JP6744099B2 - Method for producing hydrocarbon fraction - Google Patents

Method for producing hydrocarbon fraction Download PDF

Info

Publication number
JP6744099B2
JP6744099B2 JP2016004664A JP2016004664A JP6744099B2 JP 6744099 B2 JP6744099 B2 JP 6744099B2 JP 2016004664 A JP2016004664 A JP 2016004664A JP 2016004664 A JP2016004664 A JP 2016004664A JP 6744099 B2 JP6744099 B2 JP 6744099B2
Authority
JP
Japan
Prior art keywords
catalyst
group
metal
oil
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016004664A
Other languages
Japanese (ja)
Other versions
JP2017125114A (en
Inventor
雄介 川田
雄介 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2016004664A priority Critical patent/JP6744099B2/en
Publication of JP2017125114A publication Critical patent/JP2017125114A/en
Application granted granted Critical
Publication of JP6744099B2 publication Critical patent/JP6744099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Description

本発明は、生物由来の油脂成分からなる被処理油を特定の触媒を用いて水素化処理する炭化水素留分の製造方法に関する。 TECHNICAL FIELD The present invention relates to a process for producing a hydrocarbon fraction, which comprises subjecting an oil to be treated composed of a fat component derived from a living body to a hydrotreatment using a specific catalyst.

地球温暖化の防止対策として、バイオマスエネルギーの有効活用が注目されている。バイオマスエネルギーの有効活用は、輸送用燃料の分野においても種々検討がなされている。例えば、第一世代水素化バイオディーゼルとして知られている脂肪酸メチルエステルは、動植物油中のトリグリセリドや脂肪酸に対し、塩基性触媒によってメタノールとのエステル交換を行うことで製造されている。 As a measure to prevent global warming, the effective use of biomass energy is drawing attention. Various studies have been made on the effective use of biomass energy also in the field of transportation fuels. For example, fatty acid methyl esters known as first generation hydrogenated biodiesel are produced by transesterifying triglycerides and fatty acids in animal and vegetable oils with methanol using a basic catalyst.

しかし、脂肪酸メチルエステルは酸素原子を含有しているため、ディーゼル油として利用した場合には、酸素分がエンジン材質に与える悪影響が懸念される。また、塩基性触媒を用いてトリグリセリド等とメタノールとをエステル交換する方法では、副生成物のグリセリンやアルカリ排水の処理が必要であるという問題がある。そこで、動植物由来の油脂成分について水素化処理を行い、炭化水素油からなる燃料油を製造する方法が検討されている。 However, since the fatty acid methyl ester contains oxygen atoms, when used as diesel oil, there is a concern that the oxygen content may adversely affect the engine material. In addition, the method of transesterifying triglyceride or the like with methanol using a basic catalyst has a problem that it is necessary to treat glycerin as a by-product and alkaline waste water. Therefore, a method of producing a fuel oil composed of a hydrocarbon oil by subjecting an oil and fat component derived from animals and plants to a hydrogenation treatment has been studied.

例えば、特許文献1には、バイオマス原料から水素化処理条件下、CoMo触媒又はNiMo触媒の存在下で生成物の混合物を得るディーゼル燃料用の添加剤を製造する方法が開示されている。しかし、当該方法による生成物は本質的にn−パラフィンであり、そのままの状態では、炭化水素留分としての基材として扱いづらく、その使用が限定されることが考えられる。 For example, Patent Document 1 discloses a method for producing an additive for diesel fuel, which obtains a mixture of products from a biomass raw material under hydrotreating conditions in the presence of a CoMo catalyst or a NiMo catalyst. However, the product obtained by the method is essentially n-paraffin, and in the state as it is, it is difficult to handle as a base material as a hydrocarbon fraction, and it is considered that its use is limited.

また、特許文献2には、原料油を単一の工程で水素化脱酸素化処理及び水素化異性化処理することを含む、動植物油脂からのディーゼル燃料の製造方法が開示されており、生成物として、イソ−パラフィンが得られている。しかし、その水素化処理で用いている触媒は、担持金属として貴金属の白金、パラジウムを用いており、触媒耐久性の点で、事前の不純物の除去を行う必要があるなど、その取扱いに関して難点がある。 Further, Patent Document 2 discloses a method for producing a diesel fuel from animal and vegetable fats and oils, which comprises subjecting a feedstock oil to a hydrodeoxygenation treatment and a hydroisomerization treatment in a single step. Is obtained as iso-paraffin. However, the catalyst used in the hydrotreatment uses precious metals platinum and palladium as supporting metals, and in terms of catalyst durability, it is necessary to remove impurities in advance. is there.

さらに、特許文献3には、生成物由来の油脂を水素化脱酸素化工程、続く水素化異性化工程の2段階反応により、イソ−パラフィンを得る方法が開示されている。しかし、このプロセスは複数の工程からなり、両工程では、異なる触媒及び別々のユニットを必要とし、それぞれの反応条件も異なり、プロセス全体的が複雑となる。 Further, Patent Document 3 discloses a method for obtaining iso-paraffin by a two-step reaction of a fat and oil derived from a product, which is a hydrodeoxygenation step and a subsequent hydroisomerization step. However, this process consists of multiple steps, both of which require different catalysts and separate units, and different reaction conditions, complicating the overall process.

米国特許第5705722号明細書US Pat. No. 5,705,722 米国特許出願公開第2006/0207166号明細書U.S. Patent Application Publication No. 2006/0207166 特開2015−4066号公報JP, 2015-4066, A

そこで、本発明は、生物由来の油脂成分からなる被処理油を水素化精製するに際し、特定の触媒を用いることにより、単一の工程で、イソ−パラフィンを含む炭化水素留分を製造する方法を提供することを目的とする。 Therefore, the present invention is a method for producing a hydrocarbon fraction containing iso-paraffin in a single step by using a specific catalyst when hydrotreating an oil to be treated consisting of a fat component derived from a living organism. The purpose is to provide.

本発明者は、上記目的を達成するために検討を行ったところ、無機酸化物担体上に、周期律表第6族金属から選ばれた少なくとも1種を含む化合物と、周期律表第8族金属から選ばれた少なくとも1種を含む化合物と、有機酸又は多価アルコールとを含み、比表面積、細孔容積、及び平均細孔直径が特定の範囲内である水素化処理触媒の存在下、水素と生物由来の油脂成分からなる原料油を特定の条件下で接触させることによって、単一の工程で、当該油脂成分の水素化脱酸素及び水素化異性化が進行し、イソ−パラフィンを含む炭化水素油を得ることができることを見出し、本発明を完成した。 The inventors of the present invention conducted a study to achieve the above object, and found that a compound containing at least one metal selected from Group 6 metals of the Periodic Table on the inorganic oxide carrier and Group 8 Group of the Periodic Table. In the presence of a hydrotreating catalyst containing a compound containing at least one selected from metals, an organic acid or a polyhydric alcohol, and having a specific surface area, a pore volume, and an average pore diameter within a specific range, By contacting a feedstock consisting of hydrogen and a biological fat component under specific conditions, hydrodeoxygenation and hydroisomerization of the fat component proceed in a single step, and iso-paraffin is contained. They have found that a hydrocarbon oil can be obtained, and completed the present invention.

