JP6738537B2 - Hot forging method - Google Patents

Hot forging method Download PDF

Info

Publication number
JP6738537B2
JP6738537B2 JP2016193521A JP2016193521A JP6738537B2 JP 6738537 B2 JP6738537 B2 JP 6738537B2 JP 2016193521 A JP2016193521 A JP 2016193521A JP 2016193521 A JP2016193521 A JP 2016193521A JP 6738537 B2 JP6738537 B2 JP 6738537B2
Authority
JP
Japan
Prior art keywords
forging
hot
pressing portion
forged
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016193521A
Other languages
Japanese (ja)
Other versions
JP2018051617A (en
Inventor
尚史 光永
尚史 光永
聡志 古曵
聡志 古曵
福井 毅
毅 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016193521A priority Critical patent/JP6738537B2/en
Publication of JP2018051617A publication Critical patent/JP2018051617A/en
Application granted granted Critical
Publication of JP6738537B2 publication Critical patent/JP6738537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Forging (AREA)

Description

本発明は、ラジアル鍛造機を用いた熱間鍛造方法に関するものである。 The present invention relates to a hot forging method using a radial forging machine.

例えば、タービンブレードを製造するにあたっては、丸棒状の熱間鍛造素材を所望の直径まで鍛伸して、更に、続く型打ち鍛造でニアネットシェイプのタービンブレード素材となるように、タービンブレードの根部や翼部となる部分の体積を確保すべく、所望の丸棒形状の荒地を成形する。この荒地の形状については、例えば、特開昭63−238942号公報(特許文献1)の図2に、根部となる部分が太く(体積が大きく)、翼部先端に向けて次第に細くなる形状の荒地が示されている。
この荒地の具体的な製造方法としては、例えば、丸棒状の熱間鍛造素材を所望の直径までラジアル鍛造を行って長尺の丸棒材とし、所定の寸法に切断し、更に別な自由鍛造装置で所望の荒地形状に鍛造される。
For example, in manufacturing a turbine blade, a round rod-shaped hot forging material is forged to a desired diameter, and further, forging and forging is performed to obtain a near net shape turbine blade material. In order to secure the volume of the portion that will be the blades and wings, the desired round bar-shaped waste is formed. Regarding the shape of this waste land, for example, in FIG. 2 of Japanese Patent Laid-Open No. 63-238942 (Patent Document 1), the root portion is thick (large volume) and gradually becomes narrower toward the tip of the wing. Wasteland is shown.
As a concrete manufacturing method of this waste land, for example, a round bar-shaped hot forging material is subjected to radial forging to a desired diameter to obtain a long round bar material, which is cut into a predetermined size and further free forged. The device is forged into the desired rough ground shape.

タービンブレードを型打ち鍛造する場合、根部、翼部となる部分や、ボス部と呼ばれる突起がタービンブレードの翼部内に設けられることもあり、タービンブレード用の荒地では、体積と寸法の調整が重要となる。もし、体積や寸法の調整が不十分であると、型打ち鍛造時の型彫り面内に十分に荒地が満肉せず、型打ち鍛造後のニアネットシェイプのタービンブレード素材の一部が欠寸する問題が生じる。また、タービンブレードの材質はNi基の超耐熱合金や、Ti合金等の高価な合金であるため、型打ち鍛造後のニアネットシェイプのタービンブレード素材の一部が欠寸するような不良が起きると、その損失は小さくはない。
そのため、荒地の製造時に「せぎり」と呼ばれる加工溝を設けて、型打ち鍛造時の型彫り面内に十分満肉するように荒地成形時に加工を行うことが好ましい。しかしながら例えば、特開昭60−250843号公報(特許文献2)に示されるように、せぎりの形成は特別な治具を用意してプレス装置で順次丸棒状の素材に加工溝を設けることになる。
そして、せぎり後の鍛造素材は、再び別な鍛造装置で所定の荒地形状とすべく、鍛造素材を伸長する(以下、鍛伸と言う)熱間鍛造が行われる。
When stamping and forging turbine blades, roots, blades, and protrusions called bosses may be provided inside the blades of the turbine blades, so it is important to adjust the volume and dimensions in the waste land for turbine blades. Becomes If the volume and dimensions are not adjusted properly, the rough surface will not be fully filled in the die-cutting surface during die-forging, and some of the near-net-shape turbine blade material after die-forging will be missing. There is a problem of shrinking. Further, since the material of the turbine blade is an expensive alloy such as a Ni-based super heat-resistant alloy or a Ti alloy, a defect such that a part of the turbine blade material of the near net shape after stamping and forging is dimensionless occurs. And the loss is not small.
Therefore, it is preferable to provide a processing groove called “segiri” at the time of manufacturing the rough land, and perform the processing at the time of forming the rough land so that the carved surface of the die forging is sufficiently filled. However, for example, as shown in Japanese Patent Application Laid-Open No. 60-250843 (Patent Document 2), a claw is formed by preparing a special jig and sequentially forming a machining groove in a round bar-shaped material by a pressing device. Become.
Then, the forged material after the cutting is subjected to hot forging to extend the forged material (hereinafter referred to as forging) so as to have a predetermined rough shape by another forging device again.

特開昭63−238942号公報JP-A-63-238942 特開昭60−250843号公報JP-A-60-250843

特許文献2で示されるように、従来はせぎりを行う治具のみが改良されているだけであり、せぎり後に行われる鍛伸や曲り取りに好適な熱間鍛造用金型の提案は見当たらない。
なお、特許文献2で示される押圧部の形状は、その押圧部は平坦状に形成されており、難加工性材に所望の溝を形成するには不向きである。更に、せぎりで成形される溝は、幅が細く垂直に深い溝となっている。材料の深さ方向に垂直な溝が形成されると、鍛造素材をタービンブレード長さまで伸長する熱間鍛造時に、かぶり疵の発生が問題となる。
本発明の目的は、タービンブレードに使用される難加工性材であっても、ラジアル鍛造機を用いて容易にせぎり、鍛伸及び曲り取りを行うことが可能な熱間鍛造方法を提供することである。
As shown in Patent Document 2, only the jig for performing the cutting is conventionally improved, and no proposal for a hot forging die suitable for forging and bending after the cutting can be found. Absent.
The shape of the pressing portion shown in Patent Document 2 is flat and is not suitable for forming a desired groove in a difficult-to-machine material. Further, the groove formed by cutting is a groove having a narrow width and a vertical depth. When the groove perpendicular to the depth direction of the material is formed, the occurrence of a cover flaw becomes a problem during hot forging in which the forging material is extended to the length of the turbine blade.
An object of the present invention is to provide a hot forging method capable of easily plucking, forging and bending using a radial forging machine, even for difficult-to-work materials used for turbine blades. Is.

本発明は上述した課題に鑑みてなされたものである。
すなわち本発明は、棒状の鍛造素材をラジアル鍛造機を用いて、前記鍛造素材の中心軸に向かって対向配置された一対の熱間鍛造用金型により、前記鍛造素材の外周面を押圧して外径の異なる大径部と小径部とをそれぞれ1ヶ所以上形成して棒状の鍛造材とする鍛造工程と、
前記鍛造工程の後、前記鍛造材の中心軸に向かって対向配置された一対の曲り取り金型により、前記鍛造材の曲り取りを行う曲り取り工程と、
を含む熱間鍛造方法であって、
前記鍛造工程は、前記鍛造素材の外周面に周方向の溝部を形成するせぎり加工工程と、前記鍛造素材を長手方向に伸長させる鍛伸加工工程とを含み、
前記曲り取り金型は、前記鍛造材の曲りを矯正する押圧部を有し、
前記押圧部は、前記鍛造材の大径部と小径部とを同時に押圧する第一押圧部と第二押圧部とを有し、
前記第一押圧部と第二押圧部とは、前記鍛造材の外周面を周方向に沿って取り囲むように形成されている熱間鍛造方法である。
また、本発明は、前記せぎり加工用の熱間鍛造用金型は、前記鍛造素材を鍛造する場合の前記鍛造素材の長手方向に相当する方向に沿った垂直な断面形状が凸形状である略半円状押圧部を有し、
前記略半円状押圧部は、せぎり粗加工部とせぎり仕上げ加工部とを有し、前記せぎり仕上げ加工部は前記せぎり粗加工部よりも曲率半径が大きい凸形状であり、
前記略半円状押圧部は、前記曲率半径を有する凸形状の頂点を連続的に結ぶ稜線部分が前記鍛造素材を鍛造する場合に前記鍛造素材の外周面を周方向に取り囲むように形成され、
前記鍛伸加工用の熱間鍛造用金型は、前記鍛造素材を鍛造する場合の前記鍛造素材の長手方向に相当する方向に沿った垂直な断面形状が凸形状である略台形状押圧部を有し、
前記略台形状押圧部は、鍛伸粗加工部と鍛伸仕上げ加工部とを有し、前記鍛伸仕上げ加工部は、前記鍛造素材をの長手方向に相当する方向の凸形状の先端の幅が、前記鍛伸粗加工部における幅よりも広い凸形状であり、
前記略台形状押圧部は、前記鍛造素材を鍛造する場合に前記鍛造素材の外周面を周方向に取り囲むように形成される金型を用いる熱間鍛造方法である。
好ましくは、前記棒状の鍛造素材がNi基超耐熱合金またはTi合金である熱間鍛造方法である。
本発明の熱間鍛造方法は、タービンブレード用の荒地製造に好適である。
The present invention has been made in view of the above problems.
That is, the present invention, by using a radial forging machine rod-shaped forging material, by a pair of hot forging dies oppositely arranged toward the central axis of the forging material, by pressing the outer peripheral surface of the forging material A forging step in which a large-diameter portion and a small-diameter portion having different outer diameters are formed at one or more places to form a rod-shaped forging material;
After the forging step, a bending step for bending the forging material by a pair of bending tools that are arranged facing each other toward the central axis of the forging material,
A hot forging method including
The forging step includes a narrowing step for forming a circumferential groove portion on the outer peripheral surface of the forging material, and a forging step for extending the forging material in the longitudinal direction,
The bending die has a pressing portion that corrects the bending of the forged material,
The pressing portion has a first pressing portion and a second pressing portion that simultaneously press the large diameter portion and the small diameter portion of the forged material,
The first pressing portion and the second pressing portion are hot forging methods that are formed so as to surround the outer peripheral surface of the forged material along the circumferential direction.
Further, in the present invention, the hot forging die for panting is a convex vertical cross-sectional shape along a direction corresponding to the longitudinal direction of the forging material when forging the forging material. Has a substantially semi-circular pressing portion,
The substantially semi-circular pressing portion has a rough cutting portion and a fine finishing portion, and the fine finishing portion has a convex shape with a larger radius of curvature than the rough cutting portion,
The substantially semicircular pressing portion is formed so as to surround the outer peripheral surface of the forging material in the circumferential direction when the ridge line portion that continuously connects the apexes of the convex shape having the radius of curvature forging the forging material,
The hot forging die for forging is a substantially trapezoidal pressing portion having a convex vertical cross-sectional shape along a direction corresponding to the longitudinal direction of the forging material when forging the forging material. Have,
The substantially trapezoidal pressing portion has a forged and roughened portion and a forged and finished portion, and the forged and finished portion has a width of a convex tip in a direction corresponding to the longitudinal direction of the forging material. Is a convex shape wider than the width of the forged and roughened portion,
The substantially trapezoidal pressing portion is a hot forging method that uses a die formed so as to surround the outer peripheral surface of the forging material in the circumferential direction when the forging material is forged.
Preferably, it is a hot forging method in which the rod-shaped forging material is a Ni-base superalloy or Ti alloy.
The hot forging method of the present invention is suitable for producing waste land for turbine blades.

