JP6744714B2 - Wastewater treatment system - Google Patents

Wastewater treatment system Download PDF

Info

Publication number
JP6744714B2
JP6744714B2 JP2015248034A JP2015248034A JP6744714B2 JP 6744714 B2 JP6744714 B2 JP 6744714B2 JP 2015248034 A JP2015248034 A JP 2015248034A JP 2015248034 A JP2015248034 A JP 2015248034A JP 6744714 B2 JP6744714 B2 JP 6744714B2
Authority
JP
Japan
Prior art keywords
water
membrane
filter
wastewater
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015248034A
Other languages
Japanese (ja)
Other versions
JP2017109195A (en
Inventor
岡村 知也
知也 岡村
宮田 篤
篤 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2015248034A priority Critical patent/JP6744714B2/en
Publication of JP2017109195A publication Critical patent/JP2017109195A/en
Application granted granted Critical
Publication of JP6744714B2 publication Critical patent/JP6744714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、排水を処理する排水処理システムに関する。 The present invention relates to a wastewater treatment system for treating wastewater.

生活排水又は工場排水等の排水(下水)を処理する排水処理システムとして、例えば特許文献1に示すように、標準活性汚泥法による排水処理システムが実用化されている。 As a wastewater treatment system for treating wastewater (sewage) such as domestic wastewater or factory wastewater, a wastewater treatment system using a standard activated sludge method has been put into practical use as shown in Patent Document 1, for example.

特開2008−253994号公報JP, 2008-253994, A

標準活性汚泥法による排水処理システムでは、反応タンク内に処理対象の排水を流入しつつ、この反応タンク内に存在する多種類の好気性微生物に対して酸素を供給する曝気処理を行う。これによって、反応タンク内の排水中に含まれる有機物は、好気性微生物の作用によって分解処理され、この結果、安定した処理水質が得られる。 In the wastewater treatment system using the standard activated sludge method, while the wastewater to be treated flows into the reaction tank, aeration treatment is performed in which oxygen is supplied to many kinds of aerobic microorganisms present in the reaction tank. As a result, the organic matter contained in the waste water in the reaction tank is decomposed by the action of aerobic microorganisms, and as a result, stable treated water quality is obtained.

しかし、標準活性汚泥法による排水処理システムでは、曝気処理に多くの電力が消費されるため、排水処理時の電気代が高額化する。また、排水処理過程において発生する汚泥の処理に、多額の費用が必要となる。この結果、標準活性汚泥法による排水処理システムでは、他の方式に比して排水処理時のランニングコストが高額になるという問題がある。従って、近年、散水ろ床法による排水処理システムが見直されつつある。 However, in the wastewater treatment system using the standard activated sludge method, a large amount of electric power is consumed for the aeration treatment, so that the electricity bill for the wastewater treatment becomes expensive. In addition, a large amount of cost is required to treat the sludge generated in the wastewater treatment process. As a result, the wastewater treatment system using the standard activated sludge method has a problem that the running cost at the time of wastewater treatment becomes higher than that of other methods. Therefore, in recent years, the wastewater treatment system by the sprinkling filter method is being reviewed.

散水ろ床法では、砕石等のろ材を層上に堆積したろ材層を有し、各ろ材の表面に微生物を担持させた散水ろ床を用いる。散水ろ床法では、この散水ろ床の上方から排水を散布し、排水をろ材層の空隙に通しつつ、排水中の有機物を微生物により分解処理する。分解処理された排水は、散水ろ床の底部から、外部に排出される。この散水ろ床法では、曝気処理を行わないため、消費電力を低減でき、電気代の高額化を抑制することが可能となる。 In the sprinkling filter method, a sprinkling filter having a filter medium layer in which a filter medium such as crushed stone is deposited on a layer and carrying microorganisms on the surface of each filter medium is used. In the sprinkling filter method, wastewater is sprayed from above the sprinkling filter bed, and the organic matter in the wastewater is decomposed by microorganisms while passing the wastewater through the voids of the filter medium layer. The decomposed wastewater is discharged to the outside from the bottom of the sprinkling filter. In this sprinkling filter method, since aeration treatment is not performed, it is possible to reduce power consumption and suppress an increase in the cost of electricity.

しかし、この散水ろ床法では、排水をろ材層の空隙に通すため、ろ材表面の微生物が、排水と共に外部に排出されるおそれがある。この場合、ろ材表面の微生物の数が減少して、排水処理の性能が低下する可能性がある。結果として、アンモニア性窒素が十分に酸化分解されていない排水が排出されるおそれが生じる。 However, in this sprinkling filter method, since the wastewater is passed through the voids of the filter medium layer, the microorganisms on the surface of the filter medium may be discharged outside together with the wastewater. In this case, the number of microorganisms on the surface of the filter medium may decrease, and the performance of wastewater treatment may deteriorate. As a result, there is a risk that wastewater in which ammoniacal nitrogen is not sufficiently oxidized and decomposed will be discharged.

本発明は、上記に鑑みてなされたものであって、消費電力を低減しつつ、排水処理の性能低下を抑制する排水処理システムを提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a wastewater treatment system that suppresses deterioration of performance of wastewater treatment while reducing power consumption.

上述した課題を解決し、目的を達成するために、本開示の排水処理システムは、微生物を担持させた複数のろ材を有するろ材充填層を有し、前記ろ材充填層の上部に処理用排水を散布して前記ろ材充填層内に前記処理用排水を流下させ、前記微生物により前記処理用排水を生物処理して得た処理水を流出する散水ろ床部と、ろ過膜を有し、前記散水ろ床部の後段に設けられて、前記処理水を、前記ろ過膜を透過してない膜濃縮水と、前記ろ過膜を透過したろ過水とに分離する膜ろ過部と、前記膜ろ過部と前記散水ろ床部とを接続し、前記膜濃縮水を前記ろ材充填層に返送する散水ろ床接続管と、を有する。 In order to solve the above-mentioned problems and achieve the object, the wastewater treatment system of the present disclosure has a filter medium-filled layer having a plurality of filter media supporting microorganisms, and the treatment wastewater is provided above the filter medium-filled layer. The sprinkling filter bed part for spraying and flowing down the treatment wastewater into the filter medium packed bed, and flowing out the treated water obtained by biologically treating the treatment wastewater with the microorganisms, and having a filtration membrane, the sprinkling water Provided in the subsequent stage of the filter bed, the treated water, a membrane filtration unit that separates the membrane concentrated water that has not passed through the filtration membrane and the filtered water that has passed through the filtration membrane, and the membrane filtration unit. And a sprinkling filter connection pipe that connects the sprinkling filter section and returns the membrane concentrated water to the filter medium packed bed.

前記排水処理システムは、前記処理水又は前記ろ過水の水質を測定する水質測定部と、前記水質測定部の測定結果に基づき、前記ろ材充填層への前記膜濃縮水の返送量を決定する制御部と、を有することが好ましい。 The wastewater treatment system is a water quality measurement unit that measures the water quality of the treated water or the filtered water, and a control that determines the amount of the membrane concentrated water to be returned to the filter medium packed layer based on the measurement result of the water quality measurement unit. And part.

前記排水処理システムにおいて、前記水質測定部は、前記処理水のアンモニア性窒素濃度、前記処理水の溶存酸素量、前記ろ過水のアンモニア性窒素濃度、及び前記ろ過水の溶存酸素量のうち、少なくともいずれか1つを検出し、前記制御部は、検出された前記処理水のアンモニア性窒素濃度、前記処理水の溶存酸素量、前記ろ過水のアンモニア性窒素濃度、及び前記ろ過水の溶存酸素量のうち、少なくともいずれか1つに基づき、前記ろ材充填層への前記膜濃縮水の返送量を決定することが好ましい。 In the wastewater treatment system, the water quality measurement unit is at least an ammoniacal nitrogen concentration of the treated water, a dissolved oxygen amount of the treated water, an ammoniacal nitrogen concentration of the filtered water, and a dissolved oxygen amount of the filtered water. Detecting any one of them, the control unit detects the ammonia nitrogen concentration of the treated water, the dissolved oxygen amount of the treated water, the ammonia nitrogen concentration of the filtered water, and the dissolved oxygen amount of the filtered water detected. It is preferable to determine the return amount of the membrane concentrated water to the filter medium packed bed based on at least one of the above.

前記排水処理システムにおいて、前記制御部は、前記アンモニア性窒素濃度が所定濃度より高くなった場合、又は前記溶存酸素量が所定量より減少した場合に、前記ろ材充填層への前記膜濃縮水の返送量を増加させることが好ましい。 In the wastewater treatment system, the control unit, when the ammonia nitrogen concentration is higher than a predetermined concentration, or when the dissolved oxygen amount is lower than a predetermined amount, the membrane concentrated water to the filter medium packed bed. It is preferable to increase the return amount.

前記排水処理システムにおいて、前記水質測定部は、前記処理用排水の水質も測定し、前記制御部は、前記処理用排水と、前記処理水又は前記ろ過水との間の水質の比較結果に基づき、前記ろ材充填層への前記膜濃縮水の返送量を決定することが好ましい。 In the wastewater treatment system, the water quality measurement unit also measures the water quality of the treatment wastewater, the control unit, based on the comparison result of the water quality between the treatment wastewater and the treated water or the filtered water. It is preferable to determine the return amount of the membrane concentrated water to the filter medium packed bed.

前記排水処理システムは、前記散水ろ床部よりも前段に設けられ、排水を固形成分と前記処理用排水とに分離する固液分離部と、前記散水ろ床部と前記固液分離部とを接続し、前記膜濃縮水を前記固液分離部に返送する固液分離接続管と、をさらに有することが好ましい。 The wastewater treatment system is provided in a stage before the sprinkling filter section, and includes a solid-liquid separating section that separates wastewater into solid components and the processing wastewater, the sprinkling filter section and the solid-liquid separating section. It is preferable to further include a solid-liquid separation connection pipe that is connected and returns the membrane concentrated water to the solid-liquid separation section.

前記排水処理システムは、前記散水ろ床部よりも前段に設けられ、排水を固形成分と前記処理用排水とに分離する固液分離部と、前記膜ろ過部と前記固液分離部とを接続し、前記膜濃縮水を前記固液分離部に返送する固液分離接続管と、をさらに有し、前記制御部は、前記水質測定部の測定結果に基づき、前記ろ材充填層と前記固液分離部とへの前記膜濃縮水の返送量の割合を決定することが好ましい。 The wastewater treatment system is provided before the sprinkling filter section, and connects the solid-liquid separation unit that separates wastewater into solid components and the treatment wastewater, the membrane filtration unit, and the solid-liquid separation unit. Then, further comprising a solid-liquid separation connection pipe for returning the membrane concentrated water to the solid-liquid separation unit, the control unit, based on the measurement result of the water quality measurement unit, the filter medium packed layer and the solid-liquid It is preferable to determine the ratio of the amount of the membrane concentrated water returned to the separation section.

前記排水処理システムにおいて、前記水質測定部は、前記処理水又は前記ろ過水のアンモニア性窒素濃度、又は溶存酸素量を検出し、前記制御部は、前記アンモニア性窒素濃度が所定濃度より高くなった場合、又は前記溶存酸素量が所定量より減少した場合に、前記ろ材充填層への前記膜濃縮水の返送量の割合を高くし、前記固液分離部への前記膜濃縮水の返送量の割合を低くすることが好ましい。 In the wastewater treatment system, the water quality measuring unit detects an ammoniacal nitrogen concentration of the treated water or the filtered water, or a dissolved oxygen amount, and the control unit has the ammoniacal nitrogen concentration higher than a predetermined concentration. In the case, or when the amount of dissolved oxygen decreases below a predetermined amount, the ratio of the amount of the membrane concentrated water returned to the filter medium packed bed is increased, and the amount of the membrane concentrated water returned to the solid-liquid separation unit is It is preferable to lower the ratio.

前記排水処理システムにおいて、前記制御部は、前記ろ材充填層を逆洗浄した直後に、前記ろ材充填層への前記膜濃縮水の返送量を増加させることが好ましい。 In the wastewater treatment system, it is preferable that the control unit increase the amount of the membrane concentrated water returned to the filter medium packed layer immediately after backwashing the filter medium packed layer.

前記排水処理システムにおいて、前記ろ過膜は、精密ろ過膜、又は限外ろ過膜であることが好ましい。 In the wastewater treatment system, the filtration membrane is preferably a microfiltration membrane or an ultrafiltration membrane.

本発明によれば、消費電力を低減しつつ、排水処理の性能低下を抑制することができる。 ADVANTAGE OF THE INVENTION According to this invention, the power consumption can be reduced and the performance degradation of wastewater treatment can be suppressed.

第1実施形態に係る排水処理システムの概略構成を示すブロック図である。It is a block diagram showing a schematic structure of a wastewater treatment system concerning a 1st embodiment. 第1実施形態に係る固液分離部の一構成例を示す模式図である。It is a schematic diagram which shows one structural example of the solid-liquid separation part which concerns on 1st Embodiment. 第1実施形態に係る排水処理システムの散水ろ床部の一構成例を示す模式図である。It is a schematic diagram which shows one structural example of the sprinkling filter part of the wastewater treatment system which concerns on 1st Embodiment. 第1実施形態に係る散水ろ床部の処理水槽の一構成例を示す模式図である。It is a schematic diagram which shows one structural example of the treated water tank of the sprinkling filter part which concerns on 1st Embodiment. 第1実施形態に係る膜ろ過部の一構成例を示す模式図である。It is a schematic diagram which shows one structural example of the membrane filtration part which concerns on 1st Embodiment. 膜濃縮水の返送量の変更例を説明する表である。It is a table explaining an example of changing the return amount of the membrane concentrated water. 第1実施形態に係る膜濃縮水の返送量の制御を説明するフローチャートである。It is a flowchart explaining the control of the return amount of the membrane concentrated water according to the first embodiment. ろ床返送量の制御の一例を説明するグラフである。It is a graph explaining an example of control of a filter bed return amount. 第2実施形態に係る排水処理システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the wastewater treatment system which concerns on 2nd Embodiment. 変形例に係る排水処理システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the wastewater treatment system which concerns on a modification.

以下に、本発明に係る排水処理システムの好適な実施形態を図面に基づいて詳細に説明する。なお、以下に説明する実施形態により本発明が限定されるものではない。 Hereinafter, preferred embodiments of the wastewater treatment system according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments described below.

(第1実施形態)
図1は、第1実施形態に係る排水処理システムの概略構成を示すブロック図である。図1に示すように、第1実施形態に係る排水処理システム1は、固液分離部2と、散水ろ床部3と、膜ろ過部4と、水質測定部5と、制御部6と、排水管11と、処理用排水管12と、処理水管13と、ろ過水管14と、膜濃縮水管16と、散水ろ床接続管17と、固液分離接続管18と、を有する。
(First embodiment)
FIG. 1 is a block diagram showing a schematic configuration of a wastewater treatment system according to the first embodiment. As shown in FIG. 1, the wastewater treatment system 1 according to the first embodiment includes a solid-liquid separation unit 2, a sprinkling filter unit 3, a membrane filtration unit 4, a water quality measurement unit 5, and a control unit 6. A drainage pipe 11, a treatment drainage pipe 12, a treated water pipe 13, a filtered water pipe 14, a membrane concentrated water pipe 16, a sprinkling filter connection pipe 17, and a solid-liquid separation connection pipe 18.

固液分離部2は、処理対象となる排水W1に対する第1段階目の浄化処理を行う。固液分離部2は、処理対象の排水W1に対して固液分離処理を行って処理用排水W2を得る。具体的には、固液分離部2は、生活排水及び工場排水等の排水W1を受け入れ、この排水W1の固液分離処理を行って、処理用排水W2を得るものである。固液分離部2は、排水W1の固液分離処理を行うために必要なろ過手段を洗浄する逆洗浄機能を有し、所定のタイミングに、この逆洗浄機能を有効にする。 The solid-liquid separation unit 2 performs the first-stage purification process on the wastewater W1 to be treated. The solid-liquid separation unit 2 performs a solid-liquid separation process on the wastewater W1 to be treated to obtain a treatment wastewater W2. Specifically, the solid-liquid separation unit 2 receives wastewater W1 such as domestic wastewater and factory wastewater, performs solid-liquid separation processing of this wastewater W1, and obtains treatment wastewater W2. The solid-liquid separation unit 2 has a back-cleaning function for cleaning the filtering means necessary for performing the solid-liquid separation processing of the wastewater W1, and makes this back-cleaning function effective at a predetermined timing.

散水ろ床部3は、処理対象の排水W1に対する第2段階目の浄化処理を行う。散水ろ床部3は、処理用排水W2に対して生物処理を行って処理水W3を得る。散水ろ床部3は、固液分離部2の後段(すなわち処理用排水W2の下流側)に設置され、固液分離部2によって得られた処理用排水W2を受け入れる。ついで、散水ろ床部3は、この処理用排水W2を生物処理して、処理水W3を得る。その後、散水ろ床部3は、膜ろ過部4に処理水W3を送出する。また、散水ろ床部3は、この処理用排水W2の生物処理に必要なろ過手段の洗浄機能を有し、所定のタイミングに、この洗浄機能を有効にする。 The sprinkling filter part 3 performs the second-stage purification process for the wastewater W1 to be treated. The sprinkling filter part 3 performs biological treatment on the treatment wastewater W2 to obtain treated water W3. The sprinkling filter section 3 is installed in the latter stage of the solid-liquid separation section 2 (that is, on the downstream side of the processing wastewater W2) and receives the processing wastewater W2 obtained by the solid-liquid separation section 2. Next, the sprinkling filter part 3 biologically treats this treatment wastewater W2 to obtain treated water W3. Then, the sprinkling filter part 3 sends the treated water W3 to the membrane filtering part 4. Further, the sprinkling filter part 3 has a cleaning function of the filtering means necessary for biological treatment of the treatment wastewater W2, and makes this cleaning function effective at a predetermined timing.

膜ろ過部4は、処理対象の排水W1に対する第3段階目の浄化処理を行う。膜ろ過部4は、散水ろ床部3を通過した処理水W3に対して固液分離処理を行って、処理水W3をろ過水W4と膜濃縮水W5とに分離する。膜ろ過部4は、ろ過膜を有する。膜ろ過部4は、散水ろ床部3の後段(すなわち処理水W3の下流側)に設置されるろ過手段である。膜ろ過部4は、散水ろ床部3によって得られた処理水W3を受け入れて、処理水W3を、ろ過膜を透過したろ過水W4と、ろ過膜を透過していない膜濃縮水W5とに分離する。ろ過膜は、処理水W3中の微細な固形成分、及び処理水W3に含まれる微生物を捕集する。そのため、ろ過水W4には、このろ過膜を透過しなかった微生物等が含まれず、膜濃縮水W5には、このろ過膜を透過しなかった微生物等が含まれる。 The membrane filtration unit 4 performs the third-stage purification process on the wastewater W1 to be treated. The membrane filtration unit 4 performs a solid-liquid separation process on the treated water W3 that has passed through the sprinkling filter unit 3 to separate the treated water W3 into filtered water W4 and membrane concentrated water W5. The membrane filtration unit 4 has a filtration membrane. The membrane filtration unit 4 is a filtration unit installed in the latter stage of the sprinkling filter unit 3 (that is, on the downstream side of the treated water W3). The membrane filtration unit 4 receives the treated water W3 obtained by the sprinkling filter unit 3 and transforms the treated water W3 into filtered water W4 that has passed through the filtration membrane and membrane concentrated water W5 that has not passed through the filtration membrane. To separate. The filtration membrane collects fine solid components in the treated water W3 and microorganisms contained in the treated water W3. Therefore, the filtered water W4 does not include microorganisms that have not permeated the filtration membrane, and the membrane-concentrated water W5 includes microorganisms that have not permeated the filtration membrane.