すなわち、本発明は、下記の炭化水素留分の製造方法に関するものである。
[1] 無機酸化物担体上に、周期律表第6族金属から選ばれた少なくとも1種を含む化合物と、周期律表第8族金属から選ばれた少なくとも1種を含む化合物と、有機酸又は多価アルコールとを含み、窒素吸着法で測定した比表面積が100〜400m/gであり、水銀圧入法で測定した細孔容積が0.2〜0.6mL/gであり、水銀圧入法で測定した平均細孔直径が50〜200Åである水素化処理触媒を用いて、
水素の存在下、生物由来の油脂成分からなる原料油を、水素分圧2〜10MPa、反応温度150〜400℃、水素油比100〜2000NL/L、及び液空間速度約0.1〜5.0h−1の条件で水素化処理することを特徴とする炭化水素留分の製造方法。
[2] 6族金属の含有量が、触媒基準、酸化物換算で、10〜40質量%であり、8族金属の含有量が、触媒基準、酸化物換算で、1〜15質量%であり、有機酸又は多価アルコール由来の炭素の担持量が、触媒基準で、2〜10質量%である、前記[1]の炭化水素留分の製造方法。
[3] 前記触媒が、さらにリンを含む、前記[1]又は[2]の炭化水素留分の製造方法。
[4] 前記無機酸化物担体が、さらにリンを含有する、前記[3]の炭化水素留分の製造方法。
[5] 前記有機酸がクエン酸である、前記[1]〜[4]のいずれかの炭化水素留分の製造方法。
That is, the present invention relates to the following method for producing a hydrocarbon fraction.
[1] A compound containing at least one metal selected from Group 6 metals of the periodic table, a compound containing at least one metal selected from Group 8 metals of the periodic table, and an organic acid on an inorganic oxide carrier. Or a polyhydric alcohol, a specific surface area measured by a nitrogen adsorption method of 100 to 400 m 2 /g, a pore volume measured by a mercury injection method of 0.2 to 0.6 mL/g, and a mercury injection method. Using a hydrotreating catalyst having an average pore diameter of 50 to 200Å measured by the
In the presence of hydrogen, a feedstock oil composed of a fat component derived from a living organism was used to obtain a hydrogen partial pressure of 2 to 10 MPa, a reaction temperature of 150 to 400° C., a hydrogen oil ratio of 100 to 2000 NL/L, and a liquid space velocity of about 0.1 to 5. A process for producing a hydrocarbon fraction, which comprises hydrotreating under the condition of 0 h -1 .
[2] The content of Group 6 metal is 10 to 40% by mass based on the catalyst, based on oxide, and the content of Group 8 metal is 1 to 15% by mass based on the catalyst, based on oxide. The method for producing a hydrocarbon fraction according to the above [1], wherein the supported amount of carbon derived from an organic acid or a polyhydric alcohol is 2 to 10% by mass based on the catalyst.
[3] The method for producing a hydrocarbon fraction according to [1] or [2], wherein the catalyst further contains phosphorus.
[4] The method for producing a hydrocarbon fraction according to [3], wherein the inorganic oxide carrier further contains phosphorus.
[5] The method for producing a hydrocarbon fraction according to any one of [1] to [4], wherein the organic acid is citric acid.

本発明に係る炭化水素留分の製造方法は、特定の水素化処理触媒を用い、特定の条件下で水素と接触させることにより、単一の工程で、生物由来の油脂成分からなる原料油からイソ−パラフィンを含む炭化水素油を得ることができる。 The method for producing a hydrocarbon fraction according to the present invention, using a specific hydrotreating catalyst, by bringing it into contact with hydrogen under specific conditions, in a single step, from a feedstock oil consisting of a fat component derived from a living organism, Hydrocarbon oils containing iso-paraffins can be obtained.

本発明に係る炭化水素留分の製造方法は、無機酸化物担体上に、周期律表第6族金属から選ばれた少なくとも1種を含む化合物と、周期律表第8族金属から選ばれた少なくとも1種を含む化合物と、有機酸又は多価アルコールとを含み、窒素吸着法で測定した比表面積が100〜400m/gであり、水銀圧入法で測定した細孔容積が0.2〜0.6mL/gであり、水銀圧入法で測定した平均細孔直径が50〜200Åである水素化処理触媒を用いて、水素の存在下、生物由来の油脂成分からなる原料油を、水素分圧2〜10MPa、反応温度150〜400℃、水素油比100〜2000NL/L、及び液空間速度約0.1〜5.0h−1の条件で水素化処理することを特徴とする。
以下、詳述する。
The method for producing a hydrocarbon fraction according to the present invention is selected from a compound containing at least one metal selected from Group 6 metals of the periodic table on an inorganic oxide support, and a metal selected from Group 8 metals of the periodic table. It contains a compound containing at least one kind and an organic acid or a polyhydric alcohol, has a specific surface area of 100 to 400 m 2 /g as measured by a nitrogen adsorption method, and has a pore volume of 0.2 to as measured by a mercury intrusion method. 0.6 mL/g, and using a hydrotreating catalyst having an average pore diameter of 50 to 200 Å measured by mercury porosimetry, a feed oil composed of a fat component derived from a living organism was converted into a hydrogen content in the presence of hydrogen. The hydrotreatment is characterized in that the pressure is 2 to 10 MPa, the reaction temperature is 150 to 400° C., the hydrogen oil ratio is 100 to 2000 NL/L, and the liquid hourly space velocity is about 0.1 to 5.0 h −1 .
The details will be described below.

<原料油>
本発明において原料油として用いられる生物由来の油脂成分は、生物から抽出された油脂成分であれば特に限定されるものではなく、動物や植物、藻類等から抽出された油脂成分自体であってもよく、当該油脂成分を他の目的に使用した後の廃油であってもよい。植物由来の油脂成分としては、菜種油、大豆油、パーム油、パーム核油、コーン油、ココナッツ油、オリーブ油、及びアマニ油等が挙げられる。動物由来の油脂成分としては、ニシン油、イワシ油、サバ油等の魚油、ラード、ヘット等の獣脂等が挙げられる。原料油として用いる生物由来の油脂成分は、1種類のみであってもよく、2種類以上の混合物であってもよい。
<Feed oil>
The biological fat component used as the feedstock in the present invention is not particularly limited as long as it is a fat component extracted from a living organism, and may be a fat component itself extracted from animals, plants, algae or the like. Of course, it may be a waste oil after using the oil component for other purposes. Examples of plant-derived oils and fats include rapeseed oil, soybean oil, palm oil, palm kernel oil, corn oil, coconut oil, olive oil, and linseed oil. Examples of the oil and fat component derived from animals include fish oil such as herring oil, sardine oil and mackerel oil, and tallow such as lard and het. The biological fat component used as the raw material oil may be only one kind, or may be a mixture of two or more kinds.

原料油としては、生物由来の油脂成分100質量%のものであってもよく、生物由来の油脂成分に加えて、原油を精製して得られる灯油や軽油などの石油系留分を含有してもよい。さらに、フィシャー・トロプシュ反応で得られる生成油や、一般的な有機溶剤を含有してもよい。原料油に占める生物由来の油脂成分の量としては、特に限定されるものではなく、例えば、極少量から50質量%程度までにすることができる。通常は、灯油や軽油等の石油留分に対して、生物由来の油脂成分を2〜15質量%、好適には5〜10質量%程度含有させる。 The feedstock oil may be 100% by mass of a biological fat component, and in addition to the biological fat component, it contains a petroleum fraction such as kerosene or light oil obtained by refining crude oil. Good. Further, the product oil obtained by the Fischer-Tropsch reaction and a general organic solvent may be contained. The amount of the biologically derived oil and fat component in the raw material oil is not particularly limited, and can be, for example, an extremely small amount to about 50% by mass. Usually, a petroleum fraction such as kerosene or light oil is allowed to contain a biologically-derived oil and fat component in an amount of 2 to 15% by mass, preferably 5 to 10% by mass.

<水素化処理触媒>
本発明において用いられる水素化処理触媒は、無機酸化物担体上に活性金属を担持したものである。当該無機酸化物担体としては、各種無機酸化物担体を用いることができるが、主成分がアルミナである無機酸化物が好ましい。担体に用いるアルミナは、α−アルミナ、γ−アルミナ、δ−アルミナ、アルミナ水和物等の種々のアルミナを使用することができるが、多孔質で高比表面積であるアルミナが好ましく、中でもγ−アルミナが適している。アルミナの純度は、約98質量%以上、好ましくは約99質量%以上のものが適している。
<Hydrotreatment catalyst>
The hydrotreating catalyst used in the present invention is one in which an active metal is supported on an inorganic oxide carrier. As the inorganic oxide carrier, various inorganic oxide carriers can be used, but an inorganic oxide whose main component is alumina is preferable. As the alumina used as the carrier, various aluminas such as α-alumina, γ-alumina, δ-alumina, and alumina hydrate can be used, but porous alumina having a high specific surface area is preferable, and among them, γ- Alumina is suitable. Alumina having a purity of about 98% by mass or more, preferably about 99% by mass or more is suitable.

本発明において用いられる水素化処理触媒を製造するための無機酸化物担体としては、後述する6族金属、8族金属の分散性を向上させ活性を向上させることができるため、無機酸化物担体としては、リン酸化合物を含有するものが好ましい。無機酸化物担体中のリン酸化物の含有量は、担体を基準として15質量%以下であることが好ましく、通常0.1〜15質量%の範囲であり、より好ましくは0.5〜15質量%、更に好ましくは1〜13質量%、より更に好ましくは1〜10質量%である。リン酸化物の含有量が前記範囲であることにより、より活性の高い水素化処理触媒が得られる。 As the inorganic oxide carrier for producing the hydrotreating catalyst used in the present invention, since it is possible to improve the dispersibility of the Group 6 metal and Group 8 metal described later to improve the activity, the inorganic oxide carrier is used as an inorganic oxide carrier. Are preferably those containing a phosphoric acid compound. The content of phosphorus oxide in the inorganic oxide carrier is preferably 15% by mass or less based on the carrier, usually in the range of 0.1 to 15% by mass, and more preferably 0.5 to 15% by mass. %, more preferably 1 to 13% by mass, still more preferably 1 to 10% by mass. When the phosphorus oxide content is within the above range, a hydrotreating catalyst having higher activity can be obtained.