本発明によれば、タービンブレード等に使用される難加工性材であっても、ラジアル鍛造機を用いて容易に荒地の成形を行うことができる。 According to the present invention, even with a hard-to-work material used for a turbine blade or the like, it is possible to easily form a rough land by using a radial forging machine.

本発明に用いる熱間鍛造用金型の一例を示す模式図である。It is a schematic diagram which shows an example of the metal mold|die for hot forging used for this invention. 本発明に用いる熱間鍛造用金型の一例を示す模式図である。It is a schematic diagram which shows an example of the metal mold|die for hot forging used for this invention. 伸長部の一例を示す模式図である。It is a schematic diagram which shows an example of an extension part. ラジアル鍛造機の模式図である。It is a schematic diagram of a radial forging machine. 荒地の形状の一例を示す模式図である。It is a schematic diagram which shows an example of the shape of a wasteland. 本発明に係る熱間鍛造を行ったときの鍛造素材を押圧する場所の一例を示す模式図である。It is a schematic diagram which shows an example of the place which presses a forging material at the time of performing the hot forging which concerns on this invention. 本発明に係る熱間鍛造を行ったときの鍛造素材を押圧する場所の一例を示す模式図である。It is a mimetic diagram showing an example of a place which presses a forging material at the time of performing hot forging concerning the present invention. 伸長部の一例を示す模式図である。It is a schematic diagram which shows an example of an extension part. 本発明に用いる熱間鍛造用金型の一例を示す模式図である。It is a schematic diagram which shows an example of the metal mold|die for hot forging used for this invention. 本発明に用いる曲り取り金型の一例を示す模式図である。It is a schematic diagram which shows an example of the bending die used for this invention. 熱間鍛造用金型を用いて本発明に係る曲り取りを行うときの一例を示す模式図である。It is a schematic diagram which shows an example at the time of performing the bending removal which concerns on this invention using a hot forging die.

本発明は、対向する2方向から押圧するラジアル鍛造機を用いて鍛造素材を熱間鍛造する熱間鍛造方法に適用できるものである。以下に本発明の熱間鍛造用金型について説明する。説明の順序は、タービンブレード用の荒地を作製する場合の工程の順に、せぎり加工、鍛伸加工、曲り取りの順に行う。
先ず、せぎり加工に用いる金型について説明する。この金型の特徴は、一つの金型にせぎり粗加工部とせぎり仕上げ加工部を有するものであること、また、別な特徴は、せぎり粗加工部とせぎり仕上げ加工部を鍛造素材の周方向に並べて配置したことである。
図1は本発明で用いるせぎり用熱間鍛造用金型1の正面図とその断面図である。「正面」とは、鍛造素材を鍛造する場合に鍛造素材が伸長する方向(長手方向)から見たときのものである。「断面」とは正面図に示す位置にて、上記の長手方向(鍛造素材が伸長する方向)に垂直な方向から見たときのものであり、「前記鍛造素材を鍛造する場合の前記鍛造素材の長手方向に相当する方向に沿った」断面である。また、本発明で言う「垂直な断面」とは、鍛造素材の外周面を周方向に取り囲むように形成された凸部を「正面」から見た時の凸部の輪郭線(該輪郭線が曲線の場合はその接線)に垂直な方向の断面である。なお、以下に説明する「せぎり用」及び「鍛伸用」の熱間鍛造用金型及び「曲り取り」金型においても「正面」、「断面」は前記と同じ方向から見たときの形態を示すものである。
本発明で用いるせぎり用熱間鍛造用金型1は、図1の正面図及び図4右図(鍛造素材が伸長する方向から見たときの図)に示すように、鍛造素材を押圧してせぎり加工するせぎり用押圧部2(せぎり部5)が鍛造素材を鍛造する場合に鍛造素材の外周面を周方向に取り囲むように形成されている。せぎり加工する押圧部2は、図1の正面図のように、円弧状に窪んだ底部からその両側の押圧部同士の間隔が広がっていくような形状となっている。このような形状も本発明で規定する「鍛造素材の外周面を周方向に取り囲むように」の範疇である。
INDUSTRIAL APPLICABILITY The present invention can be applied to a hot forging method in which a forging material is hot forged using a radial forging machine that presses from two opposite directions. The hot forging die of the present invention will be described below. The description will be made in the order of steps for producing a rough land for turbine blades, in the order of cutting, forging, and bending.
First, the mold used for the cutting process will be described. The feature of this mold is that it has a rough cutting part and a fine finishing part in one mold, and another feature is that it has a rough cutting part and a fine cutting part on the circumference of the forging material. That is, they are arranged side by side.
FIG. 1 is a front view and a cross-sectional view of a die 1 for hot forging for forging used in the present invention. The “front side” is the one seen from the direction (longitudinal direction) in which the forging material extends when the forging material is forged. "Cross section" is the position shown in the front view as seen from a direction perpendicular to the above-mentioned longitudinal direction (direction in which the forging material extends), and "the forging material in the case of forging the forging material". Is a section "along the direction corresponding to the longitudinal direction of". Further, the "vertical cross section" referred to in the present invention means a contour line of the convex portion when the convex portion formed so as to surround the outer peripheral surface of the forging material in the circumferential direction is viewed from the "front" (the contour line is In the case of a curve, the cross section is perpendicular to the tangent line. In addition, in the "for cutting" and "for forging" hot forging dies and "bending" dies described below, the "front" and "cross section" are the same when viewed from the same direction as described above. It shows a form.
As shown in the front view of FIG. 1 and the right view of FIG. 4 (when viewed from the direction in which the forging material extends), the hot-die forging die 1 for use in the present invention presses the forging material. When the forging material is forged, the forehead pressing portion 2 (sagging portion 5) for forming the forehead is formed so as to surround the outer peripheral surface of the forging material in the circumferential direction. As shown in the front view of FIG. 1, the pressing portion 2 to be subjected to the narrowing has a shape such that the distance between the pressing portions on both sides of the bottom portion is reduced in an arc shape. Such a shape is also in the category of "surrounding the outer peripheral surface of the forging material in the circumferential direction" defined in the present invention.

また、前記のせぎり加工するせぎり用押圧部(略半円状押圧部と言うことがある)2がせぎり部5となり、前記押圧部はせぎり粗加工部3とせぎり仕上げ加工部4とを有し、せぎり粗加工部とせぎり仕上げ加工部とは連続して形成されている。図1には、せぎり用熱間鍛造用金型1のせぎり仕上げ加工部断面図(A−A断面図)、せぎり粗加工部断面図(C−C断面図)及び前記せぎり仕上げ加工部とせぎり粗加工部の間に位置する部分の断面図(B−B断面図)を示している。図1の断面図に示すように、せぎり用押圧部は断面の断面形状が略半円状の凸形状を有しており、C−C断面図で示す位置からB−B断面図で示す位置までは、押圧部の曲率半径が徐々に大きくなって行き、B−B断面図からA−A断面図で示す位置(底部)までの曲率半径はほぼ同じとなるようにしている。なお、本発明で言う「せぎり仕上げ加工部」とは、前記のA−A断面図で示す位置(底部)を含んで、同じ曲率半径とするようにした場所をせぎり仕上げ加工部とする。そして、前述のせぎり粗加工部及びせぎり仕上げ加工部の稜線部分9が連続的に形成され、鍛造素材の外周面の周方向を取り囲むように形成されている。この稜線とは、押圧部の略半円状の凸状部の頂点を連続的に結んだ線のことである。この仕上げ加工部、粗加工部は鍛造素材を押圧することができるように凸形状となっている。 In addition, the above-mentioned pressing portion (may be referred to as a substantially semi-circular pressing portion) 2 for the cutting is a cutting portion 5, and the pressing portion includes a rough cutting portion 3 and a finishing cutting portion 4. And the rough cut portion and the fine finish portion are continuously formed. FIG. 1 is a sectional view of a section of a forged finish processing section (A-A sectional view) of a die 1 for hot forging, a sectional view of a rough section of a forged section (C-C sectional view), and the above-mentioned section cutting processing. The cross-sectional view (BB cross-sectional view) of the portion located between the portion and the rough-processed portion is shown. As shown in the cross-sectional view of FIG. 1, the forehead pressing portion has a convex shape with a substantially semicircular cross-section, and is shown from the position indicated by the CC cross-section to the BB cross-section. Up to the position, the radius of curvature of the pressing portion gradually increases, and the radius of curvature from the BB sectional view to the position (bottom portion) shown in the AA sectional view is substantially the same. In addition, the "sagging finish processing portion" referred to in the present invention includes a position (bottom portion) shown in the above-mentioned A-A cross-sectional view, and a place where the radius of curvature is made the same as the cutting edge finishing processing portion. .. Then, the ridge line portions 9 of the above-mentioned rough-cutting portion and rough-finishing portion are continuously formed so as to surround the outer peripheral surface of the forging material in the circumferential direction. The ridge line is a line that continuously connects the vertices of the substantially semicircular convex portion of the pressing portion. The finish processing portion and the rough processing portion are convex so that the forged material can be pressed.

本発明で用いるせぎり用熱間鍛造用金型1において、せぎり仕上げ加工部4の略半円状の凸形状の曲率半径は、せぎり粗加工部3の略半円状の凸形状の曲率半径よりも10mm以上大きいことが好ましい。これは、本発明の鍛造素材が大型のタービンブレード用の荒地に加工するものであり、せぎり粗加工部よりもせぎり仕上げ加工部の接触面積を広げておく方が、大型(長尺)のタービンブレード用荒地形状に成形するのに好都合であるためである。また、別な理由として、せぎり仕上げ加工部の略半円状の凸形状の曲率半径が大きいと幅の広い加工溝の形成が容易となる。せぎりの鍛造後に行う鍛造素材の伸長を行う鍛造時にせぎりを行った場所のかぶり疵防止のために、せぎりで形成する加工溝の幅を広げておく方が望ましいためである。何れも、せぎり仕上げ加工部とせぎり粗加工部との曲率半径の差が10mm未満では、十分にその効果が得られない場合があるため、せぎり仕上げ加工部4の略半円状の凸形状の曲率半径は、せぎり粗加工部の略半円状の凸形状の曲率半径よりも10mm以上大きいものとする。好ましくは15mm以上の差をもって形成するのが好ましい。 In the die 1 for hot forging for foraging used in the present invention, the radius of curvature of the semi-circular convex shape of the semi-finishing forged portion 4 is substantially the same as that of the semi-circular convex portion of the rough forged portion 3. It is preferably larger than the radius of curvature by 10 mm or more. This is for processing the forging material of the present invention into a large waste land for turbine blades, it is large (long) to widen the contact area of the rough cut finish portion than the rough cut portion. This is because it is convenient to form a rough shape for a turbine blade. Further, as another reason, if the radius of curvature of the substantially semi-circular convex shape of the semi-finished processed portion is large, it becomes easy to form a wide processed groove. This is because it is desirable to widen the width of the processed groove formed by the foraging in order to prevent fogging flaws at the place where the forging is performed during the forging in which the forging material is stretched after the forging of the foraging. In any case, if the difference in the radius of curvature between the rough-cut portion and the rough-finished portion is less than 10 mm, the effect may not be sufficiently obtained. The radius of curvature of the shape is set to be 10 mm or more larger than the radius of curvature of the substantially semicircular convex shape of the roughened portion. It is preferable to form them with a difference of 15 mm or more.

