JP6739918B2 - 窒化物半導体装置およびその製造方法 - Google Patents

窒化物半導体装置およびその製造方法 Download PDF

Info

Publication number
JP6739918B2
JP6739918B2 JP2015200415A JP2015200415A JP6739918B2 JP 6739918 B2 JP6739918 B2 JP 6739918B2 JP 2015200415 A JP2015200415 A JP 2015200415A JP 2015200415 A JP2015200415 A JP 2015200415A JP 6739918 B2 JP6739918 B2 JP 6739918B2
Authority
JP
Japan
Prior art keywords
layer
electron supply
supply layer
electron
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015200415A
Other languages
English (en)
Other versions
JP2017073500A (ja
Inventor
真也 ▲高▼堂
真也 ▲高▼堂
稔 阿久津
稔 阿久津
岳利 田中
岳利 田中
範和 伊藤
範和 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2015200415A priority Critical patent/JP6739918B2/ja
Priority to US15/286,653 priority patent/US9905669B2/en
Publication of JP2017073500A publication Critical patent/JP2017073500A/ja
Priority to US15/905,003 priority patent/US10340360B2/en
Priority to US16/421,219 priority patent/US10727312B2/en
Application granted granted Critical
Publication of JP6739918B2 publication Critical patent/JP6739918B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)