担体とするアルミナを主成分とする無機酸化物にリン酸化物を含有させる方法としては、特に調製法を限定するものではなく、平衡吸着法、共沈法、混練法等により行うことができる。本発明において用いられる水素化処理触媒を製造するための無機酸化物担体としては、活性の高い水素化処理触媒が得られる点で、担体の原料であるアルミナゲルとリン酸化物の原料とを混練する混練法によることが好ましく、その際、リン酸化物の原料は水溶液として用いることが好ましい。リン酸化物の原料としては、種々の化合物を用いることができる。例えば、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸が挙げられるがオルトリン酸が好ましい。 The method for incorporating phosphorus oxide into the inorganic oxide containing alumina as a main component as a carrier is not particularly limited to a preparation method, and may be an equilibrium adsorption method, a coprecipitation method, a kneading method, or the like. As the inorganic oxide carrier for producing the hydrotreating catalyst used in the present invention, an alumina gel which is a raw material of the carrier and a raw material of a phosphorus oxide are kneaded in that a highly active hydrotreating catalyst can be obtained. It is preferable that the kneading method is used, and the raw material of the phosphorus oxide is preferably used as an aqueous solution. Various compounds can be used as the raw material of the phosphorus oxide. Examples thereof include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid and tetraphosphoric acid, with orthophosphoric acid being preferred.

本発明で用いる無機酸化物担体としては、主成分であるアルミナに、リン酸化物の他、他の酸化物成分を添加することができる。当該他の酸化物成分としては、ゼオライト、ボリア、シリカ及びジルコニアから選ばれる一種以上をあげることができる。このうちゼオライトとしては、フォージャサイトX型ゼオライト、フォージャサイトY型ゼオライト、βゼオライト、モルデナイト型ゼオライト、ZSM系ゼオライトが好ましい。前記のボリア、シリカ、ジルコニアは、一般に、この種の触媒担体成分として使用されるものを使用することができる。前記のゼオライト、ボリア、シリカ、及びジルコニアは、それぞれ単独で、あるいは2種以上を組合せて使用できる。 As the inorganic oxide carrier used in the present invention, in addition to phosphorus oxide, other oxide components can be added to alumina as the main component. Examples of the other oxide component include one or more selected from zeolite, boria, silica and zirconia. Of these, as the zeolite, faujasite X-type zeolite, faujasite Y-type zeolite, β zeolite, mordenite-type zeolite, and ZSM-based zeolite are preferable. As the above-mentioned boria, silica and zirconia, those generally used as a catalyst carrier component of this kind can be used. The above zeolite, boria, silica, and zirconia can be used alone or in combination of two or more.

本発明で用いる無機酸化物担体のうち、アルミナ以外の成分の配合量は、通常、アルミナが65質量%より多く99.5質量%以下に対し、0.5質量%以上35質量%未満であり、好ましくはアルミナが約70〜99.5質量%に対し、約0.5〜30質量%であり、より好ましくはアルミナが約85〜99.5質量%に対し、約0.5〜15質量%である。これらの成分が前記の範囲であれば、ブレンステッド酸点やルイス酸点を十分に付与でき、6族金属、特にモリブデンを高分散できる。 In the inorganic oxide carrier used in the present invention, the content of components other than alumina is usually 0.5% by mass or more and less than 35% by mass with respect to alumina in an amount of more than 65% by mass and 99.5% by mass or less. , Preferably about 0.5 to 30% by mass with respect to about 70 to 99.5% by mass of alumina, and more preferably about 0.5 to 15% by mass with respect to about 85 to 99.5% by mass of alumina. %. When these components are within the above ranges, Bronsted acid points and Lewis acid points can be sufficiently provided, and Group 6 metal, especially molybdenum, can be highly dispersed.

本発明で用いる無機酸化物担体は、例えば、400℃〜700℃で0.5〜10時間焼成して調製される。本発明において用いられる水素化処理触媒は、後述するように、無機酸化物担体に活性成分を担持させた後は、200℃以下で乾燥だけで調製するため、触媒の機械特性(側面破壊強度や最密充填かさ密度等)を得るために、無機酸化物担体を焼成する。このとき、400℃未満で0.5時間未満の焼成では十分な機械強度を得ることができず、700℃を超えると高温度下で10時間を超える長時間の焼成を行っても、この効果が飽和するばかりでなく、焼き締めにより、無機酸化物担体の比表面積、細孔容積、平均細孔直径と言った特性を却って低下してしまうおそれがある。 The inorganic oxide carrier used in the present invention is prepared, for example, by firing at 400°C to 700°C for 0.5 to 10 hours. As will be described later, the hydrotreating catalyst used in the present invention is prepared only by drying at 200° C. or lower after supporting the active component on the inorganic oxide carrier, and therefore the mechanical properties of the catalyst (side fracture strength and The inorganic oxide support is calcined to obtain the closest packed bulk density, etc.). At this time, sufficient mechanical strength cannot be obtained by firing at less than 400° C. for less than 0.5 hours, and even if firing is performed at a high temperature for more than 10 hours at a high temperature of more than 700° C., this effect In addition to being saturated, there is a possibility that the characteristics such as the specific surface area, the pore volume, and the average pore diameter of the inorganic oxide carrier may be deteriorated due to baking.

本発明で用いる無機酸化物担体の比表面積、細孔容積、及び平均細孔直径は、特に制限されないが、活性の高い水素化処理触媒にするためには、比表面積が230〜500m/g、好ましくは270〜500m/g、細孔容積0.5〜1mL/g、好ましくは0.55〜0.9mL/g、平均細孔直径40〜180Åであるものが適している。この理由については次の通りである。 The specific surface area, pore volume, and average pore diameter of the inorganic oxide carrier used in the present invention are not particularly limited, but in order to obtain a highly active hydrotreating catalyst, the specific surface area is 230 to 500 m 2 /g. , 270 to 500 m 2 /g, pore volume of 0.5 to 1 mL/g, preferably 0.55 to 0.9 mL/g, and average pore diameter of 40 to 180Å are suitable. The reason for this is as follows.

含浸溶液中で6族金属と8族金属は錯体を形成していると考えられるため、無機酸化物担体の比表面積を230m/g以上とすることにより、含浸の際、錯体の嵩高さのために金属の高分散化を担保することができる。また、比表面積が500m/g以下であれば、細孔直径が極端に小さくならないため、触媒の細孔直径も小さくならず、好ましい。 Since it is considered that the Group 6 metal and the Group 8 metal form a complex in the impregnation solution, by setting the specific surface area of the inorganic oxide support to 230 m 2 /g or more, the bulkiness of the complex during impregnation can be improved. Therefore, high dispersion of metal can be secured. Further, if the specific surface area is 500 m 2 /g or less, the pore diameter does not become extremely small, so that the catalyst pore diameter does not become small either, which is preferable.

無機酸化物担体の細孔容積が0.5mL/g以上では、通常の含浸法で触媒を調製する場合、細孔容積内に入り込む溶媒が少量とならないため、好ましい。溶媒が少量であると、活性金属化合物の溶解性が悪くなり、金属の分散性が低下し低活性な触媒となるおそれがある。活性金属化合物の溶解性を上げるためには、硝酸等の酸を多量に加える方法があるが、余り加えすぎると担体の低表面積化が起こり、活性低下の主原因となる。細孔容積が1mL/g以下であれば、比表面積が小さくならず、活性金属の分散性が良くなり、活性の高い触媒となるため、好ましい。 When the pore volume of the inorganic oxide carrier is 0.5 mL/g or more, when preparing a catalyst by a normal impregnation method, a small amount of solvent enters the pore volume, which is preferable. When the amount of the solvent is small, the solubility of the active metal compound is deteriorated, the dispersibility of the metal is lowered, and the catalyst may have low activity. In order to increase the solubility of the active metal compound, there is a method of adding a large amount of acid such as nitric acid, but if it is added too much, the surface area of the carrier becomes low, which is the main cause of the activity decrease. When the pore volume is 1 mL/g or less, the specific surface area is not reduced, the dispersibility of the active metal is improved, and the catalyst becomes highly active, which is preferable.

無機酸化物担体の平均細孔直径が40Å以上では、活性金属を担持した触媒の細孔直径も小さくならず、好ましい。触媒の細孔直径が小さいと、反応物の触媒細孔内への拡散が不十分となり、活性が低下するおそれがある。無機酸化物担体の平均細孔直径が180Å以下であれば、触媒の比表面積が小さくならず、好ましい。触媒の比表面積が小さいと、活性金属の分散性が悪くなり、活性の低い触媒となるおそれがある。 When the average pore diameter of the inorganic oxide carrier is 40Å or more, the pore diameter of the catalyst supporting the active metal is not small, which is preferable. When the pore diameter of the catalyst is small, the diffusion of the reactant into the catalyst pores may be insufficient and the activity may be reduced. When the average pore diameter of the inorganic oxide carrier is 180 Å or less, the specific surface area of the catalyst does not decrease, which is preferable. When the specific surface area of the catalyst is small, the dispersibility of the active metal deteriorates, and the catalyst may have low activity.