図1に示すせぎり用熱間鍛造用金型1は2つで一対となり、例えば、図4に示すように熱間鍛造用金型1が鍛造素材21を挟み込むように前記鍛造素材の中心軸に向かって対向配置され、且つ、一対の2つの熱間鍛造用金型1が協働してせぎり加工を行う。
具体的には、図1で示すせぎり用熱間鍛造用金型が2つ1組(一対)となって、鍛造素材(図1では図示せず)を挟み込む凸形状の略半円状押圧部2を有しており、このせぎり用押圧部2で鍛造素材を挟み込むように押圧する。ラジアル鍛造機に備えられた把持機構により、鍛造素材は把持されると共に鍛造素材の間欠的な回転が行われることになる。せぎり加工開始段階では、C−C断面図からB−B断面図で示す凸状形状のせぎり粗加工部先端の稜線部分から鍛造素材にせぎり加工が開始され、次第にB−B断面図からA−A断面図で示す凸形状の仕上げ加工部でせぎり加工が順次行えるよう、凸形状のせぎり用押圧部が連続して形成されている。また、その稜線部分が前記鍛造素材の外周面を周方向に取り囲むように連続的に形成されることで、協働する2つの熱間鍛造用金型の押圧部に鍛造素材を挟み込みつつせぎり加工が行えるものである。
The hot forging die 1 for forging shown in FIG. 1 is a pair with two, and for example, as shown in FIG. 4, the hot forging die 1 sandwiches the forging material 21 so that the center axis of the forging material is Facing each other, and a pair of two hot forging dies 1 cooperate with each other to perform the sparing process.
Specifically, a pair of hot forging die for forging shown in FIG. 1 becomes one set (one pair), and a convex substantially semicircular pressing for sandwiching a forging material (not shown in FIG. 1). The forging material has a portion 2, and the forging material is pressed by the pressing portion 2 for cutting. The gripping mechanism provided in the radial forging machine grips the forging material and causes the forging material to rotate intermittently. At the step of starting the cutting process, the forging material is processed from the ridge line portion of the tip of the rough cutting portion of the convex shape shown in the BB sectional view from the CC sectional view, and the BB sectional view gradually shows the A Convex pressing portions for cutting are continuously formed so that the finishing processing portion of convex shape shown in the -A sectional view can sequentially perform the cutting processing. Further, since the ridge portion is continuously formed so as to surround the outer peripheral surface of the forging material in the circumferential direction, the forging material is sandwiched between the pressing portions of the two hot forging dies that cooperate with each other. It can be processed.

前記のせぎり加工を詳細に説明すると、鍛造素材にせぎり粗加工部から鍛造を開始するときに、難加工性の鍛造素材であっても所定の深さの溝が形成可能なように、鍛造の初期段階では接触面積を少なくしたせぎり粗加工部にて効率よく溝加工が行えるようにしたものである。そして、鍛造が進んで行くと、押圧箇所が次第にせぎり仕上げ加工部に向かい、溝の幅を広げると共に、せぎりの形状を整えていく。もっとも、せぎり仕上げ加工部での熱間鍛造であっても、せぎりの深さに到達しない場合も考えられるため、せぎり仕上げ加工部も断面が略半円状の押圧部を形成して、できる限り接触面積を小さくすることで効率よくせぎり形状を整えるものである。
つまり、本発明では、最初に曲率半径の小さなせぎり粗加工部3で効率よく溝加工を行い、その後、せぎり粗加工部3の曲率半径よりも大きい曲率半径を有するせぎり仕上げ加工部4でせぎりの最終形状に効率よく成形していくものである。そのため、せぎり粗加工部3では略半円状の押圧部から次第に曲率半径が大きくなる徐変部を形成しておき、せぎり仕上げ加工部4でせぎりの最終形状に成形することになる。
なお、実際の押圧部は、例えば肉盛溶接などで略半円状の凸部を形成したり、その後に手作業で形状を機械加工したりする場合もあるため、必ずしも同一曲率半径の凸部が形成されない場合がある。そのため、上記でいう「略半円状」とは、肉盛溶接や機械加工による誤差を含み、曲率を持った凸状のものであれば良く、その曲率半径はおおよその形状から求めれば良い。例えば、曲率半径は凸部を構成する曲面部分の、鍛造素材長手方向の幅と、鍛造長手方向に垂直な方向の曲面部分の高さから求めることができる。また、鍛造素材を押圧する部分が曲率を持った凸状であればよく、その押圧する部分の曲率半径を本発明に従って構成すればよい。
Explaining the above-mentioned forging process in detail, when starting forging from the forging material at the forging process, it is possible to form a groove with a predetermined depth even if the forging material is difficult to process. In the initial stage, the contact area is reduced to allow efficient groove processing in the rough processing part. Then, as the forging progresses, the pressed portion gradually moves toward the barbed finishing portion, widens the width of the groove, and arranges the barbed shape. However, even if the hot forging is performed in the cut-and-finished portion, it is possible that the depth of the cut-and-saw is not reached. By making the contact area as small as possible, the shape can be efficiently trimmed.
In other words, in the present invention, first, the groove roughing processing portion 3 having a small radius of curvature is used to efficiently perform the groove processing, and thereafter, the barb finishing processing portion 4 having a radius of curvature larger than the curvature radius of the rough cutting edge processing portion 3. It is an efficient method for forming the final shape. Therefore, in the rough-cutting portion 3, a gradually changing portion having a gradually increasing radius of curvature is formed from the substantially semi-circular pressing portion, and the rough-finishing portion 4 is formed into the final shape of the narrow portion. ..
The actual pressing portion may have a semi-circular convex portion formed by overlay welding, for example, or may be manually machined after that, so that the convex portion having the same radius of curvature is not always required. May not be formed. Therefore, the above-mentioned "substantially semicircular shape" includes an error due to overlay welding or machining and may be a convex shape having a curvature, and the radius of curvature may be obtained from an approximate shape. For example, the radius of curvature can be obtained from the width of the curved surface portion forming the convex portion in the longitudinal direction of the forging material and the height of the curved surface portion in the direction perpendicular to the forging longitudinal direction. Further, the portion for pressing the forging material may be a convex shape having a curvature, and the radius of curvature of the pressing portion may be configured according to the present invention.

この形状を有するせぎり加工用の熱間鍛造用金型1で鍛造素材を熱間鍛造すると、熱間鍛造用金型に形成された凸形状のせぎり粗加工部から鍛造素材に接触していき、次第に押圧箇所がせぎり仕上げ加工部に移動してせぎりに必要な溝を順次形成することができる。なお、本発明で言う「せぎり仕上げ加工部はせぎり粗加工部よりも曲率半径が大きい凸形状」とは、上記の各断面図の形状を指す。つまり、鍛造素材を鍛造する場合に鍛造素材の長手方向に相当する方向に垂直な方向から見たときの断面である。 When the forging material is hot forged by the hot forging die 1 for the forging having this shape, the convex forging rough processing portion formed on the hot forging die comes into contact with the forging material. As a result, the pressed portion is gradually moved to the finishing processing portion, and the groove necessary for the cutting can be sequentially formed. In the present invention, the term "the rough-finished portion has a convex shape with a larger radius of curvature than the rough-finished portion" refers to the shape of each of the above cross-sectional views. That is, it is a cross section when the forging material is forged, as viewed from a direction perpendicular to the direction corresponding to the longitudinal direction of the forging material.

上述したように、本発明で用いる熱間鍛造用金型1はせぎり加工用に好適である。なお、図2(図1と同様の箇所には同じ符号を用いた)に示す本発明の別の実施形態のせぎり加工用の熱間鍛造用金型のようにせぎり加工用の略半円状押圧部2を鍛造素材を鍛造する場合に鍛造素材の長手方向に相当する方向に沿って複数個形成しても良い。これは、例えば、2ヶ所同時にせぎり加工による加工溝を形成する場合、1つの金型に複数個のせぎり加工用のせぎり用押圧部2を形成しておく方が、生産性向上に有利であるからである。特に、タービンブレードに用いられる合金の材質は難加工性材であることから、熱間鍛造が可能な温度域内でできるだけ短時間で鍛造を終了させることが好ましいためである。この複数個所への同時せぎり加工は、タービンブレードの翼部に設けられるボス部となる部分に対して用いるのが有効である。
なお、この複数個所同時せぎり鍛造が可能となるのも、本発明の熱間鍛造用金型に形成する押圧部の接触面積が、小さな面積から次第に大きな面積となるようにして、それをラジアル鍛造機と組み合せて初めて実現できたものである。
この図2に示す構造の熱間鍛造用金型においても、E−E断面図で示す位置(底部)を含んで、同じ曲率半径を有する場所(F−F断面図の位置からE−E断面図の位置まで)をせぎり仕上げ加工部とする。
As described above, the hot forging die 1 used in the present invention is suitable for the cutting process. It should be noted that, as in the hot forging die for punching according to another embodiment of the present invention shown in FIG. 2 (the same parts as those in FIG. 1 are denoted by the same reference numerals), a substantially semicircular shape for punching is used. When the forging material is forged, a plurality of pressing portions 2 may be formed along the direction corresponding to the longitudinal direction of the forging material. This is because, for example, in the case of forming the processing grooves by the cutting processing at two locations at the same time, it is advantageous to improve productivity by forming a plurality of cutting pressing portions 2 for the cutting processing in one die. Because there is. In particular, since the alloy material used for the turbine blade is a material that is difficult to work, it is preferable to finish the forging within the temperature range in which hot forging is possible in the shortest possible time. It is effective to use this simultaneous cutting process at a plurality of locations for the portion that will be the boss portion provided on the blade portion of the turbine blade.
It should be noted that the simultaneous forging can be carried out at a plurality of locations because the contact area of the pressing portion formed in the hot forging die of the present invention is gradually increased from a small area to a radial area. It was the first to be realized in combination with a forging machine.
Also in the hot forging die having the structure shown in FIG. 2, a position having the same radius of curvature (including a position (bottom) shown in the EE sectional view (from the position of the FF sectional view to the EE sectional view)) (Up to the position shown in the figure) is the finishing processing part.

