜し始めるトリガ荷重を設定する前記トリガ締結機構70の弾性部材71の設置数を、前記免震柱6が特定方向以外の方向へ傾斜し始めるトリガ荷重を設定する前記トリガ締結機構70の弾性部材71の設置数より大きくすることによって構成される。このように構成すると、特定方向への免震柱6の傾斜抑制を前記弾性部材71の設置数の変化のみで実現でき、弾性部材71自体は同じものを使用できるため、組み立て時の管理等も行いやすくなる。 Further, in another modification of the second embodiment, the trigger load increasing mechanism 90 is the number of installed elastic members 71 of the trigger fastening mechanism 70 that sets a trigger load at which the seismic isolation column 6 starts to incline in a specific direction. Is configured to be larger than the number of installed elastic members 71 of the trigger fastening mechanism 70 that sets the trigger load at which the seismic isolation column 6 begins to incline in a direction other than the specific direction. With this configuration, the inclination of the seismic isolation column 6 in a specific direction can be suppressed only by changing the number of installed elastic members 71, and the same elastic members 71 themselves can be used, so that management during assembly and the like can be performed. It will be easier to do.

尚、本発明の免震装置は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 It should be noted that the seismic isolation device of the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

1A 水平フランジ(上側部材)
1B 水平フランジ(下側部材)
5 免震装置
6 免震柱
10 フランジ(張出部)
11 フランジ(張出部)
70 トリガ締結機構
71 弾性部材
80 弾性補助機構
81 復元補助係止片
81a 復元補助縦壁部
81b 復元補助横壁部
82 復元補助弾性体
90 トリガ荷重増加機構
91 傾斜抑制係止片
91a 傾斜抑制縦壁部
91b 傾斜抑制横壁部
92 傾斜抑制弾性体
δ 初期隙間
1A Horizontal flange (upper member)
1B horizontal flange (lower member)
5 Seismic isolation device 6 Seismic isolation pillar 10 Flange (overhanging part)
11 Flange (overhang)
70 Trigger fastening mechanism 71 Elastic member 80 Elastic auxiliary mechanism 81 Restoration auxiliary locking piece 81a Restoration auxiliary vertical wall part 81b Restoration auxiliary horizontal wall part 82 Restoration auxiliary elastic body 90 Trigger load increase mechanism 91 Tilt suppression locking piece 91a Tilt suppression vertical wall part 91b Tilt suppression side wall 92 Tilt suppression elastic body δ Initial gap

Claims (6)