Description

本発明は、窒化物半導体装置およびその製造方法に関する。
特許文献1には、GaNを含むバッファ層と、バッファ層上に形成されたAlGaNを含むバリア層と、バリア層に形成されたトレンチ内に配置されたゲート絶縁膜と、ゲート絶縁膜を挟んでバッファ層に対向するゲート電極とを含む、トランジスタが開示されている。
特開2014-222763号公報
特許文献1のトランジスタでは、ゲート電極のオフ時に、当該ゲート電極直下に2DEG(Two Dimensional Electron Gas:二次元電子ガス)が形成されるのを防止するため、電子供給層を貫通するトレンチが形成されている。トレンチが形成された部分では、電子供給層と電子走行層との境界がなくなるので、2DEGは形成されない。これにより、ノーマリオフ動作が実現されている。
しかしながら、特許文献1のトランジスタでは、電子供給層を貫通し、さらに電子走行層の一部を掘り下げるようにトレンチが形成されており、ゲート電極のオン時に2DEGが形成されるべき領域の一部が失われている。そのため、2DEGの形成に必要な制御電圧に誤差が生じる結果、たとえばスイッチングノイズが発生したり、不所望なエネルギ損失の増大を招いたりするといった問題が生じる。
そこで、本発明は、電子走行層にダメージが発生するのを回避し、安定したノーマリオフ動作を実現できる窒化物半導体装置およびその製造方法を提供することを目的とする。
本発明の一局面に係る窒化物半導体装置は、GaIn1−xN(0<x≦1)を含む電子走行層と、前記電子走行層上に形成され、AlIn1−yN(0<y≦1)を含む電子供給層と、前記電子走行層に接するように前記電子供給層を貫通して形成されたゲート絶縁膜と、前記ゲート絶縁膜を挟んで前記電子走行層に対向するゲート電極とを含む。前記電子走行層において、前記ゲート絶縁膜に接する部分と、前記電子供給層に接する部分とが互いに平坦な表面を形成している。
この構成によれば、電子走行層において、ゲート絶縁膜に接する部分と、電子走行層に接する部分とが互いに平坦な表面を形成しているから、良好なノーマリオフ動作を実現できる窒化物半導体装置を提供できる。このような特徴を含む窒化物半導体装置は、たとえば以下のような工程を含む製造方法により製造される。
窒化物半導体装置の製造方法は、GaIn1−xN(0<x≦1)を含む電子走行層上に、AlIn1−yN(0<y≦1)を含む電子供給層を形成する工程と、プラズマ酸化法により前記電子供給層を選択的に酸化して、前記電子供給層の一部に酸化物を形成する酸化物形成工程とを含む。前記酸化物形成工程において、前記酸化物に接する部分と、前記電子供給層に接する部分とが互いに平坦な表面となる前記電子走行層が形成される。
この方法によれば、プラズマ酸化法により電子供給層が選択的に酸化されて、電子供給層の一部に酸化物が形成される。プラズマ酸化法によれば、電子供給層の一部に酸化物が形成されると、雰囲気中の酸素が電子走行層に進入しないか、または、殆ど進入しなくなるので、電子走行層の酸化を回避しつつ電子供給層に酸化物を形成できる。これにより、電子走行層にダメージが発生するのを効果的に抑制できると共に、酸化物に接する部分と、電子供給層に接する部分とが互いに平坦な表面となる電子走行層を形成できる。その結果、良好なノーマリオフ動作を実現できる窒化物半導体装置およびその製造方法を提供できる。
前記製造方法は、前記酸化物形成工程後、前記酸化物をエッチングにより除去し、前記電子供給層に前記電子走行層を露出させるトレンチを形成する工程と、前記トレンチ内にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜を挟んで前記電子走行層に対向するゲート電極を形成する工程とをさらに含んでいてもよい。
この方法によれば、電子供給層に形成された酸化物は、電子走行層に対してエッチング選択比を有しているから、電子走行層がエッチングされるのを回避しつつ酸化物を除去できる。これにより、ゲート絶縁膜に接する部分と、電子供給層に接する部分とが互いに平坦な表面となる電子走行層を形成できるから、良好なノーマリオフ動作を実現できる。
前記酸化物形成工程は、ゲート絶縁膜を形成する工程を兼ねており、前記酸化物形成工程後、前記酸化物を挟んで前記電子走行層に対向するゲート電極を形成する工程をさらに含んでいてもよい。
この方法によれば、酸化物をそのままゲート絶縁膜の一部として利用できる。したがって、ゲート絶縁膜の一部としての酸化物に接する部分と、電子供給層に接する部分とが互いに平坦な表面となる電子走行層を形成できる。
前記窒化物半導体装置において、前記電子走行層を露出させるように前記電子供給層に形成されたトレンチをさらに含んでいてもよい。この場合、前記ゲート絶縁膜は、前記トレンチ内に形成されていてもよい。
前記窒化物半導体装置において、前記電子供給層上に形成された非導電性のスペーサ層をさらに含んでいてもよい。この場合、前記トレンチは、前記電子走行層を露出させるように前記スペーサ層および前記電子供給層を貫通して形成されていてもよい。
この構成において、前記ゲート絶縁膜は、前記トレンチの内壁および前記電子走行層の表面に沿って形成されていてもよい。そして、前記トレンチの内壁に沿って形成された部分は、前記ゲート絶縁膜において、前記電子走行層の表面に沿って形成された部分の厚さよりも大きい厚さを有していてもよい。この構成によれば、トレンチの内壁とゲート電極との間の電気容量を低減できる。その結果、スイッチングノイズの発生を抑制できるから、スイッチング特性を向上できる。
前記窒化物半導体装置において、前記ゲート絶縁膜は、前記電子供給層の酸化物を含んでいてもよい。前記ゲート絶縁膜は、SiO,Al,AlONおよびSiNを含む群から選択される1つまたは複数の絶縁材料種を含んでいてもよい。前記ゲート絶縁膜は、当該ゲート絶縁膜中の電界が10MV/cm以下となる厚さで形成されていてもよい。
本発明の他の局面に係る窒化物半導体装置は、電子走行層と、前記電子走行層上にこの順に形成された第1電子供給層および第2電子供給層と、前記第1電子供給層に対向するように前記第2電子供給層に埋設されたゲート絶縁膜と、前記ゲート絶縁膜および前記第1電子供給層を挟んで前記電子走行層に対向するゲート電極とを含む。この構成において、前記ゲート電極直下の前記第1電子供給層と、前記電子走行層との界面における伝導帯エネルギ準位が、フェルミエネルギ準位よりも大きく、前記ゲート電極直下外の前記第1電子供給層と、前記電子走行層との界面における伝導帯エネルギ準位が、フェルミエネルギ準位よりも小さい。
この構成によれば、良好なノーマリオフ動作を実現できる窒化物半導体装置を提供できる。このような特徴を含む窒化物半導体装置は、たとえば以下のような工程を含む製造方法により製造される。
窒化物半導体装置の製造方法は、電子走行層上に、当該電子走行層との界面の伝導帯エネルギ準位が、フェルミエネルギ準位よりも大きくなるように第1電子供給層を形成する工程と、前記第1電子供給層上に、前記電子走行層と前記第1電子供給層との界面の伝導帯エネルギ準位が、フェルミエネルギ準位よりも小さくなるように第2電子供給層を形成する工程と、前記第2電子供給層を選択的に酸化して、前記第2電子供給層の一部に酸化物を形成すると共に、前記酸化物直下の前記第1電子供給層と、前記電子走行層との界面における伝導帯エネルギ準位を、フェルミエネルギ準位よりも大きくする工程とを含む。
この方法によれば、第1電子供給層が形成された後、電子走行層が外気に曝されることがないから、酸化やエッチングによるダメージが電子走行層に発生するのを効果的に回避できる。これにより、安定したノーマリオフ動作を実現できる窒化物半導体装置およびその製造方法を提供できる。
前記製造方法は、前記酸化物形成工程後、前記酸化物をエッチングにより除去し、前記第2電子供給層に前記第1電子供給層に対向する底部を有するトレンチを形成する工程と、前記トレンチ内にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜および前記第1電子供給層を挟んで前記電子走行層に対向するゲート電極を形成する工程とをさらに含んでいてもよい。
前記製造方法において、前記酸化物形成工程は、ゲート絶縁膜を形成する工程を兼ねていてもよい。この場合、前記製造方法は、前記酸化物形成工程後、前記ゲート絶縁膜および前記第1電子供給層を挟んで前記電子走行層に対向するゲート電極を形成する工程をさらに含んでいてもよい。
前記窒化物半導体装置において、前記電子走行層は、窒化物半導体を含み、前記第1電子供給層は、前記電子走行層の格子定数よりも小さい格子定数からなる窒化物半導体を含み、前記第2電子供給層は、前記第1電子供給層の格子定数よりも小さい格子定数からなる窒化物半導体を含んでいてもよい。
前記窒化物半導体装置において、前記電子走行層は、GaIn1−xN(0<x≦1)を含み、前記第1電子供給層は、AlGaInN(0≦a≦1,0≦b≦1,0≦c≦1,a+b+c=1)を含み、前記第2電子供給層は、AlIn1−yN(0<y≦1)を含んでいてもよい。前記窒化物半導体装置において、前記第1電子供給層は、AlGaInN(0≦a≦1,0≦b≦1,0≦c≦1,a+b+c=1)からなる窒化物半導体層が複数積層された積層構造を有していてもよい。
前記窒化物半導体装置は、前記第2電子供給層に形成されたトレンチをさらに含んでいてもよい。この構成において、前記ゲート絶縁膜は、前記トレンチ内に形成されていてもよい。前記窒化物半導体装置において、前記ゲート絶縁膜は、前記第2電子供給層の酸化物を含んでいてもよい。