上記のせぎり鍛造終了後には鍛造素材を伸長して所定の荒地形状とする。図3に鍛伸加工用の熱間鍛造用金型11を示す。
この伸長(鍛伸)する場合においても、対向する2方向から押圧するラジアル鍛造機を用いるものである。基本的な構成は前記のせぎり加工に適した熱間鍛造用金型と同じであり、この金型の特徴も前述したせぎり用の熱間鍛造用金型と同様、一つの金型に鍛伸粗加工部と鍛伸仕上げ加工部を有するものであること、また、別な特徴は、鍛伸粗加工部と鍛伸仕上げ加工部を鍛造素材の周方向に並べて配置したことである。鍛伸用の熱間鍛造用金型11についても、2つで1組(一対)となる。
本発明で用いる鍛伸加工用の熱間鍛造用金型11は、図3の正面図及び図4右図(鍛造素材が伸長する方向から見たときの図)に示すように、鍛造素材を押圧して伸長する鍛伸加工する鍛伸用押圧部12(伸長部7)が鍛造素材の外周面を周方向に取り囲むように形成されている。鍛伸加工する鍛伸用押圧部12は、図3の正面図のように、円弧状に窪んだ底部からその両側の押圧部同士の間隔が広がっていくような形状となっている。
また、前記の鍛伸用押圧部(略台形状押圧部と言うことがある)12が伸長部7となり、前記押圧部は鍛伸粗加工部と鍛伸仕上げ加工部とを有し、鍛伸粗加工部と鍛伸仕上げ加工部とは連続して形成されている。図3の断面図には、鍛伸加工用熱間鍛造用金型11の鍛伸仕上げ加工部断面図(D−D断面図)、鍛伸粗加工面断面図(F−F断面図)及び前記鍛伸仕上げ加工部と鍛伸粗加工部の間に位置する断面図(E−E断面図)を示している。図3の断面図に示すように、鍛伸用押圧部の断面形状が略台形状の凸形状であり、鍛伸用押圧部の作業面(押圧面)は、その断面形状において略平坦状となっている。また、鍛伸用押圧部の作業面(押圧面)は、全体として湾曲した形状となっている。
そして、F−F断面図で示す位置の面幅W1からE−E断面図で示す位置の面幅W2までは、その幅(鍛造素材の長手方向における幅)が徐々に広がって行き、E−E断面図からD−D断面図で示す位置(底部)までの押圧面の幅はほぼ同じとしている。なお、本発明で言う「鍛伸仕上げ加工部」とは、前記のD−D断面図で示す位置(底部)を含んで、同じ押圧面の幅を有する場所を鍛伸仕上げ加工部とする。そして、前述の鍛伸粗加工部及び鍛伸仕上げ加工部とが連続的に形成され、鍛造素材の外周面の周方向を取り囲むように形成されている。この鍛伸仕上げ加工部、鍛伸粗加工部は鍛造素材を押圧することができるように凸形状となっている。また、後述するように、凸状の押圧部の一部に凹部を設けても良い。
After completion of the above-mentioned forging, the forging material is stretched into a predetermined rough land shape. FIG. 3 shows a hot forging die 11 for forging.
Even in the case of this extension (forging), a radial forging machine that presses from two opposing directions is used. The basic structure is the same as the hot forging die suitable for the above-mentioned cutting, and the features of this die are the same as those of the hot forging die for cutting described above. It has a roughening portion and a forging finishing portion, and another feature is that the roughening portion and the forging finish portion are arranged side by side in the circumferential direction of the forging material. As for the hot forging die 11 for forging and drawing, one set (pair) is formed by two.
As shown in the front view of FIG. 3 and the right view of FIG. 4 (when viewed from the direction in which the forging material extends), the hot forging die 11 for forging used in the present invention is made of a forging material. A forging/pressing portion 12 (extension portion 7) for pressing and extending for forming is formed so as to surround the outer peripheral surface of the forging material in the circumferential direction. As shown in the front view of FIG. 3, the forging/pressing portion 12 to be forged has a shape in which the distance between the pressing portions on both sides of the bottom portion is reduced in an arc shape.
Further, the pressing portion for forging and stretching (may be referred to as a substantially trapezoidal pressing portion) 12 serves as an extension portion 7, and the pressing portion has a forging and roughening processing portion and a forging and finishing processing portion. The rough processing portion and the forged and finished processing portion are continuously formed. In the cross-sectional view of FIG. 3, a cross-sectional view of a forging finish processing portion (D-D cross-sectional view) of a hot forging die 11 for forging processing, a cross-sectional view of a rough forging processing surface (F-F cross-sectional view), and The sectional view (EE sectional drawing) located between the said forging finish processing part and the forging rough processing part is shown. As shown in the cross-sectional view of FIG. 3, the cross section of the forging and pressing portion has a substantially trapezoidal convex shape, and the working surface (pressing surface) of the forging and pressing portion is substantially flat in its cross sectional shape. Is becoming Further, the working surface (pressing surface) of the forging and pressing portion has a curved shape as a whole.
The width (width in the longitudinal direction of the forging material) gradually increases from the surface width W1 at the position shown in the FF sectional view to the surface width W2 at the position shown in the EE sectional view, The width of the pressing surface from the E sectional view to the position (bottom) shown in the DD sectional view is almost the same. In addition, the "forging finish processing part" referred to in the present invention includes a position having the same width of the pressing surface as the forging finish processing part including the position (bottom part) shown in the above D-D cross-sectional view. The forged and roughened portion and the forged and finished portion are continuously formed, and are formed so as to surround the outer peripheral surface of the forging material in the circumferential direction. The wrought finish processing portion and the wrought rough processing portion have a convex shape so that the forging material can be pressed. Further, as will be described later, a concave portion may be provided in a part of the convex pressing portion.

鍛伸用の熱間鍛造用金型11において、特定の幅を有する平坦状の鍛伸用押圧部も、鍛造の初期段階では接触面積を少なくして効率よく鍛伸して行き、その後、所定の形状に整えることが容易なように、鍛伸粗加工部13に形成された略平坦状の鍛伸用押圧部の面幅を狭くしておき、前記鍛伸仕上げ加工部14に形成された鍛伸用押圧部の面幅は前記鍛伸粗加工部13よりも広くする。
前記のように、鍛伸用の熱間鍛造用金型11は、鍛造素材を長手方向に伸長しつつ、形状を整えるものであるため、その鍛伸用押圧部は平坦状となる。この平坦状の鍛伸用押圧部の鍛造素材を鍛造する場合の鍛造素材の長手方向相当する方向の幅を過度に広げると鍛造に要する圧力が大きくなってしまうことがある。そのため、1度の打撃で効率よく鍛伸できるように平坦状の鍛伸用押圧部の幅は接触面積を考慮し、鍛造機に適した幅を選択することが好ましい。
また、鍛伸仕上げ加工部14の押圧部の幅は、鍛伸粗加工部13の押圧部の幅よりも10mm以上広いことが好ましい。これは、接触面積の差を大きくすることで、鍛伸初期の加工量を大きくし、鍛伸後期で所定の形状に精度よく仕上げることが可能となるためである。鍛伸仕上げ加工部と鍛伸粗加工部との幅の差が10mm未満では、十分にその効果が得られない場合があるため、その差を10mm以上とすることが好ましい。15mm以上の差をもって形成するのがより好ましい。
なお、実際の鍛伸用押圧部は、例えば肉盛溶接などで補修を行ったり、その後に手作業で形状を機械加工したりする場合もあるため、必ずしも凹凸が殆ど無い平坦形状とならない場合がある。そのため、本発明でいう「平坦」とは、肉盛溶接や機械加工による誤差を含み、過剰な凹凸がないものであれば良い。少なくとも長手方向には湾曲しておらず、長手方向に平行であり、その形状はおおよその形状から求めれば良い。
In the hot forging die 11 for forging, the flat pressing portion for forging having a specific width is also efficiently forged by reducing the contact area in the initial stage of forging, and then predetermined. In order to make it easy to arrange the shape into the shape, the flat width of the forging and pressing portion formed in the forging and roughing portion 13 is narrowed, and the forging and finishing portion 14 is formed. The surface width of the forging and pressing portion is made wider than that of the forging and roughing portion 13.
As described above, the hot forging die 11 for forging adjusts the shape of the forging material while extending the forging material in the longitudinal direction. Therefore, the forging and pressing portion has a flat shape. When forging the forging material of the flat forging and pressing portion, if the width of the forging material in the direction corresponding to the longitudinal direction is excessively widened, the pressure required for forging may increase. Therefore, it is preferable to select the width suitable for the forging machine in consideration of the contact area as the width of the flat pressing portion for forging so as to efficiently perform forging and stretching with one hit.
Further, it is preferable that the width of the pressing portion of the wrought finish processing portion 14 is 10 mm or more wider than the width of the pressing portion of the forging rough processing portion 13. This is because by increasing the difference between the contact areas, it is possible to increase the amount of work in the initial stage of forging and stretching and to finish it into a predetermined shape with high precision in the latter stage of forging and stretching. If the difference in width between the forged and finished processed portion and the forged and rough processed portion is less than 10 mm, the effect may not be sufficiently obtained, so the difference is preferably 10 mm or more. More preferably, they are formed with a difference of 15 mm or more.
The actual pressing portion for forging or stretching may be repaired by overlay welding or the like, and then the shape may be machined manually, so that it may not always have a flat shape with little unevenness. is there. Therefore, the term "flat" as used in the present invention means that it includes an error caused by overlay welding or machining and does not have excessive unevenness. It is not curved at least in the longitudinal direction, is parallel to the longitudinal direction, and its shape may be obtained from an approximate shape.