排水管11と、処理用排水管12と、処理水管13と、ろ過水管14と、膜濃縮水管16と、散水ろ床接続管17と、固液分離接続管18と、は、いずれも水が流れる通路、本実施形態では配管である。各部の配置と流れる水について説明する。排水管11は、固液分離部2の上流側に接続され、固液分離部2に排水W1を流入させる。処理用排水管12は、一方の端部が固液分離部2の下流側に接続され、他方の端部が散水ろ床部3の上流側に接続される。処理用排水管12は、固液分離部2と散水ろ床部3とを接続し、固液分離部2からの処理用排水W2を散水ろ床部3に供給する。処理水管13は、一方の端部が散水ろ床部3の下流側に接続され、他方の端部が膜ろ過部4の上流側に接続される。処理水管13は、散水ろ床部3と膜ろ過部4とを接続して、散水ろ床部3からの処理水W3を膜ろ過部4に供給する。ろ過水管14は、膜ろ過部4の下流側に接続され、膜ろ過部4からろ過水W4を排出する。 The drainage pipe 11, the treatment drainage pipe 12, the treated water pipe 13, the filtered water pipe 14, the membrane concentrated water pipe 16, the sprinkling filter connection pipe 17, and the solid-liquid separation connection pipe 18 all contain water. A flow passage, which is a pipe in this embodiment. The arrangement of each part and flowing water will be described. The drain pipe 11 is connected to the upstream side of the solid-liquid separation section 2 and causes the waste water W1 to flow into the solid-liquid separation section 2. One end of the treatment drainage pipe 12 is connected to the downstream side of the solid-liquid separation unit 2, and the other end is connected to the upstream side of the sprinkling filter unit 3. The treatment drainage pipe 12 connects the solid-liquid separation unit 2 and the sprinkling filter unit 3 and supplies the treatment drainage W2 from the solid-liquid separating unit 2 to the sprinkling filter unit 3. One end of the treated water pipe 13 is connected to the downstream side of the sprinkling filter unit 3, and the other end is connected to the upstream side of the membrane filtration unit 4. The treated water pipe 13 connects the sprinkling filter section 3 and the membrane filtering section 4 and supplies the treated water W3 from the sprinkling filter section 3 to the membrane filtering section 4. The filtered water pipe 14 is connected to the downstream side of the membrane filtration unit 4 and discharges the filtered water W4 from the membrane filtration unit 4.

膜濃縮水管16は、膜ろ過部4に接続され、膜ろ過部4から膜濃縮水W5を排出する。散水ろ床接続管17は、膜濃縮水管16と散水ろ床部3とを接続して、膜濃縮水管16からの膜濃縮水W5を、散水ろ床部3の上流(固液分離部2と散水ろ床部3との間)に供給する。散水ろ床接続管17には、膜濃縮水管16からの膜濃縮水W5の供給量を制御するための膜濃縮水供給弁17aが設けられている。固液分離接続管18は、膜濃縮水管16と固液分離部2とを接続して、膜濃縮水管16からの膜濃縮水W5を、固液分離部2の上流に供給する。固液分離接続管18には、膜濃縮水管16からの膜濃縮水W5の供給量を制御するための膜濃縮水供給弁18aが設けられている。水質測定部5は、処理用排水W2と処理水W3との水質を計測するセンサーである。制御部6は、水質測定部5の水質測定結果に基づいて、膜濃縮水供給弁17a、及び膜濃縮水供給弁18aの開閉を制御して、膜濃縮水W5の供給を制御する。 The membrane concentrated water pipe 16 is connected to the membrane filtration unit 4 and discharges the membrane concentrated water W5 from the membrane filtration unit 4. The water sprinkling filter connection pipe 17 connects the membrane concentrated water pipe 16 and the water sprinkling filter section 3 so that the membrane concentrated water W5 from the membrane condensing water pipe 16 is upstream of the water sprinkling filter section 3 (solid-liquid separation unit 2 and Between the sprinkling filter part 3). The sprinkling filter connection pipe 17 is provided with a membrane concentrated water supply valve 17a for controlling the supply amount of the membrane concentrated water W5 from the membrane concentrated water pipe 16. The solid-liquid separation connection pipe 18 connects the membrane concentrated water pipe 16 and the solid-liquid separation unit 2 and supplies the membrane concentrated water W5 from the membrane concentrated water pipe 16 to the upstream of the solid-liquid separation unit 2. The solid-liquid separation connecting pipe 18 is provided with a membrane concentrated water supply valve 18a for controlling the supply amount of the membrane concentrated water W5 from the membrane concentrated water pipe 16. The water quality measurement unit 5 is a sensor that measures the water quality of the treated wastewater W2 and the treated water W3. The control unit 6 controls opening and closing of the membrane concentrated water supply valve 17a and the membrane concentrated water supply valve 18a based on the water quality measurement result of the water quality measurement unit 5 to control the supply of the membrane concentrated water W5.

(固液分離部について)
次に、図1に示した固液分離部2について詳細に説明する。ここでは、まず、固液分離部2の構成について説明し、その後、固液分離部2による排水W1の固液分離処理について説明する。
(About solid-liquid separation section)
Next, the solid-liquid separation unit 2 shown in FIG. 1 will be described in detail. Here, first, the configuration of the solid-liquid separation unit 2 will be described, and then the solid-liquid separation processing of the wastewater W1 by the solid-liquid separation unit 2 will be described.

図2は、第1実施形態に係る固液分離部の一構成例を示す模式図である。図2に示すように、この固液分離部2は、排水W1を貯留する分配槽20及びろ過水槽21を備える。また、固液分離部2は、この排水W1の固液分離処理を行うためのろ材充填層22と、この固液分離処理によって得られた処理用排水W2を貯留する共通ろ過水槽23とを備える。さらに、固液分離部2は、排水W1を流通するための複数の流入配管21a〜21d、分配管24、弁24a〜24d及びポンプ24eと、処理用排水管12を介して処理用排水W2を散水ろ床部3へ流通するための開水路25とを備える。 FIG. 2 is a schematic diagram showing a configuration example of the solid-liquid separation unit according to the first embodiment. As shown in FIG. 2, the solid-liquid separation unit 2 includes a distribution tank 20 that stores the drainage W1 and a filtered water tank 21. Further, the solid-liquid separation unit 2 includes a filter medium filling layer 22 for performing the solid-liquid separation treatment of the wastewater W1 and a common filtered water tank 23 for storing the treatment wastewater W2 obtained by the solid-liquid separation treatment. .. Further, the solid-liquid separation unit 2 discharges the treatment wastewater W2 via the plurality of inflow pipes 21a to 21d, the distribution pipe 24, the valves 24a to 24d and the pump 24e for circulating the wastewater W1 and the treatment wastewater pipe 12. An open channel 25 for flowing to the sprinkling filter section 3.

また、固液分離部2は、ろ材充填層22の逆洗浄機能を実行するための逆洗浄手段として、図2に示すように、排水槽26と、複数の排水管27a〜27d及び排水弁28a〜28dと、空気管29とを備える。 As shown in FIG. 2, the solid-liquid separation unit 2 serves as a backwashing means for performing the backwashing function of the filter medium filling layer 22, and the drainage tank 26, the plurality of drainage pipes 27a to 27d, and the drainage valve 28a. 28d and the air pipe 29.

分配槽20は、排水管11から排水W1が供給され、固液分離接続管18から膜濃縮水W5が供給される水槽である。図2の例では、固液分離接続管18と排水管11とが合流しているため、膜濃縮水W5が分配槽20に返送されたときは、分配槽20には、膜濃縮水W5が混合された排水W1が供給される。ただし、固液分離接続管18と排水管11とを合流させずに、分配槽20内に排水W1と膜濃縮水W5とを別々に供給してもよい。 The distribution tank 20 is a water tank to which the drainage water W1 is supplied from the drainage pipe 11 and the membrane concentrated water W5 is supplied from the solid-liquid separation connecting pipe 18. In the example of FIG. 2, since the solid-liquid separation connecting pipe 18 and the drain pipe 11 merge, when the membrane concentrated water W5 is returned to the distribution tank 20, the membrane concentrated water W5 is stored in the distribution tank 20. The mixed wastewater W1 is supplied. However, the drainage W1 and the membrane concentrated water W5 may be separately supplied into the distribution tank 20 without joining the solid-liquid separation connecting pipe 18 and the drainage pipe 11.

分配槽20は、ろ過水槽21側と壁によって隔てられている。ろ過水槽21は、固液分離処理(ろ過処理)を実行する前の(場合によっては、膜濃縮水W5が混合された)排水W1を貯留する水槽である。ろ過水槽21は、ろ材充填層22の下方に配置され、図2に示すように、流入配管21a〜21d別に複数の水槽に分けられている。 The distribution tank 20 is separated from the filtered water tank 21 side by a wall. The filtered water tank 21 is a water tank that stores the wastewater W1 (in some cases, mixed with the membrane concentrated water W5) before performing the solid-liquid separation processing (filtration processing). The filtered water tank 21 is arranged below the filter medium filled layer 22, and is divided into a plurality of water tanks for each of the inflow pipes 21a to 21d, as shown in FIG.

複数の流入配管21a〜21dは、上述したろ過水槽21における複数の水槽に各々排水W1を流入する管である。流入配管21a〜21dは、図2に示すように、ろ過水槽21の各水槽に各々配置される。 The plurality of inflow pipes 21a to 21d are pipes for respectively inflowing the wastewater W1 into the plurality of water tanks in the above-described filtered water tank 21. As shown in FIG. 2, the inflow pipes 21 a to 21 d are arranged in each water tank of the filtered water tank 21.

ろ材充填層22は、ろ過水槽21に貯留された排水W1の固液分離処理を行うためのものである。具体的には、ろ材充填層22は、ろ過水槽21の各水槽の上方に配置され、800mm以下、より好ましくは600mm以下の層厚に形成される。このろ材充填層22の内部には、複数の浮上ろ材(図示せず)が、排水W1中の固形成分を捕捉するに十分な細かさの空隙を形成する状態で充填されている。また、ろ材充填層22の上面にはスクリーン22aが設置される。スクリーン22aは、液体成分を通すとともに、ろ材充填層22内の浮上ろ材の流出を防止する。 The filter medium filled layer 22 is for performing solid-liquid separation processing of the wastewater W1 stored in the filtered water tank 21. Specifically, the filter medium filling layer 22 is arranged above each water tank of the filtered water tank 21, and is formed to have a layer thickness of 800 mm or less, more preferably 600 mm or less. A plurality of floating filter media (not shown) are filled in the filter media filling layer 22 in a state of forming voids having a fineness sufficient to capture solid components in the wastewater W1. A screen 22a is installed on the upper surface of the filter medium filling layer 22. The screen 22a allows the liquid component to pass through and prevents the floating filter medium in the filter medium filling layer 22 from flowing out.

ここで、ろ材充填層22内の浮上ろ材としては、見掛け比重が0.1〜0.8であり、50%圧縮硬さが0.1MPa以上であり、サイズが4〜10mmである材質のものが用いられる。見掛け比重が0.1未満であると望ましい圧縮強さを得ることができず、0.8を超えると水との比重差が小さくなって、ろ材充填層22から流出するおそれがある。また、50%圧縮硬さを0.1MPa以上としたのは、これよりも軟質であると、排水W1を高速な水流でろ過処理する際に圧密されてしまい、この結果、SS捕捉能力が低下するためである。さらに、サイズが4mm未満であると浮上ろ材相互間の間隙が小さくなって閉塞し易くなり、一方、サイズが10mmとなっても浮上ろ材によるSS捕捉能力が低下するためである。 Here, as the floating filter medium in the filter medium filling layer 22, a material having an apparent specific gravity of 0.1 to 0.8, a 50% compression hardness of 0.1 MPa or more, and a size of 4 to 10 mm Is used. If the apparent specific gravity is less than 0.1, the desired compressive strength cannot be obtained, and if it exceeds 0.8, the difference in specific gravity with water becomes small, and there is a risk that it will flow out from the filter medium packed layer 22. Further, the reason why the 50% compression hardness is 0.1 MPa or more is that if it is softer than this, it will be compacted when filtering the wastewater W1 with a high-speed water flow, and as a result, the SS trapping ability will decrease. This is because Further, if the size is less than 4 mm, the gap between the floating filter materials becomes small, and it becomes easy to close it. On the other hand, even if the size is 10 mm, the SS trapping ability by the floating filter material decreases.

このような特性の浮上ろ材は、発泡ポリエチレン、発泡ポリスチレン、発泡ポリプロピレン等を用いて、製造することができる。また、浮上ろ材の形状は、風車形状又は十字形状等の凹凸のある形状とする。これによって、ろ材充填層22に浮上ろ材を充填した時に、充填された各浮上ろ材の相互間に非直線的な間隙が形成され、この結果、各浮上ろ材によるSS捕捉効果を高めることができる。なお、このろ材充填層22のSS捕捉効果を高めるためには、ろ材充填層22の全容積に対する各浮上ろ材間の空隙容積の比率(すなわち、ろ材充填層22の空隙率)を50%程度に調整することが望ましい。ただし、浮上ろ材の形状及び材料は、以上説明したものに限られない。 The floating filter material having such characteristics can be manufactured by using expanded polyethylene, expanded polystyrene, expanded polypropylene, or the like. Further, the shape of the floating filter medium is a shape having irregularities such as a windmill shape or a cross shape. Thereby, when the filter medium filling layer 22 is filled with the floating filter medium, a non-linear gap is formed between the filled floating filter mediums, and as a result, the SS trapping effect of each floating filter medium can be enhanced. In order to enhance the SS trapping effect of the filter medium filled layer 22, the ratio of the void volume between the floating filter mediums to the total volume of the filter medium filled layer 22 (that is, the void ratio of the filter medium filled layer 22) is set to about 50%. It is desirable to adjust. However, the shape and material of the floating filter material are not limited to those described above.

共通ろ過水槽23は、排水W1を固液分離処理して得られる処理用排水W2を貯留するためのものである。具体的には、共通ろ過水槽23は、図2に示すように、ろ材充填層22の上方に配置され、ろ過水槽21の各水槽内の排水W1を各々固液分離処理して得られた各処理用排水W2を集める共通の水槽である。 The common filtered water tank 23 is for storing treatment wastewater W2 obtained by solid-liquid separation treatment of the wastewater W1. Specifically, as shown in FIG. 2, the common filtered water tank 23 is arranged above the filter medium filling layer 22, and each of the drainage water W1 in each water tank of the filtered water tank 21 is obtained by solid-liquid separation treatment. It is a common water tank that collects the treatment wastewater W2.

分配管24、弁24a〜24d及びポンプ24eは、分配槽20内の排水W1をろ過水槽21の各水槽に分配するためのものである。具体的には、分配管24は、分配槽20と複数の流入配管21a〜21dとを連通する。弁24a〜24dは、分配管24の各流水口近傍に各々配置され、ポンプ24eは、この分配管24内に配置される。分配管24は、弁24a〜24dが開状態である際、ポンプ24eの作用によって、分配槽20から複数の流入配管21a〜21dに排水W1を分配流通させ、各流入配管21a〜21dを介して、ろ過水槽21の各水槽に排水W1を各々流通させる。弁24a〜24dは、各々個別に開閉することができる。このため、弁24a〜24dの開閉によって、ろ過水槽21の各水槽のうち、排水W1を流入したい水槽に排水W1を流入できる。なお、図2では、流入配管21b〜21dの上部側の図示を省略しているが、流入配管21b〜21dは、分配管24と各々連通している。なお、分配槽20内の排水W1を流入配管21a〜21dに自然流化させる構成とし、ポンプ24eを省略してもよい。 The distribution pipe 24, the valves 24a to 24d, and the pump 24e are for distributing the wastewater W1 in the distribution tank 20 to each water tank of the filtered water tank 21. Specifically, the distribution pipe 24 connects the distribution tank 20 and the plurality of inflow pipes 21a to 21d. The valves 24a to 24d are arranged in the vicinity of the respective water outlets of the distribution pipe 24, and the pump 24e is arranged in the distribution pipe 24. When the valves 24a to 24d are in the open state, the distribution pipe 24 distributes the wastewater W1 from the distribution tank 20 to the plurality of inflow pipes 21a to 21d by the action of the pump 24e, and through the inflow pipes 21a to 21d. The waste water W1 is circulated in each of the water tanks of the filtered water tank 21. Each of the valves 24a to 24d can be opened and closed individually. Therefore, by opening and closing the valves 24a to 24d, the drainage W1 can flow into the water tank of the filtered water tank 21 to which the drainage W1 is desired to flow. In addition, in FIG. 2, although illustration of the upper side of the inflow pipes 21b to 21d is omitted, the inflow pipes 21b to 21d communicate with the distribution pipe 24, respectively. The pump 24e may be omitted by allowing the drainage water W1 in the distribution tank 20 to flow naturally into the inflow pipes 21a to 21d.

開水路25は、共通ろ過水槽23内の処理用排水W2を、処理用排水管12を介して、固液分離部2の後段に位置する散水ろ床部3(図1参照)に流通させるためのものである。具体的には、開水路25は、上部側が開口している水路である。また、開水路25には、処理用排水管12が接続されている。開水路25は、処理用排水管12を介して、共通ろ過水槽23と図1に示した散水ろ床部3とを連通する。開水路25は、共通ろ過水槽23から自然流下してきた処理用排水W2を受け入れ、処理用排水管12を介して、受け入れた処理用排水W2を散水ろ床部3へ自然流下させる。なお、ポンプを使用して、処理用排水W2を散水ろ床部3へ送水してもよい。 The open water channel 25 allows the processing wastewater W2 in the common filtered water tank 23 to flow through the processing drainage pipe 12 to the sprinkling filter section 3 (see FIG. 1) located at the subsequent stage of the solid-liquid separation section 2. belongs to. Specifically, the open water channel 25 is a water channel whose upper side is open. Further, the treatment drainage pipe 12 is connected to the open water passage 25. The open channel 25 connects the common filtered water tank 23 and the sprinkling filter section 3 shown in FIG. 1 via the treatment drainage pipe 12. The open water channel 25 receives the treatment wastewater W2 that has naturally flown from the common filtered water tank 23, and causes the received treatment wastewater W2 to naturally flow to the sprinkling filter section 3 via the treatment drain pipe 12. In addition, you may send a process wastewater W2 to the sprinkling filter part 3 using a pump.

排水槽26、複数の排水管27a〜27d、排水弁28a〜28d及び空気管29は、上述したように、固液分離装置2におけるろ材充填層22の逆洗浄機能を実行するための逆洗浄手段を構成する。具体的には、排水槽26は、ろ材充填層22を逆洗浄した後の洗浄済み液体(以下、逆洗排水という)を貯留する。排水管27a〜27dは、ろ過水槽21の各水槽と排水槽26とを各々連通する。排水弁28a〜28dは、排水管27a〜27dに各々配置され、各排水管27a〜27dを開閉する。空気管29は、ろ材充填層22の逆洗浄に寄与する空気をろ材充填層22内に噴出する。固液分離部2は、以上説明したように材充填層22の逆洗浄機能を実行するが、ろ材充填層22を逆洗浄する構成は、これに限られず、任意の構成及び方法を採ることができる。 The drainage tank 26, the plurality of drainage pipes 27a to 27d, the drainage valves 28a to 28d, and the air pipe 29 are, as described above, the backwashing means for performing the backwashing function of the filter medium packed layer 22 in the solid-liquid separation device 2. Make up. Specifically, the drainage tank 26 stores the washed liquid (hereinafter referred to as backwash drainage) after backwashing the filter medium filling layer 22. The drain pipes 27a to 27d connect the water tanks of the filtered water tank 21 and the drain tank 26, respectively. The drainage valves 28a to 28d are arranged in the drainage pipes 27a to 27d, respectively, and open and close the drainage pipes 27a to 27d. The air pipe 29 ejects air, which contributes to the backwashing of the filter medium packed layer 22, into the filter medium packed layer 22. The solid-liquid separation unit 2 performs the back-cleaning function of the material-filled layer 22 as described above, but the structure for back-cleaning the filter-material packed layer 22 is not limited to this, and any structure and method may be adopted. it can.

つぎに、図2の実線矢印に示される排水W1又は処理用排水W2の流れを参照しつつ、固液分離部2による排水W1の固液分離処理について説明する。排水W1は、まず、生活排水又は工場排水等の外部からの汚水として、分配槽20に流入される。この場合、排水W1は、ポンプ等の動力を用いて強制的に流入してもよいし、自然流によって流入してもよい。 Next, the solid-liquid separation processing of the waste water W1 by the solid-liquid separation unit 2 will be described with reference to the flow of the waste water W1 or the processing waste water W2 indicated by the solid arrow in FIG. The wastewater W1 first flows into the distribution tank 20 as sewage from the outside such as domestic wastewater or factory wastewater. In this case, the drainage W1 may be forced to flow in by using power of a pump or the like, or may be flowed in by a natural flow.

分配槽20に貯留された排水W1は、分配管24内を流通して各流入配管21a〜21dに各々分配される。つぎに、流入配管21a〜21d内の各排水W1は、自然流下してろ過水槽21に流入し、その後、図2の実線矢印に示すように、ろ過水槽21の各水槽に各々流入する。 The wastewater W1 stored in the distribution tank 20 flows through the distribution pipe 24 and is distributed to the respective inflow pipes 21a to 21d. Next, each drainage W1 in the inflow pipes 21a to 21d naturally flows down and flows into the filtered water tank 21, and then flows into each water tank of the filtered water tank 21 as shown by a solid arrow in FIG.