図1は、第1参考例に係る窒化物半導体装置を示す断面図である。 図2Aは、図1に示す窒化物半導体装置の製造工程の一部を示す断面図である。 図2Bは、図2Aの次の工程を示す断面図である。 図3は、第2参考例に係る窒化物半導体装置を示す断面図である。 図4は、第3参考例に係る窒化物半導体装置を示す断面図である。 図5は、図4に示す窒化物半導体装置の製造工程の一部を示す断面図である。 図6は、本発明の第1実施形態に係る窒化物半導体装置を示す断面図である。 図7は、図6に示す窒化物半導体装置の一部を示すTEM画像である。 図8Aは、図6に示す窒化物半導体装置の製造工程の一部を示す断面図である。 図8Bは、図8Aの次の工程を示す断面図である。 図8Cは、図8Bの次の工程を示す断面図である。 図8Dは、図8Cの次の工程を示す断面図である。 図8Eは、図8Dの次の工程を示す断面図である。 図9は、本発明の第2実施形態に係る窒化物半導体装置を示す断面図である。 図10は、本発明の第3実施形態に係る窒化物半導体装置を示す断面図である。 図11は、本発明の第4実施形態に係る窒化物半導体装置を示す断面図である。 図12Aは、図11に示す窒化物半導体装置の製造工程の一部を示す断面図である。 図12Bは、図12Aの次の工程を示す断面図である。 図12Cは、図12Bの次の工程を示す断面図である。 図12Dは、図12Cの次の工程を示す断面図である。 図12Eは、図12Dの次の工程を示す断面図である。 図12Fは、図12Eの次の工程を示す断面図である。 図13は、本発明の第5実施形態に係る窒化物半導体装置を示す断面図である。 図14は、本発明の第6実施形態に係る窒化物半導体装置を示す断面図である。 図15は、一変形例に係る窒化物半導体装置の一部を示す断面図である。 図16は、他の変形例に係る窒化物半導体装置の一部を示す断面図である。 図17は、図6に示す窒化物半導体装置の変形例を示す断面図である。 図18は、図11に示す窒化物半導体装置の変形例を示す断面図である。
以下では、参考例に係る発明および本発明の実施形態を、添付図面を参照して詳細に説明する。以下、参考例に係る発明について説明した後、本発明の実施形態を説明する。
<第1参考例>
図1は、第1参考例に係る窒化物半導体装置101を示す断面図である。
窒化物半導体装置101は、III族窒化物半導体を用いたHEMT(High Electron Mobility Transistor:高電子移動度トランジスタ)である。窒化物半導体装置101は、基板102を含む。基板102上には、バッファ層103、電子走行層104、電子供給層105、パッシベーション膜106および非導電性のスペーサ層107がこの順に積層されている。
電子走行層104および電子供給層105は、いずれもAlGaInN(0≦x≦1,0≦y≦1,0≦z≦1,x+y+z=1)からなる。この例では、電子走行層104がGaNからなり、電子供給層105がAlGaNからなる。電子走行層104および電子供給層105が、共通の組成としてGaおよびNを含む。電子走行層104における電子供給層105との界面近傍(たとえば界面から数Å程度の距離の位置)には、2DEG(Two Dimensional Electron Gas:二次元電子ガス)が形成される。パッシベーション膜106は、たとえばSiNからなり、スペーサ層107は、たとえばSiOからなる。
電子供給層105には、電子走行層104を露出させるトレンチ108が形成されている。より具体的には、トレンチ108は、スペーサ層107、パッシベーション膜106および電子供給層105を貫通し、さらに電子走行層104の表面部を掘り下げるように形成されている。このトレンチ108の内壁に沿って、ゲート絶縁膜109が形成されている。このゲート絶縁膜109により区画された凹状の空間にゲート電極110が埋め込まれている。
そして、ゲート電極110から間隔を空けてソース電極111およびドレイン電極112が形成されている。ソース電極111およびドレイン電極112は、いずれも、ゲート絶縁膜109、スペーサ層107およびパッシベーション膜106を貫通し、電子供給層105に電気的に接続されている。
図2Aおよび図2Bは、図1に示す窒化物半導体装置101の製造工程の一部を示す断面図である。
窒化物半導体装置101を製造するには、図2Aに示すように、まず、たとえばCVD法等により、バッファ層103、電子走行層104、電子供給層105、パッシベーション膜106およびスペーサ層107が、基板102上にこの順に積層される。次に、スペーサ層107上に、トレンチ108を形成すべき領域に選択的に開口113を有するマスク114が形成される。次に、マスク114を介するドライエッチングまたはウエットエッチングにより、スペーサ層107およびパッシベーション膜106が除去される。
次に、図2Bに示すように、ドライエッチングまたはウエットエッチングにより、電子供給層105の不要な部分が除去される。これにより、トレンチ108が形成される。この工程では、電子走行層104と電子供給層105とのエッチング選択比が小さいことから、電子供給層105と共に電子走行層104の表面部がエッチング(オーバエッチング)される。その後、ゲート絶縁膜109、ゲート電極110、ドレイン電極112およびソース電極111が形成される。このようにして、窒化物半導体装置101が製造される。
窒化物半導体装置101では、ゲート電極110のオフ時に、当該ゲート電極110直下に2DEGが形成されるのを防止するため、電子供給層105を貫通するトレンチ108を形成している。トレンチ108が形成された部分では、電子供給層105と電子走行層104との境界がなくなるので、2DEGは形成されない。これにより、ノーマリオフ動作が実現されている。
しかしながら、トレンチ108は、電子供給層105を貫通し、さらに電子走行層104の一部を掘り下げるように形成されており、ゲート電極110のオン時に2DEGが形成されるべき領域の一部が失われている。そのため、2DEGの形成に必要な制御電圧に誤差が生じる結果、たとえばスイッチングノイズが発生したり、不所望なエネルギ損失の増大を招いたりするといった問題が生じる。
このようなトレンチ108は、電子走行層104(GaN)と電子供給層105(AlGaN)とのエッチング選択比が小さいことから、電子供給層105と共に電子走行層104がエッチング(オーバエッチング)されることにより形成される。したがって、電子供給層105に対するエッチング時間を短くすることで、電子走行層104にダメージが発生するのを回避できると考えられる。その構成が、第2参考例に係る窒化物半導体装置115として図3に示されている。
<第2参考例>
図3は、第2参考例に係る窒化物半導体装置115を示す断面図である。
窒化物半導体装置115では、ゲート電極110と電子走行層104との間に電子供給層105の一部が介在している点で、前述の窒化物半導体装置101と異なるが、その他の点は、前述の窒化物半導体装置101と同様であるので説明を省略する。
比較的エッチング選択比の小さい電子走行層104(GaN)と電子供給層105(AlGaN)とでは、電子供給層105のエッチング進行度の制御が極めて困難であり、電子走行層104のオーバエッチングを避けようとすると、電子供給層105の一部を残存せざるを得ない。その結果、図3に示すように、ゲート電極110と電子走行層104との間に電子供給層105の一部が介在し、ノーマリオフ動作が不完全になるという問題が生じる。第1および第2参考例に係る窒化物半導体装置101,115とは別の製法により製造された窒化物半導体装置116が、第3参考例として図4に示されている。
<第3参考例>
図4は、第3参考例に係る窒化物半導体装置116を示す断面図である。
窒化物半導体装置116では、電子供給層105の酸化物からなるゲート絶縁膜109がトレンチ108底部に形成されている。電子供給層105の酸化物には、Ga、AlまたはAlONが含まれる。また、電子走行層104の表面部におけるゲート絶縁膜109に接する部分には、電子走行層104の酸化物からなる絶縁膜117がゲート絶縁膜109の一部として形成されている。電子走行層104の酸化物には、Gaが含まれる。その他の構成は、前述の窒化物半導体装置101と同様であるので説明を省略する。
図5は、図4に示す窒化物半導体装置101の製造工程の一部を示す断面図である。窒化物半導体装置116の製造方法では、スペーサ層107およびパッシベーション膜106が除去された後、電子供給層105に対して、たとえば1000℃以上の温度下で熱酸化処理が実行される。この熱酸化処理によって、電子供給層105の一部が酸化されて、電子供給層105の酸化物が形成される。
これにより、電子供給層105の酸化物からなるゲート絶縁膜109がトレンチ108の底部に形成される。さらに、熱酸化処理では、各層に加えられる熱量が比較的大きいため、各層の結晶構造にダメージが発生すると共に、電子供給層105の酸化が始まると、立て続けに電子走行層104にも酸化が進行する。その結果、電子走行層104の表面部が酸化されて、電子走行層104の酸化物からなる絶縁膜117が形成される。
このように、第3参考例の窒化物半導体装置116では、熱酸化処理によって、2DEGが形成されるべき領域に電子走行層104の酸化物からなる絶縁膜117が形成される結果、2DEGがダメージを受けている。そのため、第1参考例の窒化物半導体装置101と同様の問題が生じる。これら第1〜第3参考例に係る窒化物半導体装置101,115,116の課題を解決すべく、本発明者らは、以下に説明する第1〜第6実施形態の構成を提案する。
<第1実施形態>
図6は、本発明の第1実施形態に係る窒化物半導体装置1を示す断面図である。図7は、図6に示す窒化物半導体装置1の一部を示すTEM(Transmission Electron Microscope:透過型電子顕微鏡)画像である。
窒化物半導体装置1は、III族窒化物半導体を用いたHEMTである。窒化物半導体装置1は、基板2を含む。基板2としては、たとえばSi基板、SiC基板、サファイア基板、GaN基板等を例示できる。基板2上には、バッファ層3、電子走行層4、電子供給層5、パッシベーション膜6および非導電性のスペーサ層7がこの順に積層されている。
バッファ層3は、基板2の表面に対してコヒーレントに形成されている。バッファ層3は、III族窒化物半導体層が複数積層された積層構造を有していてもよい。本実施形態では、バッファ層3は、基板2上に積層された第1バッファ層8と、第1バッファ層8上に積層された第2バッファ層9とを含む。第1バッファ層8は、AlN膜を含み、その厚さは、たとえば0.2μm程度である。第2バッファ層9は、AlGaN膜を含み、その厚さは、たとえば0.2μm程度である。