図3に示す鍛伸用の熱間鍛造用金型1は2つで一対となり、例えば、図4に示すように熱間鍛造用金型11が鍛造素材21を挟み込むように前記鍛造素材の中心軸に向かって対向配置され、且つ、一対の2つの熱間鍛造用金型11が協働して鍛伸加工を行う。
具体的には、図3で示す鍛伸用の熱間鍛造用金型が2つ1組(一対)となって、鍛造素材(図1では図示せず)を挟み込む凸形状の略台形状押圧部12を有しており、この鍛伸用押圧部で鍛造素材を挟み込むように押圧する。鍛造素材の鍛伸は、1組の鍛伸用の熱間鍛造用金型11が協働して鍛造素材(図示せず)の直径を細くするように、ラジアル鍛造機に備えられた把持機構により鍛造素材は把持されると共に、鍛造素材の回転が行われることになる。また、この鍛造素材の間欠的な回転と、把持された鍛造素材はその長手方向に移動して行き、鍛造素材の長手方向に伸長させる。
鍛伸加工開始段階では、F−F断面図からE−E断面図で示す凸状形状の押圧部により鍛造素材の鍛伸加工が開始され、次第にE−E断面図からD−D断面図で示す凸形状の仕上げ加工部で鍛伸加工が順次行えるよう、凸形状の押圧部が連続して形成されている。また、その作業面が平坦状で凸形状の押圧部が前記鍛造素材の外周面を周方向に取り囲むように連続的に形成されることで、協働する2つの熱間鍛造用金型の押圧部に鍛造素材を挟み込みことで鍛造素材の直径を小さくし、鍛造素材を長手方向に移動することで鍛造素材の長手方向も伸長させることができる。
The hot forging die 1 for forging and drawing shown in FIG. 3 is a pair of two, and for example, as shown in FIG. 4, the center of the forging material is such that the hot forging die 11 sandwiches the forging material 21. The pair of two hot forging dies 11 arranged to face each other in an axial direction cooperate with each other to perform forging.
Specifically, a pair of hot forging dies for forging shown in FIG. 3 becomes one set (a pair) to press a forging material (not shown in FIG. 1) into a substantially convex trapezoidal shape. The forging material has a portion 12, and the forging material is pressed by the pressing portion for forging. The forging of the forging material is performed by a pair of hot forging dies 11 for forging so that the diameter of the forging material (not shown) cooperates to reduce the diameter of the forging material. Thus, the forged material is gripped and the forged material is rotated. In addition, the intermittent rotation of the forged material causes the forged material that has been gripped to move in the longitudinal direction thereof and extend in the longitudinal direction of the forged material.
At the forging process start stage, the forging process of the forging material is started from the FF sectional view by the convex pressing portion shown in the EE sectional view, and gradually from the EE sectional view to the DD sectional view. The convex pressing portion is continuously formed so that the forging processing can be sequentially performed in the convex finishing processing portion shown. Further, since the pressing portion having a flat work surface and a convex shape is continuously formed so as to surround the outer peripheral surface of the forging material in the circumferential direction, pressing of two cooperating hot forging dies is performed. The diameter of the forging material can be reduced by sandwiching the forging material in the portion, and the longitudinal direction of the forging material can be extended by moving the forging material in the longitudinal direction.

また、本発明で用いる鍛伸用の熱間鍛造用金型においては、図9に示すように仕上げ加工部14に連続する箇所に逃げ面が成形されていることが好ましい。この逃げ面の傾斜θは15°〜35°の傾きを持っているのが好ましい。逃げ面は鍛造素材の送られてくる側に形成される面である。逃げ面は鍛造時に鍛造素材に転写され、次に行う鍛造時に転写された箇所(図9中の(A部))を鍛造することとなる。そのことによって鍛造素材にかぶり疵の発生を防止することができる。なお、図3は仕上げ加工部の両側に逃げ面が形成されている。この構造を持った熱間鍛造用金型を用いると、鍛造素材を往復させながら鍛伸することができる。例えば一方の方向のみから鍛造を行う場合は図9に示すように、鍛造素材が送られてくる側のみに、逃げ面を形成すれば良い。 Further, in the hot forging die for forging used in the present invention, as shown in FIG. 9, it is preferable that the flank is formed at a portion continuous with the finish processing portion 14. It is preferable that the inclination θ of the flank has an inclination of 15° to 35°. The flank is a surface formed on the side where the forged material is sent. The flank surface is transferred to the forging material at the time of forging, and the portion transferred at the time of the next forging ((A portion) in FIG. 9) is forged. As a result, it is possible to prevent fogging of the forged material. In FIG. 3, flanks are formed on both sides of the finishing portion. When a hot forging die having this structure is used, the forging material can be reciprocally stretched. For example, when forging is performed from only one direction, as shown in FIG. 9, the flank may be formed only on the side where the forging material is fed.

この形状を有する鍛伸加工用の熱間鍛造用金型11で鍛造素材を熱間鍛造すると、熱間鍛造用金型に形成された凸形状の粗加工部から鍛造素材に接触していき、鍛造素材を順次伸長しつつその直径を細く形成することができる。なお、本発明で言う「仕上げ加工部は、前記鍛造素材の長手方向に相当する方向の幅が、前記粗加工部における幅よりも広い凸形状」とは、上記の各断面図の形状を指す。つまり、前記鍛造素材を鍛造する場合の鍛造素材の長手方向に垂直な方向から見たときの断面である。
このせぎり加工と鍛伸加工とを行い、鍛造工程を終了させ、外径の異なる大径部と小径部とをそれぞれ1ヶ所以上形成して棒状の鍛造材とすることができる。
When the forging material is hot forged with the hot forging die 11 for forging having this shape, the convex forging material formed in the hot forging die comes into contact with the forging material, The diameter of the forged material can be reduced while being gradually expanded. In the present invention, the term "finishing portion has a convex shape in which the width in the direction corresponding to the longitudinal direction of the forging material is wider than the width in the rough processing portion" refers to the shape of each of the above cross-sectional views. .. That is, it is a cross section when viewed from a direction perpendicular to the longitudinal direction of the forging material when the forging material is forged.
The forging process can be completed by performing the cutting process and the forging process, and a large-diameter portion and a small-diameter portion having different outer diameters can be formed at one or more places to form a rod-shaped forging material.

次に、前記の鍛造工程の後、熱間鍛造材の中心軸に向かって対向配置された一対の曲り取り金型により、熱間鍛造材の曲り取りを行う曲り取り工程について説明する。
上述したように、タービンブレードの材質はNi基の超耐熱合金や、Ti合金等の高価な合金であるため、熱間型打ち鍛造に用いられる熱間鍛造材の形状はできるだけ形状のばらつきが無い方が良い。素材形状にばらつきがあると、熱間型打鍛造時に欠肉等の不良が発生しやすくなるためである。そのため、形状のばらつきを低減させるために曲り取り(形状矯正)を行う。曲り取りを行う熱間鍛造材は、前記のせぎり加工と鍛伸を行った後の図5に示すように外径の異なる大径部23と小径部24とをそれぞれ1ヶ所以上形成されたものである。このうち、特に曲りが発生しやすい場所は、例えば、図5の両端部の大径部とそれに隣り合う小径部の間に位置する、せぎり加工を行った場所(首部25)である。
そのため、この曲り取り工程に用いる曲り取り用金型(熱間鍛造用金型)31としては、例えば、図10に示すように、熱間鍛造材の大径部と小径部とを同時に押圧する第一押圧部32と第二押圧部33とを有し、前記各押圧部は、前記熱間鍛造材の外周面を周方向に沿って取り囲むように形成されている形状のものである。なお、第一押圧部32は大径部の形状を矯正する部分であり、第二押圧部33は小径部の形状を矯正する部分であり、第一押圧部32と第二押圧部33との間の第三押圧部34は首部25の形状を矯正する部分である。
前記の本発明で用いる第一押圧部32と第二押圧部33とは、押圧する鍛造材の外周面に略同一形状の部分を有する。略同一形状とする部分は、各押圧部の底部35(図10のA−A断面を示す直線が通る場所に相当)の周辺である。なお、第三押圧部も前記第一、第二押圧部同様に押圧する鍛造材の外周面に略同一形状の部分を形成しておくのが好ましい。
Next, after the above-mentioned forging step, a bending process for bending the hot forging material with a pair of bending tools facing each other toward the center axis of the hot forging material will be described.
As described above, the material of the turbine blade is an expensive alloy such as a Ni-based super heat resistant alloy or a Ti alloy, and therefore the shape of the hot forging material used for hot stamping and forging is as uniform as possible. Better. This is because if there are variations in the material shapes, defects such as lack of wall are likely to occur during hot die forging. Therefore, bending (shape correction) is performed in order to reduce variation in shape. The hot forging material for bending is formed by forming one or more large-diameter portion 23 and small-diameter portion 24 each having a different outer diameter as shown in FIG. 5 after the above-mentioned cutting and forging. Is. Among them, the place where the bending is particularly likely to occur is, for example, the place (neck part 25) where the narrowing is performed, which is located between the large diameter part at both ends and the small diameter part adjacent thereto.
Therefore, as the bending die (hot forging die) 31 used in this bending step, for example, as shown in FIG. 10, the large-diameter portion and the small-diameter portion of the hot forging material are pressed simultaneously. It has the 1st press part 32 and the 2nd press part 33, and each said press part is a shape formed so that the outer peripheral surface of the said hot forging material may be surrounded along a circumferential direction. The first pressing portion 32 is a portion that corrects the shape of the large diameter portion, the second pressing portion 33 is a portion that corrects the shape of the small diameter portion, and the first pressing portion 32 and the second pressing portion 33 are The third pressing portion 34 between is a portion that corrects the shape of the neck portion 25.
The first pressing portion 32 and the second pressing portion 33 used in the present invention have substantially the same shape on the outer peripheral surface of the forging material to be pressed. The portion having substantially the same shape is the periphery of the bottom portion 35 (corresponding to the place where a straight line showing the AA cross section of FIG. 10 passes) of each pressing portion. In addition, it is preferable that the third pressing portion also has a portion having substantially the same shape formed on the outer peripheral surface of the forged material that presses similarly to the first and second pressing portions.

前記の曲り取り工程に用いる曲り取り用金型31を用いた曲り取りは、例えば、図11の矢印で示すように、鍛造材を間欠回転させながら鍛造材の小径部から曲り取りを開始して、順次曲りを取りを行い、最終段階では大径部と小径部とを同時に熱間鍛造用金型31で押圧しつつ形状を矯正する。最終段階の曲り取り(形状矯正)時は、鍛造材の移動は行わず、間欠回転のみで最終形状に成形する。なお、この曲り取り工程は、鍛造材を更に鍛伸するような加工ではない。勿論、不可避的に鍛造材が鍛伸される場合もある。 Bending using the bending die 31 used in the bending step described above starts bending from the small diameter portion of the forging material while intermittently rotating the forging material as shown by the arrow in FIG. Bending is sequentially performed, and at the final stage, the large-diameter portion and the small-diameter portion are simultaneously pressed by the hot forging die 31 to correct the shape. At the final stage of bending (shape correction), the forging material is not moved, and only the intermittent rotation is performed to form the final shape. The bending process is not a process for further forging the forged material. Of course, the forged material may be inevitably stretched.