ろ過水槽21の各水槽内の排水W1は、上向きの流れでろ材充填層22を通過する。この場合、各水槽内の排水W1は、図2の実線矢印に示すように、ろ材充填層22の下部から上部に向かってろ材充填層22内を通過する間に、ろ材充填層22によってろ過処理される。すなわち、ろ材充填層22は、上述した内部の各浮上ろ材によって、これら各浮上ろ材間の空隙内を通過中の上向流の排水W1に含まれる夾雑物、SS及び固形性BOD等の各種固形成分を漏れなく捕捉して、この上向流の排水W1を固形成分と処理用排水W2とに分離する。このようにして、固液分離部2による排水W1の固液分離処理が達成される。なお、上述したろ材充填層22による排水W1のろ過速度は、分配槽20への排水W1の流入水量に対応して調整され、これによって、排水W1の高速ろ過処理が可能になる。この結果、固液分離部2は、排水W1に対して高効率の固液分離処理を行うことができる。 The drainage W1 in each water tank of the filtered water tank 21 passes through the filter medium filling layer 22 in an upward flow. In this case, the wastewater W1 in each water tank is filtered by the filter medium filling layer 22 while passing through the filter medium filling layer 22 from the lower part to the upper part of the filter medium filling layer 22 as shown by the solid line arrow in FIG. To be done. That is, the filter medium-filled layer 22 is made of various solid substances such as contaminants, SS and solid BOD contained in the upward flow wastewater W1 passing through the voids between the floating filter media by the above-mentioned respective floating filter media. The components are captured without leakage, and the upward flow wastewater W1 is separated into solid components and processing wastewater W2. In this way, the solid-liquid separation processing of the wastewater W1 by the solid-liquid separation unit 2 is achieved. The filtration rate of the wastewater W1 by the above-described filter medium filled layer 22 is adjusted in accordance with the amount of the inflow water of the wastewater W1 into the distribution tank 20, which enables high-speed filtration of the wastewater W1. As a result, the solid-liquid separation unit 2 can perform highly efficient solid-liquid separation processing on the wastewater W1.

上述した固液分離処理によって得られた処理用排水W2は、スクリーン22aを通過して共通ろ過水槽23内に流入(合流)する。その後、処理用排水W2は、図2の実線矢印に示すように、開水路25内に流入して、共通ろ過水槽23から、処理用排水管12を介して、散水ろ床部3へ流れる。 The treatment wastewater W2 obtained by the solid-liquid separation treatment described above passes through the screen 22a and flows (merges) into the common filtered water tank 23. After that, the treatment wastewater W2 flows into the open channel 25 and flows from the common filtered water tank 23 to the sprinkling filter section 3 via the treatment drain pipe 12 as shown by the solid arrow in FIG.

(散水ろ床部について)
次に、図1に示した散水ろ床部3について詳細に説明する。ここでは、まず、散水ろ床部3の構成について説明し、その後、散水ろ床部3による処理用排水W2の生物処理(ろ過処理)について説明する。
(About sprinkling filter floor)
Next, the sprinkling filter part 3 shown in FIG. 1 will be described in detail. Here, first, the configuration of the sprinkling filter part 3 will be described, and then the biological treatment (filtering process) of the treatment wastewater W2 by the sprinkling filter part 3 will be described.

図3は、第1実施形態に係る排水処理システムの散水ろ床部の一構成例を示す模式図である。図3に示すように、この散水ろ床部3は、微生物を付着したろ材が充填されたろ材充填層を内包するろ床本体30と、固液分離装置2によって得られた処理用排水W2をろ床本体30の内部に散布する回転式散水装置31とを有する。また、図3には特に図示しないが、散水ろ床部3は、ろ床本体30内のろ材充填層を洗浄する洗浄機能を実行するための洗浄手段を備える。また、ろ床本体30には、処理水管13が接続されている。 FIG. 3 is a schematic diagram showing a configuration example of the sprinkling filter section of the wastewater treatment system according to the first embodiment. As shown in FIG. 3, the sprinkling filter unit 3 includes a filter bed body 30 that contains a filter medium-filled layer filled with a filter medium to which microorganisms are attached, and a treatment wastewater W2 obtained by the solid-liquid separation device 2. It has a rotary sprinkler 31 for spraying inside the filter bed body 30. Although not particularly shown in FIG. 3, the sprinkling filter part 3 includes a cleaning means for performing a cleaning function of cleaning the filter medium filling layer in the filter bed body 30. A treated water pipe 13 is connected to the filter bed body 30.

ろ床本体30は、表面に微生物を付着した複数のろ材が充填された槽であり、図3に示すように、6つの処理水槽30a〜30fを組み合わせて構成される。処理水槽30a〜30fの各々は、ろ材充填層内の微生物によって処理用排水W2を生物処理して浄化する水処理機能と、このろ材充填層を洗浄する洗浄機能とを備える。なお、これら処理水槽30a〜30fの構成の詳細については、後述する。 The filter bed main body 30 is a tank filled with a plurality of filter media having microorganisms attached to the surface thereof, and is configured by combining six treated water tanks 30a to 30f as shown in FIG. Each of the treated water tanks 30a to 30f has a water treatment function of biologically treating and purifying the treatment wastewater W2 by the microorganisms in the filter medium packed layer, and a cleaning function of cleaning the filter medium packed layer. The details of the configurations of the treated water tanks 30a to 30f will be described later.

回転式散水装置31は、上述した固液分離装置2から流出された処理用排水W2をろ床本体30の処理水槽30a〜30fの各内部に散布するためのものである。具体的には、回転式散水装置31は、処理用排水管12及び散水ろ床接続管17と連通するように配管されている。回転式散水装置31は、処理用排水管12から処理用排水W2が供給され、散水ろ床接続管17から膜濃縮水W5が供給される。処理用排水管12と散水ろ床接続管17とは合流しているため、回転式散水装置31には、膜濃縮水W5が混合された処理用排水W2が供給されるということができる。ただし、処理用排水管12と散水ろ床接続管17とは合流していなくてもよく、回転式散水装置31に、処理用排水W2と膜濃縮水W5とが別々に供給されてもよい。 The rotary water sprinkler 31 is for spraying the treatment wastewater W2 that has flowed out from the solid-liquid separator 2 described above into each of the treatment water tanks 30a to 30f of the filter bed body 30. Specifically, the rotary sprinkler device 31 is arranged so as to communicate with the treatment drain pipe 12 and the sprinkling filter connection pipe 17. The rotary sprinkler 31 is supplied with the treatment wastewater W2 from the treatment drainage pipe 12 and is supplied with the membrane concentrated water W5 from the sprinkling filter connection pipe 17. Since the treatment drainage pipe 12 and the sprinkling filter connection pipe 17 merge, it can be said that the rotary sprinkler 31 is supplied with the treatment wastewater W2 mixed with the membrane concentrated water W5. However, the treatment drainage pipe 12 and the sprinkling filter connection pipe 17 may not be joined, and the treatment drainage W2 and the membrane concentrated water W5 may be separately supplied to the rotary water sprinkler 31.

この回転式散水装置31の配管は、処理用排水管12及び散水ろ床接続管17から、図3に示すようにろ床本体30の内部を通り、ろ床本体30の中心部Cにおいて上向きに延伸してろ床本体30の上部に露出している。また、この配管の端部には、水流によってろ床本体30の円周方向に回転する回転機構が設けられる。ろ床本体30の上部には、この回転機構からろ床本体30の円周部Aに向けて放射状に、複数(例えば3つ)の散水ノズルが設けられる。これら複数の散水ノズルの各々は、この回転式散水装置31の配管と連通し、この回転機構の作用によって、ろ床本体30の円周方向に回転する。なお、回転式散水装置31の散水ノズルの数は、3つ(図3参照)に限定されず、1つでもよいし、複数でもよい。このような回転式散水装置31は、配管を介して固液分離部2から処理用排水W2を受け入れ、処理用排水W2の流れによって回転機構とともに各散水ノズルを回転させる。回転式散水装置31は、このように回転する各散水ノズルの散水口から、処理水槽30a〜30f内の各ろ材充填層上面に処理用排水W2を一様に散布する。 The piping of the rotary water sprinkler 31 passes through the inside of the filter bed main body 30 from the treatment drain pipe 12 and the water sprinkling filter connection pipe 17 as shown in FIG. It is extended and exposed at the upper part of the filter bed body 30. In addition, a rotating mechanism that rotates in the circumferential direction of the filter bed body 30 by a water flow is provided at the end of this pipe. A plurality of (for example, three) sprinkling nozzles are provided on the upper part of the filter bed main body 30 radially from the rotating mechanism toward the circumferential portion A of the filter bed main body 30. Each of the plurality of sprinkler nozzles communicates with the pipe of the rotary sprinkler 31 and rotates in the circumferential direction of the filter bed body 30 by the action of this rotating mechanism. The number of water spray nozzles of the rotary water sprinkler 31 is not limited to three (see FIG. 3), and may be one or plural. The rotary water sprinkler 31 receives the treatment wastewater W2 from the solid-liquid separation unit 2 through the pipe and rotates the sprinkler nozzles together with the rotating mechanism by the flow of the treatment wastewater W2. The rotary water sprinkler 31 uniformly sprays the treatment wastewater W2 on the upper surfaces of the filter medium-filled layers in the treated water tanks 30a to 30f from the water sprinkling openings of the respective sprinkling nozzles.

処理水管13は、ろ床本体30の処理水槽30a〜30fによって処理用排水W2を生物処理して得た処理水W3を、散水ろ床部3の後段に位置する膜ろ過部4(図1参照)に流通させるためのものである。具体的には、処理水管13は、ろ床本体30の下層、すなわち、処理水槽30a〜30fの各下層と膜ろ過部4とを連通する。処理水管13は、自然流下又はポンプ等の作用によって、処理水槽30a〜30fの各下層から膜ろ過部4へ処理水W3を流通させる。 The treated water pipe 13 uses the treated water W3 obtained by biologically treating the treated wastewater W2 by the treated water tanks 30a to 30f of the filter bed body 30, and the membrane filtration unit 4 (see FIG. 1) located after the sprinkling filter unit 3 ) Is intended for distribution. Specifically, the treated water pipe 13 connects the lower layer of the filter bed body 30, that is, each lower layer of the treated water tanks 30a to 30f to the membrane filtration unit 4. The treated water pipe 13 allows the treated water W3 to flow from the lower layers of the treated water tanks 30a to 30f to the membrane filtration unit 4 by natural flow or by the action of a pump or the like.

つぎに、上述した処理水槽30a〜30fの構成について詳細に説明する。なお、処理水槽30a〜30fの各構成は互いに同様であるため、以下では、処理水槽30aの構成を代表して説明する。 Next, the configurations of the above-mentioned treated water tanks 30a to 30f will be described in detail. Since the configurations of the treated water tanks 30a to 30f are similar to each other, the configuration of the treated water tank 30a will be described below as a representative.

図4は、第1実施形態に係る散水ろ床部の処理水槽の一構成例を示す模式図である。図4に示すように、処理水槽30aは、微生物を付着したろ材35が充填されたろ材充填層33bと、処理水管13(図3参照)と処理水槽30aの内部とを連通する流通管34aと、ろ材35の流出を防止するろ材流出防止網33dとを備える。また、処理水槽30aは、ろ材充填層33bの洗浄機能を実行するための洗浄手段として、弁34b,39bと、送風装置37aと、空気噴出管37bと、邪魔板38と、洗浄排水管39aとを備える。 FIG. 4 is a schematic diagram showing a configuration example of a treated water tank of the water sprinkling filter section according to the first embodiment. As shown in FIG. 4, the treated water tank 30a includes a filter medium packed layer 33b filled with a filter medium 35 having microorganisms attached thereto, a treated water pipe 13 (see FIG. 3), and a distribution pipe 34a that communicates the inside of the treated water tank 30a. And a filter medium outflow prevention net 33d for preventing the filter medium 35 from flowing out. Further, the treated water tank 30a serves as a cleaning unit for performing the cleaning function of the filter medium filling layer 33b, the valves 34b and 39b, the air blower 37a, the air ejection pipe 37b, the baffle plate 38, and the cleaning drain pipe 39a. Equipped with.

処理水槽30aは、表面に微生物を付着したろ材35が充填された槽であり、ろ材充填層33bと、ろ材充填層33bの上層33aと下層33cとに区分けされる。処理水槽30aの上層33a側は開口しており、この開口によって外部と処理水槽30a内部との通気が可能となっている。また、処理水槽30aの上層33a側には回転式散水装置31の散水ノズルが位置し、処理水槽30aの下層33c側は、流通管34a及び洗浄排水管39aと連通している。 The treated water tank 30a is a tank filled with a filter medium 35 having microorganisms attached to its surface, and is divided into a filter medium packed layer 33b and an upper layer 33a and a lower layer 33c of the filter medium packed layer 33b. The upper layer 33a side of the treated water tank 30a is open, and this opening allows ventilation between the outside and the inside of the treated water tank 30a. The sprinkler nozzle of the rotary water sprinkler 31 is located on the upper layer 33a side of the treated water tank 30a, and the lower layer 33c side of the treated water tank 30a is in communication with the flow pipe 34a and the cleaning drain pipe 39a.

ろ材充填層33bは、固液分離部2によって得られた処理用排水W2の生物処理を行うためのものである。ろ材充填層33bには、上層33a側から下層33c側に向けて処理用排水W2が自然流下できる程度の空隙を形成するように、複数のろ材35が充填される。ろ材流出防止網33dは、ろ材充填層33bに配置され、ろ材充填層33b内の複数のろ材35を支持する。また、ろ材流出防止網33dは、液体成分を通すとともに、ろ材充填層33bから下層33cへのろ材35の流出を防止する。なお、ろ材充填層33bによって処理用排水W2を生物処理して得られた処理水W3は、このろ材流出防止網33dを通り、ろ材充填層33bの下面側から自然流下して、処理水槽30aの下層33cに流れる。 The filter medium filled layer 33b is for performing biological treatment of the treatment wastewater W2 obtained by the solid-liquid separation unit 2. The filter medium filling layer 33b is filled with a plurality of filter mediums 35 so as to form a gap from the upper layer 33a side to the lower layer 33c side so that the treatment wastewater W2 can flow down naturally. The filter medium outflow prevention net 33d is arranged in the filter medium filling layer 33b and supports the plurality of filter media 35 in the filter medium filling layer 33b. Further, the filter medium outflow prevention net 33d allows the liquid component to pass therethrough, and also prevents the filter medium 35 from flowing out from the filter medium filled layer 33b to the lower layer 33c. The treated water W3 obtained by biologically treating the treatment wastewater W2 with the filter medium filling layer 33b passes through the filter medium outflow prevention net 33d, and naturally flows down from the lower surface side of the filter medium filling layer 33b to obtain the treated water tank 30a. It flows to the lower layer 33c.

ここで、ろ材35は、ポリウレタン又はポリプロピレン等の物質の表面に微生物を付着させたものであり、その比重は、水の比重(=1.0)に近似する値、例えば0.9である。また、ろ材35は、例えば図4に示すように円筒形状に形成された円筒形ろ材である。ろ材35の円筒内外の各表面状態は、平滑であってもよいが、処理用排水W2に対する接触面積の増大に有効な表面状態、例えば、微細な凹凸状態、蛇腹状態、又は、これらを組み合わせた状態であることが望ましい。このような円筒形状のろ材35が充填されたろ材充填層33bにおいて、各ろ材35の相互間に非直線的な空隙が形成され、且つ、各ろ材35の円筒中空部分によって空隙が形成される。この場合、ろ材充填層33bの全容積に対する各ろ材35による空隙容積の比率、すなわち、ろ材充填層33bの空隙率は、例えば90%程度になる。ろ材35の外壁面及び内壁面は、これら空隙内を流下する処理用排水W2と接触することになり、これによって、ろ材35と処理用排水W2との接触面積が十分に大きくなる。この結果、ろ材充填層33b(各ろ材35)による処理用排水W2の生物処理能力は、処理水槽30aに対して要望される必要レベル以上に向上する。ただし、ろ材35の形状及び材料は、これに限られず、表面に微生物を付着できるものであればよい。また、ろ材35に付着する微生物は、処理用排水W2に含まれる有機物を分解するBOD(Biochemical oxygen demand)酸化菌や、アンモニア性窒素を分解する硝化菌などであるが、処理用排水W2に含まれる有機物などの汚濁物質を生物処理するものであれば、これに限られない。 Here, the filter medium 35 is made by attaching microorganisms to the surface of a substance such as polyurethane or polypropylene, and its specific gravity is a value close to the specific gravity of water (=1.0), for example, 0.9. The filter medium 35 is, for example, a cylindrical filter medium formed in a cylindrical shape as shown in FIG. Each surface state inside and outside the cylinder of the filter medium 35 may be smooth, but a surface state effective for increasing the contact area with the treatment wastewater W2, for example, a fine uneven state, a bellows state, or a combination thereof. It is desirable to be in a state. In the filter medium filling layer 33b filled with such a cylindrical filter medium 35, non-linear voids are formed between the filter mediums 35, and voids are formed by the hollow cylindrical portions of the filter mediums 35. In this case, the ratio of the void volume of each filter medium 35 to the total volume of the filter medium filled layer 33b, that is, the void ratio of the filter medium filled layer 33b is, for example, about 90%. The outer wall surface and the inner wall surface of the filter medium 35 come into contact with the treatment wastewater W2 flowing down in these voids, whereby the contact area between the filter medium 35 and the treatment wastewater W2 becomes sufficiently large. As a result, the biological treatment capacity of the treatment wastewater W2 by the filter medium filling layer 33b (each filter medium 35) is improved to the required level or more required for the treated water tank 30a. However, the shape and material of the filter medium 35 are not limited to this, and may be any as long as microorganisms can adhere to the surface. The microorganisms attached to the filter medium 35 include BOD (Biochemical oxygen demand) oxidizing bacteria that decompose organic matter contained in the treatment wastewater W2 and nitrifying bacteria that decompose ammonia nitrogen, but are included in the treatment wastewater W2. It is not limited to this as long as it is a biological treatment of pollutants such as organic substances.

弁34b,39b、送風装置37a、空気噴出管37b、邪魔板38、及び洗浄排水管39aは、処理水槽30aにおけるろ材充填層33bの洗浄機能を実行するための洗浄手段を構成する。弁34bは、処理水槽30a内に洗浄液を流入してろ材充填層33bの洗浄機能を発揮させる期間、流通管34aの開口を閉じて、膜ろ過部4への処理水W3の流通を遮断する。 The valves 34b and 39b, the air blower 37a, the air ejection pipe 37b, the baffle plate 38, and the cleaning drain pipe 39a constitute a cleaning means for performing the cleaning function of the filter medium filling layer 33b in the treated water tank 30a. The valve 34b closes the opening of the flow pipe 34a and shuts off the flow of the treated water W3 to the membrane filtration unit 4 during a period in which the cleaning liquid flows into the treated water tank 30a to exert the cleaning function of the filter medium filling layer 33b.

送風装置37aは、ろ材充填層33b内の各ろ材35の洗浄に必要な空気を空気噴出管37bに送給する。空気噴出管37bは、処理水槽30a内の少なくともろ材充填層33bを冠水させた洗浄液に空気を噴出して、ろ材充填層33b内の各ろ材35を撹拌洗浄する旋回流を、この洗浄液に発生させる。具体的には、空気噴出管37bは、図4に示すように処理水槽30aの下層33cに配置される。空気噴出管37bは、処理水槽30aの中心壁36aの近傍且つ下層33cから、ろ材充填層33bに向けて、送風装置37aからの空気を噴出して、この洗浄液の上下方向の旋回流を発生させる。なお、ろ材充填層33bは、図3に示したろ床本体30を代表する処理水槽30a内の層であり、散水ろ床部3内のろ材充填層の一つに他ならない。 The air blower 37a sends the air required for cleaning each filter medium 35 in the filter medium packed layer 33b to the air ejection pipe 37b. The air jet pipe 37b jets air into the cleaning liquid that has submerged at least the filter medium filling layer 33b in the treated water tank 30a to generate a swirling flow for stirring and cleaning each filter medium 35 in the filter medium filling layer 33b in this cleaning liquid. .. Specifically, the air ejection pipe 37b is arranged in the lower layer 33c of the treated water tank 30a as shown in FIG. The air ejection pipe 37b ejects the air from the blower 37a toward the filter medium filling layer 33b from the lower layer 33c in the vicinity of the center wall 36a of the treated water tank 30a to generate a vertical swirling flow of the cleaning liquid. .. The filter medium filling layer 33b is a layer in the treated water tank 30a that is representative of the filter bed body 30 shown in FIG. 3, and is one of the filter medium filling layers in the sprinkling filter unit 3.