電子走行層4は、バッファ層3に対してコヒーレントに形成されている。電子走行層4は、GaIn1−xN(0<x≦1)を含む。本実施形態では、電子走行層4は、GaNからなる。電子走行層4の厚さは、たとえば0.1μm以上10μm以下である。
電子供給層5は、電子走行層4に対してコヒーレントに形成されている。電子供給層5は、AlIn1−yN(0<y≦1)を含む。本実施形態では、電子供給層5は、AlNからなる。電子供給層5の厚さは、たとえば1Å以上100Å以下である。電子走行層4における電子供給層5との界面近傍(たとえば界面から数Å程度の距離の位置)には、2DEGが形成されている。
パッシベーション膜6は、たとえばSiN等の絶縁膜からなり、その厚さは、たとえば10Å以上1000Å以下である。スペーサ層7は、たとえばSiO等の絶縁膜からなり、その厚さは、たとえば1μm以上10μm以下である。
電子走行層4上には、電子供給層5を貫通して形成され、電子走行層4に接するゲート絶縁膜10が形成されている。より具体的には、本実施形態では、電子走行層4を露出させるようにスペーサ層7、パッシベーション膜6および電子供給層5を貫通するトレンチ11が形成されており、トレンチ11内に、ゲート絶縁膜10が形成されている。トレンチ11内には、ゲート絶縁膜10を介してゲート電極12が埋め込まれている。
ゲート絶縁膜10は、トレンチ11の内壁に沿って形成された第1部分10aと、電子走行層4の表面に沿って形成された第2部分10bとを有している。第1部分10aのトレンチ11の深さ方向に直行する方向の厚さT1は、第2部分10bのトレンチ11の深さ方向の厚さT2よりも大きいことが好ましい。これにより、トレンチ11の内壁とゲート電極12との間の電気容量の低減に伴ってスイッチングノイズの発生を抑制できるから、スイッチング特性を向上できる。
また、図7に示すように、ゲート絶縁膜10は、電子供給層5およびパッシベーション膜6の合計厚さよりも大きい厚さで形成されている。ゲート絶縁膜10は、当該ゲート絶縁膜中の電界Eが10MV/cm以下となる厚さで形成されていることが好ましい。電界Eは、ゲート電極12に印加される電圧Vおよび前述の厚さT2を用いて、E=V/T2より算出される。ゲート絶縁膜10は、SiO,Al,AlONおよびSiNを含む群から選択される1つまたは複数の絶縁材料種を含むことができる。ゲート絶縁膜10は、これらの群から選択された絶縁材料種からなる絶縁膜が複数積層された積層膜であってもよい。
ゲート電極12は、ゲート絶縁膜10により区画された凹状の空間に埋め込まれており、トレンチ11内で、ゲート絶縁膜10を挟んで電子走行層4に対向している。ゲート電極12の一部は、スペーサ層7上に位置している。ゲート電極12は、Ni、Pt、Mo、W、TiN、AuおよびAlを含む1つまたは複数の導電材種を含んでいてもよい。
そして、ゲート電極12から間隔をあけてソース電極13およびドレイン電極14が形成されている。ソース電極13およびドレイン電極14は、いずれも、スペーサ層7上のゲート絶縁膜10、スペーサ層7およびパッシベーション膜6を貫通し、電子供給層5との間でオーミック接触を形成している。ソース電極13およびドレイン電極14は、Tiおよび/またはAlを含んでいてもよい。ソース電極13およびドレイン電極14がAlの拡散によって形成されている場合、ソース電極13およびドレイン電極14のAlは、電子供給層5中に拡散していてもよい。
図7に示すように、電子走行層4において、ゲート絶縁膜10に接する部分と、電子走行層4に接する部分とが互いに平坦、より具体的には、同一平面に位置する面一な1つの表面を形成している。つまり、電子走行層4において、トレンチ11の底部を形成する部分と、トレンチ11の底部外の部分とが互いに平坦な1つの表面を形成している。さらに、本実施形態の窒化物半導体装置1では、前述の第1参考例に係る窒化物半導体装置101と異なり、電子走行層4のトレンチ11の底部を形成する部分がエッチングされていない(図1も併せて参照)。つまり、電子走行層4の表面部に段差はなく、電子走行層4において、ゲート絶縁膜10に接する部分と、電子走行層4に接する部分との境界部が面一に形成されている。
また、本実施形態の窒化物半導体装置1では、前述の第3参考例に係る窒化物半導体装置116と異なり、電子走行層4におけるゲート絶縁膜10に接する部分に電子走行層4の酸化物(Ga)からなる絶縁膜117が形成されていない(図5も併せて参照)。つまり、電子走行層4の窒化物半導体(本実施形態では、GaN)がトレンチ11の底部から露出している。そして、この電子走行層4に接するゲート絶縁膜10を挟んでゲート電極12が対向している。
次に、図8A〜図8Eを参照して、窒化物半導体装置1の製造方法について説明する。図8A〜図8Eは、図6に示す窒化物半導体装置1の製造工程の一部を示す断面図である。
窒化物半導体装置1を製造するには、まず、図8Aに示すように、たとえばCVD法等によって、基板2上に、バッファ層3、電子走行層4(本実施形態ではGaN)および電子供給層5(本実施形態ではAlN)が、この順にコヒーレントに成長される。
次に、図8Bに示すように、たとえばCVD法等によって、パッシベーション膜6およびスペーサ層7が、電子供給層5上に順に形成される。次に、トレンチ11を形成すべき領域に選択的に開口15を有するマスク16がスペーサ層7上に形成される。次に、マスク16を介するドライエッチング(たとえば反応性イオンエッチング)により、スペーサ層7およびパッシベーション膜6の不要な部分が除去される。これにより、トレンチ11の一部となる開口17が形成される。この開口17の底部には、電子供給層5の一部が露出している。その後、マスク16は除去される。
次に、図8Cに示すように、プラズマ酸化法により電子供給層5が選択的に酸化されて、電子供給層5の一部に、電子供給層5の酸化物18が形成される。酸化物18は、AlONまたはAlを含む。プラズマ酸化法は、100℃以上900℃以下の酸素ガス雰囲気中で、1時間〜10時間程度行われる。雰囲気中の酸素濃度は、たとえば30%程度である。プラズマ酸化法は、たとえば100℃の酸素ガス雰囲気中で10時間程度、900℃の酸素ガス雰囲気中で1時間程度行われてもよい。
プラズマ酸化法によれば、電子供給層5の一部に酸化物18が形成されると、雰囲気中の酸素が電子走行層4に進入しないか、または、殆ど進入しなくなる。これにより、開口17から露出し、かつ、電子走行層4上に位置する電子供給層5の全体が酸化されて、酸化物18が形成される。その一方で、電子走行層4の表面部は、酸化されない。したがって、電子走行層4では、酸化物18に接する部分と、電子供給層5に接する部分とが互いに平坦な表面に形成される。
次に、図8Dに示すように、エッチングにより酸化物18が除去される。酸化物18のエッチングは、ウエットエッチングであってもよい。この場合、酸化物18は、電子走行層4が除去されない液体、たとえば硫酸および過酸化水素水の混合液であるSPM(Sulfuric Acid Hydrogen Peroxide Mixture)により除去されてもよい。AlONまたはAlを含む酸化物18は、GaNを含む電子走行層4に対してエッチング選択比を有している。したがって、電子走行層4のエッチングを回避しつつ、酸化物18のみをエッチングすることが可能である。これにより、電子走行層4の表面を露出させるトレンチ11が形成される。また、電子走行層4では、トレンチ11底部を形成する部分と、トレンチ11底部外の部分とが互いに平坦な表面となるように形成される。
次に、図8Eに示すように、たとえばCVD法により、所定の絶縁材料が堆積されてゲート絶縁膜10が形成される。その後、ゲート電極12、ソース電極13、ドレイン電極14が形成される。このようにして、窒化物半導体装置1が形成される。
以上、本実施形態の方法によれば、プラズマ酸化法により電子供給層5が選択的に酸化されて、電子供給層5の一部に酸化物18が形成される。プラズマ酸化法によれば、電子供給層5の一部に酸化物18が形成されると、雰囲気中の酸素が電子走行層4に進入しないか、または、殆ど進入しなくなるので、電子走行層4の酸化を回避しつつ電子供給層5に酸化物18を形成できる。これにより、電子走行層4にダメージが発生するのを効果的に抑制できると共に、酸化物18に接する部分と、電子供給層5に接する部分とが互いに平坦な表面となる電子走行層4を形成できる。
しかも、電子供給層5に形成された酸化物18は、電子走行層4に対してエッチング選択比を有している。したがって、電子走行層4がエッチングされるのを回避しつつ酸化物18を除去できる。これにより、図7に示すように、ゲート絶縁膜10に接する部分と、電子走行層4に接する部分とが互いに平坦な表面となる電子走行層4を形成できる。その結果、良好なノーマリオフ動作を実現できる窒化物半導体装置1およびその製造方法を提供できる。
<第2実施形態>
図9は、本発明の第2実施形態に係る窒化物半導体装置21を示す断面図である。図9において、前述の図6等に示された部分については同一の参照符号を付して説明を省略する。
窒化物半導体装置21では、ゲート絶縁膜10は、前述の電子供給層5の酸化物18(図8C参照)を利用して形成されている。つまり、ゲート絶縁膜10は、電子供給層5の酸化物18を含み、電子供給層5と一体的に形成されている。ゲート絶縁膜10の厚さは、電子供給層5の厚さに略等しい。
一方、トレンチ11は、前述の開口17(図8C参照)を利用して形成されており、ゲート絶縁膜10、つまり電子供給層5の酸化物18を露出させるようにスペーサ層7およびパッシベーション膜6を貫通して形成されている。ゲート電極12は、トレンチ11内において、ゲート絶縁膜10を挟んで電子走行層4に対向している。
このような窒化物半導体装置21は、前述の図8Cの工程の後、ゲート電極12、ソース電極13およびドレイン電極14を形成する工程を実行することにより製造できる。