上側部材と下側部材との間に傾斜自在に配設され且つ上下端部に張出部が形成された免震柱と、
該免震柱の張出部と上側部材との間並びに前記免震柱の張出部と下側部材との間を弾性部材を介して締結し且つ前記免震柱が傾斜し始めるトリガ荷重を設定するトリガ締結機構と、
前記免震柱の傾斜角度が設定値を超えた際に圧縮が開始されるよう配設され且つ前記免震柱に対し傾斜状態から直立状態への復元力を付与する弾性補助機構と
を備え、
前記弾性補助機構は
前記上側部材と下側部材の少なくとも一方から上下方向へ延びる復元補助縦壁部と、該復元補助縦壁部の先端から前記張出部と平行に延びる復元補助横壁部とを備えた復元補助係止片と、
該復元補助係止片の復元補助横壁部と張出部との間に初期隙間が形成されるよう配設され且つ前記免震柱の傾斜角度が設定値を超えた際に圧縮が開始される復元補助弾性体と
を備えている免震装置。
A seismic isolation column that is slantably arranged between the upper member and the lower member and has an overhang at the upper and lower ends.
A trigger load is applied between the overhanging portion of the seismic isolation column and the upper member and between the overhanging portion of the seismic isolation column and the lower member via an elastic member and the seismic isolation column begins to tilt. Trigger fastening mechanism to set and
It is provided with an elastic assisting mechanism that is arranged so that compression is started when the inclination angle of the seismic isolation column exceeds a set value and gives a restoring force to the seismic isolation column from an inclined state to an upright state.
The elastic auxiliary mechanism,
A restoration assisting clerk including a restoration assistance vertical wall portion extending in the vertical direction from at least one of the upper member and the lower member, and a restoration assistance horizontal wall portion extending in parallel with the overhanging portion from the tip of the restoration assistance vertical wall portion. With a piece,
Compression is started when the restoration auxiliary locking piece is arranged so as to form an initial gap between the restoration auxiliary side wall portion and the overhanging portion and the inclination angle of the seismic isolation column exceeds the set value. With restoration auxiliary elastic body
Seismic isolation device equipped with .
前記免震柱が特定方向へ傾斜し始めるトリガ荷重を前記免震柱が特定方向以外の方向へ傾斜し始めるトリガ荷重より大きくするトリガ荷重増加機構を備えた請求項記載の免震装置。 Seismic isolation device according to claim 1, further comprising a trigger load increase mechanism to increase the trigger load the trigger load the MenShinhashira starts to tilt to a particular direction the MenShinhashira begins to tilt in the direction other than the specific direction. 前記トリガ荷重増加機構は、
前記上側部材と下側部材の少なくとも一方から上下方向へ延びる傾斜抑制縦壁部と、該傾斜抑制縦壁部の先端から前記張出部と平行に延びる傾斜抑制横壁部とを備えた傾斜抑制係止片と、
該傾斜抑制係止片の傾斜抑制横壁部と張出部との間に介装される傾斜抑制弾性体と
を備えた請求項記載の免震装置。
The trigger load increasing mechanism is
An inclination suppressing vertical wall portion extending in the vertical direction from at least one of the upper member and the lower member, and an inclination suppressing horizontal wall portion extending in parallel with the overhanging portion from the tip of the inclination suppressing vertical wall portion. With a piece,
The seismic isolation device according to claim 2, further comprising an tilt-suppressing elastic body interposed between the tilt-suppressing lateral wall portion and the overhanging portion of the tilt-suppressing locking piece.
前記トリガ荷重増加機構は、前記免震柱が特定方向へ傾斜し始めるトリガ荷重を設定する前記トリガ締結機構の弾性部材のバネ定数を、前記免震柱が特定方向以外の方向へ傾斜し始めるトリガ荷重を設定する前記トリガ締結機構の弾性部材のバネ定数より大きくすることによって構成される請求項記載の免震装置。 The trigger load increasing mechanism sets a trigger load at which the seismic isolation column begins to tilt in a specific direction. The spring constant of the elastic member of the trigger fastening mechanism is set by a trigger at which the seismic isolation column begins to tilt in a direction other than the specific direction. The seismic isolation device according to claim 2, wherein the load is set to be larger than the spring constant of the elastic member of the trigger fastening mechanism. 前記トリガ荷重増加機構は、前記免震柱が特定方向へ傾斜し始めるトリガ荷重を設定する前記トリガ締結機構の弾性部材の設置数を、前記免震柱が特定方向以外の方向へ傾斜し始めるトリガ荷重を設定する前記トリガ締結機構の弾性部材の設置数より大きくすることによって構成される請求項記載の免震装置。 The trigger load increasing mechanism sets the trigger load at which the seismic isolation column begins to incline in a specific direction. The number of installed elastic members of the trigger fastening mechanism is such that the seismic isolation column begins to incline in a direction other than the specific direction. The seismic isolation device according to claim 2, wherein the load is set to be larger than the number of installed elastic members of the trigger fastening mechanism. 上側もしくは下側に位置する部材に対面する張出部を備えた免震柱と、
前記部材と前記免震柱とを圧縮力が付与された弾性部材と共に締結したトリガ締結機構と、
前記部材もしくは前記免震柱に配置された復元補助弾性体と、
前記免震柱が傾斜していない状態で、前記復元補助弾性体と初期隙間をもって離隔した復元補助係止片とを備え、
前記免震柱の傾斜により前記復元補助弾性体と復元補助係止片とが当接可能となっている免震装置。
A seismic isolation column with an overhang facing the members located on the upper or lower side,
A trigger fastening mechanism for fastening the member and the seismic isolation column together with an elastic member to which a compressive force is applied.
With the restoration auxiliary elastic body arranged on the member or the seismic isolation column,
In a state where the seismic isolation column is not tilted, the restoration auxiliary elastic body and the restoration auxiliary locking piece separated by an initial gap are provided.
A seismic isolation device in which the restoration assisting elastic body and the restoration assistance locking piece can come into contact with each other due to the inclination of the seismic isolation column.
JP2016031745A 2016-02-23 2016-02-23 Seismic isolation device Active JP6753072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016031745A JP6753072B2 (en) 2016-02-23 2016-02-23 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016031745A JP6753072B2 (en) 2016-02-23 2016-02-23 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2017150521A JP2017150521A (en) 2017-08-31
JP6753072B2 true JP6753072B2 (en) 2020-09-09

Family

ID=59739617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016031745A Active JP6753072B2 (en) 2016-02-23 2016-02-23 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP6753072B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019028013A (en) 2017-08-03 2019-02-21 オムロンオートモーティブエレクトロニクス株式会社 Object detection device

Also Published As

Publication number Publication date
JP2017150521A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP6088540B2 (en) Storage shelf and flexible moment frame to reduce earthquake damage to stored items
JP2015224482A (en) Seismically isolated structure
JP5610231B2 (en) Goods storage shelf
JP6168151B2 (en) Seismic isolation structure
JP6753072B2 (en) Seismic isolation device
JP5835184B2 (en) Suppression structure of containment shelf
JP6107955B2 (en) Seismic isolation structure and structure of pillars constituting the structure
JP6398281B2 (en) Seismic isolation structure
JP5742812B2 (en) Goods storage shelf
JP6716946B2 (en) Seismic isolation device
JP6232803B2 (en) Seismic isolation structure for pillars constituting the structure
JP4652735B2 (en) Seismic isolation device
JP6248454B2 (en) Automatic warehouse
JP5696905B2 (en) Rack damping structure
JP2016079655A (en) Base isolation structure
JP6123546B2 (en) Seismic isolation structure for pillars constituting the structure
JP6303736B2 (en) Seismic isolation structure and seismic isolation device having the seismic isolation structure
JP6398269B2 (en) Seismic isolation structure
JP6399868B2 (en) Seismic isolation system for automatic warehouse racks
JP2017166318A (en) Base-isolation structure of column for constituting structure
JP2015218468A (en) Quake-absorbing structure
JP2015205751A (en) seismic isolation structure
JP6224357B2 (en) Vibration control structure
JP2015028250A (en) Base-isolation structure of column constituting structure
JP4722027B2 (en) Goods storage shelf

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200611

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200803

R151 Written notification of patent or utility model registration

Ref document number: 6753072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151