邪魔板38は、図4に示すように、処理水槽30aの中心壁36a側の領域と円周壁36b側の領域とに処理水槽30aの槽内領域を仕切る仕切板である。なお、中心壁36aは、処理水槽30aの側壁のうちの、図3に示したろ床本体30の中心部C側の側壁である。円周壁36bは、処理水槽30aの側壁のうちの、ろ床本体30の円周部A側の側壁である。邪魔板38は、図4に示すように、中心壁36aよりも円周壁36b(すなわちろ床本体30の外壁側)に近い位置に設けられ、上述したように処理水槽30aの槽内領域を仕切る。このようにして、邪魔板38は、空気噴出管37bから空気が噴出される領域(以下、中心側領域という)と、空気が噴出されない領域(以下、円周側領域という)とに、処理水槽30aの槽内領域を仕切る。このような邪魔板38は、処理水槽30a内に貯留した洗浄液へ空気噴出管37bから空気を噴出することによって発生した洗浄液流の一部を邪魔し、これによって、この洗浄液の旋回流(具体的には上下方向の旋回流)の発生を促進する。なお、処理水槽30a内の中心側領域は散水ろ床部3内における空気の噴出領域であり、処理水槽30a内の円周側領域は散水ろ床部3内における空気の非噴出領域である。すなわち、邪魔板38は、散水ろ床3内を噴出領域と非噴出領域とに仕切って、洗浄液の旋回流の発生を促進する仕切板の一つに他ならない。 As shown in FIG. 4, the baffle plate 38 is a partition plate for partitioning the inner region of the treated water tank 30a into a region on the side of the central wall 36a and a region on the side of the circumferential wall 36b of the treated water tank 30a. The center wall 36a is a side wall of the treated water tank 30a on the center portion C side of the filter bed body 30 shown in FIG. The circumferential wall 36b is a sidewall on the circumferential portion A side of the filter bed body 30 among the sidewalls of the treated water tank 30a. As shown in FIG. 4, the baffle plate 38 is provided at a position closer to the circumferential wall 36b (that is, the outer wall side of the filter bed body 30) than the center wall 36a, and partitions the inner region of the treated water tank 30a as described above. .. In this way, the baffle plate 38 has a treatment water tank in a region where air is ejected from the air ejection pipe 37b (hereinafter referred to as a center side region) and a region where air is not ejected (hereinafter referred to as a circumferential side region). The area in the tank 30a is partitioned. Such a baffle plate 38 obstructs a part of the cleaning liquid flow generated by ejecting air from the air ejection pipe 37b to the cleaning liquid stored in the treated water tank 30a, and thereby the swirling flow of the cleaning liquid (specifically, The vertical swirling flow) is promoted. The central region of the treated water tank 30a is an air ejection region in the sprinkling filter part 3, and the circumferential region of the treated water tank 30a is a non-ejection region of air in the sprinkling filter part 3. That is, the baffle plate 38 is none other than a partition plate that partitions the inside of the sprinkling filter bed 3 into a jet area and a non-jet area and promotes the generation of the swirling flow of the cleaning liquid.

洗浄排水管39aは、各ろ材35の撹拌洗浄後の洗浄液を排出する。弁39bは、この洗浄排水管39aを開閉するための弁である。洗浄排水管39aは、弁39bによって開放された期間、処理水槽30aの下層33cから、上述した洗浄液の旋回流によって各ろ材35を撹拌洗浄した後の洗浄液を外部に排出する。散水ろ床部3は、以上説明したようにろ材充填層33bの洗浄機能を実行する(逆洗浄を行う)が、ろ材充填層33bを洗浄する構成は、これに限られない。 The cleaning drain pipe 39a discharges the cleaning liquid after the stirring cleaning of each filter medium 35. The valve 39b is a valve for opening and closing the cleaning drainage pipe 39a. The cleaning drainage pipe 39a discharges the cleaning liquid after stirring and cleaning the respective filter media 35 from the lower layer 33c of the treated water tank 30a by the swirling flow of the cleaning liquid, while being opened by the valve 39b. Although the sprinkling filter unit 3 performs the cleaning function of the filter medium filling layer 33b (performs reverse cleaning) as described above, the configuration for cleaning the filter medium filling layer 33b is not limited to this.

つぎに、図4の矢印に示される処理用排水W2又は処理水W3の流れを参照しつつ、処理水槽30aによる処理用排水W2の生物処理について説明する。処理用排水W2は、上述した固液分離部2から回転式散水装置31の管内を流通して、処理水槽30a内に流入される。この場合、処理用排水W2は、回転式散水装置31の各散水ノズルから自然流下して、ろ材充填層33bの上面に散布される。 Next, the biological treatment of the treatment wastewater W2 by the treatment water tank 30a will be described with reference to the flow of the treatment wastewater W2 or the treatment water W3 shown by the arrow in FIG. The treatment wastewater W2 flows through the pipe of the rotary water sprinkler 31 from the solid-liquid separation unit 2 described above, and flows into the treatment water tank 30a. In this case, the treatment wastewater W2 naturally flows down from the sprinkling nozzles of the rotary sprinkler 31 and is sprinkled on the upper surface of the filter medium filling layer 33b.

ろ材充填層33bの上面に散布された処理用排水W2は、ろ材充填層33bの通気とともに自然流下して、ろ材充填層33bを通過する。例えば、図4の波線矢印に示されるように、回転式散水装置31から散布された処理用排水W2は、各ろ材35の表面と順次接触しつつ自然流下する。このろ材35と処理用排水W2との接触時に、ろ材35表面の微生物が、処理用排水W2中の有機物などの汚濁物質を分解処理する。 The treatment wastewater W2 scattered on the upper surface of the filter medium filling layer 33b naturally flows down along with the ventilation of the filter medium filling layer 33b, and passes through the filter medium filling layer 33b. For example, as indicated by the broken line arrow in FIG. 4, the treatment wastewater W2 sprayed from the rotary water sprinkler 31 naturally flows down while sequentially contacting the surfaces of the filter media 35. At the time of contact between the filter medium 35 and the treatment wastewater W2, microorganisms on the surface of the filter medium 35 decompose the pollutants such as organic substances in the treatment wastewater W2.

このように、ろ材充填層33b内を流下中の処理用排水W2は、ろ材35と接触する毎に微生物によって生物処理され続け、この結果、有機物などの汚濁物質が分解除去された処理水W3として、ろ材流出防止網33dから処理水槽30aの下層33cに流下する。このようにして、処理水槽30aによる処理用排水W2の生物処理が達成される。 In this way, the treatment wastewater W2 flowing down in the filter medium packed layer 33b is continuously biologically treated by the microorganisms every time it comes into contact with the filter medium 35, and as a result, the treated water W3 is obtained by decomposing and removing pollutants such as organic substances. Then, it flows down from the filter material outflow prevention net 33d to the lower layer 33c of the treated water tank 30a. In this way, biological treatment of the treatment wastewater W2 by the treated water tank 30a is achieved.

上述した生物処理によって得られた処理水W3は、弁34bを介して、処理水槽30aの下層33cから流通管34aに流出し、その後、流通管34aを通じて処理水管13(図3参照)に流通し、処理水管13から膜ろ過部4へ流れる。この場合、弁34bは開いた状態であるため、処理水W3は、下層33cに流下した後、直ちに流通管34a内に流れる。このため、上述した生物処理の実行時に、処理水W3がろ材充填層33bの上面の高さまで溜まることは、あり得ない。 The treated water W3 obtained by the biological treatment described above flows out from the lower layer 33c of the treated water tank 30a into the distribution pipe 34a through the valve 34b, and then flows into the treated water pipe 13 (see FIG. 3) through the distribution pipe 34a. , From the treated water pipe 13 to the membrane filtration unit 4. In this case, since the valve 34b is in the open state, the treated water W3 flows into the distribution pipe 34a immediately after flowing down to the lower layer 33c. Therefore, it is impossible that the treated water W3 accumulates up to the height of the upper surface of the filter medium filling layer 33b when the biological treatment is performed.

なお、図3に示したろ床本体30の処理水槽30b〜30fによる処理用排水W2の水処理機能は、上述した処理水槽30aの場合と同様である。すなわち、処理水槽30b〜30fの各々は、回転式散水装置31の各散水ノズルからろ材充填層上面に散布された処理用排水W2を、処理水槽30aと同様に各ろ材35表面の微生物によって生物処理し、これによって得られた処理水W3を、処理水管13等を通じて膜ろ過部4へ送出する。 The water treatment function of the treated wastewater W2 by the treated water tanks 30b to 30f of the filter bed body 30 shown in FIG. 3 is similar to that of the treated water tank 30a described above. That is, in each of the treated water tanks 30b to 30f, the treatment wastewater W2 sprayed from the sprinkling nozzles of the rotary water sprinkler 31 to the upper surface of the filter medium filling layer is biologically treated by the microorganisms on the surface of each filter medium 35 as in the treated water tank 30a. Then, the treated water W3 thus obtained is sent to the membrane filtration unit 4 through the treated water pipe 13 and the like.

(膜ろ過部について)
次に、図1に示した膜ろ過部4について詳細に説明する。まず、膜ろ過部4の構成について説明し、その後、膜ろ過部4による処理水W3の固液分離処理について説明する。
(About the membrane filtration section)
Next, the membrane filtration unit 4 shown in FIG. 1 will be described in detail. First, the configuration of the membrane filtration unit 4 will be described, and then the solid-liquid separation treatment of the treated water W3 by the membrane filtration unit 4 will be described.

図5は、第1実施形態に係る膜ろ過部の一構成例を示す模式図である。図5に示すように、膜ろ過部4は、ろ過水槽40と、複数のろ過膜42a、42b、42cとを有する。なお、本実施形態では、ろ過膜は、ろ過膜42a、42b、42cの3つであるが、数はこれに限られず、単数であっても複数であってもよい。以下、ろ過膜42a、42b、42cを区別しない場合は、ろ過膜42と記載する。 FIG. 5: is a schematic diagram which shows one structural example of the membrane filtration part which concerns on 1st Embodiment. As shown in FIG. 5, the membrane filtration unit 4 includes a filtered water tank 40 and a plurality of filtration membranes 42a, 42b, 42c. In addition, in the present embodiment, the number of the filtration membranes is three, that is, the filtration membranes 42a, 42b, and 42c, but the number is not limited to this, and may be a single or a plurality. Hereinafter, when the filtration membranes 42a, 42b, 42c are not distinguished, they are referred to as the filtration membrane 42.

ろ過水槽40は、内部にろ過膜42を有する水槽である。ろ過水槽40には、上述のろ過水管14が接続されており、ろ過水管14により、ろ過膜42によってろ過されたろ過水W4を排出する。ろ過水槽40からろ過水管14を介して排出されたろ過水W4は、ろ過水槽40の外部環境に排出される。 The filtered water tank 40 is a water tank having a filtration membrane 42 inside. The above-described filtered water pipe 14 is connected to the filtered water tank 40, and the filtered water W4 filtered by the filtering membrane 42 is discharged through the filtered water pipe 14. The filtered water W4 discharged from the filtered water tank 40 via the filtered water pipe 14 is discharged to the environment outside the filtered water tank 40.

ろ過膜42は、第1の端部44及び第2の端部45が開口して、かつ内部が中空の円筒状の膜である。本実施形態におけるろ過膜42は、MF(Micro Filtration)膜(精密ろ過膜)又はUF(Ultra Filtration)膜(限外ろ過膜)である。MF膜は、例えば0.5μmから0.1μmの径の孔が多数形成された膜である。UF膜は、0.1μm以下の径の孔が多数形成された膜である。ただし、ろ過膜42の形状は円筒に限られず、例えばシート状であってもよい。また、ろ過膜42は、ろ材35に付着していた微生物を捕集できる程度の孔径(微生物より小さい孔径)の膜であれば、MF膜又はUF膜に限られない。 The filtration membrane 42 is a cylindrical membrane in which the first end 44 and the second end 45 are open and the inside is hollow. The filtration membrane 42 in the present embodiment is an MF (Micro Filtration) membrane (microfiltration membrane) or a UF (Ultra Filtration) membrane (ultrafiltration membrane). The MF film is a film in which a large number of holes each having a diameter of 0.5 μm to 0.1 μm are formed. The UF film is a film in which a large number of pores having a diameter of 0.1 μm or less are formed. However, the shape of the filtration membrane 42 is not limited to a cylinder, and may be, for example, a sheet shape. Further, the filtration membrane 42 is not limited to the MF membrane or the UF membrane as long as it is a membrane having a pore size (pore size smaller than that of microorganisms) capable of collecting the microorganisms attached to the filter medium 35.

ろ過膜42は、第1の端部44が処理水管13に接続されており、第2の端部45が膜濃縮水管16に接続されている。図5の例では、処理水管13が、処理水管13a、13b、13cに分岐しており、先端がろ過水槽40の内部に挿入されている。処理水管13aは、ろ過膜42aの第1の端部44に接続されており、処理水管13bは、ろ過膜42bの第1の端部44に接続されており、処理水管13cは、ろ過膜42cの第1の端部44に接続されている。図5の例では、膜濃縮水管16が、膜濃縮水管16a、16b、16cに分岐しており、先端がろ過水槽40の内部に挿入されている。膜濃縮水管16aは、ろ過膜42aの第2の端部45に接続されており、膜濃縮水管16bは、ろ過膜42bの第2の端部45に接続されており、膜濃縮水管16cは、ろ過膜42cの第2の端部45に接続されている。 The first end 44 of the filtration membrane 42 is connected to the treated water pipe 13, and the second end 45 is connected to the membrane concentrated water pipe 16. In the example of FIG. 5, the treated water pipe 13 is branched into treated water pipes 13 a, 13 b, and 13 c, and the tip end is inserted into the filtered water tank 40. The treated water pipe 13a is connected to a first end 44 of the filtration membrane 42a, the treated water pipe 13b is connected to a first end 44 of the filtration membrane 42b, and the treated water pipe 13c is a filtration membrane 42c. Connected to the first end 44 of the. In the example of FIG. 5, the membrane-concentrated water pipe 16 is branched into the membrane-concentrated water pipes 16 a, 16 b, and 16 c, and the tip is inserted inside the filtered water tank 40. The membrane concentrated water pipe 16a is connected to the second end 45 of the filtration membrane 42a, the membrane concentrated water pipe 16b is connected to the second end 45 of the filtration membrane 42b, and the membrane concentrated water pipe 16c is It is connected to the second end 45 of the filtration membrane 42c.

次に、図5の矢印に示される処理水W3、ろ過水W4、及び膜濃縮水W5の流れを参照しつつ、膜ろ過部4によるろ過水W4と膜濃縮水W5とへの分離処理について説明する。 Next, with reference to the flows of the treated water W3, the filtered water W4, and the membrane concentrated water W5 shown by the arrows in FIG. 5, the separation treatment into the filtered water W4 and the membrane concentrated water W5 by the membrane filtration unit 4 will be described. To do.

散水ろ床部3から処理水管13を介して流出した処理水W3は、処理水管13a、13b、13cに分岐して、ろ過膜42a、42b、42cの第1の端部44からろ過膜42a、42b、42c内に供給される。ろ過膜42a、42b、42c(ろ過膜42)内に供給された処理水W3は、第1の端部44から第2の端部45に向かって流れる。ろ過膜42内の処理水W3の一部は、ろ過膜42を透過して、ろ過水W4として、ろ過膜42の外部、すなわちろ過水槽40内に流出する。ろ過膜42の孔よりも大きな固形物は、ろ過膜42に捕集されて、ろ過膜42を透過しない。ろ過水W4は、ろ過膜42を透過した水であるため、ろ過膜42の孔よりも大きな、ろ材35表面から剥離した微生物などの固形物を含まない。ろ過膜42内の処理水W3の他の一部は、ろ過膜42に捕集された微生物等の固形物と共に、膜濃縮水W5として、膜濃縮水管16a、16b、16cから膜濃縮水管16に排出される。このように、膜ろ過部4は、クロスフロー形式の膜ろ過装置である。なお、ろ過膜の外周側から中心部に向けて処理水W4を通水させる構成としてもよい。 The treated water W3 that has flowed out of the sprinkling filter section 3 through the treated water pipe 13 branches into the treated water pipes 13a, 13b, 13c, and from the first end 44 of the filtration membranes 42a, 42b, 42c to the filtration membrane 42a, It is supplied into 42b and 42c. The treated water W3 supplied into the filtration membranes 42a, 42b, 42c (filtration membrane 42) flows from the first end portion 44 toward the second end portion 45. A part of the treated water W3 in the filtration membrane 42 permeates the filtration membrane 42 and flows out as filtration water W4 outside the filtration membrane 42, that is, in the filtration water tank 40. Solid matter larger than the pores of the filtration membrane 42 is collected by the filtration membrane 42 and does not pass through the filtration membrane 42. Since the filtered water W4 is water that has permeated through the filtration membrane 42, it does not contain solid matter larger than the pores of the filtration membrane 42 and separated from the surface of the filter medium 35, such as microorganisms. The other part of the treated water W3 in the filtration membrane 42 is transferred to the membrane concentration water pipe 16 from the membrane concentration water pipes 16a, 16b, 16c as the membrane concentration water W5 together with solid matters such as microorganisms collected in the filtration membrane 42. Emitted. As described above, the membrane filtration unit 4 is a cross-flow type membrane filtration device. The treated water W4 may be passed from the outer peripheral side of the filtration membrane toward the center.

(膜濃縮水の返送について)
散水ろ床部3は、ろ材充填層33bの空隙を処理用排水W2が通るため、ろ材35の表面の微生物が、ろ材35から剥がれ落ちる場合がある。ろ材35から剥がれ落ちた微生物は、処理水W3に含まれて、散水ろ床部3の下流、すなわち膜ろ過部4に向けて排出される。ろ材35の表面の微生物が剥がれ落ちた場合、ろ床本体30内の微生物の数が減少して、散水ろ床部3の排水処理の性能が低下する。また、微生物を含んだ処理水がシステム系外に排出されてしまう問題もある。そこで、第1実施形態における排水処理システム1は、処理水W3をろ過膜42で分離処理することにより、散水ろ床部3から排出された微生物をろ過膜42で捕集する。そして、排水処理システム1は、捕集した微生物を、膜濃縮水W5として散水ろ床部3に返送する。これにより、剥がれ落ちた微生物をろ材充填層33bに戻すことが可能となるため、ろ材35表面の微生物の数の減少を抑制することができる。また、微生物のシステム系外への排出を防止することができる。
(About returning membrane concentrated water)
In the sprinkling filter part 3, the treatment wastewater W2 passes through the voids of the filter medium filling layer 33b, so that the microorganisms on the surface of the filter medium 35 may peel off from the filter medium 35. The microorganisms peeled off from the filter medium 35 are contained in the treated water W3 and discharged toward the downstream of the sprinkling filter section 3, that is, toward the membrane filtration section 4. When the microorganisms on the surface of the filter medium 35 are peeled off, the number of microorganisms in the filter bed body 30 is reduced, and the performance of the waste water treatment of the sprinkling filter section 3 is deteriorated. There is also a problem that treated water containing microorganisms is discharged outside the system. Therefore, the wastewater treatment system 1 in the first embodiment collects the microorganisms discharged from the sprinkling filter section 3 by the filtration membrane 42 by separating the treated water W3 by the filtration membrane 42. Then, the wastewater treatment system 1 returns the collected microorganisms to the sprinkling filter section 3 as the membrane concentrated water W5. As a result, the separated microorganisms can be returned to the filter medium filling layer 33b, so that the decrease in the number of microorganisms on the surface of the filter medium 35 can be suppressed. In addition, it is possible to prevent the discharge of microorganisms out of the system system.