以上、本実施形態によれば、電子供給層5の酸化物18をそのままゲート絶縁膜10の一部として利用できる。これにより、ゲート絶縁膜10に接する部分と、電子走行層4に接する部分とが互いに平坦な表面となる電子走行層4を形成できるから、良好なノーマリオフ動作を実現できる窒化物半導体装置21およびその製造方法を提供できる。
<第3実施形態>
図10は、本発明の第3実施形態に係る窒化物半導体装置22を示す断面図である。図10において、前述の図9等に示された部分については同一の参照符号を付して説明を省略する。
窒化物半導体装置22では、ゲート絶縁膜10は、電子走行層4に接するように電子走行層4上に形成された下層部23と、当該下層部23上に形成された上層部24とを含む積層構造を有している。ゲート絶縁膜10の下層部23は、前述の電子供給層5の酸化物18を含み、電子供給層5と一体的に形成されている。ゲート絶縁膜10の上層部24は、下層部23上に形成されているのに加えて、トレンチ11の内壁に沿って形成されている。ゲート絶縁膜10の上層部24は、SiO,Al,AlONおよびSiNを含む群から選択される1つまたは複数の絶縁材料種を含むことができる。
このような窒化物半導体装置22は、前述の図8Cの工程の後、ゲート電極12の形成工程に先立って、たとえばCVD法により、ゲート絶縁膜10の上層部24となる絶縁材料を電子供給層5の酸化物18上に堆積させる工程を追加することにより、製造できる。
以上、本実施形態によれば、ゲート絶縁膜10に接する部分と、電子走行層4に接する部分とが互いに平坦な表面となる電子走行層4を形成できるから、良好なノーマリオフ動作を実現できる窒化物半導体装置22およびその製造方法を提供できる。また、電子供給層5の酸化物18を含みつつ厚いゲート絶縁膜10を形成できるから、窒化物半導体装置22の耐圧(たとえばゲート絶縁膜10の破壊耐量)を向上できる。
<第4実施形態>
図11は、本発明の第4実施形態に係る窒化物半導体装置31を示す断面図である。図11において、前述の図6等に示された部分については同一の参照符号を付して説明を省略する。
窒化物半導体装置31は、電子走行層4上に形成された第1電子供給層32と、第1電子供給層32上に形成された第2電子供給層33とを含む。前述のパッシベーション膜6およびスペーサ層7は、第2電子供給層33上に積層されている。
第1電子供給層32は、電子走行層4の格子定数よりも小さい格子定数からなる窒化物半導体を含み、電子走行層4に対してコヒーレントに形成されている。第1電子供給層32は、AlGaInN(0≦a≦1,0≦b≦1,0≦c≦1,a+b+c=1)を含む。本実施形態では、第1電子供給層32は、AlGaN(0<a≦0.5,0.5≦b<1.0,a+b=1)からなる。第1電子供給層32は、AlGaInN(0≦a≦1,0≦b≦1,0≦c≦1,a+b+c=1)からなる窒化物半導体層が複数積層された積層構造を有していてもよい。たとえば、第1電子供給層32は、AlGaN層上にGaN層が積層された積層構造を有していてもよい。第1電子供給層32の厚さは、たとえば10Å以上1000Å以下である。
第2電子供給層33は、第1電子供給層32の格子定数よりも小さい格子定数からなる窒化物半導体を含み、第1電子供給層32に対してコヒーレントに形成されている。第2電子供給層33は、AlIn1−yN(0<y≦1)を含む。本実施形態では、第2電子供給層33は、AlNからなる。第2電子供給層33の厚さは、第1電子供給層32の厚さよりも小さく、たとえば1Å以上100Å以下である。この第2電子供給層33には、第1電子供給層32に対向するようにゲート絶縁膜10が埋設されている。
より具体的には、本実施形態では、第1電子供給層32上には、第2電子供給層33を貫通し、第1電子供給層32に接するゲート絶縁膜10が形成されている。さらに具体的には、第1電子供給層32を露出させるようにスペーサ層7、パッシベーション膜6および第2電子供給層33を貫通するトレンチ34が形成されており、トレンチ34内に、ゲート絶縁膜10が形成されている。このゲート絶縁膜10を介してゲート電極12がトレンチ34内に埋め込まれている。ゲート電極12は、ゲート絶縁膜10により区画された凹状の空間に埋め込まれており、当該トレンチ34内において、ゲート絶縁膜10および第1電子供給層32を挟んで電子走行層4に対向している。
本実施形態では、第1電子供給層32において、ゲート絶縁膜10に接する部分と、第2電子供給層33に接する部分とが互いに平坦、より具体的には、同一平面上に位置する面一な1つの表面を形成している。つまり、第1電子供給層32において、トレンチ34の底部を形成する部分と、トレンチ34の底部外の部分とが互いに平坦な1つの表面を形成している。さらに、第1電子供給層32の表面部に段差はなく、第1電子供給層32において、ゲート絶縁膜10に接する部分と、第2電子供給層33に接する部分との境界部が面一に形成されている。
また、第1電子供給層32におけるゲート絶縁膜10に接する部分には、第1電子供給層32の酸化物からなる絶縁膜が形成されていない。つまり、第1電子供給層32の窒化物半導体層(本実施形態では、AlGaN)がトレンチ34の底部から露出している。そして、第1電子供給層32に接するゲート絶縁膜10を挟んでゲート電極12が対向している。
本実施形態では、第2電子供給層33の一部が除去されることにより、ゲート電極12直下の第1電子供給層32と、電子走行層4との界面における伝導帯エネルギ準位Eが調整されている。より具体的には、ゲート電極12直下の第1電子供給層32と、電子走行層4との界面における伝導帯エネルギ準位Eが、フェルミエネルギ準位Eよりも大きい(つまり、E>E)。さらに、ゲート電極12直下外の第1電子供給層32と、電子走行層4との界面における伝導帯エネルギ準位Eが、フェルミエネルギ準位Eよりも小さい(つまり、E<E)。
ゲート電極12のオン時には、ゲート電極12直下の第1電子供給層32と、電子走行層4との界面における伝導帯エネルギ準位Eが、フェルミエネルギ準位Eよりも小さくなる(つまり、E<E)。これにより、ゲート電極12直下に2DEGが形成される結果、ソース電極13およびドレイン電極14間に電流が流れる。
一方、ゲート電極12のオフ時には、ゲート電極12直下の第1電子供給層32と、電子走行層4との界面における伝導帯エネルギ準位Eが、フェルミエネルギ準位Eよりも大きいままである(つまり、E>E)。したがって、2DEGは形成されず、ソース電極13およびドレイン電極14間に電流は流れない。本実施形態では、このようにしてノーマリオフ動作が実現されている。
図12A〜図12Fは、図11に示す窒化物半導体装置31の製造工程の一部を示す断面図である。
図12Aに示すように、窒化物半導体装置31を製造するには、まず、基板2が用意される。次に、たとえばCVD法等によって、基板2上に、バッファ層3、電子走行層4が、この順にコヒーレントに成長される。
次に、図12Bに示すように、たとえばCVD法等によって、バッファ層3上に、第1電子供給層32(本実施形態ではAlGaN)および第2電子供給層33(本実施形態ではAlN)が、この順にコヒーレントに成長される。この時、第1電子供給層32は、電子走行層4との界面の伝導帯エネルギ準位Eが、フェルミエネルギ準位Eよりも大きくなるように電子走行層4上に形成される。そして、第2電子供給層33は、電子走行層4と第1電子供給層32との界面の伝導帯エネルギ準位Eが、フェルミエネルギ準位Eよりも小さくなるように第1電子供給層32上に形成される。
次に、図12Cに示すように、たとえばCVD法等によって、パッシベーション膜6およびスペーサ層7が、第2電子供給層33上に順に形成される。次に、トレンチ34を形成すべき領域に選択的に開口35を有するマスク36がスペーサ層7上に形成される。次に、マスク36を介するドライエッチング(たとえば反応性イオンエッチング)により、スペーサ層7およびパッシベーション膜6の不要な部分が除去される。これにより、トレンチ34の一部となる開口37が形成される。開口37の底部には、第2電子供給層33の一部が露出している。その後、マスク36が除去される。
次に、図12Dに示すように、前述の図8Cと同様の条件下で、プラズマ酸化法により第2電子供給層33が選択的に酸化されて、第2電子供給層33の一部に、第2電子供給層33の酸化物38が形成される。酸化物38は、AlONまたはAlを含む。第2電子供給層33における酸化物38が形成された部分では、歪みがなくなると共に、自発分極も消滅する。そのため、酸化物38直下の第1電子供給層32と、電子走行層4との界面における伝導帯エネルギ準位Eが、フェルミエネルギ準位Eよりも小さくなる。
そして、プラズマ酸化法によれば、第2電子供給層33の一部に酸化物38が形成されると、雰囲気中の酸素が第1電子供給層32に進入しないか、または、殆ど進入しなくなる。これにより、開口37から露出し、かつ、第1電子供給層32上に位置する第2電子供給層33の全体が酸化されて酸化物38が形成される。その一方で、第1電子供給層32の表面部は、酸化されない。したがって、第1電子供給層32は、酸化物38に接する部分と、第2電子供給層33に接する部分とが互いに平坦な表面となるように形成される。また、この工程では、電子走行層4が酸化されたり、外部に露出したりすることもない。
次に、図12Eに示すように、前述の図8Dと同様の条件で、エッチングにより酸化物38が除去される。AlONまたはAlを含む酸化物38は、AlGaNを含む第1電子供給層32に対してエッチング選択比を有している。したがって、第1電子供給層32のエッチングを回避しつつ、酸化物38のみをエッチングすることが可能である。これにより、第1電子供給層32の表面を露出させるトレンチ34が形成される。一方、第1電子供給層32では、トレンチ34の底部を形成する部分と、トレンチ34の底部外の部分とが互いに平坦な表面となるように形成される。
次に、図12Fに示すように、たとえばCVD法によって絶縁材料が堆積されてゲート絶縁膜10が形成される。その後、ゲート電極12、ソース電極13、ドレイン電極14が形成される。このようにして、窒化物半導体装置31が形成される。