本発明において用いられる水素化処理触媒は、前記無機酸化物担体に、活性金属として、周期律表第6族金属から選ばれた少なくとも1種を含む化合物及び周期律表第8族金属から選ばれた少なくとも1種を含む化合物を担持させたものである。 The hydrotreating catalyst used in the present invention is selected from a compound containing at least one metal selected from Group 6 metals of the Periodic Table as an active metal in the inorganic oxide support and a Group 8 metal of the Periodic Table. In addition, a compound containing at least one kind is supported.

水素化処理触媒に含有させる6族金属としては、モリブデン、タングステンが好ましく、モリブデンが特に好ましい。水素化処理触媒における6族金属の含有量は、触媒基準、酸化物換算で、10〜40質量%が好ましく、10〜30質量%がより好ましい。6族金属の含有量が10質量%以上では、6族金属に起因する効果を発現させるのに十分であり、好ましい。また、6族金属の含有量が40質量%以下では、6族金属の含浸(担持)工程で6族金属化合物の凝集が生じず、6族金属の分散性が良くなり、また、効率的に分散する6族金属担持量の限度を超えず、触媒表面積が大幅に低下しない等により、触媒活性の向上がみられ、好ましい。 As the Group 6 metal contained in the hydrotreating catalyst, molybdenum and tungsten are preferable, and molybdenum is particularly preferable. The content of the Group 6 metal in the hydrotreating catalyst is preferably 10 to 40% by mass, more preferably 10 to 30% by mass, based on the catalyst, in terms of oxide. When the content of the Group 6 metal is 10% by mass or more, it is sufficient and sufficient to exert the effect caused by the Group 6 metal, which is preferable. Further, when the content of the Group 6 metal is 40% by mass or less, the Group 6 metal compound does not aggregate in the impregnation (supporting) step of the Group 6 metal, the dispersibility of the Group 6 metal is improved, and the efficiency is improved. It is preferable because the catalyst activity is improved by not exceeding the limit of the amount of the Group 6 metal to be dispersed and by not significantly reducing the catalyst surface area.

水素化処理触媒に含有させる8族金属としては、コバルト、ニッケルが好ましい。水素化処理触媒における8族金属の含有量は、触媒基準、酸化物換算で、1〜15質量%が好ましく、3〜8質量%がより好ましく、3.5〜6質量%がさらに好ましい。8族金属の含有量が1質量%以上では、8族金属に帰属する活性点を十分に得ることができ好ましい。また、8族金属の含有量を15質量%以下とすることにより、金属の凝集を抑制することができ好ましい。 Cobalt and nickel are preferable as the Group 8 metal contained in the hydrotreating catalyst. The content of the Group 8 metal in the hydrotreating catalyst is preferably 1 to 15% by mass, more preferably 3 to 8% by mass, and even more preferably 3.5 to 6% by mass in terms of catalyst, based on oxide. When the content of the Group 8 metal is 1% by mass or more, it is preferable because the active sites belonging to the Group 8 metal can be sufficiently obtained. Further, when the content of the Group 8 metal is 15% by mass or less, aggregation of the metal can be suppressed, which is preferable.

水素化処理触媒において、8族金属と6族金属の前記した含有量において、8族金属と6族金属の最適質量比は、好ましくは、酸化物換算で、[8族金属]/[8族金属+6族金属]の値で、0.1〜0.25である。この値が0.1以上、0.25以下とすることにより触媒活性が向上されるので好ましい。 In the hydrotreating catalyst, the optimum mass ratio of the Group 8 metal and the Group 6 metal in the above-mentioned contents of the Group 8 metal and the Group 6 metal is preferably [group 8 metal]/[group 8] in terms of oxide. The value of [metal+group 6 metal] is 0.1 to 0.25. When this value is 0.1 or more and 0.25 or less, the catalytic activity is improved, which is preferable.

本発明において用いられる水素化処理触媒は、前記無機酸化物担体に、さらに有機酸又は多価アルコールが担持されている。前記無機酸化物担体に担持させる有機酸は、1種類のみであってもよく、2種類以上であってもよい。同様に、前記無機酸化物担体に担持させる多価アルコールは、1種類のみであってもよく、2種類以上であってもよい。さらに、1種類又は2種類以上の有機酸と1種類又は2種類以上の多価アルコールを前記無機酸化物担体に担持させてもよい。水素化処理触媒における有機酸又は多価アルコール(以下、「有機酸等」)由来の炭素の含有量は、触媒基準で、2〜10質量%が好ましく、2〜7質量%がより好ましく、3〜6質量%がさらに好ましい。有機酸等由来の炭素の含有量を2質量%以上、10質量%とすることにより、触媒表面上で8族金属が有機酸と錯化合物を十分に形成することができる。 In the hydrotreating catalyst used in the present invention, an organic acid or a polyhydric alcohol is further supported on the inorganic oxide carrier. The organic acid supported on the inorganic oxide carrier may be only one kind or two or more kinds. Similarly, the polyhydric alcohol supported on the inorganic oxide carrier may be only one type or two or more types. Furthermore, one or more organic acids and one or more polyhydric alcohols may be supported on the inorganic oxide carrier. The content of carbon derived from an organic acid or a polyhydric alcohol (hereinafter, “organic acid”) in the hydrotreating catalyst is preferably 2 to 10% by mass, more preferably 2 to 7% by mass, based on the catalyst. -6% by mass is more preferable. By setting the content of carbon derived from an organic acid or the like to 2% by mass or more and 10% by mass, the Group 8 metal can sufficiently form a complex compound with the organic acid on the catalyst surface.

有機酸等の添加量は、得られる触媒中に前記の炭素含有量で炭素が残る量とすることが重要であり、また8族金属に対して有機酸等の添加量をモル比で、[有機酸等]/[8族金属]=0.2〜1.2、好ましくは0.6〜1.0、より好ましくは0.6〜0.8とすることが適している。このモル比を0.2以上、1.2以下とすることにより、8族金属が有機酸等と錯体化合物を十分に形成して活性点が得られるため好ましい。 It is important that the amount of the organic acid or the like added is such that carbon remains at the above-mentioned carbon content in the obtained catalyst, and the amount of the organic acid or the like added to the Group 8 metal is a molar ratio [[ It is suitable that [organic acid, etc.]/[Group 8 metal]=0.2 to 1.2, preferably 0.6 to 1.0, and more preferably 0.6 to 0.8. By setting this molar ratio to 0.2 or more and 1.2 or less, the Group 8 metal sufficiently forms a complex compound with an organic acid or the like and an active site can be obtained, which is preferable.

無機酸化物担体に担持させる6族金属を含む化合物としては、三酸化モリブデン、モリブドリン酸、モリブデン酸アンモニウム、モリブデン酸等が挙げられ、好ましくは三酸化モリブデン、モリブドリン酸である。 Examples of the compound containing a Group 6 metal supported on the inorganic oxide carrier include molybdenum trioxide, molybdophosphoric acid, ammonium molybdate, molybdic acid and the like, and molybdenum trioxide and molybdophosphoric acid are preferable.

無機酸化物担体に担持させる8族金属を含む化合物としては、炭酸コバルト、炭酸ニッケル、クエン酸コバルト、クエン酸ニッケル、硝酸コバルト6水和物、硝酸ニッケル6水和物等が挙げられ、好ましくは、炭酸コバルト、炭酸ニッケル、クエン酸コバルト、クエン酸ニッケル化合物であり、特に好ましくは、クエン酸コバルト、クエン酸ニッケル化合物である。クエン酸コバルトとしては、クエン酸第一コバルト(Co(C)、クエン酸水素コバルト(CoHC)、クエン酸コバルトオキシ塩(Co(C・CoO)等が挙げられ、クエン酸ニッケルとしては、クエン酸第一ニッケル(Ni(C)、クエン酸水素ニッケル(NiHC)、クエン酸ニッケルオキシ塩(Ni(C)・NiO)等が挙げられる。これらのコバルトとニッケルのクエン酸化合物の製造は、例えば、コバルトの場合、クエン酸の水溶液に炭酸コバルトを溶かすことにより得られる。 Examples of the compound containing a Group 8 metal supported on the inorganic oxide carrier include cobalt carbonate, nickel carbonate, cobalt citrate, nickel citrate, cobalt nitrate hexahydrate, nickel nitrate hexahydrate, and the like, and preferably , Cobalt carbonate, nickel carbonate, cobalt citrate and nickel citrate compounds, and particularly preferably cobalt citrate and nickel citrate compounds. Examples of cobalt citrate include cobalt citrate (Co 3 (C 6 H 5 O 7 ) 2 ), cobalt hydrogen citrate (CoHC 6 H 5 O 7 ), and cobalt citrate oxy salt (Co 3 (C 6 H 5 O 7 .CoO) and the like. Examples of nickel citrate include primary nickel citrate (Ni 3 (C 6 H 5 O 7 ) 2 ), nickel hydrogen citrate (NiHC 6 H 5 O 7 ), and citrate. Acid nickel oxy salt (Ni 3 (C 6 H 5 O 7 ).NiO), etc. These cobalt and nickel citrate compounds can be produced, for example, in the case of cobalt by adding cobalt carbonate to an aqueous solution of citric acid. Obtained by melting.