本実施形態では、図1及び図3に示すように、剥がれ落ちた微生物を含む膜濃縮水W5は、膜濃縮水管16及び散水ろ床接続管17を介して、散水ろ床部3の回転式散水装置31に返送される。膜濃縮水管16は、膜ろ過部4におけるろ過膜42の上流に接続されているため、ろ過膜42を透過していない膜濃縮水W5を導通させている。また、散水ろ床接続管17は、一方の端部が膜濃縮水管16に接続され、他方の端部が回転式散水装置31、すなわち、ろ床本体30(ろ材充填層33b)の上流側に接続されている。従って、膜濃縮水W5は、膜濃縮水管16及び散水ろ床接続管17を通って、ろ材充填層33bに供給される。ろ材充填層33b内に供給された膜濃縮水W5に含まれた微生物は、ろ材35表面に付着する。 In the present embodiment, as shown in FIGS. 1 and 3, the membrane concentrated water W5 containing the separated microorganisms is a rotary type of the water sprinkling filter section 3 via a membrane concentrated water pipe 16 and a sprinkling filter connecting pipe 17. It is returned to the sprinkler 31. Since the membrane concentrated water pipe 16 is connected to the upstream side of the filtration membrane 42 in the membrane filtration unit 4, it conducts the membrane concentrated water W5 that has not permeated the filtration membrane 42. In addition, one end of the sprinkling filter bed connection pipe 17 is connected to the membrane concentrated water pipe 16, and the other end of the sprinkling filter connection pipe 17 is on the upstream side of the rotary sprinkler 31, that is, the filter bed main body 30 (filter medium packed layer 33b). It is connected. Therefore, the membrane concentrated water W5 is supplied to the filter medium packed layer 33b through the membrane concentrated water pipe 16 and the sprinkling filter connection pipe 17. The microorganisms contained in the membrane concentrated water W5 supplied into the filter medium filling layer 33b adhere to the surface of the filter medium 35.

また、図1及び図2に示すように、膜濃縮水W5は、膜濃縮水管16及び固液分離接続管18を介して、固液分離部2の分配槽20に返送される。固液分離接続管18は、一方の端部が、散水ろ床接続管17と並列に膜濃縮水管16に接続されている。固液分離接続管18は、他方の端部が、分配槽20、すなわち固液分離部2の上流側に開口している。従って、膜濃縮水W5は、膜濃縮水管16及び固液分離接続管18を通って、分配槽20内に供給される。膜濃縮水W5は、散水ろ床部3を経由した水であるため、溶存酸素量が比較的大きくなる。溶存酸素量が大きい膜濃縮水W5が固液分離部2に供給されることで、この酸素を用いた生物処理を、固液分離部2内でも適切に行うことができる。この固液分離部2における生物処理は、膜濃縮水W5に含まれる微生物以外の、排水W1に含まれた他の微生物による処理であるが、膜濃縮水W5に含まれる微生物による処理であってもよい。 Further, as shown in FIGS. 1 and 2, the membrane concentrated water W5 is returned to the distribution tank 20 of the solid-liquid separation section 2 via the membrane concentrated water pipe 16 and the solid-liquid separation connecting pipe 18. One end of the solid-liquid separation connecting pipe 18 is connected to the membrane concentrated water pipe 16 in parallel with the sprinkling filter connecting pipe 17. The other end of the solid-liquid separation connecting pipe 18 is open to the distribution tank 20, that is, the upstream side of the solid-liquid separation unit 2. Therefore, the membrane concentrated water W5 is supplied into the distribution tank 20 through the membrane concentrated water pipe 16 and the solid-liquid separation connecting pipe 18. Since the membrane concentrated water W5 is the water that has passed through the sprinkling filter part 3, the dissolved oxygen amount becomes relatively large. By supplying the membrane concentrated water W5 having a large dissolved oxygen amount to the solid-liquid separation unit 2, it is possible to appropriately perform biological treatment using this oxygen even in the solid-liquid separation unit 2. The biological treatment in the solid-liquid separation unit 2 is a treatment by other microorganisms contained in the wastewater W1 other than the microorganisms contained in the membrane concentrated water W5, but is a treatment by the microorganisms contained in the membrane concentrated water W5. Good.

このように、膜濃縮水W5は、一部が散水ろ床部3に返送され、他の一部が固液分離部2に返送される。この膜濃縮水W5の返送量は、制御部6による膜濃縮水供給弁17a、及び膜濃縮水供給弁18aの開閉操作によって、制御される。制御部6は、水質測定部5による処理水W3の水質の計測結果に基づき、固液分離部2及び散水ろ床部3への膜濃縮水W5の返送量を決定する。 Thus, a part of the membrane concentrated water W5 is returned to the sprinkling filter part 3 and another part is returned to the solid-liquid separation part 2. The return amount of the membrane concentrated water W5 is controlled by the opening/closing operation of the membrane concentrated water supply valve 17a and the membrane concentrated water supply valve 18a by the control unit 6. The control unit 6 determines the return amount of the membrane concentrated water W5 to the solid-liquid separation unit 2 and the sprinkling filter unit 3 based on the measurement result of the water quality of the treated water W3 by the water quality measurement unit 5.

以下、膜濃縮水の返送量の決定方法について詳細に説明する。水質測定部5は、散水ろ床部3の下流(散水ろ床部3と膜ろ過部4との間)の処理水管13を流れる処理水W3の水質を計測する。具体的には、水質測定部5は、処理水W3内に含まれるアンモニア性窒素濃度、又は溶存酸素量を検出する。水質測定部5は、例えば、イオン選択電極式のアンモニア性窒素濃度計、隔膜電極式の溶存酸素濃度計である。アンモニア性窒素とは、アンモニウムイオンをその窒素量で表したものである。処理水W3のアンモニア性窒素濃度は、処理水W3内に含まれるアンモニア性窒素の濃度のことをいう。水質測定部5は、アンモニア性窒素濃度を直接検出してもよいし、処理水W3中の全窒素量ならびに酸化態窒素濃度を検出し、そこからアンモニア性窒素濃度を算出してもよい。処理水W3の溶存酸素量とは、処理水W3内に溶存している酸素の量である。水質測定部5は、アンモニア性窒素濃度、又は溶存酸素量のいずれか一方を検出してもよいし、両方を検出してもよい。 Hereinafter, the method for determining the return amount of the membrane concentrated water will be described in detail. The water quality measurement unit 5 measures the water quality of the treated water W3 flowing through the treated water pipe 13 downstream of the sprinkling filter unit 3 (between the sprinkling filter unit 3 and the membrane filtration unit 4). Specifically, the water quality measuring unit 5 detects the concentration of ammonia nitrogen contained in the treated water W3 or the amount of dissolved oxygen. The water quality measuring unit 5 is, for example, an ion selective electrode type ammonia nitrogen concentration meter or a diaphragm electrode type dissolved oxygen concentration meter. Ammoniacal nitrogen is an ammonium ion represented by its nitrogen content. The ammonia nitrogen concentration of the treated water W3 refers to the concentration of ammonia nitrogen contained in the treated water W3. The water quality measuring unit 5 may directly detect the ammonia nitrogen concentration, or may detect the total nitrogen amount and oxidized nitrogen concentration in the treated water W3 and calculate the ammonia nitrogen concentration therefrom. The dissolved oxygen amount of the treated water W3 is the amount of oxygen dissolved in the treated water W3. The water quality measuring unit 5 may detect either the ammonia nitrogen concentration or the dissolved oxygen amount, or may detect both.

制御部6は、水質測定部5が計測した処理水W3中のアンモニア性窒素濃度、又は溶存酸素量に基づき、膜濃縮水供給弁17aの開閉量を制御し、散水ろ床部3(ろ材充填層33b)に返送する膜濃縮水W5の量を制御する。制御部6は、処理水W3中のアンモニア性窒素濃度が所定濃度より大きくなった場合に、散水ろ床部3(ろ材充填層33b)に返送する膜濃縮水W5の量を増加させる。また、制御部6は、処理水W3中の溶存酸素量が所定量より小さくなった場合に、散水ろ床部3(ろ材充填層33b)に返送する膜濃縮水W5の量を増加させる。制御部6は、アンモニア性窒素濃度が所定濃度より大きくなった場合、微生物による生物処理が十分でないと判断して、散水ろ床部3に返送する膜濃縮水W5の量を増加させる。同様に、制御部6は、溶存酸素量が所定量より小さくなった場合、ろ材充填層33bにおける酸素量が減って、微生物が十分に生物処理を行うことができなくなっていると判断して、散水ろ床部3に返送する膜濃縮水W5の量を増加させる。制御部6は、アンモニア性窒素濃度、又は溶存酸素量のいずれかに基づき散水ろ床部3に返送する膜濃縮水W5の量を制御してもよいし、アンモニア性窒素濃度及び溶存酸素量の両方に基づき散水ろ床部3に返送する膜濃縮水W5の量を制御してもよい。 The control unit 6 controls the opening/closing amount of the membrane concentrated water supply valve 17a based on the concentration of ammonia nitrogen in the treated water W3 measured by the water quality measuring unit 5 or the amount of dissolved oxygen, and controls the sprinkling filter unit 3 (filter medium filling). The amount of the membrane concentrated water W5 returned to the layer 33b) is controlled. The control unit 6 increases the amount of the membrane concentrated water W5 returned to the sprinkling filter unit 3 (filter medium packed layer 33b) when the concentration of ammonia nitrogen in the treated water W3 becomes higher than a predetermined concentration. Further, when the amount of dissolved oxygen in the treated water W3 becomes smaller than a predetermined amount, the control unit 6 increases the amount of the membrane concentrated water W5 returned to the sprinkling filter unit 3 (filter medium packed layer 33b). When the ammonia nitrogen concentration becomes higher than the predetermined concentration, the control unit 6 determines that the biological treatment by the microorganism is not sufficient, and increases the amount of the membrane concentrated water W5 returned to the sprinkling filter unit 3. Similarly, when the dissolved oxygen amount becomes smaller than a predetermined amount, the control unit 6 determines that the oxygen amount in the filter medium packed layer 33b is reduced and the microorganisms cannot perform biological treatment sufficiently, The amount of the membrane concentrated water W5 returned to the sprinkling filter section 3 is increased. The control unit 6 may control the amount of the membrane concentrated water W5 returned to the sprinkling filter unit 3 based on either the ammonia nitrogen concentration or the dissolved oxygen amount, or the ammonia nitrogen concentration and the dissolved oxygen amount may be controlled. The amount of the membrane concentrated water W5 returned to the sprinkling filter section 3 may be controlled based on both.

水質測定部5は、処理水W3の代わりに、散水ろ床部3の下流であって、膜ろ過部4(ろ過膜42)の下流のろ過水管14を流れるろ過水W4の水質を計測してもよい。この場合、制御部6は、ろ過水W4の水質測定結果に基づき、散水ろ床部3に返送する膜濃縮水W5の量を制御する。すなわち、水質測定部5は、散水ろ床部3の下流側の生物処理後の水質を計測すればよく、制御部6は、散水ろ床部3の下流側の生物処理後の水質に基づき散水ろ床部3に返送する膜濃縮水W5の量を制御すればよい。以上をまとめると、水質測定部5は、処理水W3のアンモニア性窒素濃度、処理水W3の溶存酸素量、ろ過水W4のアンモニア性窒素濃度、及びろ過水W4の溶存酸素量のうち、少なくともいずれか1つを測定する。制御部6は、処理水W3のアンモニア性窒素濃度、処理水W3の溶存酸素量、ろ過水W4のアンモニア性窒素濃度、及びろ過水W4の溶存酸素量の測定結果のうち、少なくともいずれか1つに基づき、散水ろ床部3に返送する膜濃縮水W5の量を制御する。 Instead of the treated water W3, the water quality measurement unit 5 measures the water quality of the filtered water W4 that is downstream of the sprinkling filter unit 3 and that flows through the filtered water pipe 14 downstream of the membrane filtration unit 4 (filtration membrane 42). Good. In this case, the control unit 6 controls the amount of the membrane concentrated water W5 returned to the sprinkling filter unit 3 based on the water quality measurement result of the filtered water W4. That is, the water quality measuring unit 5 may measure the water quality after biological treatment on the downstream side of the sprinkling filter unit 3, and the control unit 6 sprinkles water based on the water quality after biological treatment on the downstream side of the sprinkling filter unit 3. The amount of the membrane concentrated water W5 returned to the filter bed part 3 may be controlled. To summarize the above, the water quality measurement unit 5 uses at least one of the ammonia nitrogen concentration of the treated water W3, the dissolved oxygen amount of the treated water W3, the ammonia nitrogen concentration of the filtered water W4, and the dissolved oxygen amount of the filtered water W4. Measure one or the other. The control unit 6 includes at least one of the ammonia nitrogen concentration of the treated water W3, the dissolved oxygen amount of the treated water W3, the ammonia nitrogen concentration of the filtered water W4, and the dissolved oxygen amount of the filtered water W4. Based on the above, the amount of the membrane concentrated water W5 returned to the sprinkling filter section 3 is controlled.

また、水質測定部5は、散水ろ床部3の上流(固液分離部2と散水ろ床部3との間)の処理用排水管12を流れる処理用排水W2の水質も計測してよい。この場合、制御部6は、処理用排水W2と、処理水W3(又はろ過水W4)との水質の比較結果に基づき、散水ろ床部3に返送する膜濃縮水W5の量を制御する。例えば、制御部6は、処理用排水W2のアンモニア性窒素濃度と処理水W3のアンモニア性窒素濃度との差(処理用排水W2のアンモニア性窒素濃度から処理水W3のアンモニア性窒素濃度を引いた値)が、所定の値よりも小さくなった場合、微生物による生物処理が十分でないと判断して、散水ろ床部3に返送する膜濃縮水W5の量を増加させる。この場合、制御部6は、処理用排水W2のアンモニア性窒素濃度と処理水W3のアンモニア性窒素濃度との差が、所定の値よりも小さくなり、かつ、処理水W3のアンモニア性窒素濃度の値が所定濃度より大きくなった場合に、散水ろ床部3に返送する膜濃縮水W5の量を増加させてもよい。 The water quality measuring unit 5 may also measure the water quality of the treatment wastewater W2 flowing through the treatment drain pipe 12 upstream of the sprinkling filter unit 3 (between the solid-liquid separating unit 2 and the sprinkling filter unit 3). .. In this case, the control unit 6 controls the amount of the membrane concentrated water W5 returned to the sprinkling filter unit 3 based on the comparison result of the water qualities of the treatment wastewater W2 and the treated water W3 (or the filtered water W4). For example, the control unit 6 subtracts the ammonia nitrogen concentration of the treated water W3 from the ammonia nitrogen concentration of the treated water W2 and the ammonia nitrogen concentration of the treated water W3 (the ammonia nitrogen concentration of the treated water W3 is subtracted from the ammonia nitrogen concentration of the treatment drain W2). When the value) becomes smaller than a predetermined value, it is determined that the biological treatment by the microorganism is not sufficient, and the amount of the membrane concentrated water W5 returned to the sprinkling filter part 3 is increased. In this case, the control unit 6 determines that the difference between the ammonia nitrogen concentration of the treated waste water W2 and the ammonia nitrogen concentration of the treated water W3 becomes smaller than a predetermined value, and the ammonia nitrogen concentration of the treated water W3 is reduced. When the value becomes larger than the predetermined concentration, the amount of the membrane concentrated water W5 returned to the sprinkling filter section 3 may be increased.

また、制御部6は、処理用排水W2の溶存酸素量と処理水W3の溶存酸素量との差(処理用排水W2の溶存酸素量から処理水W3の溶存酸素量を引いた値)が、所定の値よりも大きくなった場合、ろ材充填層33bにおける酸素量が減って、微生物が十分に生物処理を行うことができなくなっていると判断して、散水ろ床部3に返送する膜濃縮水W5の量を増加させてもよい。この場合、制御部6は、処理用排水W2の溶存酸素量と処理水W3の溶存酸素量との差が所定の値よりも大きくなり、かつ、処理水W3中の溶存酸素量が所定量より小さくなった場合に、散水ろ床部3に返送する膜濃縮水W5の量を増加させてもよい。 Further, the control unit 6 determines that the difference between the amount of dissolved oxygen in the treatment wastewater W2 and the amount of dissolved oxygen in the treated water W3 (a value obtained by subtracting the amount of dissolved oxygen in the treated water W3 from the amount of dissolved oxygen in the treated wastewater W2). When it becomes larger than a predetermined value, the amount of oxygen in the filter medium packed layer 33b is reduced and it is judged that the microorganisms cannot sufficiently perform biological treatment, and the membrane concentration is returned to the sprinkling filter bed section 3. The amount of water W5 may be increased. In this case, the control unit 6 determines that the difference between the amount of dissolved oxygen in the treatment wastewater W2 and the amount of dissolved oxygen in the treated water W3 is larger than a predetermined value, and the amount of dissolved oxygen in the treated water W3 is smaller than the predetermined amount. When it becomes small, the amount of the membrane concentrated water W5 returned to the sprinkling filter part 3 may be increased.

次に、膜濃縮水W5の返送量を変更する方法について説明する。制御部6は、通常時制御Aにおいて、膜濃縮水供給弁17a及び膜濃縮水供給弁18aを所定の開度に保つことで、散水ろ床部3に返送する膜濃縮水W5の量、及び固液分離部2に返送する膜濃縮水W5の量を、通常時制御Aにおいて定めた量である通常量に保っている。通常時制御Aとは、制御部6が、散水ろ床部3に返送する膜濃縮水W5の量を増加させなくてもよいと判断した通常時における流量制御を意味する。以下、散水ろ床部3に返送する膜濃縮水W5の量を、ろ床返送量Q1とし、固液分離部2に返送する膜濃縮水W5の量を、固液分離返送量Q2と記載する。 Next, a method of changing the return amount of the membrane concentrated water W5 will be described. In the normal time control A, the control unit 6 maintains the membrane concentrated water supply valve 17a and the membrane concentrated water supply valve 18a at a predetermined opening degree, so that the amount of the membrane concentrated water W5 returned to the sprinkling filter unit 3, and The amount of the membrane concentrated water W5 returned to the solid-liquid separation unit 2 is maintained at the normal amount that is the amount determined in the normal time control A. The normal time control A means the flow rate control in the normal time when the control unit 6 determines that the amount of the membrane concentrated water W5 returned to the sprinkling filter unit 3 does not have to be increased. Hereinafter, the amount of the membrane concentrated water W5 returned to the sprinkling filter part 3 will be referred to as a filter bed returned amount Q1, and the amount of the membrane concentrated water W5 returned to the solid-liquid separation part 2 will be referred to as a solid-liquid separation returned amount Q2. ..

制御部6は、ろ床返送量増加制御Bにおいて、ろ床返送量Q1を、通常量よりも増加させる。ろ床返送量増加制御Bとは、制御部6が、散水ろ床部3に返送する膜濃縮水W5の量を増加させると判断した場合における制御のことを指す。具体的には、制御部6は、ろ床返送量増加制御Bにおいて、固液分離返送量Q2を通常量に維持としつつ、ろ床返送量Q1を、通常量よりも増加させる。また、制御部6は、ろ床返送量増加制御Bにおいて、ろ床返送量Q1と固液分離返送量Q2との割合を変更して、ろ床返送量Q1を増加させ固液分離返送量Q2を減少させることにより、ろ床返送量Q1を、通常量よりも増加させてもよい。この場合、ろ床返送量Q1と固液分離返送量Q2との総量は、通常時と同量としてもよいし、ろ床返送量Q1と固液分離返送量Q2との総量を通常時から増加させてもよい。以下、この膜濃縮水の返送量の変更例について説明する。 In the filter bed return amount increase control B, the control unit 6 increases the filter bed return amount Q1 above the normal amount. The filter bed return amount increase control B refers to control in the case where the control unit 6 determines to increase the amount of the membrane concentrated water W5 returned to the sprinkling filter unit 3. Specifically, in the filter bed return amount increase control B, the control unit 6 increases the filter bed return amount Q1 above the normal amount while maintaining the solid-liquid separation return amount Q2 at the normal amount. Further, in the filter bed return amount increase control B, the control unit 6 changes the ratio of the filter bed return amount Q1 and the solid-liquid separation return amount Q2 to increase the filter bed return amount Q1 and increase the solid-liquid separation return amount Q2. The filter bed return amount Q1 may be increased more than the normal amount by decreasing. In this case, the total amount of the filter bed return amount Q1 and the solid-liquid separation return amount Q2 may be the same amount as the normal time, or the total amount of the filter bed return amount Q1 and the solid-liquid separation return amount Q2 is increased from the normal time. You may let me. Hereinafter, an example of changing the return amount of the membrane concentrated water will be described.