以上、本実施形態によれば、第1電子供給層32が形成された後、電子走行層4が外気に曝されることがないから、電子走行層4に酸化やエッチングによるダメージが発生するのを効果的に回避できる。つまり、電子走行層4が外気に曝されることがないから、2DEGが酸化やエッチングによるダメージを受けることがない。これにより、安定したノーマリオフ動作を実現できる窒化物半導体装置31およびその製造方法を提供できる。
また、第2電子供給層33に形成された酸化物38は、第1電子供給層32に対してエッチング選択比を有している。したがって、第1電子供給層32がエッチングされるのを回避しつつ酸化物38を除去できる。これにより、第1電子供給層32の厚さがエッチング等によって変動するのを効果的に回避できるから、第1電子供給層32を設計通りの厚さで形成できる。その結果、伝導帯エネルギ準位Eとフェルミエネルギ準位Eとの関係を良好に制御できる。
<第5実施形態>
図13は、本発明の第5実施形態に係る窒化物半導体装置41を示す断面図である。図13において、前述の図11等に示された部分については同一の参照符号を付して説明を省略する。
窒化物半導体装置41では、ゲート絶縁膜10は、前述の第2電子供給層33の酸化物38(図12D参照)を利用して形成されている。つまり、ゲート絶縁膜10は、第2電子供給層33の酸化物38を含み、第2電子供給層33と一体的に形成されている。ゲート絶縁膜10の厚さは、第2電子供給層33の厚さに略等しい。
一方、トレンチ34は、前述の開口37(図12D参照)を利用して形成されており、ゲート絶縁膜10、つまり第2電子供給層33の酸化物38を露出させるようにスペーサ層7およびパッシベーション膜6を貫通して形成されている。ゲート電極12は、トレンチ34内において、ゲート絶縁膜10および第1電子供給層32を挟んで電子走行層4に対向している。
このような窒化物半導体装置41は、前述の図12Dの工程の後、ゲート電極12、ソース電極13およびドレイン電極14を形成する工程を実行することにより製造できる。
以上、本実施形態によれば、第2電子供給層33の酸化物38をそのままゲート絶縁膜10の一部として利用できる。したがって、第1電子供給層32が形成された後、電子走行層4が外気に曝されることがないから、電子走行層4にダメージが発生するのを効果的に回避できる。これにより、安定したノーマリオフ動作を実現できる窒化物半導体装置41およびその製造方法を提供できる。
<第6実施形態>
図14は、本発明の第6実施形態に係る窒化物半導体装置42を示す断面図である。図14において、前述の図13等に示された部分については同一の参照符号を付して説明を省略する。
窒化物半導体装置42では、ゲート絶縁膜10は、第1電子供給層32に接するように第1電子供給層32上に形成された下層部43と、下層部43上に形成された上層部44とを含む積層構造を有している。ゲート絶縁膜10の下層部43は、前述の第2電子供給層33の酸化物38を含み、第2電子供給層33と一体的に形成されている。ゲート絶縁膜10の上層部44は、下層部43上に形成されているのに加えて、トレンチ34の内面に沿って形成されている。ゲート絶縁膜10の上層部44は、SiO,Al,AlONおよびSiNを含む群から選択される1つまたは複数の絶縁材料種を含むことができる。
このような窒化物半導体装置42は、前述の図12Dの工程の後、ゲート電極12の形成工程に先立って、たとえばCVD法により、ゲート絶縁膜10の上層部44となる絶縁材料を第2電子供給層33の酸化物38上に堆積させる工程を追加することにより、製造できる。
以上、本実施形態によれば、第2電子供給層33の酸化物38をそのままゲート絶縁膜10の一部として利用できる。したがって、第1電子供給層32が形成された後、電子走行層4が外気に曝されることがないから、電子走行層4にダメージが発生するのを効果的に回避できる。これにより、安定したノーマリオフ動作を実現できる窒化物半導体装置42およびその製造方法を提供できる。また、第2電子供給層33の酸化物38を含みつつ厚いゲート絶縁膜10を形成できるので、窒化物半導体装置42の耐圧(たとえばゲート絶縁膜10の破壊耐量)を向上できる。
以上、本発明の複数の実施形態について説明したが、本発明はさらに他の形態で実施することもできる。
たとえば、前述の各実施形態では、トレンチ11,34内の一部にゲート絶縁膜10が形成された例について説明したが、トレンチ11,34を満たす(埋め尽くす)ようにゲート絶縁膜10が形成されていてもよい。
この場合、前述の第1〜第3実施形態では、図15に示すように、ゲート電極12は、トレンチ11を満たす(埋め尽くす)ゲート絶縁膜10上に形成されている。ゲート電極12は、このゲート絶縁膜10を挟んで電子走行層4に対向している。むろん、このゲート絶縁膜10は、電子供給層5の酸化物18を含んでいてもよい。また、前述の第4〜第6実施形態では、図16に示すように、ゲート電極12は、トレンチ34を満たす(埋め尽くす)ゲート絶縁膜10上に形成されている。ゲート電極12は、このゲート絶縁膜10および第1電子供給層32を挟んで電子走行層4に対向している。むろん、このゲート絶縁膜10は、第2電子供給層33の酸化物38を含んでいてもよい。
また、前述の第4実施形態では、第2電子供給層33の酸化物38が形成され、除去されることによって第1電子供給層32が露出する例について説明した(図12Dの工程も併せて参照)。しかしながら、必ずしも第2電子供給層33が酸化物38となり除去されることによって第1電子供給層32が露出しなくてもよい。すなわち、図12Dの工程において、酸化物38直下の第1電子供給層32と、電子走行層4との界面における伝導帯エネルギ準位Eが、フェルミエネルギ準位Eよりも小さくなれば、第2電子供給層33の一部が酸化物38にならずに残存していてもよい。したがって、図11に示す構成において、ゲート電極12直下において、伝導帯エネルギ準位E>フェルミエネルギ準位Eの関係が満たされる限り、酸化物38と第1電子供給層32との間に第2電子供給層33を構成する窒化物半導体材料が残存していてもよい。
また、前述の第1実施形態では、電子供給層5上にパッシベーション膜6が形成された例について説明したが、図17に示すような構成に変更されてもよい。図17は、図6に示す窒化物半導体装置1の変形例を示す断面図である。図17において、前述の図6に示された構成については、同一の参照符号を付して説明を省略する。
図17に示すように、本変形例に係る窒化物半導体装置1は、電子供給層5とパッシベーション膜6との間に介在するキャップ層19をさらに含む。キャップ層19は、GaNを含み、電子供給層5に対してコヒーレントに形成されている。キャップ層19の厚さは、たとえば2μm以上3μm以下である。キャップ層19における基板2とは反対側の表面は、平坦に形成されている。表面が平坦とされたキャップ層19により、電子供給層5中の電子移動度が向上する結果、良好なスイッチング応答速度を得ることができる。
なお、本変形例では、トレンチ11は、スペーサ層7、パッシベーション膜6および電子供給層5に加えて、キャップ層19を貫通している。また、ソース電極13およびドレイン電極14は、いずれも、ゲート絶縁膜10、スペーサ層7およびパッシベーション膜6に加えて、キャップ層19を貫通し、電子供給層5との間でオーミック接触を形成している。ソース電極13およびドレイン電極14がAlの拡散によって形成されている場合、ソース電極13およびドレイン電極14のAlは、電子供給層5中に拡散されていてもよい。
電子供給層5とパッシベーション膜6との間にキャップ層19が介在する構成は、前述の第2実施形態に係る窒化物半導体装置21(図9参照)および第3実施形態に係る窒化物半導体装置22(図10参照)に適用されてもよい。
また、前述の第4実施形態では、第2電子供給層33上にパッシベーション膜6が形成された例について説明したが、図18に示すような構成に変更されてもよい。図18は、図11に示す窒化物半導体装置31の変形例を示す断面図である。図18において、前述の図11に示された構成については、同一の参照符号を付して説明を省略する。
図18に示すように、本変形例に係る窒化物半導体装置31は、第2電子供給層33とパッシベーション膜6との間に介在するキャップ層20をさらに含む。キャップ層20は、GaNを含み、第2電子供給層33に対してコヒーレントに形成されている。キャップ層20の厚さは、たとえば2μm以上3μm以下である。キャップ層20は、基板2とは反対側の表面が平坦に形成されている。表面が平坦とされたキャップ層20により、第1電子供給層32中および第2電子供給層33中の電子移動度が向上する結果、良好なスイッチング応答速度を得ることができる。
なお、本変形例では、トレンチ34は、スペーサ層7、パッシベーション膜6および第2電子供給層33に加えて、キャップ層20を貫通している。また、ソース電極13およびドレイン電極14は、いずれも、ゲート絶縁膜10、スペーサ層7およびパッシベーション膜6に加えて、キャップ層20を貫通し、第2電子供給層33との間でオーミック接触を形成している。ソース電極13およびドレイン電極14がAlの拡散によって形成されている場合、ソース電極13およびドレイン電極14のAlは、第2電子供給層33中に拡散されていてもよい。
第2電子供給層33とパッシベーション膜6との間にキャップ層20が介在する構成は、前述の第5実施形態に係る窒化物半導体装置41(図13参照)および第6実施形態に係る窒化物半導体装置42(図14参照)に適用されてもよい。
また、前述の第1〜第6実施形態では、スペーサ層7が形成された例について説明したが、スペーサ層7が形成されていない構成が採用されてもよい。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1 窒化物半導体装置
4 電子走行層
5 電子供給層
7 非導電性スペーサ層
10 ゲート絶縁膜
11 トレンチ
12 ゲート電極
18 酸化物
21 窒化物半導体装置
22 窒化物半導体装置
31 窒化物半導体装置
32 第1電子供給層
33 第2電子供給層
38 酸化物
41 窒化物半導体装置
42 窒化物半導体装置
伝導帯エネルギ準位
フェルミエネルギ準位