次に、一例として、50インチのタービンブレード用の荒地の熱間鍛造方法について説明する。
図4はラジアル鍛造機の一例を示す模式図である。ラジアル鍛造機には図1で示す熱間鍛造用金型1が取り付けられている。熱間鍛造用金型1は、鍛造素材21を挟み込んで鍛造するために鍛造素材の対面にそれぞれ1つずつ設けられている。図4では既に鍛造素材21がラジアル鍛造機に把持されているが、鍛造素材は加熱炉(図示せず)にて所定の熱間鍛造温度に加熱され、ラジアル鍛造機に取り付けられたものである。
加熱温度は鍛造素材の材質によって異なり、例えば、Ni基超耐熱合金であれば950〜1150℃であり、Ti合金であれば800〜1000℃である。この他、析出強化型ステンレス鋼では900〜1200℃である。また、鍛造素材の形状は棒状である。棒状の鍛造素材は、鍛造装置やプレス装置で所定の形状に整えたものであれば良く、もし、丸棒状であれば、その直径はせぎりが行える熱間鍛造用金型1の粗加工部同士の間隔と同等程度であることが好ましい。
そして、前述の鍛造素材のうち、所定の丸棒状鍛造素材をラジアル鍛造機に取り付けを行う。
Next, as an example, a method of hot forging a rough land for a 50-inch turbine blade will be described.
FIG. 4 is a schematic view showing an example of the radial forging machine. The hot forging die 1 shown in FIG. 1 is attached to the radial forging machine. The hot forging dies 1 are provided one on each side of the forging material for sandwiching the forging material 21 for forging. In FIG. 4, the forging material 21 is already held by the radial forging machine, but the forging material is heated to a predetermined hot forging temperature in a heating furnace (not shown) and attached to the radial forging machine. ..
The heating temperature varies depending on the material of the forging material, and is, for example, 950 to 1150° C. for the Ni-based super heat resistant alloy and 800 to 1000° C. for the Ti alloy. In addition, it is 900 to 1200° C. for precipitation strengthened stainless steel. The forged material has a rod shape. The rod-shaped forging material may be a rod-shaped forging material prepared into a predetermined shape by a forging device or a pressing device. If the rod-shaped forging material has a round rod shape, the diameter thereof can be narrowed and the rough forging portion of the hot forging die 1 can be used. It is preferable that the distance is approximately equal to the distance between them.
Then, of the above-mentioned forging materials, a predetermined round bar-shaped forging material is attached to the radial forging machine.

熱間鍛造は、加熱された鍛造素材21を回転させつつ、前記鍛造素材の中心軸に向かって対向配置された2つの熱間鍛造用金型1を1組(一対)とし、各押圧部で鍛造素材を押圧することにより、鍛造素材にせぎり加工を行う。なお、以下の説明において、粗加工部を用いた鍛造は粗加工鍛造であり、仕上げ加工部を用いた鍛造は仕上げ鍛造である。
せぎり加工を行う熱間鍛造用金型の形状は図1に示すものである。このせぎり加工時は、先ずせぎり加工用の熱間鍛造用金型1のせぎり粗加工部3から熱間鍛造が開始される。本発明で用いる熱間鍛造用金型1は、せぎり仕上げ加工部の両側には、かかるせぎり仕上げ加工部4の底部に向かって傾斜したせぎり粗加工部を有し、せぎり仕上げ加工部4からせぎり粗加工部3に向かってせぎり粗加工部同士の間隔が広がって行き、2つの熱間鍛造用金型1が鍛造素材の外周面を押圧したときに、連続して形成された略半円状の凸形状の略半円状押圧部によって所定の形状に成形できるようにするものである。また、最初に行うせぎり加工は、鍛造素材はその場で間欠回転する(鍛造素材の長手方向の移動は行わない)。
このせぎり加工時の加工方法としては2通りの方法がある。1つ目の方法として、せぎり加工終了後の形状重視の方法から説明する。
一対の熱間鍛造金型を用いて、対向する2方向からの熱間鍛造(せぎり加工)が開始されると、図6(A)に示すように、先ず、せぎり粗加工部3から鍛造素材の所定の位置の押圧が開始される。粗加工時の鍛造素材21と熱間鍛造用金型の接触(鍛造)位置を矢印で示している。そうすると、対向する2方向からの熱間鍛造でありながら、鍛造初期は協働して鍛造する2つ熱間鍛造用金型に形成されたせぎり粗加工部3が押圧を開始することから、鍛造開始時に鍛造素材を押圧している箇所は一対の熱間鍛造金型を合わせて4ヶ所である。この4ヶ所が同時にせぎり加工を開始すると、接触面積が小さいため効率よく溝加工を行っていく。そして、押圧箇所が順次せぎり仕上げ加工部に向かい、一対の熱間鍛造用金型に形成されたせぎり仕上げ加工部4で所定の形状に整えられていくことになる。仕上げ加工の最終段階では、図6(B)で示すように、鍛造素材21をせぎり仕上げ加工部の底部で熱間鍛造を行うときは押圧箇所は一対の熱間鍛造金型を合わせて2ヶ所である。つまり、せぎり加工の初期段階では一対の熱間鍛造用金型を用いて4ヶ所の鍛造(せぎり加工)を行い、最後の形状調整時は一対の熱間鍛造用金型を用いて2ヶ所の鍛造により、形状を整えることができる。また、せぎり粗加工部よりも曲率半径が大きい凸形状のせぎり仕上げ加工部4で最終形状に効率よく成形することができる。しかも、矢印で示した仕上げ加工部の底部の形状で最終的な形状に整えることが可能であるため、最終仕上げ形状を重視する場合には好都合である。
In the hot forging, while rotating the heated forging material 21, two sets of hot forging dies 1 facing each other toward the central axis of the forging material are set as one set (pair), and at each pressing portion. By pressing the forging material, the forging material is squeezed. In the following description, forging using the rough working portion is rough working forging, and forging using the finishing working portion is finish forging.
The shape of the hot forging die for performing the cutting process is shown in FIG. At the time of this cutting, hot forging is first started from the rough cutting portion 3 of the hot forging die 1 for cutting. The hot forging die 1 used in the present invention has, on both sides of the semi-finished portion, a semi-finished rough portion which is inclined toward the bottom of the semi-finished portion 4. When the two hot forging dies 1 press the outer peripheral surface of the forging material, the gaps between the rough-processed portions widen from the portion 4 toward the rough-processed portion 3 and are continuously formed. The above-mentioned substantially semicircular convex substantially semicircular pressing portion enables molding into a predetermined shape. In the first cutting process, the forging material rotates intermittently on the spot (the forging material is not moved in the longitudinal direction).
There are two types of processing methods for this cutting. As the first method, a method of emphasizing the shape after finishing the cutting process will be described.
When hot forging (sagging) from two opposite directions is started using a pair of hot forging dies, first, as shown in FIG. Pressing of the forging material at a predetermined position is started. The position of contact (forging) between the forging material 21 and the hot forging die during rough processing is indicated by an arrow. Then, although the forging is hot forging from two opposite directions, the forging is started because the rough-cutting portion 3 formed in the two hot forging dies that cooperate to forge in the initial stage of forging starts pressing. At the start, there are four places where the forging material is pressed, including a pair of hot forging dies. When the four points start to be squeezed at the same time, the groove area is efficiently processed because the contact area is small. Then, the pressed portions are sequentially moved toward the semi-finished finished portion, and are formed into a predetermined shape by the semi-finished finished portion 4 formed in the pair of hot forging dies. At the final stage of the finishing process, as shown in FIG. 6B, when the forging material 21 is squeezed and the hot forging is performed at the bottom of the finishing part, the pressing point is a combination of a pair of hot forging dies. There are several places. In other words, at the initial stage of the boring process, forging (grooving) is performed at four places using a pair of hot forging dies, and at the time of the final shape adjustment, a pair of hot forging dies are used. The shape can be adjusted by forging in several places. In addition, it is possible to efficiently form the final shape by the convex-shaped edge-finishing processed section 4 having a larger radius of curvature than the edge-cutting rough-processed section. Moreover, it is possible to adjust the final shape by the shape of the bottom of the finishing portion indicated by the arrow, which is convenient when the final finishing shape is emphasized.

もう一つの方法は、加工時間を短時間とする場合に適用する方法である。
一対の熱間鍛造金型を用いて、対向する2方向からの熱間鍛造が開始されると、図7(A)に示すように、先ず、せぎり粗加工部3から鍛造素材の所定の位置の押圧が開始される。粗加工時の鍛造素材21と熱間鍛造用金型の接触(鍛造)位置を矢印で示している。そうすると、対向する2方向からの熱間鍛造でありながら、鍛造初期は協働して鍛造する2つ熱間鍛造用金型に形成されたせぎり粗加工部3が押圧を開始することから、鍛造開始時に鍛造素材を押圧している箇所は一対の熱間鍛造金型を合わせて4ヶ所である。この4ヶ所が同時にせぎり加工を開始すると、接触面積が小さいため効率よく溝加工を行っていく。そして、順次仕上げ加工部に向かって熱間鍛造を行い、一対の熱間鍛造用金型に形成されたせぎり仕上げ加工部4で所定の形状に整えられていくことになる。
前述のように、B−B断面図からA−A断面図で示す位置(底部)までの曲率半径はほぼ同じとしていることから、せぎり仕上げ加工部4の底部まで使用する仕上げ加工は行わず、図7(B)に示すように、仕上げ加工時も押圧する箇所を4ヶ所として仕上げ加工を終了させる。この場合であっても、せぎり粗加工部3よりも曲率半径が大きい凸形状のせぎり仕上げ加工部4で最終形状に効率よく成形することができ、且つ、押圧箇所を4ヶ所とすることで短時間でせぎり加工が行える。そのため、鍛造時間を短時間としたい場合には好都合である。
なお、この鍛造時間重視の方法を用いる場合、せぎり仕上げ加工部の底部(A−A断面図で示す位置)の曲率半径(図7で示す鍛造素材の長手方向に垂直方向から見たときの曲率半径)をせぎり加工した後の鍛造素材の直径の曲率半径よりも小さくすることが重要である。但し、せぎり仕上げ加工部の底部は湾曲した形状としておき、熱間鍛造時に過度な応力集中を避けるようにすると良い。
The other method is a method applied when the processing time is short.
When hot forging from two opposite directions is started using a pair of hot forging dies, first, as shown in FIG. The pressing of the position is started. The position of contact (forging) between the forging material 21 and the hot forging die during rough processing is indicated by an arrow. Then, although the forging is hot forging from two opposite directions, the forging is started because the rough-cutting portion 3 formed in the two hot forging dies that cooperate to forge in the initial stage of forging starts pressing. At the start, there are four places where the forging material is pressed, including a pair of hot forging dies. When the four points start to be squeezed at the same time, the groove area is efficiently processed because the contact area is small. Then, hot forging is sequentially performed toward the finish working portion, and the hot forging portion 4 formed in the pair of hot forging dies is arranged into a predetermined shape.
As described above, since the radii of curvature from the BB sectional view to the position (bottom portion) shown in the AA sectional view are almost the same, the finishing work used up to the bottom of the semi-finished finish working part 4 is not performed. As shown in FIG. 7(B), the finishing process is completed by setting four pressing points during the finishing process. Even in this case, it is possible to efficiently form the final shape by the convex-shaped edge-finishing processed section 4 having a larger radius of curvature than the edge-cutting rough-processed section 3, and by using four pressing points. It can be processed in a short time. Therefore, it is convenient when it is desired to shorten the forging time.
In addition, in the case of using this method for emphasizing forging time, the radius of curvature of the bottom portion (position shown in the A-A cross-sectional view) of the semifinished portion (when viewed from the direction perpendicular to the longitudinal direction of the forging material shown in FIG. 7). It is important to make the radius of curvature smaller than the radius of curvature of the diameter of the forged material after the cutting. However, it is preferable that the bottom portion of the semi-finished finished portion is curved so as to avoid excessive stress concentration during hot forging.