図6は、膜濃縮水の返送量の変更例を説明する表である。図1に示すように、排水管11内であって、固液分離接続管18との合流部よりも上流側で排水W1が流れるポイントを、ポイントP1とする。処理用排水管12内であって、散水ろ床接続管17との合流部よりも上流側で処理用排水W2が流れるポイントを、ポイントP2とする。処理水管13内であって、処理水W3が流れるポイントを、ポイントP3とする。ろ過水管14内であって、ろ過水W4が流れるポイントを、ポイントP4とする。散水ろ床接続管17内であって、処理用排水管12との合流部よりも上流側で膜濃縮水W5が流れるポイントを、ポイントP5とする。固液分離接続管18内であって、排水管11との合流部よりも上流側で膜濃縮水W5が流れるポイントを、ポイントP6とする。 FIG. 6 is a table illustrating an example of changing the return amount of the membrane concentrated water. As shown in FIG. 1, the point in the drainage pipe 11 where the drainage W1 flows on the upstream side of the confluence with the solid-liquid separation connecting pipe 18 is referred to as a point P1. A point in the treatment drainage pipe 12 where the treatment wastewater W2 flows on the upstream side of the confluence with the sprinkling filter connection pipe 17 is referred to as a point P2. A point in the treated water pipe 13 where the treated water W3 flows is referred to as a point P3. The point in the filtered water pipe 14 where the filtered water W4 flows is designated as point P4. The point in the sprinkling filter connection pipe 17 where the membrane concentrated water W5 flows on the upstream side of the confluence with the treatment drain pipe 12 is designated as point P5. The point in the solid-liquid separation connecting pipe 18 where the membrane concentrated water W5 flows on the upstream side of the confluence portion with the drain pipe 11 is designated as point P6.

ポイントP1での流量は、排水処理システム1に供給される排水W1の総量となる。ポイントP5での流量は、ろ床返送量Q1となり、ポイントP6での流量は、固液分離返送量Q2となる。ポイントP2での流量は、処理用排水W2の流量、すなわち、ポイントP1での流量(排水W1)とポイントP6での流量(固液分離返送量Q2)とを合算した流量となる。ポイントP3での流量は、処理水W3の流量、すなわち、ポイントP2での流量(処理用排水W2)とポイントP5での流量(ろ床返送量Q1)とを合算した流量となる。ポイントP4での流量は、ろ過水W4の流量、すなわち、ポイントP3での流量(処理水W3)から、ポイントP5、P6での流量(ろ床返送量Q1と固液分離返送量Q2との総量)を差し引いた量となる。 The flow rate at the point P1 is the total amount of the wastewater W1 supplied to the wastewater treatment system 1. The flow rate at point P5 is the filter bed return quantity Q1, and the flow rate at point P6 is the solid-liquid separation return quantity Q2. The flow rate at the point P2 is the flow rate of the treatment wastewater W2, that is, the sum of the flow rate at the point P1 (wastewater W1) and the flow rate at the point P6 (solid-liquid separation return quantity Q2). The flow rate at the point P3 is the flow rate of the treated water W3, that is, the sum of the flow rate at the point P2 (treatment wastewater W2) and the flow rate at the point P5 (filter bed return amount Q1). The flow rate at point P4 is the flow rate of filtered water W4, that is, the flow rate at point P3 (treated water W3), and the flow rate at points P5 and P6 (total amount of filter bed return amount Q1 and solid-liquid separation return amount Q2). ) Is subtracted.

図6の例では、ポイントP1での流量、すなわち流入してくる排水W1の量を1.0とし、ポイントP4での流量、すなわち排水処理後に外部に戻すろ過水W4の量を1.0としている。図6の例では、通常時制御Aにおいて、ポイントP5での流量と、ポイントP6での流量とを、0.5としている。すなわち、ろ床返送量Q1の通常量は、固液分離返送量Q2の通常量と同じになっている。通常時制御AにおけるポイントP2の流量(処理用排水W2の流量)は、1.5であり、ポイントP3の流量(処理水W3の流量)は、2.0である。 In the example of FIG. 6, the flow rate at the point P1, that is, the amount of the inflowing wastewater W1 is set to 1.0, and the flow rate at the point P4, that is, the amount of the filtered water W4 returned to the outside after the wastewater treatment is set to 1.0. There is. In the example of FIG. 6, in the normal control A, the flow rate at the point P5 and the flow rate at the point P6 are set to 0.5. That is, the normal amount of the filter bed return amount Q1 is the same as the normal amount of the solid-liquid separation return amount Q2. The flow rate at point P2 (flow rate of treatment wastewater W2) in normal-time control A is 1.5, and the flow rate at point P3 (flow rate of treated water W3) is 2.0.

図6の例では、制御部6は、ろ床返送量増加制御B1において、ポイントP5での流量(ろ床返送量Q1)を、0.8に増加させる一方、ポイントP6での流量(固液分離返送量Q2)を変化させず0.5のままとしている。この場合、ポイントP2の流量(処理用排水W2の流量)は、1.5であり、ポイントP3の流量(処理水W3の流量)は、2.3である。すなわち、ろ床返送量増加制御B1は、固液分離返送量Q2を通常量のままとしつつ、ろ床返送量Q1を、通常量よりも増加させた場合の例を説明している。この場合、膜濃縮水W5の総量(ろ床返送量Q1と固液分離返送量Q2との合計)が通常時制御Aより増加しているが、膜濃縮水W5の増加分は、ポイントP3の流量(処理水W3の流量)、すなわち散水ろ床部3からの排水量を強制的に増加させることにより補填する。 In the example of FIG. 6, the control unit 6 increases the flow rate at the point P5 (filter bed return amount Q1) to 0.8 in the filter bed return amount increase control B1, while the flow rate at the point P6 (solid-liquid amount). The separation/return amount Q2) is not changed and remains 0.5. In this case, the flow rate at point P2 (flow rate of treatment wastewater W2) is 1.5, and the flow rate at point P3 (flow rate of treated water W3) is 2.3. That is, the filter bed return amount increase control B1 describes an example in which the filter bed return amount Q1 is increased from the normal amount while keeping the solid-liquid separation return amount Q2 at the normal amount. In this case, the total amount of the membrane concentrated water W5 (the total amount of the filter bed return amount Q1 and the solid-liquid separation return amount Q2) is higher than that in the normal control A, but the increase amount of the membrane concentrated water W5 is equal to the point P3. The flow rate (flow rate of the treated water W3), that is, the amount of drainage from the sprinkling filter section 3 is forcibly increased to compensate.

図6の例では、制御部6は、ろ床返送量増加制御B2において、ポイントP5での流量(ろ床返送量Q1)を、0.8に増加させる一方、ポイントP6での流量(固液分離返送量Q2)を、0.2に減少させている。この場合、ポイントP2の流量(処理用排水W2の流量)は、1.2であり、ポイントP3の流量(処理水W3の流量)は、2.0である。すなわち、ろ床返送量増加制御B2は、膜濃縮水W5の総量(ろ床返送量Q1と固液分離返送量Q2との合計)を通常時と同じに保ちつつ、ろ床返送量Q1と固液分離返送量Q2との割合を変更して、ろ床返送量Q1を増加させ固液分離返送量Q2を減少させることにより、ろ床返送量Q1を、通常量よりも増加させた例である。ろ床返送量増加制御B2のような制御とした場合、膜濃縮水W5の総量を通常時制御Aと同じにすることができるため、散水ろ床部3からの排水量を変更する必要がない。 In the example of FIG. 6, the control unit 6 increases the flow rate at the point P5 (filter bed return amount Q1) to 0.8 in the filter bed return amount increase control B2, while increasing the flow rate at the point P6 (solid-liquid flow rate). The separated return amount Q2) is reduced to 0.2. In this case, the flow rate at the point P2 (flow rate of the treatment wastewater W2) is 1.2, and the flow rate at the point P3 (flow rate of the treated water W3) is 2.0. That is, the filter bed return amount increase control B2 keeps the total amount of the membrane concentrated water W5 (the sum of the filter bed return amount Q1 and the solid-liquid separation return amount Q2) at the same level as in the normal state, while maintaining the filter bed return amount Q1 and the solid state. This is an example of increasing the filter bed return amount Q1 from the normal amount by changing the ratio with the liquid separation return amount Q2 and increasing the filter bed return amount Q1 and decreasing the solid-liquid separation return amount Q2. .. When the control such as the filter bed return amount increase control B2 is performed, the total amount of the membrane concentrated water W5 can be the same as that in the normal time control A, so that it is not necessary to change the discharge amount from the sprinkling filter section 3.

制御部6は、ろ床返送量Q1を増加させると判断した場合、ろ床返送量増加制御B1のように、膜濃縮水W5の総量を増加させつつ、ろ床返送量Q1のみを増加させてもよい。また、制御部6は、ろ床返送量Q1を増加させると判断した場合、ろ床返送量増加制御B2のように、膜濃縮水W5の総量をそのままに保ちつつ、ろ床返送量Q1と固液分離返送量Q2との割合を変更させてもよい。制御部6は、ろ床返送量増加制御B1、B2のいずれの制御とするかを、適宜判断してもよいし、予め定めたいずれかの制御のみを適用してもよい。 When it is determined that the filter bed return amount Q1 is increased, the control unit 6 increases only the filter bed return amount Q1 while increasing the total amount of the membrane concentrated water W5 as in the filter bed return amount increase control B1. Good. Further, when it is determined that the filter bed return amount Q1 is increased, the control unit 6 keeps the total amount of the membrane concentrated water W5 as it is, as in the filter bed return amount increase control B2, and fixes the filter bed return amount Q1. The ratio with the liquid separation and return amount Q2 may be changed. The control unit 6 may appropriately determine which control of the filter bed return amount increase control B1 and B2, or may apply only one of the predetermined controls.

次に、以上説明した膜濃縮水W5の返送量の制御について、フローチャートに基づき説明する。図7は、第1実施形態に係る膜濃縮水の返送量の制御を説明するフローチャートである。図7に示すように、制御部6は、水質測定部5から、処理水W3の水質測定の計測データを取得し(ステップS10)、処理水W3のアンモニア性窒素濃度、又は溶存酸素量が、閾値の範囲外であるかを判断する(ステップS12)。例えば、制御部6は、処理水W3のアンモニア窒素濃度が、所定濃度より大きいか、又は処理水W3の溶存酸素量が、所定量より小さいかを判断する。処理水W3のアンモニア性窒素濃度、又は溶存酸素量が、閾値の範囲外でない場合(ステップS12:No)、制御部6は、ろ床返送量Q1を、通常量(通常量のまま)とする(ステップS14)。また、処理水W3のアンモニア性窒素濃度、又は溶存酸素量が、閾値の範囲外である場合(ステップS12:Yes)、制御部6は、ろ床返送量Q1を、通常量から増加させる(ステップS16)。ろ床返送量Q1を増加させた後は、ステップS10に戻り、ろ床返送量Q1増加後から所定時間経過後の処理水W3の水質測定データを取得し、同様の処理を繰り返す。例えば、この処理水W3のアンモニア性窒素濃度、又は溶存酸素量が、閾値内になった場合は、ステップS14において、ろ床返送量Q1を通常量に戻す。 Next, control of the return amount of the membrane concentrated water W5 described above will be described based on a flowchart. FIG. 7 is a flowchart illustrating control of the return amount of the membrane concentrated water according to the first embodiment. As shown in FIG. 7, the control unit 6 acquires the measurement data of the water quality measurement of the treated water W3 from the water quality measuring unit 5 (step S10), and the ammonia nitrogen concentration of the treated water W3 or the dissolved oxygen amount is It is determined whether it is outside the threshold range (step S12). For example, the control unit 6 determines whether the ammonia nitrogen concentration of the treated water W3 is higher than a predetermined concentration or the dissolved oxygen amount of the treated water W3 is smaller than a predetermined amount. When the ammonia nitrogen concentration or the dissolved oxygen amount of the treated water W3 is not outside the threshold range (step S12: No), the control unit 6 sets the filter bed return amount Q1 to the normal amount (the normal amount remains). (Step S14). Further, when the ammonia nitrogen concentration or the dissolved oxygen amount of the treated water W3 is out of the threshold range (step S12: Yes), the control unit 6 increases the filter bed return amount Q1 from the normal amount (step S12). S16). After increasing the filter bed return amount Q1, the process returns to step S10 to acquire the water quality measurement data of the treated water W3 after a predetermined time has elapsed after the filter bed return amount Q1 was increased, and the same process is repeated. For example, when the ammonia nitrogen concentration or the dissolved oxygen amount of the treated water W3 is within the threshold value, the filter bed return amount Q1 is returned to the normal amount in step S14.

ステップS14の後、制御部6は、この処理を終了するか判断し(ステップS18)、終了しない場合(ステップS18:No)は、ステップS10に戻り同様の処理を繰り返し、終了する場合(ステップS18:Yes)は、この処理を終了する。 After step S14, the control unit 6 determines whether or not to end this processing (step S18), and when not ending (step S18: No), returns to step S10 and repeats similar processing, and ends (step S18). : Yes) ends this process.

以上説明したように、制御部6は、水質測定部5の水質測定結果に基づき、ろ床返送量Q1を制御するが、それに加え、他の条件によってもろ床返送量Q1を制御してもよい。図8は、ろ床返送量の制御の一例を説明するグラフである。図8の横軸は、1日における時刻を表しており、縦軸は、ろ床返送量Q1を表している。図8に示すように、制御部6は、昼の時間帯におけるろ床返送量Q1を夜の時間帯よりも大きくし、夜の時間帯におけるろ床返送量Q1を昼の時間帯よりも小さくしてもよい。図8で提示した例では、昼の時間帯には排水W1の総量が大きくなり、夜の時間帯には排水W1の総量が小さいことから、制御部6は、昼の時間帯におけるろ床返送量Q1を大きくして、処理能力を向上させている。言い換えれば、制御部6は、排水W1の総量が大きくなる時間帯ほどろ床返送量Q1を大きくし、排水W1の総量が小さくなる時間帯ほどろ床返送量Q1が小さくなるように、時間毎にろ床返送量Q1を決定する。制御部6は、1日における排水W1の総量変化の情報に基づき、予め定められた比率で、1日における時間毎のろ床返送量Q1を変化させるものであれば、その比率は、図8に示したもの(昼12時のろ床返送量Q1が最も高い)に限られない。また、制御部6は、予め比率を定めることに限られず、排水W1の流量を逐次測定し、その測定結果に基づき、ろ床返送量Q1を逐次変化させてもよい。 As described above, the control unit 6 controls the filter bed return amount Q1 based on the water quality measurement result of the water quality measuring unit 5, but in addition to this, the filter bed return amount Q1 may be controlled by other conditions. .. FIG. 8 is a graph illustrating an example of control of the filter bed return amount. The horizontal axis of FIG. 8 represents the time of day, and the vertical axis represents the filter bed return amount Q1. As shown in FIG. 8, the control unit 6 makes the filter bed return amount Q1 in the daytime period larger than that in the night time period and makes the filter bed return amount Q1 in the night time period smaller than that in the daytime period. You may. In the example presented in FIG. 8, since the total amount of drainage W1 is large during the daytime and the total amount of drainage W1 is small during the nighttime, the control unit 6 returns the filter bed during the daytime. The processing capacity is improved by increasing the amount Q1. In other words, the control unit 6 increases the filter bed return amount Q1 in a time period in which the total amount of the drainage W1 increases and decreases the filter bed return amount Q1 in a time period in which the total amount of the drainage W1 decreases. Determine the amount of returned bed Q1. If the control unit 6 changes the filter bed return amount Q1 per hour in a day based on the information on the total amount change of the wastewater W1 in a day, the ratio is as shown in FIG. It is not limited to that shown in (the highest amount of filter bed return Q1 at 12:00 noon). In addition, the control unit 6 is not limited to previously setting the ratio, and may sequentially measure the flow rate of the wastewater W1 and sequentially change the filter bed return amount Q1 based on the measurement result.

制御部6は、1年のスパンでろ床返送量Q1を制御してもよい。制御部6は、微生物の活動が抑制される冬にろ床返送量Q1を高くし、微生物の活動が活発な夏にろ床返送量Q1を低くしてもよい。すなわち、制御部6は、気温が低い場合は、ろ床返送量Q1を高くし、気温が高い場合は、ろ床返送量Q1を低くしてもよい。 The controller 6 may control the filter bed return amount Q1 in a span of one year. The control unit 6 may increase the filter bed return amount Q1 in the winter when the activity of the microorganisms is suppressed and decrease the filter bed return amount Q1 in the summer when the activity of the microorganisms is active. That is, the control unit 6 may increase the filter bed return amount Q1 when the temperature is low, and may decrease the filter bed return amount Q1 when the temperature is high.

制御部6は、ろ材充填層33bの洗浄機能を実行した、すなわち逆洗浄を行った直後に、所定の時間だけ、ろ床返送量Q1を高くしてもよい。この場合、所定の時間経過後には、ろ床返送量Q1を元に戻す。逆洗浄を行った直後とは、逆洗浄が終了したタイミングのことをいうが、逆洗浄が終了したタイミングよりも所定の遅れ時間(例えば10分)だけ遅れてもよい。また、所定の時間は、予め定められた時間であるが、例えば、1時間である。ろ材充填層33bの逆洗浄を行った場合、ろ材35表面の微生物も逆洗浄により剥がれ落ちる場合がある。制御部6は、逆洗浄の直後にろ床返送量Q1を高くすることで、逆洗浄により減少した微生物の数を補填することができる。 The control unit 6 may increase the filter bed return amount Q1 for a predetermined time immediately after performing the cleaning function of the filter medium filling layer 33b, that is, immediately after performing the back cleaning. In this case, after the lapse of a predetermined time, the filter bed return amount Q1 is restored. Immediately after performing the backwash refers to the timing when the backwash ends, but may be delayed by a predetermined delay time (for example, 10 minutes) from the timing when the backwash ends. Further, the predetermined time is a predetermined time, for example, one hour. When the filter material-filled layer 33b is back-cleaned, the microorganisms on the surface of the filter material 35 may be peeled off by the back-cleaning. The control unit 6 can compensate the number of microorganisms reduced by the back washing by increasing the filter bed return amount Q1 immediately after the back washing.

制御部6は、例えば、ろ材充填層33bにおける微生物量が十分であって、ろ材充填層33bに微生物を返送する量を多くする必要がない場合には、固液分離返送量Q2を増加させ、ろ床返送量Q1を減少させてもよい。また、制御部6は、例えば、膜濃縮水W5中の微生物や固形物の濃度が所定値よりも高くなった場合にも、固液分離返送量Q2を増加させ、ろ床返送量Q1を減少させてもよい。固液分離部2における逆洗浄の頻度は、散水ろ床部3における逆洗浄の頻度よりも多い。例えば、固液分離部2における逆洗浄の頻度は、1時間に1回程度であり、散水ろ床部3における逆洗浄の頻度は、1週間に1回程度である。従って、以上説明したような場合に固液分離返送量Q2を増やすことで、固液分離部2内に返送する膜濃縮水W5の量を増加させ、固液分離部2での逆洗浄により、膜濃縮水W5に含まれる不要な微生物や固形物等を、より早く外部に排出することが可能となる。また、この場合、膜ろ過部4にろ過膜42の逆洗浄手段や、膜濃縮水W5の排出手段を設ける必要がなくなり、設備規模を小さくすることも可能となる。ただし、膜ろ過部4にも逆洗浄手段や排出手段を設けていてもよい。 For example, when the amount of microorganisms in the filter medium packed layer 33b is sufficient and it is not necessary to increase the amount of microorganisms returned to the filter medium packed layer 33b, the control unit 6 increases the solid-liquid separation returned amount Q2, The filter bed return amount Q1 may be decreased. The control unit 6 also increases the solid-liquid separation return amount Q2 and decreases the filter bed return amount Q1 when, for example, the concentration of microorganisms or solids in the membrane concentrated water W5 becomes higher than a predetermined value. You may let me. The frequency of backwashing in the solid-liquid separation unit 2 is higher than the frequency of backwashing in the sprinkling filter unit 3. For example, the frequency of backwashing in the solid-liquid separation unit 2 is about once per hour, and the frequency of backwashing in the sprinkling filter unit 3 is about once per week. Therefore, in the case as described above, by increasing the solid-liquid separation return amount Q2, the amount of the membrane concentrated water W5 returned into the solid-liquid separation unit 2 is increased, and by the back washing in the solid-liquid separation unit 2, Unwanted microorganisms, solids, etc. contained in the membrane concentrated water W5 can be discharged to the outside more quickly. Further, in this case, it is not necessary to provide the membrane filtration unit 4 with a backwashing means for the filtration membrane 42 or a means for discharging the membrane concentrated water W5, and the equipment scale can be reduced. However, the membrane filtration unit 4 may also be provided with a back washing means and a discharging means.