Claims (15)

  1. GaIn1−xN(0<x≦1)を含む電子走行層と、
    前記電子走行層上に形成され、AlIn1−yN(0<y≦1)を含む電子供給層と、
    前記電子走行層に接するように前記電子供給層を貫通して形成されたゲート絶縁膜と、
    前記ゲート絶縁膜を挟んで前記電子走行層に対向するゲート電極とを含み、
    前記電子走行層において、前記ゲート絶縁膜に接する部分と、前記電子供給層に接する部分とが互いに平坦な表面に形成されており、
    前記電子走行層を露出させるように前記電子供給層に形成されたトレンチを含み、
    前記ゲート絶縁膜は、前記トレンチ内に形成されている、窒化物半導体装置。
  2. 前記ゲート絶縁膜は、当該ゲート絶縁膜中の電界が10MV/cm以下となる厚さで形成されている、請求項に記載の窒化物半導体装置。
  3. 前記電子供給層上に形成された非導電性のスペーサ層をさらに含み、
    前記トレンチは、前記電子走行層を露出させるように前記スペーサ層および前記電子供給層を貫通して形成されている、請求項またはに記載の窒化物半導体装置。
  4. 前記ゲート絶縁膜は、前記トレンチの内壁および前記電子走行層の表面に沿って形成されており、
    前記ゲート絶縁膜において、前記トレンチの内壁に沿って形成された部分は、前記電子走行層の表面に沿って形成された部分の厚さよりも大きい厚さを有している、請求項に記載の窒化物半導体装置。
  5. 前記ゲート絶縁膜は、前記電子供給層の酸化物を含む、請求項1〜のいずれか一項に記載の窒化物半導体装置。
  6. 前記ゲート絶縁膜は、SiO,Al,AlONおよびSiNを含む群から選択される1つまたは複数の絶縁材料種を含む、請求項1〜のいずれか一項に記載の窒化物半導体装置。
  7. GaIn1−xN(0<x≦1)を含む電子走行層上に、AlIn1−yN(0<y≦1)を含む電子供給層を形成する工程と、
    プラズマ酸化法により前記電子供給層を選択的に酸化して、前記電子供給層の一部に酸化物を形成する酸化物形成工程とを含み、
    前記酸化物形成工程において、前記酸化物に接する部分と、前記電子供給層に接する部分とが互いに平坦な表面となる前記電子走行層が形成され、
    前記酸化物形成工程後、前記酸化物をエッチングにより除去し、前記電子供給層に前記電子走行層を露出させるトレンチを形成する工程と、
    前記トレンチ内にゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜を挟んで前記電子走行層に対向するゲート電極を形成する工程とを含む、窒化物半導体装置の製造方法。
  8. 前記酸化物形成工程は、ゲート絶縁膜を形成する工程を兼ねており、
    前記酸化物形成工程後、前記酸化物を挟んで前記電子走行層に対向するゲート電極を形成する工程をさらに含む、請求項に記載の窒化物半導体装置の製造方法。
  9. 電子走行層と、
    前記電子走行層上にこの順に形成された第1電子供給層および第2電子供給層と、
    前記第1電子供給層に対向するように前記第2電子供給層に埋設されたゲート絶縁膜と、
    前記ゲート絶縁膜および前記第1電子供給層を挟んで前記電子走行層に対向するゲート電極とを含み、
    前記ゲート電極直下の前記第1電子供給層と、前記電子走行層との界面における伝導帯エネルギ準位が、フェルミエネルギ準位よりも大きく、
    前記ゲート電極直下外の前記第1電子供給層と、前記電子走行層との界面における伝導帯エネルギ準位が、フェルミエネルギ準位よりも小さく、
    前記第2電子供給層に形成されたトレンチをさらに含み、
    前記ゲート絶縁膜は、前記トレンチ内に形成されている、窒化物半導体装置。
  10. 前記電子走行層は、窒化物半導体を含み、
    前記第1電子供給層は、前記電子走行層の格子定数よりも小さい格子定数からなる窒化物半導体を含み、
    前記第2電子供給層は、前記第1電子供給層の格子定数よりも小さい格子定数からなる窒化物半導体を含む、請求項に記載の窒化物半導体装置。
  11. 前記電子走行層は、GaIn1−xN(0<x≦1)を含み、
    前記第1電子供給層は、AlGaInN(0≦a≦1,0≦b≦1,0≦c≦1,a+b+c=1)を含み、
    前記第2電子供給層は、AlIn1−yN(0<y≦1)を含む、請求項または10に記載の窒化物半導体装置。
  12. 前記第1電子供給層は、AlGaInN(0≦a≦1,0≦b≦1,0≦c≦1,a+b+c=1)からなる窒化物半導体層が複数積層された積層構造を有している、請求項11のいずれか一項に記載の窒化物半導体装置。
  13. 前記ゲート絶縁膜は、前記第2電子供給層の酸化物を含む、請求項12のいずれか一項に記載の窒化物半導体装置。
  14. 電子走行層上に、当該電子走行層との界面の伝導帯エネルギ準位が、フェルミエネルギ準位よりも大きくなるように第1電子供給層を形成する工程と、
    前記第1電子供給層上に、前記電子走行層と前記第1電子供給層との界面の伝導帯エネルギ準位が、フェルミエネルギ準位よりも小さくなるように第2電子供給層を形成する工程と、
    前記第2電子供給層を選択的に酸化して、前記第2電子供給層の一部に酸化物を形成する酸化物形成工程と、
    前記酸化物直下の前記第1電子供給層と、前記電子走行層との界面における伝導帯エネルギ準位を、フェルミエネルギ準位よりも大きくする工程と、
    前記酸化物形成工程後、前記酸化物をエッチングにより除去し、前記第2電子供給層に前記第1電子供給層に対向する底部を有するトレンチを形成する工程と、
    前記トレンチ内にゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜および前記第1電子供給層を挟んで前記電子走行層に対向するゲート電極を形成する工程とを含む、窒化物半導体装置の製造方法。
  15. 前記酸化物形成工程は、ゲート絶縁膜を形成する工程を兼ねており、
    前記酸化物形成工程後、前記ゲート絶縁膜および前記第1電子供給層を挟んで前記電子走行層に対向するゲート電極を形成する工程をさらに含む、請求項14に記載の窒化物半導体装置の製造方法。
JP2015200415A 2015-10-08 2015-10-08 窒化物半導体装置およびその製造方法 Active JP6739918B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015200415A JP6739918B2 (ja) 2015-10-08 2015-10-08 窒化物半導体装置およびその製造方法
US15/286,653 US9905669B2 (en) 2015-10-08 2016-10-06 Nitride semiconductor device and method for manufacturing the same
US15/905,003 US10340360B2 (en) 2015-10-08 2018-02-26 Nitride semiconductor device and method for manufacturing the same
US16/421,219 US10727312B2 (en) 2015-10-08 2019-05-23 Nitride semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015200415A JP6739918B2 (ja) 2015-10-08 2015-10-08 窒化物半導体装置およびその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020125028A Division JP7038765B2 (ja) 2020-07-22 2020-07-22 窒化物半導体装置