無機酸化物担体に担持させる有機酸としては、カルボン酸が好ましく、より好ましくは多価カルボン酸、さらに好ましくは、脂肪族多価カルボン酸を挙げることができる。無機酸化物担体に担持させる有機酸は、硫黄を実質的に含まない化合物を使用することが好ましい。無機酸化物担体に担持させるカルボン酸としては、例えば、クエン酸、イソクエン酸、リンゴ酸、酒石酸、シュウ酸、コハク酸、グルタン酸、グルコン酸、アジピン酸、安息香酸、フタル酸、イソフタル酸、サリチル酸、マロン酸等が挙げられ、中でもクエン酸が好ましい。クエン酸を使用する場合は、クエン酸単独であってもよいし、コバルトやニッケル等の8族金属とのクエン酸化合物であってもよい。 The organic acid supported on the inorganic oxide carrier is preferably a carboxylic acid, more preferably a polyvalent carboxylic acid, and further preferably an aliphatic polyvalent carboxylic acid. As the organic acid supported on the inorganic oxide carrier, it is preferable to use a compound that does not substantially contain sulfur. Examples of the carboxylic acid supported on the inorganic oxide carrier include citric acid, isocitric acid, malic acid, tartaric acid, oxalic acid, succinic acid, glutanoic acid, gluconic acid, adipic acid, benzoic acid, phthalic acid, isophthalic acid, salicylic acid. , Malonic acid and the like, and citric acid is preferable among them. When citric acid is used, it may be citric acid alone or a citric acid compound with a Group 8 metal such as cobalt or nickel.

無機酸化物担体に担持させる多価アルコールとしては、エチレングリコール、プロピレングリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、ジエチレングリコール、ジプロピレングリコール、トリメチレングリコール、トリエチレングリコール、トリブチレングリコール、テトラエチレングリコール類が挙げられ、中でも、ジエチレングリコールが好ましく用いられる。 Examples of the polyhydric alcohol supported on the inorganic oxide carrier include ethylene glycol, propylene glycol, glycerin, trimethylolethane, trimethylolpropane, diethylene glycol, dipropylene glycol, trimethylene glycol, triethylene glycol, tributylene glycol, tetraethylene glycol. Among them, diethylene glycol is preferably used.

本発明において用いられる水素化処理触媒は、さらに、リン酸化物を担持していてもよい。前記無機酸化物担体にリン酸化物が担持されていることにより、6族金属及び8族金属の分散性を向上させることができる。担持させるリン酸化物の原料としては、オルトリン酸、ピロリン酸、三リン酸、四リン酸等が挙げられ、オルトリン酸が好ましい。また、リン化合物を担持させる方法としては、担体にこれらのリン化合物原料を含浸させる方法がある。 The hydrotreating catalyst used in the present invention may further carry a phosphorus oxide. By supporting the phosphorus oxide on the inorganic oxide carrier, the dispersibility of the Group 6 metal and the Group 8 metal can be improved. Examples of the raw material of the phosphorus oxide to be supported include orthophosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid and the like, and orthophosphoric acid is preferable. As a method for supporting the phosphorus compound, there is a method of impregnating a carrier with these phosphorus compound raw materials.

無機酸化物担体に担持させるリン酸化物の量は、無機酸化物担体にリン酸化物を含有させた場合は、担体調製時に使用したリン酸化物を含めた合計量が、上記で規定した担体中のリン酸化物の最大含有量値(触媒基準、酸化物換算で15質量%)を越えないようにすることが好ましい。例えば、担体を、無機酸化物とリン酸化物とを混練法で調製した場合は、混練時に使用するリン酸化物の一部を担持用のリン酸化物として使用する。 The amount of phosphorus oxide supported on the inorganic oxide carrier is such that, when the inorganic oxide carrier contains phosphorus oxide, the total amount including the phosphorus oxide used at the time of carrier preparation is in the carrier specified above. It is preferable not to exceed the maximum content value of phosphorus oxide (15% by mass in terms of oxide, based on the catalyst). For example, when the carrier is prepared by a kneading method of an inorganic oxide and a phosphorus oxide, a part of the phosphorus oxide used during the kneading is used as a supporting phosphorus oxide.

また、活性金属に対するリンの含有量としては、例えば活性金属としてモリブデンを用いる場合は、リン酸化物とモリブデンとの質量比[P]/[MoO]の値で、好ましくは0.05〜0.25、より好ましくは1〜0.15である。モリブデンとリンの質量比([P]/[MoO])を約0.05以上、0.25以下とすることにより、触媒の表面積や細孔容積を好適な範囲を保ち、触媒上での炭素析出などを抑制することができる。 The content of phosphorus with respect to the active metal is, for example, when molybdenum is used as the active metal, the mass ratio [P 2 O 5 ]/[MoO 3 ] of phosphorus oxide and molybdenum, and preferably 0. 05-0.25, more preferably 1-0.15. By setting the mass ratio of molybdenum to phosphorus ([P 2 O 5 ]/[MoO 3 ]) to be about 0.05 or more and 0.25 or less, the surface area and the pore volume of the catalyst can be maintained within a suitable range, and the catalyst It is possible to suppress carbon deposition and the like above.

本発明において用いられる水素化処理触媒は、前記無機酸化物担体に、6族金属、8族金属、リンの各成分を含む化合物を、水、酸等の溶媒に溶解させて調製した溶液を含浸させることによって調製することができる。 The hydrotreating catalyst used in the present invention is impregnated with a solution prepared by dissolving a compound containing each component of Group 6 metal, Group 8 metal and phosphorus in the inorganic oxide carrier in a solvent such as water or acid. Can be prepared.

前記無機酸化物担体に、6族金属、8族金属、有機酸等の各成分、及び必要に応じてリン成分を担持させる方法は、特に制限はないが、これら各成分を同時に含浸させる一段含浸法が好ましい。一段含浸法は、脱硫活性点数、酸性質、細孔等の触媒の特性の面、又は操作性の面から有利と考えられるためである。すなわち、一段含浸法によれば、6族金属及び8族金属が渾然一体化して無機酸化物担体に取り込まれることとなるため、例えば、6族金属にモリブデン、8族金属にコバルトを用いる場合、最終的に活性点を増加させることができる。このとき、リン成分が含浸溶液に存在していると、CoとMoの渾然一体化が促進される。 There is no particular limitation on the method for supporting each component such as Group 6 metal, Group 8 metal, and organic acid, and optionally the phosphorus component on the inorganic oxide carrier, but one-step impregnation in which these components are simultaneously impregnated Method is preferred. This is because the one-stage impregnation method is considered to be advantageous in terms of the desulfurization active point, acid properties, catalyst characteristics such as pores, or operability. That is, according to the one-step impregnation method, the group 6 metal and the group 8 metal are naturally integrated and taken into the inorganic oxide carrier. For example, when molybdenum is used as the group 6 metal and cobalt is used as the group 8 metal, Finally, the number of active sites can be increased. At this time, if the phosphorus component is present in the impregnation solution, the spontaneous integration of Co and Mo is promoted.