以上説明したように、第1実施形態に係る排水処理システム1は、散水ろ床部3と、膜ろ過部4と、散水ろ床接続管17とを有する。散水ろ床部3は、微生物を担持させた複数のろ材35を有するろ材充填層33bを有する。散水ろ床部3は、ろ材充填層33bの上部に処理用排水W2を散布してろ材充填層33b内に処理用排水W2を流下させ、微生物により処理用排水W2を生物処理して得た処理水W3を流出する。膜ろ過部4は、散水ろ床部の後段に設けられて、ろ過膜42を有する。膜ろ過部4は、処理水W3を、ろ過膜42を透過してない膜濃縮水W5と、ろ過膜42を透過したろ過水W4とに分離する。散水ろ床接続管17は、膜ろ過部4と散水ろ床部3とを接続し、膜濃縮水W5をろ材充填層33bに返送する。 As described above, the wastewater treatment system 1 according to the first embodiment has the sprinkling filter section 3, the membrane filtering section 4, and the sprinkling filter connection pipe 17. The sprinkling filter part 3 has a filter medium filling layer 33b having a plurality of filter mediums 35 supporting microorganisms. The sprinkling filter part 3 is a treatment obtained by spraying the treatment wastewater W2 on the upper part of the filter medium filling layer 33b, causing the treatment wastewater W2 to flow down into the filter medium filling layer 33b, and biologically treating the treatment wastewater W2 with microorganisms. Water W3 flows out. The membrane filtration unit 4 is provided in a subsequent stage of the sprinkling filter unit and has a filtration membrane 42. The membrane filtration unit 4 separates the treated water W3 into membrane concentrated water W5 that has not permeated the filtration membrane 42 and filtered water W4 that has permeated the filtration membrane 42. The sprinkling filter connection pipe 17 connects the membrane filtering unit 4 and the sprinkling filter unit 3 and returns the membrane concentrated water W5 to the filter medium packed layer 33b.

排水処理システム1は、通気によって酸素を供給する散水ろ床部3を用いて生物処理を行っているため、曝気処理が必要ない。排水処理システム1は、曝気処理が必要ないので、消費電力を低減できる。そして、この排水処理システム1は、ろ材35から微生物が剥がれ落ちた場合であっても、剥がれ落ちた微生物を含む膜濃縮水W5を、ろ材充填層33bに返送する。従って、排水処理システム1は、剥がれ落ちた微生物をろ材充填層33bに戻すことが可能となるため、ろ材35表面の微生物の数の減少を抑制することができる。そのため、排水処理システム1は、微生物の減少による排水処理の性能低下を抑制することができる。 The wastewater treatment system 1 does not require aeration treatment because it performs biological treatment using the sprinkling filter unit 3 that supplies oxygen by aeration. Since the wastewater treatment system 1 does not require aeration treatment, power consumption can be reduced. Then, the wastewater treatment system 1 returns the membrane concentrated water W5 containing the detached microorganisms to the filter medium packed layer 33b even when the microorganisms are detached from the filter medium 35. Therefore, the wastewater treatment system 1 can return the separated microorganisms to the filter medium filling layer 33b, and can suppress the decrease in the number of microorganisms on the surface of the filter medium 35. Therefore, the wastewater treatment system 1 can suppress deterioration in performance of wastewater treatment due to reduction of microorganisms.

また、排水処理システム1は、水質測定部5と、制御部6とを有する。水質測定部5は、処理水W3又はろ過水W4の水質を測定する。制御部6は、水質測定部5の測定結果に基づき、ろ材充填層33bへの膜濃縮水W5の返送量を決定する。排水処理システム1は、生物処理の後の水質(処理水W3又はろ過水W4の水質)を測定するため、散水ろ床部3における生物処理の処理能力を検出することができ、その検出結果に基づき、膜濃縮水W5の返送量、すなわち返送する微生物の量を決定する。従って、排水処理システム1は、生物処理の処理能力に基づき適量の膜濃縮水W5を返送することができるため、微生物の減少による排水処理の性能低下をより適切に抑制することができる。 The wastewater treatment system 1 also includes a water quality measuring unit 5 and a control unit 6. The water quality measuring unit 5 measures the water quality of the treated water W3 or the filtered water W4. The control unit 6 determines the return amount of the membrane concentrated water W5 to the filter medium filling layer 33b based on the measurement result of the water quality measuring unit 5. Since the wastewater treatment system 1 measures the water quality after the biological treatment (the quality of the treated water W3 or the filtered water W4), the treatment capacity of the biological treatment in the sprinkling filter part 3 can be detected, and the detection result can be obtained. Based on this, the return amount of the membrane concentrated water W5, that is, the amount of microorganisms to be returned is determined. Therefore, the wastewater treatment system 1 can return an appropriate amount of the membrane-concentrated water W5 based on the treatment capacity of biological treatment, so that the deterioration of wastewater treatment performance due to the reduction of microorganisms can be suppressed more appropriately.

水質測定部5は、処理水W3のアンモニア性窒素濃度、処理水W3の溶存酸素量、ろ過水W4のアンモニア性窒素濃度、及びろ過水W4の溶存酸素量のうち、少なくともいずれか1つを検出する。制御部6は、検出された処理水W3のアンモニア性窒素濃度、処理水W3の溶存酸素量、ろ過水W4のアンモニア性窒素濃度、及びろ過水W4の溶存酸素量のうち、少なくともいずれか1つに基づき、ろ材充填層33bへの膜濃縮水W5の返送量を決定する。生物処理後におけるアンモニア性窒素濃度及び溶存酸素量は、生物処理の処理能力を示す指標となる。排水処理システム1は、生物処理の処理能力を示す指標となるアンモニア性窒素濃度、又は溶存酸素量に基づき膜濃縮水W5の返送量を決定するため、微生物の減少による排水処理の性能低下をより適切に抑制することができる。 The water quality measuring unit 5 detects at least one of the ammonia nitrogen concentration of the treated water W3, the dissolved oxygen amount of the treated water W3, the ammonia nitrogen concentration of the filtered water W4, and the dissolved oxygen amount of the filtered water W4. To do. The control unit 6 includes at least one of the detected ammonia nitrogen concentration of the treated water W3, the dissolved oxygen amount of the treated water W3, the ammonia nitrogen concentration of the filtered water W4, and the dissolved oxygen amount of the filtered water W4. Based on the above, the return amount of the membrane concentrated water W5 to the filter medium packed layer 33b is determined. The concentration of ammonia nitrogen and the amount of dissolved oxygen after the biological treatment are indicators of the treatment capacity of the biological treatment. The wastewater treatment system 1 determines the return amount of the membrane concentrated water W5 based on the ammonia nitrogen concentration, which is an index showing the treatment capacity of biological treatment, or the dissolved oxygen amount. It can be suppressed appropriately.

制御部6は、処理水W3又はろ過水W4のアンモニア性窒素濃度が所定濃度より高くなった場合、又は溶存酸素量が所定量より減少した場合に、ろ材充填層33bへの膜濃縮水W5の返送量を増加させる。アンモニア性窒素濃度が高くなった場合、微生物が、アンモニア性窒素を十分に分解できていない可能性がある。また、溶存酸素量が減少した場合、ろ材充填層33bにおける酸素量が減って、微生物が十分に生物処理を行うことができなくなっている可能性がある。制御部6は、このような場合に、膜濃縮水W5の返送量を増加させることで、微生物の減少による排水処理の性能低下をより適切に抑制することができる。 When the concentration of ammonia nitrogen in the treated water W3 or the filtered water W4 is higher than a predetermined concentration, or when the amount of dissolved oxygen is lower than a predetermined amount, the control unit 6 controls the concentration of the membrane concentrated water W5 to the filter medium packed layer 33b. Increase the amount returned. When the concentration of ammonia nitrogen is high, it is possible that the microorganism is not sufficiently decomposing ammonia nitrogen. Further, when the amount of dissolved oxygen decreases, the amount of oxygen in the filter medium packed layer 33b may decrease, and it may be impossible for the microorganisms to sufficiently perform biological treatment. In such a case, the control unit 6 can more appropriately suppress the deterioration of the performance of the wastewater treatment due to the decrease of microorganisms by increasing the return amount of the membrane concentrated water W5.

水質測定部5は、処理用排水W2の水質も測定する。そして、制御部6は、処理用排水W2と、処理水W3又はろ過水W4との間の水質の比較結果に基づき、ろ材充填層33bへの膜濃縮水W5の返送量を決定する。排水処理システム1は、処理用排水W2と、処理水W3又はろ過水W4との間の水質の比較、すなわち、生物処理前後における水質を比較し、その比較結果に基づき、膜濃縮水W5の返送量を決定する。そのため、排水処理システム1は、生物処理の処理能力をより確実に検出することができ、微生物の減少による排水処理の性能低下をより適切に抑制することができる。 The water quality measuring unit 5 also measures the water quality of the treatment wastewater W2. Then, the control unit 6 determines the return amount of the membrane concentrated water W5 to the filter medium packed layer 33b, based on the comparison result of the water quality between the treatment wastewater W2 and the treated water W3 or the filtered water W4. The wastewater treatment system 1 compares the water quality between the treatment wastewater W2 and the treated water W3 or the filtered water W4, that is, compares the water quality before and after the biological treatment, and returns the membrane concentrated water W5 based on the comparison result. Determine the amount. Therefore, the wastewater treatment system 1 can more reliably detect the treatment capacity of the biological treatment, and can more appropriately suppress the deterioration of the performance of the wastewater treatment due to the reduction of microorganisms.

排水処理システム1は、固液分離部2と、固液分離接続管18とを有する。固液分離部2は、散水ろ床部3よりも前段(すなわち処理用排水W2の流れの上流側)に設けられ、排水W1を固形成分と処理用排水W2とに分離する。固液分離接続管18は、膜ろ過部4と固液分離部2とを接続し、膜濃縮水W5を固液分離部2に返送する。そして、制御部6は、水質測定部5の測定結果に基づき、ろ材充填層33bと固液分離部2とへの膜濃縮水W5の返送量の割合を決定する。排水処理システム1は、水質の測定結果に基づき、ろ材充填層33bと固液分離部2とへの膜濃縮水W5の返送量の割合を決定するため、ろ材充填層33bへの膜濃縮水W5の提供量、すなわち微生物の提供量をより適切に調整することができる。 The wastewater treatment system 1 has a solid-liquid separation section 2 and a solid-liquid separation connection pipe 18. The solid-liquid separation unit 2 is provided at a stage before the sprinkling filter unit 3 (that is, on the upstream side of the flow of the treatment wastewater W2) and separates the wastewater W1 into a solid component and a treatment wastewater W2. The solid-liquid separation connection pipe 18 connects the membrane filtration unit 4 and the solid-liquid separation unit 2 and returns the membrane concentrated water W5 to the solid-liquid separation unit 2. Then, the control unit 6 determines the ratio of the amount of the membrane concentrated water W5 to be returned to the filter medium packed layer 33b and the solid-liquid separation unit 2 based on the measurement result of the water quality measurement unit 5. Since the wastewater treatment system 1 determines the ratio of the amount of the membrane concentrated water W5 returned to the filter medium packed layer 33b and the solid-liquid separation section 2 based on the water quality measurement result, the membrane concentrated water W5 to the filter medium packed layer 33b is determined. Can be adjusted more appropriately, that is, the amount of microorganisms provided.

水質測定部5は、処理水W3又はろ過水W4のアンモニア性窒素濃度、又は溶存酸素量を検出し、制御部6は、アンモニア性窒素濃度が所定濃度より高くなった場合、又は溶存酸素量が所定量より減少した場合に、ろ材充填層33bへの膜濃縮水W5の返送量の割合を高くし、固液分離部2への膜濃縮水W5の返送量の割合を低くする。排水処理システム1は、アンモニア性窒素濃度の増加、又は溶存酸素量の減少など、生物処理が十分でないと判断した場合に、ろ材充填層33bと固液分離部2とへの膜濃縮水W5の返送量の割合を決定するため、ろ材充填層33bへの膜濃縮水W5の提供量、すなわち微生物の提供量をより適切に調整することができる。 The water quality measuring unit 5 detects the concentration of ammonia nitrogen in the treated water W3 or the filtered water W4, or the amount of dissolved oxygen, and the control unit 6 determines that the concentration of ammonia nitrogen is higher than a predetermined concentration or the amount of dissolved oxygen is When the amount is less than the predetermined amount, the proportion of the membrane concentrated water W5 returned to the filter medium packed layer 33b is increased, and the proportion of the membrane concentrated water W5 returned to the solid-liquid separation unit 2 is reduced. When the wastewater treatment system 1 determines that the biological treatment is not sufficient, such as an increase in the concentration of ammonia nitrogen or a decrease in the amount of dissolved oxygen, the membrane concentrated water W5 to the filter medium packed layer 33b and the solid-liquid separation unit 2 is not removed. In order to determine the ratio of the returned amount, the amount of the membrane concentrated water W5 provided to the filter medium packed layer 33b, that is, the amount of microorganisms provided can be adjusted more appropriately.

制御部6は、ろ材充填層33bを逆洗浄した直後に、ろ材充填層33bへの膜濃縮水W5の返送量を増加させる。ろ材充填層33bを逆洗浄した場合、ろ材35に付着した微生物が、逆洗浄により剥がれ落ちる場合がある。排水処理システム1は、そのような逆洗浄直後に膜濃縮水W5の返送量を増加することで、微生物の減少による排水処理の性能低下をより適切に抑制することができる。 The control unit 6 increases the amount of the membrane concentrated water W5 returned to the filter medium filling layer 33b immediately after backwashing the filter medium filling layer 33b. When the filter medium filling layer 33b is backwashed, the microorganisms attached to the filter medium 35 may be peeled off by the backwashing. The wastewater treatment system 1 increases the return amount of the membrane concentrated water W5 immediately after such backwashing, whereby it is possible to more appropriately suppress the deterioration of the performance of the wastewater treatment due to the reduction of microorganisms.

膜ろ過部4のろ過膜42は、精密ろ過膜、又は限外ろ過膜である。ろ過膜42が、精密ろ過膜、又は限外ろ過膜であることにより、微生物を確実に捕集することが可能となり、膜濃縮水W5の返送により、微生物を確実にろ材充填層33bへ戻すことができる。 The filtration membrane 42 of the membrane filtration unit 4 is a microfiltration membrane or an ultrafiltration membrane. Since the filtration membrane 42 is a microfiltration membrane or an ultrafiltration membrane, it is possible to reliably collect the microorganisms, and by returning the membrane concentrated water W5, the microorganisms can be reliably returned to the filter medium packed layer 33b. You can

(第2実施形態)
次に、第2実施形態について説明する。第2実施形態に係る排水処理システム1Aは、膜ろ過部がデッドエンド方式である点で、第1実施形態とは異なる。第2実施形態において、第1実施形態と構成が共通する箇所は、説明を省略する。
(Second embodiment)
Next, a second embodiment will be described. The wastewater treatment system 1A according to the second embodiment is different from the first embodiment in that the membrane filtration unit is a dead end system. In the second embodiment, the description of the parts having the same configuration as the first embodiment will be omitted.

図9は、第2実施形態に係る排水処理システムの概略構成を示すブロック図である。図9に示すように、排水処理システム1Aは、膜ろ過部4Aa、4Ab、4Acと、バッファタンク部8と、を有する。また、散水ろ床部3と膜ろ過部4Aaとは、処理水管13aで接続されており、散水ろ床部3と膜ろ過部4Abとは、処理水管13bで接続されており、散水ろ床部3と膜ろ過部4Acとは、処理水管13cで接続されている。膜ろ過部4Aa、4Ab、4Acは、並列に散水ろ床部3と接続されており、それぞれ処理水管13a、13b、13cから、処理水W3が供給される。 FIG. 9 is a block diagram showing a schematic configuration of the wastewater treatment system according to the second embodiment. As shown in FIG. 9, the wastewater treatment system 1A includes membrane filtration units 4Aa, 4Ab, 4Ac, and a buffer tank unit 8. Further, the sprinkling filter part 3 and the membrane filtering part 4Aa are connected by a treated water pipe 13a, and the sprinkling filter part 3 and the membrane filtering part 4Ab are connected by a treated water pipe 13b. 3 and the membrane filtration unit 4Ac are connected by a treated water pipe 13c. The membrane filtration units 4Aa, 4Ab, and 4Ac are connected in parallel to the sprinkling filter unit 3, and treated water W3 is supplied from treated water pipes 13a, 13b, and 13c, respectively.

膜ろ過部4Aaとバッファタンク部8とは、膜濃縮水管16aで接続されており、膜ろ過部4Abとバッファタンク部8とは、膜濃縮水管16bで接続されており、膜ろ過部4Acとバッファタンク部8とは、膜濃縮水管16cで接続されている。膜ろ過部4Aa、4Ab、4Acは、並列にバッファタンク部8と接続されており、それぞれ膜濃縮水管16a、16b、16cを介して、バッファタンク部8に膜濃縮水W5を供給する。 The membrane filtration unit 4Aa and the buffer tank unit 8 are connected by a membrane concentrated water pipe 16a, the membrane filtration unit 4Ab and the buffer tank unit 8 are connected by a membrane concentrated water pipe 16b, and the membrane filtration unit 4Ac and the buffer are connected. The tank portion 8 is connected by a membrane concentrated water pipe 16c. The membrane filtration units 4Aa, 4Ab, and 4Ac are connected to the buffer tank unit 8 in parallel, and supply the membrane concentrated water W5 to the buffer tank unit 8 via the membrane concentrated water pipes 16a, 16b, and 16c, respectively.

膜ろ過部4Aa、4Ab、4Acは、それぞれデッドエンド方式のろ過膜42Aを有している点で、第1実施形態に係る膜ろ過部4とは異なる。膜ろ過部4Aa、4Ab、4Acは、図5に示すろ過膜42の第2の端部45が閉口した形状となっている。通常状態において、膜ろ過部4Aaは、膜濃縮水管16aと接続されておらず、膜ろ過部4Abは、膜濃縮水管16bと接続されておらず、膜ろ過部4Acは、膜濃縮水管16cと接続されていない。通常状態とは、ろ過膜42Aに捕集された微生物を含む固形物を、膜ろ過部の外部に排出せず、ろ過処理、すなわちろ過水W4及び膜濃縮水W5の分離処理を行っている状態である。すなわち、通常状態においては、膜ろ過部4Aa、4Ab、4Acの内部には、ろ過膜42Aに捕集された微生物を含む固形物が、堆積される。膜ろ過部の数は3つに限られず、単数であってもよく、その数は任意である。以下、膜ろ過部4Aa、4Ab、4Acを区別しない場合は、膜ろ過部4Aと記載する。同様に、膜濃縮水管16a、16b、16cを区別しない場合は、膜濃縮水管16Aと記載する。 The membrane filtration units 4Aa, 4Ab, and 4Ac are different from the membrane filtration unit 4 according to the first embodiment in that each has a dead end type filtration membrane 42A. The membrane filtration units 4Aa, 4Ab, and 4Ac have a shape in which the second end 45 of the filtration membrane 42 shown in FIG. 5 is closed. In the normal state, the membrane filtration unit 4Aa is not connected to the membrane concentrated water pipe 16a, the membrane filtration unit 4Ab is not connected to the membrane concentrated water pipe 16b, and the membrane filtration unit 4Ac is connected to the membrane concentrated water pipe 16c. It has not been. The normal state is a state in which the solid matter containing the microorganisms collected in the filtration membrane 42A is not discharged to the outside of the membrane filtration unit, but is filtered, that is, the filtered water W4 and the membrane concentrated water W5 are separated. Is. That is, in the normal state, the solid matter containing the microorganisms captured by the filtration membrane 42A is deposited inside the membrane filtration units 4Aa, 4Ab, 4Ac. The number of membrane filtration units is not limited to three, and may be a single number, and the number is arbitrary. Hereinafter, when the membrane filtration units 4Aa, 4Ab, and 4Ac are not distinguished, they are referred to as the membrane filtration unit 4A. Similarly, when the membrane concentrated water pipes 16a, 16b, and 16c are not distinguished, they are described as the membrane concentrated water pipe 16A.