Publications (2)

Publication Number Publication Date
JP2017073500A JP2017073500A (ja) 2017-04-13
JP6739918B2 true JP6739918B2 (ja) 2020-08-12

Family

ID=58499997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015200415A Active JP6739918B2 (ja) 2015-10-08 2015-10-08 窒化物半導体装置およびその製造方法

Country Status (2)

Country Link
US (3) US9905669B2 (ja)
JP (1) JP6739918B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6739918B2 (ja) 2015-10-08 2020-08-12 ローム株式会社 窒化物半導体装置およびその製造方法
JP6880406B2 (ja) * 2017-06-30 2021-06-02 富士通株式会社 化合物半導体装置及びその製造方法
CN110914961B (zh) 2017-07-07 2023-10-10 松下控股株式会社 半导体装置
JP6728123B2 (ja) * 2017-11-22 2020-07-22 株式会社東芝 半導体装置、電源回路、及び、コンピュータ
US10804384B2 (en) * 2017-12-27 2020-10-13 Rohm Co., Ltd. Semiconductor device and manufacturing method thereof
JP2019121785A (ja) * 2017-12-27 2019-07-22 ローム株式会社 半導体装置およびその製造方法
JP7327191B2 (ja) * 2020-02-07 2023-08-16 豊田合成株式会社 半導体装置とその製造方法
CN111681958A (zh) * 2020-05-29 2020-09-18 华南理工大学 一种新型异质结构镁扩散制备常关型hemt器件的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072029A (ja) * 2006-09-15 2008-03-27 Sumitomo Chemical Co Ltd 半導体エピタキシャル結晶基板の製造方法
US8674407B2 (en) * 2008-03-12 2014-03-18 Renesas Electronics Corporation Semiconductor device using a group III nitride-based semiconductor
CN101604704B (zh) * 2008-06-13 2012-09-05 西安能讯微电子有限公司 Hemt器件及其制造方法
US7985986B2 (en) 2008-07-31 2011-07-26 Cree, Inc. Normally-off semiconductor devices
JP2011171440A (ja) * 2010-02-17 2011-09-01 Sharp Corp Iii族窒化物系へテロ電界効果トランジスタ
JP2011233695A (ja) * 2010-04-27 2011-11-17 Sharp Corp ノーマリオフ型GaN系電界効果トランジスタ
JP5749580B2 (ja) * 2011-06-16 2015-07-15 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
JP5765147B2 (ja) * 2011-09-01 2015-08-19 富士通株式会社 半導体装置
US20130320349A1 (en) * 2012-05-30 2013-12-05 Triquint Semiconductor, Inc. In-situ barrier oxidation techniques and configurations
KR101980197B1 (ko) * 2012-09-04 2019-05-20 삼성전자주식회사 고전자 이동도 트랜지스터 및 그 제조방법
JP5721782B2 (ja) * 2013-06-26 2015-05-20 パナソニック株式会社 半導体装置
JP6739918B2 (ja) * 2015-10-08 2020-08-12 ローム株式会社 窒化物半導体装置およびその製造方法

Also Published As

Publication number Publication date
US20190280101A1 (en) 2019-09-12
JP2017073500A (ja) 2017-04-13
US9905669B2 (en) 2018-02-27
US10340360B2 (en) 2019-07-02
US20180190790A1 (en) 2018-07-05
US20170104093A1 (en) 2017-04-13
US10727312B2 (en) 2020-07-28

Similar Documents

Publication Publication Date Title
JP6739918B2 (ja) 窒化物半導体装置およびその製造方法
US9722064B2 (en) Isolated gate field effect transistor and manufacture method thereof
US9287368B2 (en) Nitride semiconductor device and method for manufacturing same
JP5396369B2 (ja) 半導体基板構造および半導体素子
JP2008270794A (ja) 半導体装置及びその製造方法
JP2010153493A (ja) 電界効果半導体装置及びその製造方法
CN106298887B (zh) 一种高阈值电压高迁移率凹槽栅mosfet的制备方法
JP2009032796A (ja) 窒化物半導体素子および窒化物半導体素子の製造方法
JP2008311269A (ja) 窒化物半導体素子および窒化物半導体素子の製造方法
JP2010147347A (ja) 化合物半導体装置及びその製造方法
US10381469B2 (en) Semiconductor device and method of manufacturing the same
JP6834546B2 (ja) 半導体装置及びその製造方法
JP2005191022A (ja) 電界効果トランジスタ及びその製造方法
JP2008210936A (ja) 窒化物半導体素子および窒化物半導体素子の製造方法
JP2014072391A (ja) 化合物半導体装置及びその製造方法
JP2008198947A (ja) 半導体装置及びその製造方法
US20090230433A1 (en) Nitride semiconductor device
CN112018107A (zh) 氮化物半导体装置
JP5827529B2 (ja) 窒化物半導体装置およびその製造方法
JP2009152462A (ja) 窒化物半導体素子および窒化物半導体素子の製造方法
JP2021190501A (ja) 窒化物半導体装置
JP3759145B2 (ja) 炭化珪素半導体装置およびその製造方法
CN113889534A (zh) 无金欧姆接触电极、半导体器件和射频器件及其制法
JP2019114581A (ja) 化合物半導体装置及びその製造方法
JP2010153748A (ja) 電界効果半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200722

R150 Certificate of patent or registration of utility model

Ref document number: 6739918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250