前記のせぎり加工が終了すると、熱間鍛造用金型1を鍛伸用押圧部を有する熱間鍛造用金型11に交換する。この熱間鍛造用金型の交換時においては、鍛造素材を再度所定の鍛造温度に再加熱することができる。
交換した熱間鍛造用金型11は、前記鍛造素材を伸長する鍛伸用押圧部を有する伸長部7が設けられている。鍛伸用押圧部は、図3に示す形状を有するものである。この鍛伸用押圧部を有する熱間鍛造用金型11の、鍛造素材の長手方向から見た押圧部の形状も、図6(A)に示す前記せぎり加工を行った熱間鍛造用金型1と同様であるため、対向する2方向からの熱間鍛造が開始されると、先ず、鍛伸粗加工部13から鍛造素材の所定の位置の押圧が開始される。そうすると、対向する2方向からの熱間鍛造でありながら、鍛伸(鍛造)初期は協働して鍛造する2つ(一対)の熱間鍛造用金型に形成された鍛伸粗加工部13が押圧を開始することから、鍛造開始時に鍛造素材を押圧している箇所は一対の熱間鍛造金型を合わせて4ヶ所である。この4ヶ所が同時に鍛伸を開始すると、接触面積が小さいため効率よく鍛造素材を伸長していく。そして、鍛造素材はラジアル鍛造機によって間欠回転しつつ鍛造素材の長手方向に順次移動されて、押圧箇所が順次鍛伸仕上げ加工部に向かうように熱間鍛造を行い、一対の熱間鍛造用金型に形成された鍛伸仕上げ加工部で所定の形状に整えられていくことになる。
つまり、仕上げ加工の最終段階では、図6(B)で示すように、鍛伸仕上げ加工部14で熱間鍛造を行うときは押圧箇所は一対の熱間鍛造金型を合わせて2ヶ所である。この鍛伸仕上げ加工部の底部の形状で最終的な形状に整える方法は、最終仕上げ形状を重視する場合には好都合である。
また、この鍛伸用押圧部による熱間鍛造においても、熱間鍛造時間を短時間にするには図7のように、熱間鍛造初期から熱間鍛造の最終段階まで押圧箇所を4ヶ所とすることで短時間で鍛造素材を伸長することができる。
When the above-mentioned cutting operation is completed, the hot forging die 1 is replaced with a hot forging die 11 having a forging/pressing portion. When this hot forging die is replaced, the forging material can be reheated to a predetermined forging temperature again.
The exchanged hot forging die 11 is provided with an extension portion 7 having a forging/pressing portion that extends the forging material. The forging/pressing portion has a shape shown in FIG. The shape of the pressing portion of the hot forging die 11 having the pressing portion for forging as viewed from the longitudinal direction of the forging material is also the shape of the hot forging metal that has been subjected to the above-mentioned cutting process shown in FIG. 6(A). Since it is similar to the die 1, when hot forging from two opposite directions is started, first, the forging roughening portion 13 starts pressing the forging material at a predetermined position. Then, although the hot forging is performed from two opposite directions, the forging roughening portion 13 formed in the two (pair) hot forging dies that cooperate to forge in the initial stage of forging (forging) is performed. Since the pressing starts, the forging material is pressed at the starting point of the forging in four places including the pair of hot forging dies. When these four locations start forging at the same time, the forging material is efficiently stretched because the contact area is small. Then, the forging material is sequentially moved by the radial forging machine in the longitudinal direction of the forging material while rotating intermittently, and hot forging is performed so that the pressed portion is sequentially directed to the forging and finishing processing part, and a pair of hot forging metal The wrought finish processing part formed in the mold is used to prepare a predetermined shape.
That is, in the final stage of finishing, as shown in FIG. 6(B), when hot forging is performed in the forging/finishing processing section 14, there are two pressing points including a pair of hot forging dies. .. This method of adjusting the bottom shape of the forged and finished portion to a final shape is convenient when the final finished shape is important.
Also, in hot forging by the pressing portion for forging and stretching, as shown in FIG. 7, in order to shorten the hot forging time, there are four pressing points from the initial stage of hot forging to the final stage of hot forging. By doing so, the forged material can be elongated in a short time.

また、前記の鍛伸用押圧部を有する熱間鍛造用金型において、図8に示す形状とすることができる。図8(図3と同様の箇所には同じ符号を用いた)に示す熱間鍛造用金型11は、その仕上げ加工部14の幅(鍛造素材を鍛造する場合の鍛造素材の長手方向における幅)内の底部から鍛伸粗加工部に向かって凹部8が形成され、前記凹部8により、前記鍛伸仕上げ加工部の押圧部が鍛造素材の長手方向で2ヶ所に分かれている。凹部は鍛伸仕上げ加工部14の幅内に1つ以上形成し、仕上げ加工部の押圧部を2つ以上に分けることで鍛伸時の鍛造用素材の曲りをより確実に防止することができる。図8に示す熱間鍛造用金型を用いて熱間鍛造していくと、A−A断面で示す鍛伸仕上げ加工部の底部にて最終段階の鍛造が行える。鍛造用素材が押圧された瞬間においては、鍛伸仕上げ加工部によって押圧されている部分と、その鍛伸仕上げ加工部によって押圧されている部分に隣り合う押圧されいない部分が生じている。押圧された部分の肉が押圧されていない部分に流れ、その肉が流れることにより、僅かであるが鍛造用素材の断面が楕円となることがある。楕円となった鍛造素材は鍛造中に曲りを生じやすくなる。しかし、図8の熱間鍛造用金型の構造によれば、凹部によって押圧部(仕上げ加工部)が分けられていることから、最初に押圧した場所がラジアル鍛造によって鍛造素材が間欠的に回転して、次の押圧部によって仕上げ鍛造される。このとき、図8の構造では、合計4ヶ所で押圧されているため、上述のとおり次の押圧部によって楕円を矯正しつつ曲りも矯正できるものである。なお、凹部の形成箇所は仕上げ加工部の底部(図8のA−Aで示す直線が接している箇所)を含むように形成することで曲り防止の効果を最大限発揮できる。 Further, the hot forging die having the forging/pressing portion may have the shape shown in FIG. The hot forging die 11 shown in FIG. 8 (the same reference numerals are used for the same parts as in FIG. 3) has the width of the finish processing portion 14 (the width in the longitudinal direction of the forging material when the forging material is forged). ), a recess 8 is formed from the bottom to the rough forging portion, and the recess 8 divides the pressing portion of the finish forging portion into two portions in the longitudinal direction of the forging material. By forming one or more recesses within the width of the forging and finishing processing portion 14 and dividing the pressing portion of the finishing and processing portion into two or more, it is possible to more reliably prevent bending of the forging material during forging and stretching. .. When hot forging is performed using the hot forging die shown in FIG. 8, the final stage forging can be performed at the bottom of the forged and finished portion shown by the AA cross section. At the moment when the forging material is pressed, there are a portion pressed by the forging and finishing processing portion and an unpressed portion adjacent to the portion pressed by the forging and finishing processing portion. The pressed portion of the meat may flow to the non-pressed portion, and the flow of the meat may cause the forging material to have a slightly oval cross section. The forged material that has become an ellipse is likely to bend during forging. However, according to the structure of the hot forging die of FIG. 8, since the pressing portion (finishing portion) is divided by the concave portion, the forging material is intermittently rotated by the radial forging at the first pressing position. Then, it is finish-forged by the next pressing portion. At this time, in the structure of FIG. 8, since the pressure is applied at four places in total, the bending can be corrected while correcting the ellipse by the next pressing portion as described above. It should be noted that the effect of preventing bending can be maximized by forming the concave portion so as to include the bottom portion (the portion where the straight line indicated by AA in FIG. 8 is in contact) of the finishing portion.

上記のせぎり加工と鍛伸加工を施して得られた鍛造材に対して、曲り取り(形状矯正)を行う。曲り取り(形状矯正)は、図10に示すように、鍛造材の大径部と小径部とを同時に押圧する第一押圧部と第二押圧部とを有し、前記各押圧部は、前記鍛造材の外周面を周方向に沿って取り囲むように形成されている形状のものである。前記の第一押圧部と第二押圧部とは、押圧する鍛造材の外周面に略同一形状の押圧面として、曲り取り(形状矯正)を行って、曲りの少ない鍛造材を再現性良く得ることができる。
このようにして、せぎりから鍛伸、そして曲り取りへと同じラジアル鍛造機を用いて連続して鍛造素材を所定の荒地形状に熱間鍛造を行って鍛造材とすることができるため、従来のようなせぎり用の治具を用いた後に、別な鍛造機であらためて鍛伸を行う煩雑な工程を省略できる。そのため、再加熱回数を低減できるにもかかわらず、精度の高いタービンブレード用の荒地を製造することが可能となる。
The bent material (shape correction) is performed on the forged material obtained by performing the above-mentioned cutting and forging processing. As shown in FIG. 10, the bending (shape correction) has a first pressing portion and a second pressing portion that simultaneously press the large diameter portion and the small diameter portion of the forged material, and each of the pressing portions is It has a shape formed so as to surround the outer peripheral surface of the forged material along the circumferential direction. The first pressing portion and the second pressing portion are pressed surfaces having substantially the same shape on the outer peripheral surface of the forging material to be pressed, and are bent (shape correction) to obtain a forged material with little bending with good reproducibility. be able to.
In this way, since the forging material can be continuously hot forged into a predetermined rough shape using the same radial forging machine from claw to forging, and bending, it can be used as a forging material. After using such a jig for sawing, it is possible to omit a complicated process of newly performing forging with another forging machine. Therefore, although the number of times of reheating can be reduced, it becomes possible to manufacture a highly accurate waste land for turbine blades.

本発明によれば、タービンブレードに使用される難加工性材であっても、ラジアル鍛造機を用いて容易にせぎり加工と鍛伸加工と曲り取りとを行うことができる。また、鍛造工程後に曲り取りの形状矯正を行うことから、形状のばらつきの少ない鍛造材(荒地)を再現性良く得ることができる。また、前例のないラジアル鍛造機を用いた熱間鍛造方法によれば、鍛造材の再加熱の回数を飛躍的に低減させることができ、生産性を向上させ、省エネルギーにも極めて有効となる。 According to the present invention, even a hard-to-work material used for a turbine blade can be easily subjected to a punching process, a forging process and a bending process by using a radial forging machine. Further, since the shape is corrected by bending after the forging step, it is possible to obtain a forged material (rough land) with little variation in shape with good reproducibility. Further, according to the hot forging method using the unprecedented radial forging machine, the number of times of reheating of the forged material can be dramatically reduced, the productivity is improved, and the energy saving is extremely effective.