例えば、堆積された固形物が所定量以上になった場合などに、制御部6は、排出状態に切り替えて、制御部6が、膜ろ過部4Aと膜濃縮水管16Aとを接続する。このとき、堆積された固形物は、流入する処理水W3と共に、膜濃縮水W5として、膜濃縮水管16Aからバッファタンク部8に排出される。制御部6は、膜ろ過部4Aが複数ある場合は、複数のうちの一部のみを排出状態とし、他を通常状態とすることで、排出処理を円滑に実行させる。 For example, when the amount of accumulated solids exceeds a predetermined amount, the control unit 6 switches to the discharge state, and the control unit 6 connects the membrane filtration unit 4A and the membrane concentrated water pipe 16A. At this time, the accumulated solid matter is discharged from the membrane concentrated water pipe 16A to the buffer tank section 8 as the membrane concentrated water W5 together with the inflowing treated water W3. When there are a plurality of membrane filtration units 4A, the control unit 6 causes only a part of the plurality of membrane filtration units 4A to be in the discharge state and the other to be in the normal state, thereby smoothly executing the discharge process.

バッファタンク部8は、膜ろ過部4Aからの膜濃縮水W5を一時貯留する水槽である。バッファタンク部8は、膜濃縮水W5を一時貯留することで、例えば散水ろ床部3に急に多量の膜濃縮水W5が流入することを抑制するなど、膜濃縮水W5の返送におけるバッファ機能を有している。バッファタンク部8は、例えば排水管を有しており、制御部6の制御でその排水管から膜濃縮水W5を外部に排出することにより、内部の流量を一定に保っている。ただし、排水処理システム1Aは、必ずしもバッファタンク部8を有していなくてもよい。 The buffer tank unit 8 is a water tank that temporarily stores the membrane concentrated water W5 from the membrane filtration unit 4A. The buffer tank unit 8 temporarily stores the membrane concentrated water W5, thereby suppressing a sudden flow of a large amount of the membrane concentrated water W5 into the sprinkling filter unit 3, for example, a buffer function in returning the membrane concentrated water W5. have. The buffer tank unit 8 has, for example, a drain pipe, and the control unit 6 controls the drain pipe to discharge the membrane concentrated water W5 to the outside, thereby keeping the internal flow rate constant. However, the wastewater treatment system 1A does not necessarily have to have the buffer tank unit 8.

第2実施形態における散水ろ床接続管17と固液分離接続管18とは、バッファタンク部8に接続されている以外は、第1実施形態と同じである。第2実施形態においては、膜濃縮水W5は、バッファタンク部8から、散水ろ床接続管17と固液分離接続管18とに分配され、固液分離部2と散水ろ床部3とに返送される。固液分離部2と散水ろ床部3とに返送する膜濃縮水W5の量の制御は、第1実施形態と同様である。 The sprinkling filter connection pipe 17 and the solid-liquid separation connection pipe 18 in the second embodiment are the same as those in the first embodiment except that they are connected to the buffer tank section 8. In the second embodiment, the membrane concentrated water W5 is distributed from the buffer tank part 8 to the sprinkling filter bed connecting pipe 17 and the solid-liquid separation connecting pipe 18, and to the solid-liquid separating part 2 and the sprinkling filter bed part 3. Will be returned. The control of the amount of the membrane concentrated water W5 returned to the solid-liquid separation unit 2 and the sprinkling filter unit 3 is the same as in the first embodiment.

以上、膜ろ過部4は、第1実施形態で説明したようにクロスフロー方式でもよく、第2実施形態で説明したようにデッドエンド方式であってもよい。いずれの場合においても、散水ろ床部3(ろ材充填層33b)に膜濃縮水W5を返送することができるため、微生物の減少による排水処理の性能低下を抑制することができる。 As described above, the membrane filtration unit 4 may be of the cross flow type as described in the first embodiment or may be of the dead end type as described in the second embodiment. In any case, since the membrane concentrated water W5 can be returned to the sprinkling filter part 3 (filter medium packed layer 33b), it is possible to suppress deterioration in performance of wastewater treatment due to a decrease in microorganisms.

(変形例)
次に、変形例について説明する。変形例に係る排水処理システム1Bは、膜濃縮水W5を、散水ろ床部3にのみ返送する点で、第1実施形態とは異なる。変形例において、第1実施形態と構成が共通する箇所は、説明を省略する。
(Modification)
Next, a modified example will be described. The wastewater treatment system 1B according to the modified example is different from the first embodiment in that the membrane concentrated water W5 is returned only to the sprinkling filter part 3. In the modified example, description of parts having the same configuration as the first embodiment will be omitted.

図10は、変形例に係る排水処理システムの概略構成を示すブロック図である。図10に示すように、排水処理システム1Bは、固液分離接続管18を有さず、膜濃縮水W5を固液分離部2に返送しない。すなわち、排水処理システム1Bは、膜濃縮水W5を散水ろ床部3にのみ返送する。この場合、制御部6は、散水ろ床部3に返送する膜濃縮水W5の量(ろ床返送量Q1)のみを制御する。このような場合においても、排水処理システム1Bは、散水ろ床部3(ろ材充填層33b)に膜濃縮水W5を返送することができるため、微生物の減少による排水処理の性能低下を抑制することができる。すなわち、排水処理システム1は、第1実施形態のように、固液分離部2及び散水ろ床部3の両方に膜濃縮水W5を返送してもよいし、変形例のように、散水ろ床部3のみに膜濃縮水W5を返送してもよい。 FIG. 10: is a block diagram which shows schematic structure of the wastewater treatment system which concerns on a modification. As shown in FIG. 10, the wastewater treatment system 1B does not have the solid-liquid separation connecting pipe 18, and does not return the membrane concentrated water W5 to the solid-liquid separation unit 2. That is, the wastewater treatment system 1B returns the membrane concentrated water W5 only to the sprinkling filter part 3. In this case, the control unit 6 controls only the amount of the membrane concentrated water W5 returned to the sprinkling filter unit 3 (filter bed return amount Q1). Even in such a case, the wastewater treatment system 1B can return the membrane concentrated water W5 to the sprinkling filter part 3 (filter medium packed layer 33b), and thus suppress the deterioration of the performance of the wastewater treatment due to the reduction of microorganisms. You can That is, the wastewater treatment system 1 may return the membrane concentrated water W5 to both the solid-liquid separation unit 2 and the sprinkling filter unit 3 as in the first embodiment, or as in the modified example, the sprinkling filter. The membrane concentrated water W5 may be returned only to the floor 3.

以上、本発明の実施形態及び変形例を説明したが、これら実施形態等の内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態等の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。 Although the embodiments and modifications of the present invention have been described above, the embodiments are not limited by the contents of these embodiments and the like. Further, the components described above include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those within the so-called equivalent range. Furthermore, the components described above can be combined appropriately. Furthermore, various omissions, replacements, or changes of the constituent elements can be made without departing from the scope of the above-described embodiments and the like.

1 排水処理システム
2 固液分離部
3 散水ろ床部
4 膜ろ過部
5 水質測定部
6 制御部
11 排水管
12 処理用排水管
13 処理水管
14 ろ過水管
16 膜濃縮水管
17 散水ろ床接続管
17a、18a 膜濃縮水供給弁
18 固液分離接続管
33b ろ材充填層
35 ろ材
40 ろ過水槽
42 ろ過膜
Q1 ろ床返送量
Q2 固液分離返送量
W1 排水
W2 処理用排水
W3 処理水
W4 ろ過水
W5 膜濃縮水
1 Wastewater Treatment System 2 Solid-Liquid Separation Section 3 Sprinkling Filter Bed Section 4 Membrane Filtration Section 5 Water Quality Measuring Section 6 Control Section 11 Drain Pipe 12 Treatment Drain Pipe 13 Treated Water Pipe 14 Filtration Water Pipe 16 Membrane Concentrated Water Pipe 17 Sprinkling Filter Bed Connection Pipe 17a , 18a Membrane concentrated water supply valve 18 Solid-liquid separation connecting pipe 33b Filter medium packed bed 35 Filter medium 40 Filtration water tank 42 Filtration membrane Q1 Filter bed return quantity Q2 Solid-liquid separation return quantity W1 Wastewater W2 Treatment wastewater W3 Treated water W4 Filtrated water W5 membrane Concentrated water

Claims (6)

微生物を担持させた複数のろ材を有するろ材充填層を有し、前記ろ材充填層の上部に処理用排水を散布して前記ろ材充填層内に前記処理用排水を流下させ、前記微生物により前記処理用排水を生物処理して得た処理水を流出する散水ろ床部と、
ろ過膜を有し、前記散水ろ床部の後段に設けられて、前記処理水を、前記ろ過膜を透過してない膜濃縮水と、前記ろ過膜を透過したろ過水とに分離する膜ろ過部と、
前記膜ろ過部と前記散水ろ床部とを接続し、前記膜濃縮水を前記ろ材充填層に返送する散水ろ床接続管と、
前記処理水又は前記ろ過水の水質を測定する水質測定部と、
前記水質測定部の測定結果に基づき、前記ろ材充填層への前記膜濃縮水の返送量を決定する制御部と、を有し、
前記水質測定部は、前記処理水のアンモニア性窒素濃度、前記処理水の溶存酸素量、前記ろ過水のアンモニア性窒素濃度、及び前記ろ過水の溶存酸素量のうち、少なくともいずれか1つを検出し、前記制御部は、検出された前記処理水のアンモニア性窒素濃度、前記処理水の溶存酸素量、前記ろ過水のアンモニア性窒素濃度、及び前記ろ過水の溶存酸素量のうち、少なくともいずれか1つに基づき、前記ろ材充填層への前記膜濃縮水の返送量を決定し、
前記制御部は、前記アンモニア性窒素濃度が所定濃度より高くなった場合、又は前記溶存酸素量が所定量より減少した場合に、前記ろ材充填層への前記膜濃縮水の返送量を増加させる、排水処理システム。
Having a filter medium packed layer having a plurality of filter media supporting microorganisms, the treatment wastewater is sprinkled on the upper part of the filter medium packed layer to allow the treatment wastewater to flow down in the filter medium packed layer, and the treatment by the microorganisms. A sprinkling filter part for discharging treated water obtained by biologically treating industrial wastewater;
Membrane filtration that has a filtration membrane and is provided in the latter stage of the sprinkling filter section, and separates the treated water into membrane concentrated water that has not passed through the filtration membrane and filtration water that has passed through the filtration membrane. Department,
A sprinkling filter connecting pipe that connects the membrane filtering unit and the sprinkling filter unit and returns the membrane concentrated water to the filter medium packed bed,
A water quality measuring unit for measuring the water quality of the treated water or the filtered water,
Based on the measurement result of the water quality measurement unit, a control unit that determines the return amount of the membrane concentrated water to the filter medium packed layer,
The water quality measuring unit detects at least one of the ammonia nitrogen concentration of the treated water, the dissolved oxygen amount of the treated water, the ammonia nitrogen concentration of the filtered water, and the dissolved oxygen amount of the filtered water. Then, the control unit, at least one of the detected ammonia nitrogen concentration of the treated water, the dissolved oxygen amount of the treated water, the ammonia nitrogen concentration of the filtered water, and the dissolved oxygen amount of the filtered water. Based on one, determine the return amount of the membrane concentrated water to the filter medium packed bed,
The control unit, when the ammonia nitrogen concentration is higher than a predetermined concentration, or when the dissolved oxygen amount is lower than a predetermined amount, increases the return amount of the membrane concentrated water to the filter medium packed layer, Wastewater treatment system.
前記水質測定部は、前記処理用排水の水質も測定し、
前記制御部は、前記処理用排水と、前記処理水又は前記ろ過水との間の水質の比較結果に基づき、前記ろ材充填層への前記膜濃縮水の返送量を決定する、請求項1に記載の排水処理システム。
The water quality measuring unit also measures the water quality of the treatment wastewater,
The control unit determines an amount of the membrane-concentrated water to be returned to the filter medium-packed layer based on a comparison result of water quality between the treatment wastewater and the treated water or the filtered water. Wastewater treatment system described.
前記散水ろ床部よりも前段に設けられ、排水を固形成分と前記処理用排水とに分離する固液分離部と、
前記膜ろ過部と前記固液分離部とを接続し、前記膜濃縮水を前記固液分離部に返送する固液分離接続管と、をさらに有し、
前記制御部は、前記水質測定部の測定結果に基づき、前記ろ材充填層と前記固液分離部とへの前記膜濃縮水の返送量の割合を決定する、請求項1又は請求項2に記載の排水処理システム。
A solid-liquid separation unit that is provided in a stage before the sprinkling filter unit and separates wastewater into solid components and the treatment wastewater,
A solid-liquid separation connection pipe that connects the membrane filtration unit and the solid-liquid separation unit, and returns the membrane concentrated water to the solid-liquid separation unit,
The said control part determines the ratio of the return amount of the said membrane concentrated water to the said filter medium filling layer and the said solid-liquid separation part based on the measurement result of the said water quality measurement part, The claim 1 or claim 2 . Wastewater treatment system.
微生物を担持させた複数のろ材を有するろ材充填層を有し、前記ろ材充填層の上部に処理用排水を散布して前記ろ材充填層内に前記処理用排水を流下させ、前記微生物により前記処理用排水を生物処理して得た処理水を流出する散水ろ床部と、
ろ過膜を有し、前記散水ろ床部の後段に設けられて、前記処理水を、前記ろ過膜を透過してない膜濃縮水と、前記ろ過膜を透過したろ過水とに分離する膜ろ過部と、
前記膜ろ過部と前記散水ろ床部とを接続し、前記膜濃縮水を前記ろ材充填層に返送する散水ろ床接続管と、
前記処理水又は前記ろ過水の水質を測定する水質測定部と、
前記水質測定部の測定結果に基づき、前記ろ材充填層への前記膜濃縮水の返送量を決定する制御部と、を有し、
前記散水ろ床部よりも前段に設けられ、排水を固形成分と前記処理用排水とに分離する固液分離部と、
前記膜ろ過部と前記固液分離部とを接続し、前記膜濃縮水を前記固液分離部に返送する固液分離接続管と、をさらに有し、
前記制御部は、前記水質測定部の測定結果に基づき、前記ろ材充填層と前記固液分離部とへの前記膜濃縮水の返送量の割合を決定し、
前記水質測定部は、前記処理水又は前記ろ過水のアンモニア性窒素濃度、又は溶存酸素量を検出し、前記制御部は、前記アンモニア性窒素濃度が所定濃度より高くなった場合、又は前記溶存酸素量が所定量より減少した場合に、前記ろ材充填層への前記膜濃縮水の返送量の割合を高くし、前記固液分離部への前記膜濃縮水の返送量の割合を低くする、排水処理システム。
Having a filter medium packed layer having a plurality of filter media supporting microorganisms, the treatment wastewater is sprinkled on the upper part of the filter medium packed layer to allow the treatment wastewater to flow down in the filter medium packed layer, and the treatment by the microorganisms. A sprinkling filter part for discharging treated water obtained by biologically treating industrial wastewater;
Membrane filtration that has a filtration membrane and is provided in the subsequent stage of the sprinkling filter section, and separates the treated water into membrane concentrated water that has not passed through the filtration membrane and filtration water that has passed through the filtration membrane. Department,
A sprinkling filter connection pipe that connects the membrane filtration unit and the sprinkling filter unit and returns the membrane concentrated water to the filter medium packed bed,
A water quality measuring unit for measuring the water quality of the treated water or the filtered water,
Based on the measurement result of the water quality measurement unit, a control unit that determines the return amount of the membrane concentrated water to the filter medium packed bed,
A solid-liquid separation unit that is provided in a stage before the sprinkling filter unit and separates wastewater into solid components and the treatment wastewater,
A solid-liquid separation connection pipe that connects the membrane filtration unit and the solid-liquid separation unit, and returns the membrane concentrated water to the solid-liquid separation unit,
The control unit, based on the measurement result of the water quality measurement unit, determines the ratio of the amount of the membrane concentrated water returned to the filter medium packed layer and the solid-liquid separation unit,
The water quality measurement unit detects the concentration of ammonia nitrogen in the treated water or the filtered water, or the amount of dissolved oxygen, the control unit, when the concentration of ammonia nitrogen is higher than a predetermined concentration, or the dissolved oxygen When the amount is less than a predetermined amount, the ratio of the amount of the membrane concentrated water returned to the filter medium packed bed is increased, and the ratio of the amount of the membrane concentrated water returned to the solid-liquid separation unit is decreased, drainage Processing system.
前記制御部は、前記ろ材充填層を逆洗浄した直後に、前記ろ材充填層への前記膜濃縮水の返送量を増加させる、請求項1から請求項のいずれか1項に記載の排水処理システム。 The wastewater treatment according to any one of claims 1 to 4 , wherein the control unit increases the return amount of the membrane concentrated water to the filter medium packed layer immediately after backwashing the filter medium packed layer. system. 前記ろ過膜は、精密ろ過膜、又は限外ろ過膜である、請求項1から請求項のいずれか1項に記載の排水処理システム。 The wastewater treatment system according to any one of claims 1 to 5 , wherein the filtration membrane is a microfiltration membrane or an ultrafiltration membrane.
JP2015248034A 2015-12-18 2015-12-18 Wastewater treatment system Active JP6744714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015248034A JP6744714B2 (en) 2015-12-18 2015-12-18 Wastewater treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015248034A JP6744714B2 (en) 2015-12-18 2015-12-18 Wastewater treatment system

Publications (2)

Publication Number Publication Date
JP2017109195A JP2017109195A (en) 2017-06-22
JP6744714B2 true JP6744714B2 (en) 2020-08-19

Family

ID=59080295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015248034A Active JP6744714B2 (en) 2015-12-18 2015-12-18 Wastewater treatment system

Country Status (1)

Country Link
JP (1) JP6744714B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6934403B2 (en) * 2017-11-20 2021-09-15 三機工業株式会社 Watering device in watering type filter floor device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590474B2 (en) * 1987-04-10 1997-03-12 日本鋼管株式会社 Wastewater treatment method
JPH082439B2 (en) * 1990-06-13 1996-01-17 日立造船株式会社 Wastewater treatment equipment
JPH05253597A (en) * 1992-03-10 1993-10-05 Meidensha Corp Nitrification reaction control device in activated sludge treatment
JPH091172A (en) * 1995-06-20 1997-01-07 Kurita Water Ind Ltd Biological treatment device
JP2004025092A (en) * 2002-06-27 2004-01-29 Takuma Co Ltd Hardly decomposable substance treatment device
JP5062976B2 (en) * 2005-06-15 2012-10-31 旭化成ケミカルズ株式会社 Waste water treatment apparatus and waste water treatment method
JP2008012409A (en) * 2006-07-04 2008-01-24 Sumiju Kankyo Engineering Kk Waste water treatment apparatus and waste water treatment method
JP5300898B2 (en) * 2011-03-15 2013-09-25 株式会社東芝 Organic wastewater treatment equipment
US20140332465A1 (en) * 2012-03-23 2014-11-13 Swing Corporation Method and apparatus for treating oil containing wastewater
MX2015011261A (en) * 2013-03-01 2016-04-07 Paradigm Environmental Technologies Inc Wastewater treatment process and system.

Also Published As

Publication number Publication date
JP2017109195A (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP5676757B2 (en) Sewage treatment system
EP2029254B1 (en) Apparatus and method for separating and filtering particles and organisms from a high volume flowing liquid
US6110389A (en) Filtration unit
US9440864B2 (en) Dissolved air flotation-type pretreatment apparatus
US20060213834A1 (en) Method for cleaning separation membrane
KR101565593B1 (en) Non-point source contaminant treatment device
EP2319808B1 (en) Method for treatment of water
US8323514B2 (en) Method and system for cleaning filter media support structures
JP6744714B2 (en) Wastewater treatment system
KR100949058B1 (en) Filtering device
RO201400001U1 (en) Device and method for biological treatment and post-treatment of waste water
US20070051675A1 (en) Filter device and method for filtering
JP2002361049A (en) Apparatus for treating waste water when car is washed
KR101594197B1 (en) Filtering device having a cleaning function
JP4046445B2 (en) Wastewater treatment method
JP2005152777A (en) Filtration tank
JPH04271895A (en) Biological filtration device for organic sewage
JPH10128374A (en) Biological treatment method
JP3605995B2 (en) Biological activated carbon filtration equipment
JPH08257314A (en) Remodeling of sand filter basin
JP6059868B2 (en) Washing water circulation type bio toilet
KR20170080131A (en) Sewage Wastewater for the screen device
CZ53999A3 (en) Reactor for bio-aeration
JP2005152778A (en) Filtration tank and method for cleaning inside of filtration tank
KR200227931Y1 (en) Strainer block improved on backwashing ability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200731

R150 Certificate of patent or registration of utility model

Ref document number: 6744714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250