一段含浸法は、具体的には、例えば、前記した6族金属を少なくとも1種を含む化合物、前記した8族金属を少なくとも1種を含む化合物、必要に応じてリン酸化物、有機酸、又は多価アルコールを含有する含浸用溶液に、前記無機酸化物担体を含浸させて6族金属、8族金属、炭素を前記した担持量となるように担時させた後、乾燥する方法により行う。含浸用溶液中の6族金属を含む化合物及び8族金属を含む化合物の添加量は、得られる触媒中に6族金属及び8族金属がそれぞれ前記した範囲内で含有される量とする。また、8族金属を含む化合物として、クエン酸の水溶液にコバルトやニッケル等の8族金属を溶かすことにより得られたクエン酸化合物を用いる場合、当該製法で得られたクエン酸化合物の水分を除去しないで、そのまま、含浸用溶液に添加して触媒調製に用いてもかまわない。 Specifically, the one-step impregnation method includes, for example, a compound containing at least one kind of the group 6 metal described above, a compound containing at least one kind of the group 8 metal described above, a phosphorus oxide, an organic acid, or A method of impregnating the inorganic oxide carrier with a solution for impregnation containing a polyhydric alcohol to support the Group 6 metal, Group 8 metal, and carbon so as to have the above-described supported amounts, and then drying. The addition amount of the compound containing the Group 6 metal and the compound containing the Group 8 metal in the impregnating solution is such that the Group 6 metal and the Group 8 metal are contained in the above-mentioned catalyst within the ranges described above. When a citric acid compound obtained by dissolving a Group 8 metal such as cobalt or nickel in an aqueous solution of citric acid is used as the compound containing the Group 8 metal, the water content of the citric acid compound obtained by the manufacturing method is removed. Alternatively, the catalyst may be directly added to the impregnating solution and used for catalyst preparation.

前記含浸用溶液において、前記の各成分を溶解させるために用いる溶媒は、水である。溶媒の使用量は、少なすぎれば、担体を十分に浸漬することができず、多すぎれば、溶解した活性金属の一部が担体上に担持しきれず、含浸用溶液をいれた容器のへりなどに付着してしまい、所望の担持量が得られないおそれがある。このため、無機酸化物担体100gに対して、溶媒量は50〜90gが好ましい。前記溶媒に前記成分を溶解させて含浸用溶液を調製するが、このとき温度は、0℃を超え100℃以下でよく、この範囲であれば、前記溶媒に各成分を良好に溶解させることができる。 In the impregnating solution, the solvent used for dissolving each of the above components is water. If the amount of the solvent used is too small, the carrier cannot be sufficiently immersed, and if it is too large, a part of the dissolved active metal cannot be fully supported on the carrier, and the edge of the container containing the impregnating solution, etc. There is a risk that the desired amount of supported particles will not be obtained due to the adherence to the surface. Therefore, the amount of solvent is preferably 50 to 90 g with respect to 100 g of the inorganic oxide carrier. The above components are dissolved in the solvent to prepare an impregnating solution. At this time, the temperature may be higher than 0° C. and 100° C. or lower, and within this range, the respective components can be well dissolved in the solvent. it can.

このようにして調製した含浸用溶液を、前記無機酸化物担体に含浸させて、含浸用溶液中の前記の各成分を無機酸化物担体に担持させる。含浸条件は、種々の条件を採ることができるが、通常、含浸温度は、好ましくは0℃を超え100℃未満が適している。含浸時間は、好ましくは15分間〜3時間、より好ましくは20分間〜2時間、さらに好ましくは30分間〜1時間である。なお、温度が高すぎると、含浸中に乾燥が起こり、分散度が偏ってしまうおそれがある。また、含浸中は攪拌することが好ましい。 The impregnating solution thus prepared is impregnated into the inorganic oxide carrier to support the above-mentioned components in the impregnating solution on the inorganic oxide carrier. Although various conditions can be adopted as the impregnation condition, usually, the impregnation temperature is preferably higher than 0°C and lower than 100°C. The impregnation time is preferably 15 minutes to 3 hours, more preferably 20 minutes to 2 hours, and further preferably 30 minutes to 1 hour. If the temperature is too high, drying may occur during impregnation and the degree of dispersion may be biased. Moreover, it is preferable to stir during impregnation.

含浸用溶液を含浸させた無機酸化物担体は、常温〜約80℃、窒素気流中、空気気流中、又は真空中で、水分をある程度[LOI(Loss on ignition)が50%以下となるように]除去し、その後、空気気流中、窒素気流中、又は真空中で、200℃以下で、5時間〜20時間の乾燥を行う。乾燥を200℃以下の温度で行うと、金属と錯体化していると思われる有機酸等が触媒表面上から脱離せず、その結果、得られる触媒を硫化処理したときに水素化脱酸素と水素化異性化の活性点が得られると考えられる。真空中で乾燥を行う場合は、圧力760mmHg換算で、前記の温度範囲になるようにして乾燥を行うことが好ましい。 The inorganic oxide carrier impregnated with the impregnating solution has a certain amount of moisture [LOI (Loss on ignition) of 50% or less at room temperature to about 80° C., in a nitrogen stream, an air stream, or a vacuum). ] After that, it is dried in an air stream, a nitrogen stream, or a vacuum at 200° C. or less for 5 hours to 20 hours. When the drying is carried out at a temperature of 200° C. or lower, organic acids which are considered to be complexed with a metal are not desorbed from the surface of the catalyst, and as a result, hydrodeoxygenation and hydrogen are eliminated when the obtained catalyst is subjected to sulfurization treatment. It is considered that the active site of chemical isomerization is obtained. When the drying is performed in vacuum, it is preferable to perform the drying within the above temperature range in terms of pressure of 760 mmHg.

前記のようにして、前記無機酸化物担体に、所定量の6族金属、8族金属、有機酸等に由来する炭素、必要に応じリン酸化物を担持させ、所定温度で乾燥させて得られた本発明において用いられる水素化処理触媒は、その窒素吸着法(BET法)で測定した比表面積が100〜400m/g、好ましくは150〜350m/gであり、水銀圧入法で測定した細孔容積が0.2〜0.6mL/g、好ましくは0.3〜0.6mL/g、より好ましくは0.3〜0.5mL/gであり、水銀圧入法で測定した平均細孔直径が50〜200Å、好ましくは50〜180Å、より好ましくは50〜150Åである。水素化処理触媒の比表面積、細孔容積、及び平均細孔直径の各物性が前記範囲であるときに、所望の触媒活性が得られ、所期の目的を達成できる。 As described above, a predetermined amount of carbon derived from a Group 6 metal, a Group 8 metal, an organic acid or the like, and optionally a phosphorus oxide, is supported on the inorganic oxide carrier, and dried at a predetermined temperature. hydrotreating catalyst used in the present invention, the nitrogen adsorption method specific surface area measured by (BET method) 100 to 400 m 2 / g, preferably 150~350m 2 / g, measured by mercury porosimetry Mean pores having a pore volume of 0.2 to 0.6 mL/g, preferably 0.3 to 0.6 mL/g, more preferably 0.3 to 0.5 mL/g, and measured by mercury porosimetry. The diameter is 50 to 200Å, preferably 50 to 180Å, more preferably 50 to 150Å. When the physical properties of the hydrotreating catalyst such as the specific surface area, the pore volume and the average pore diameter are within the above ranges, desired catalytic activity can be obtained and the intended purpose can be achieved.

水素化処理触媒の前記各物性を前記範囲にすることは、触媒調製に当って、無機酸化物担体の前記各物性を前記した担体に関する前記各物性の範囲内で選択し、6族金属、8族金属などの必要担持成分の担持量を前記範囲内で制御し、必要担持成分を担持した後の乾燥条件を前記範囲内で制御することによって容易に達成できる。 Setting each of the above-mentioned physical properties of the hydrotreating catalyst to the above-mentioned range means that, in catalyst preparation, each of the above-mentioned physical properties of the inorganic oxide carrier is selected within the range of each of the above-mentioned physical properties of the carrier, and a Group 6 metal, 8 This can be easily achieved by controlling the loading amount of the necessary supporting component such as a group metal within the above range and controlling the drying condition after supporting the necessary supporting component within the above range.

また、本発明において用いられる水素化処理触媒の形状は、特に限定されず、通常、この種の触媒に用いられている種々の形状、例えば、円柱状、三葉状、四葉状等を採用することができる。水素化処理触媒の大きさは、直径が約1〜2mm、長さ約2〜5mmが好ましい。水素化処理触媒の機械的強度は、側面破壊強度(SCS《Side crush strength》)で約2lbs/mm以上が好ましい。SCSが約2lbs/mm以上であれば、反応装置に充填した触媒が破壊され、反応装置内で差圧が発生し、水素化処理運転の続行が不可能となることはない。また、本発明において用いられる水素化処理触媒の最密充填かさ密度(CBD:Compacted Bulk Density)は、約0.6〜1.2g/mLが好ましい。また、水素化処理触媒中の活性金属の分散状態は、触媒中で活性金属が均一に分布しているユニフォーム型が好ましい。 Further, the shape of the hydrotreating catalyst used in the present invention is not particularly limited, and various shapes usually used for this type of catalyst, for example, a columnar shape, a trilobal shape, a tetralobal shape, etc. may be adopted. You can The hydrotreating catalyst preferably has a diameter of about 1 to 2 mm and a length of about 2 to 5 mm. The mechanical strength of the hydrotreating catalyst is preferably about 2 lbs/mm or more in terms of side surface fracture strength (SCS <<Side crash strength>>). When the SCS is about 2 lbs/mm or more, the catalyst packed in the reactor is destroyed, a differential pressure is generated in the reactor, and continuation of the hydrotreating operation is not impossible. In addition, the closest packed bulk density (CBD) of the hydrotreating catalyst used in the present invention is preferably about 0.6 to 1.2 g/mL. Further, the dispersion state of the active metal in the hydrotreatment catalyst is preferably a uniform type in which the active metal is uniformly distributed in the catalyst.

本発明において用いられる水素化処理触媒は、使用前に(即ち、本発明に係る炭化水素留分の製造方法を行うのに先立って)、硫化処理して活性化することが好ましい。この硫化処理方法は、液相又は気相で実施できる。液相の場合、約200〜400℃、好ましくは約250〜350℃、常圧又はそれ以上の水素分圧の水素雰囲気下で、硫黄化合物を含む石油蒸留物、それにジメチルジスルファイドや二硫化炭素等の硫化剤を加えたもの、又は硫化水素を用いて行う。気相の場合、HS混合ガス(硫黄分5質量%)を用いて約400℃、圧力0.3MPa、HSガス流量1.2L/hの条件下で、6時間行う。 The hydrotreating catalyst used in the present invention is preferably activated by a sulfurating treatment before use (that is, prior to carrying out the method for producing a hydrocarbon fraction according to the present invention). This sulfurization treatment method can be carried out in a liquid phase or a gas phase. In the case of a liquid phase, a petroleum distillate containing a sulfur compound, and dimethyldisulfide or disulfide under a hydrogen atmosphere at a hydrogen partial pressure of about 200 to 400° C., preferably about 250 to 350° C. at atmospheric pressure or higher. It is performed by adding a sulfurizing agent such as carbon or hydrogen sulfide. In the case of the gas phase, H 2 S mixed gas (sulfur content 5% by mass) is used for about 6 hours under the conditions of about 400° C., pressure 0.3 MPa, and H 2 S gas flow rate 1.2 L/h.

<炭化水素留分の製造方法>
本発明に係る炭化水素留分の製造方法は、前記水素化処理触媒を用いて、水素の存在下、前記原料油を水素化処理する。原料油の水素化処理条件は、水素分圧約2〜10MPa、約150〜400℃、水素油比100〜2000NL/L、及び液空間速度約0.1〜5.0h−1の条件が好ましく、水素分圧約2.5〜8MPa、約200〜390℃、水素油比125〜1900NL/L、及び液空間速度約0.2〜4h−1の条件がより好ましく、水素分圧約3〜6MPa、約250〜380℃、水素油比150〜1800NL/L、及び液空間速度約0.3〜3h−1の条件がさらに好ましい。この理由については次の通りである。
<Method for producing hydrocarbon fraction>
In the method for producing a hydrocarbon fraction according to the present invention, the feed oil is hydrotreated in the presence of hydrogen using the hydrotreatment catalyst. The hydrotreating conditions of the feed oil are preferably hydrogen partial pressure of about 2 to 10 MPa, about 150 to 400° C., hydrogen oil ratio of 100 to 2000 NL/L, and liquid space velocity of about 0.1 to 5.0 h −1 . The conditions of hydrogen partial pressure of about 2.5 to 8 MPa, about 200 to 390° C., hydrogen oil ratio of 125 to 1900 NL/L, and liquid space velocity of about 0.2 to 4 h −1 are more preferable, and hydrogen partial pressure of about 3 to 6 MPa, about. The conditions of 250 to 380° C., hydrogen oil ratio of 150 to 1800 NL/L, and liquid hourly space velocity of about 0.3 to 3 h −1 are more preferable. The reason for this is as follows.

水素圧力が2MPa未満では、反応性の低下や活性低下が推測される。水素圧力が10MPaを超える場合では、過分解によりガス発生の増加が推測される。水素油比も同様である。液空間速度が5.0h−1を超える場合では、反応性の低下が推測される。反応温度が150℃未満の場合では、十分な反応性が得られないと推測される。反応温度が400℃を超える場合では、分解が進行し、生成物の液収率の低下が推測される。 When the hydrogen pressure is less than 2 MPa, it is presumed that the reactivity and the activity are lowered. When the hydrogen pressure exceeds 10 MPa, an increase in gas generation is estimated due to overdecomposition. The hydrogen oil ratio is similar. When the liquid hourly space velocity exceeds 5.0 h- 1 , it is estimated that the reactivity is lowered. When the reaction temperature is lower than 150°C, it is presumed that sufficient reactivity cannot be obtained. When the reaction temperature exceeds 400° C., the decomposition proceeds, and it is presumed that the liquid yield of the product decreases.

以下に本発明の内容を実施例及び比較例により更に詳しく説明するが、本発明はこれらによって制限されるものではない。 Hereinafter, the contents of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

[実施例1]触媒Aの調製
シリカとアルミナ水和物とオルトリン酸を混練し、押出成形後、600℃で2時間焼成して、直径1/16インチの柱状成形物のリン酸化物−シリカ−アルミナ複合担体(リン酸化物−シリカ/アルミナ質量比=4.4/5/90.5、細孔容積0.78m/g、比表面積324m/g、平均細孔直径98Å)を得た。
一方、イオン交換水26.40gに、クエン酸第一コバルト9.81g及びモリブドリン酸26.40gを投入し、80℃に加温して10分間攪拌して含浸用溶液を調製した。
ナス型フラスコ中に、前記リン酸化物−シリカ−アルミナ複合担体30.0gを投入し、そこへ前記含浸用溶液の全量をピペットで添加し、約25℃で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Aを得た。
[Example 1] Preparation of catalyst A Silica, alumina hydrate, and orthophosphoric acid were kneaded, extruded, and then calcined at 600°C for 2 hours to form a phosphorous oxide-silica of a columnar molded product having a diameter of 1/16 inch. - alumina composite support - resulting (phosphorus oxides silica / alumina mass ratio = 4.4 / 5 / 90.5, pore volume 0.78 m 2 / g, a specific surface area of 324m 2 / g, average pore diameter 98A) of It was
On the other hand, to 26.40 g of ion-exchanged water, 9.81 g of cobaltous citrate and 26.40 g of molybdophosphoric acid were added, heated to 80° C. and stirred for 10 minutes to prepare an impregnating solution.
30.0 g of the phosphorous oxide-silica-alumina composite carrier was placed in an eggplant-shaped flask, the whole amount of the impregnating solution was added thereto with a pipette, and the mixture was immersed at about 25° C. for 3 hours. Then, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120° C. for about 16 hours to obtain a catalyst A.

[比較例1]触媒Bの調製
実施例1で調製した触媒Aを、マッフル炉中500℃で約3時間乾させ、クエン酸を除去した触媒Bを得た。
Comparative Example 1 Preparation of Catalyst B Catalyst A prepared in Example 1 was dried in a muffle furnace at 500° C. for about 3 hours to obtain a catalyst B from which citric acid was removed.

以上の実施例及び比較例で得た触媒の元素分析値を表1に示し、物性値を表2に示す。表1中の数値の単位は質量%(触媒基準)であり、「P/MoO」は担体中のPを含む値である。また、表2中、「SA」は比表面積、「PV」は細孔容積、「MPD」は平均細孔直径の略であり、「MPD±15Å」は、平均細孔直径±15Åの細孔割合である。 The elemental analysis values of the catalysts obtained in the above Examples and Comparative Examples are shown in Table 1, and the physical property values are shown in Table 2. The unit of the numerical values in Table 1 is% by mass (based on the catalyst), and “P 2 O 5 /MoO 3 ”is a value including P 2 O 5 in the carrier. In Table 2, “SA” is a specific surface area, “PV” is a pore volume, “MPD” is an abbreviation for average pore diameter, and “MPD±15Å” is a pore with an average pore diameter ±15Å. It is a ratio.

Figure 0006744099
Figure 0006744099

Figure 0006744099
Figure 0006744099

[試験例1]
触媒A及びBをそれぞれ用いて、水素化処理反応を行った。
具体的には、触媒(30cc)を充填した反応管を固定床流通式反応装置に取り付け、HS混合ガス(硫黄分5質量%)を用いて触媒層平均温度400℃、圧力0.3MPa、HSガス流量1.2L/hの条件下で、6時間、気相での触媒予備硫化を行った。
[Test Example 1]
The hydrotreating reaction was performed using the catalysts A and B, respectively.
Specifically, a reaction tube filled with a catalyst (30 cc) was attached to a fixed bed flow reactor, and a H 2 S mixed gas (sulfur content 5% by mass) was used to obtain a catalyst layer average temperature of 400° C. and a pressure of 0.3 MPa. , H 2 S gas flow rate of 1.2 L/h, catalyst presulfidation in the gas phase was performed for 6 hours.

予備硫化後、原料油として、表3に示す性状を有する植物油脂(パーム油脂肪酸留出物:PFAD)と、当該植物油脂に対して質量比9.0のデカヒドロナフタレンとを混合した混合油を原料油として用いて、水素化処理を行った。反応には、 内部攪拌式反応装置を用い、水素化条件は、表4に示す反応条件で実施し、生成油を得た。得られた生成油の性状を表5にまとめた。この結果、クエン酸を担持させた触媒Aを用いた場合のほうが、クエン酸を除去した触媒Bを用いた場合よりも、イソーパラフィンの割合が明らかに多く、ノルマル−パラフィンの割合が少ない生成物が得られた。 After pre-sulfurization, a mixed oil obtained by mixing, as a raw material oil, a vegetable oil/fat (palm oil fatty acid distillate: PFAD) having the properties shown in Table 3 and decahydronaphthalene in a mass ratio of 9.0 to the vegetable oil/fat. Was used as a feedstock oil for hydrotreating. For the reaction, an internal stirring type reaction device was used, and the hydrogenation was carried out under the reaction conditions shown in Table 4 to obtain a product oil. The properties of the produced oil thus obtained are summarized in Table 5. As a result, a product with a higher proportion of iso-paraffins and a lower proportion of normal-paraffins was obtained when the catalyst A supporting citric acid was used, as compared with the case where the catalyst B from which citric acid was removed was used. was gotten.

Figure 0006744099
Figure 0006744099

Figure 0006744099
Figure 0006744099

Figure 0006744099
Figure 0006744099

Claims (5)

無機酸化物担体上に、周期律表第6族金属から選ばれた少なくとも1種を含む化合物と、周期律表第8族金属から選ばれた少なくとも1種を含む化合物と、有機酸又は多価アルコールとを含み、窒素吸着法で測定した比表面積が100〜400m/gであり、水銀圧入法で測定した細孔容積が0.2〜0.6mL/gであり、水銀圧入法で測定した平均細孔直径が50〜200Åである水素化処理触媒を200〜400℃で硫化処理を行って得られた活性化水素化処理触媒と、生物由来の油脂成分からなる原料油とを
水素の存在下、水素分圧2〜10MPa、反応温度150〜400℃、水素油比100〜2000NL/L、及び液空間速度約0.1〜5.0h−1の条件で接触処理することにより反応を開始し、前記原料油を水素化処理することを特徴とする炭化水素留分の製造方法。
On an inorganic oxide carrier, a compound containing at least one member selected from Group 6 metals of the Periodic Table, a compound containing at least one member selected from Group 8 metals of the Periodic Table, an organic acid or a polyvalent compound. It contains alcohol and has a specific surface area of 100 to 400 m 2 /g measured by a nitrogen adsorption method and a pore volume of 0.2 to 0.6 mL/g measured by a mercury intrusion method, and a mercury intrusion method. The activated hydrotreating catalyst obtained by subjecting the hydrotreated catalyst having an average pore diameter of 50 to 200 Å to sulfurization treatment at 200 to 400° C., and a feed oil comprising a biological fat component .
By contact treatment in the presence of hydrogen under the conditions of a hydrogen partial pressure of 2 to 10 MPa, a reaction temperature of 150 to 400° C., a hydrogen oil ratio of 100 to 2000 NL/L, and a liquid space velocity of about 0.1 to 5.0 h −1. A method for producing a hydrocarbon fraction , which comprises starting a reaction and hydrotreating the feedstock oil .
6族金属の含有量が、触媒基準、酸化物換算で、10〜40質量%であり、8族金属の含有量が、触媒基準、酸化物換算で、1〜15質量%であり、有機酸又は多価アルコール由来の炭素の担持量が、触媒基準で、2〜10質量%である、請求項1に記載の炭化水素留分の製造方法。 The content of Group 6 metal is 10 to 40% by mass on the basis of catalyst, calculated as oxide, and the content of Group 8 metal is 1 to 15% by mass on the basis of catalyst, calculated as oxide and organic acid. Alternatively, the method for producing a hydrocarbon fraction according to claim 1, wherein the amount of carbon derived from the polyhydric alcohol supported is 2 to 10% by mass based on the catalyst. 前記触媒が、さらにリンを含む、請求項1又は2に記載の炭化水素留分の製造方法。 The method for producing a hydrocarbon fraction according to claim 1, wherein the catalyst further contains phosphorus. 前記無機酸化物担体が、さらにリンを含有する、請求項3に記載の炭化水素留分の製造方法。 The method for producing a hydrocarbon fraction according to claim 3, wherein the inorganic oxide carrier further contains phosphorus. 前記有機酸がクエン酸である、請求項1〜4のいずれか一項に記載の炭化水素留分の製造方法。 The method for producing a hydrocarbon fraction according to claim 1, wherein the organic acid is citric acid.
JP2016004664A 2016-01-13 2016-01-13 Method for producing hydrocarbon fraction Active JP6744099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016004664A JP6744099B2 (en) 2016-01-13 2016-01-13 Method for producing hydrocarbon fraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016004664A JP6744099B2 (en) 2016-01-13 2016-01-13 Method for producing hydrocarbon fraction

Publications (2)

Publication Number Publication Date
JP2017125114A JP2017125114A (en) 2017-07-20
JP6744099B2 true JP6744099B2 (en) 2020-08-19

Family

ID=59363851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016004664A Active JP6744099B2 (en) 2016-01-13 2016-01-13 Method for producing hydrocarbon fraction

Country Status (1)

Country Link
JP (1) JP6744099B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4472556B2 (en) * 2004-03-26 2010-06-02 コスモ石油株式会社 Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP5228221B2 (en) * 2007-04-27 2013-07-03 コスモ石油株式会社 Method for producing hydrocarbon oil hydrotreating catalyst
JP5057954B2 (en) * 2007-12-07 2012-10-24 Jx日鉱日石エネルギー株式会社 Method for producing hydrocarbon oil
JP2011148909A (en) * 2010-01-21 2011-08-04 Tokyo Univ Of Agriculture & Technology Biohydrocarbon, method for manufacturing biohydrocarbon and apparatus for manufacturing biohydrocarbon
EP3081299B1 (en) * 2013-12-11 2023-08-09 Idemitsu Kosan Co., Ltd Catalyst for hydrocracking and hydrocarbon production method

Also Published As

Publication number Publication date
JP2017125114A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
KR101301459B1 (en) Hydrorefining process and hydrorefined oil
Gamal et al. Effective catalytic deoxygenation of palm fatty acid distillate for green diesel production under hydrogen-free atmosphere over bimetallic catalyst CoMo supported on activated carbon
Janampelli et al. Selective and reusable Pt-WOx/Al2O3 catalyst for deoxygenation of fatty acids and their esters to diesel-range hydrocarbons
JP4472556B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4201795B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
ES2433220T5 (en) Hydroconversion process and catalyst
JP2003299960A (en) Hydrogenation treatment catalyst and method for light oil, and manufacturing method therefor
RU2573561C2 (en) Hydrodesulphurisation catalyst, method for its preparation and process of deep hydropurification of hydrocarbon raw material
JP6478206B2 (en) Hydrocracking catalyst and method of producing hydrocarbon
RU2652991C1 (en) Method of hydroameliorative triglycerides of fatty acids in the mixture with oil fractions
KR20090031916A (en) A hydrogenated catalyst composition and its preparing method and use
JP5196734B2 (en) Hydrorefining method
JP2009019175A (en) Hydrocarbon oil production method
KR20140107208A (en) Method for producing fuel oil
JP5013658B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbon oil
JP6744098B2 (en) Method for producing hydrocarbon fraction
JP6744099B2 (en) Method for producing hydrocarbon fraction
I Zahran et al. Enhancement of heavy vacuum gas oil desulfurization via using developed catalyst based on Al2O3
CN109294613B (en) Method for preparing hydrocarbon fuel from oil raw material
JP2006000726A (en) Hydrogenation catalyst of hydrocarbon oil, manufacturing method therefor and hydrogenation method for hydrocarbon oil
EP3607027B1 (en) Hydrotreatment of feedstock from renewable sources using catalysts with a high content of active phase
RU2602278C1 (en) Catalyst and process of hydrodeoxygenation of vegetal raw materials and its application
CN110964568B (en) Method for removing sulfur and arene by diesel oil ultra-deep hydrogenation
ES2692174T3 (en) Process for preparing a hydrocarbon composition useful as a fuel or fuel
CN106536454A (en) Method for catalytic deoxygenation of natural oils and greases

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200730

R150 Certificate of patent or registration of utility model

Ref document number: 6744099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250