(実施例1)
図2に示す熱間鍛造用金型1を一対用意した。なお、粗加工部を用いた鍛造は粗加工鍛造であり、仕上げ加工部を用いた鍛造は仕上げ鍛造である。
用意したせぎり加工用の熱間鍛造用金型1のせぎり部5は、鍛造素材を挟み込むための一対のせぎり用押圧部を有し、せぎり用押圧部は鍛造素材を取り囲むように連続した、断面が略半円状の凸形状をなし、せぎり用押圧部は、せぎり粗加工部と、該せぎり粗加工部よりも曲率半径が大きい凸形状のせぎり仕上げ加工部とを有するものである。せぎり粗加工部13の略半円状の凸形状の曲率半径は30mmとし、せぎり仕上げ加工部14の略半円状の凸形状の曲率半径は50mmとし、その間は徐変するものであった。
また、せぎり加工後に鍛造素材を伸長する熱間鍛造用金型11の伸長部7に設けられた鍛伸用押圧部は、押圧部が平坦状に形成されたものであり、その形状は図3に示すものである。鍛伸用の伸長部7は、鍛造素材を挟み込むための一対の押圧部12を有し、押圧部12は鍛造素材を取り囲むように連続した、断面が略台形状の凸形状をなし、鍛伸用押圧部12は、作業面が略平坦状の鍛伸粗加工部13と、仕上げ加工部14とを有するものである。鍛伸用押圧部の幅は粗加工部13を50mmとし、仕上げ加工部14を100mmとし、その間は除変するものであり、最終形状を重視した形状を有する熱間鍛造用金型を用いて行った。
上記の熱間鍛造用金型を2つ1組で一対としてラジアル鍛造機に取り付けて熱間鍛造の準備を行った。
(Example 1)
A pair of hot forging dies 1 shown in FIG. 2 was prepared. Note that the forging using the rough working portion is rough working forging, and the forging using the finishing working portion is finish forging.
The cut portion 5 of the prepared hot forging die 1 for cut processing has a pair of push portions for sandwiching the forging material, and the push portions for cutting are continuous so as to surround the forging material. Having a semi-circular convex shape in cross section, and the pressing portion for cutting has a rough cutting processing portion and a convex cutting processing portion having a larger radius of curvature than the rough cutting processing portion. Is. The radius of curvature of the semi-circular convex shape of the rough-cut portion 13 is 30 mm, and the radius of curvature of the semi-circular convex shape of the rough-finished portion 14 is 50 mm. It was
Further, the pressing portion for forging provided in the extension portion 7 of the hot forging die 11 that extends the forging material after the cutting process has a flat pressing portion, and its shape is as shown in FIG. 3 is shown. The extension part 7 for forging has a pair of pressing parts 12 for sandwiching the forging material, and the pressing part 12 is continuous so as to surround the forging material and has a convex shape with a substantially trapezoidal cross section. The pressing portion 12 has a forged and roughened portion 13 having a substantially flat work surface and a finishing portion 14. The width of the pressing portion for forging is 50 mm for the rough processing portion 13 and 100 mm for the finishing processing portion 14 and is changed during that time. A hot forging die having a shape with an emphasis on the final shape is used. went.
Two sets of the above-mentioned hot forging dies were attached as a pair to a radial forging machine to prepare for hot forging.

50インチタービンブレード用の鍛造素材を950℃に加熱された加熱炉で加熱を行った。鍛造素材はチタン合金であり、その寸法は直径がφ200mm、長さが1100mmであった。
鍛造素材を加熱炉から取り出して、ラジアル鍛造機で熱間鍛造を開始した。なお、鍛造素材は、マニプレータで把持して操作した。
熱間鍛造は、まず、加熱された鍛造素材21を間欠回転と、対向配置された2つの熱間鍛造用金型1のせぎり用押圧部で鍛造素材の外周面の押圧を繰り返すことにより、鍛造素材にせぎり加工を行った。最初に行うせぎり加工は、鍛造素材はその場で回転(鍛造素材の長手方向の移動は行わない)しつつ、所定の形状に熱間鍛造した。図2に示すように1つの金型に複数個のせぎり加工用の押圧部2が形成された金型を使用し、2ヶ所同時にせぎりを行った。せぎり加工時は、鍛造素材の押圧場所を粗加工部から徐々に仕上げ加工部に移動するように行った。
前記のせぎり加工の終了後、鍛伸用押圧部を有する図3に示す熱間鍛造用金型11に交換した。このとき、鍛造素材はラジアル鍛造機から取り外して、再度所定の鍛造温度に再加熱行った。鍛伸用押圧部を有する熱間鍛造用金型11に交換終了後に再度鍛造素材をラジアル鍛造機に取り付けて鍛伸用押圧部による熱間鍛造を行った。鍛造素材はラジアル鍛造機によって間欠回転と長手方向への順次移動と押圧を繰返しながら所定の形状に整えて荒地形状に熱間鍛造した。この鍛伸加工は、鍛造素材の押圧場所を粗加工部から徐々に仕上げ加工部に移動するように行った。熱間鍛造後の荒地22は、根部、翼部、ボス部の成形に好適な図5に示すような形状であった。熱間鍛造後の荒地には、特にかぶり疵等の問題も発生しなかった。
最後に曲り取り(形状矯正)工程を図10に示す曲り取り用金型を用いて行った。曲り取り用金型の第一押圧部と第二押圧部とは、押圧する鍛造材の外周面に略同一形状の押圧面としたものを準備し、ラジアル鍛造機を用いて間欠的な押圧を繰返し、曲り取り(形状矯正)を行った。このときは、図11に示すように、鍛造材の小径部から曲り取り(形状矯正)を開始して順次曲り取り(形状矯正)を行いながら第三押圧部と首部が接触した時点で、鍛造材の移動を停止して、間欠回転のみとして第一、第二及び第三押圧部により曲り取りを行って形状を最終形状に整えた。曲り取り後の荒地の小径部及び大径部の直径は、曲り取り前の直径と比較して変化は殆ど無かった。曲り取り(形状矯正)後のタービンブレード用の荒地は殆ど曲り等の形状不良は見られなかった。
The forging material for the 50-inch turbine blade was heated in a heating furnace heated to 950°C. The forging material was a titanium alloy, and the dimensions were 200 mm in diameter and 1100 mm in length.
The forging material was taken out of the heating furnace, and hot forging was started by the radial forging machine. The forged material was operated by gripping it with a manipulator.
The hot forging is carried out by intermittently rotating the heated forging material 21 and repeatedly pressing the outer peripheral surface of the forging material with the pressing portions of the two hot forging dies 1 facing each other for cutting. The material was processed into a squirrel. In the first cutting process, the forging material was hot forged into a predetermined shape while rotating the forging material on the spot (without moving the forging material in the longitudinal direction). As shown in FIG. 2, a die in which a plurality of pressing portions 2 for punching was formed in one die was used, and the punching was performed simultaneously at two locations. At the time of cutting, the pressing location of the forging material was gradually moved from the rough processing portion to the finishing processing portion.
After completion of the above-mentioned cutting, the hot forging die 11 shown in FIG. 3 having a forging and pressing portion was replaced. At this time, the forging material was removed from the radial forging machine and reheated again to a predetermined forging temperature. After the hot forging die 11 having the forging and pressing portion was replaced, the forging material was attached again to the radial forging machine to perform hot forging by the forging and pressing portion. The forging material was hot-forged into a rough shape by adjusting it to a predetermined shape by repeating intermittent rotation, sequential movement in the longitudinal direction, and pressing with a radial forging machine. This forging processing was performed so that the pressing location of the forging material was gradually moved from the rough processing portion to the finish processing portion. The waste land 22 after hot forging had a shape as shown in FIG. 5 suitable for forming the root portion, the blade portion, and the boss portion. No particular problems such as fogging occurred on the waste land after hot forging.
Finally, a bending (shape correction) step was performed using the bending die shown in FIG. For the first pressing portion and the second pressing portion of the bending die, prepare a pressing surface of substantially the same shape on the outer peripheral surface of the forging material to be pressed, and perform intermittent pressing using a radial forging machine. Repeated bending (shape correction) was performed. At this time, as shown in FIG. 11, the forging is started from the small diameter portion of the forged material (shape correction) and is sequentially bent (shape correction) while the third pressing portion and the neck are in contact with each other. The movement of the material was stopped, and only the intermittent rotation was performed, and bending was performed by the first, second and third pressing portions to adjust the shape to the final shape. The diameters of the small-diameter portion and the large-diameter portion of the wasteland after bending were almost unchanged as compared with the diameter before bending. After the bending (shape correction), the rough land for the turbine blade showed almost no shape defects such as bending.

(実施例2)
実施例2として、図8の熱間鍛造用金型の効果を確認した。用いたせぎり用の熱間鍛造用金型は前記の実施例1と同じである。
実施例2として、図8の熱間鍛造用金型11の効果を確認した。図8に示す熱間鍛造用金型は、鍛伸用の伸長部7は、鍛造素材を挟み込むための一対の鍛伸用押圧部12を有し、鍛伸用押圧部12は鍛造素材を取り囲むように連続した、断面が略台形状の凸形状をなし、鍛伸用押圧部12は、作業面が略平坦状の鍛伸粗加工部13と、鍛伸仕上げ加工部14とを有するものである。鍛伸用押圧部の幅は粗加工部13を50mmとし、仕上げ加工部14を120mmとし、その間は除変するものであり、その仕上げ加工部の中央に幅が50mmの凹部を形成し、仕上げ加工部の押圧部を2つにしたものである。なお、2つに分けた押圧部の幅はそれぞれ35mmであった。また、用いたせぎり用の熱間鍛造用金型は前述の実施例1と同じである。
(Example 2)
As Example 2, the effect of the hot forging die shown in FIG. 8 was confirmed. The hot forging die used for cutting was the same as that used in Example 1.
As Example 2, the effect of the hot forging die 11 of FIG. 8 was confirmed. In the hot forging die shown in FIG. 8, the extension part 7 for forging has a pair of pressing parts 12 for forging for sandwiching the forging material, and the pressing part 12 for forging surrounds the forging material. As described above, the forging/depressing portion 12 has a continuous trapezoidal cross section and a work surface having a substantially flat roughening/working portion 13 and a forging/finishing processing portion 14. is there. The width of the pressing portion for forging is 50 mm for the rough processing portion 13 and 120 mm for the finishing processing portion 14, and is changed during that time, and a recess having a width of 50 mm is formed in the center of the finishing processing portion to finish. The processing part has two pressing parts. The width of each of the two pressing portions was 35 mm. Further, the hot forging die for sawing used is the same as in the first embodiment.

50インチタービンブレード用の鍛造素材を950℃に加熱された加熱炉で加熱を行った。鍛造素材はチタン合金であり、その寸法は直径がφ200mm、長さが1100mmであった。
鍛造素材を加熱炉から取り出して、ラジアル鍛造機で熱間鍛造を開始した。なお、鍛造素材は、マニプレータで把持して操作した。
熱間鍛造は、まず、加熱された鍛造素材21を間欠回転と、対向配置された2つの熱間鍛造用金型1のせぎり用押圧部で鍛造素材の外周面の押圧を繰り返すことにより、鍛造素材にせぎり加工を行った。最初に行うせぎり加工は、鍛造素材はその場で回転(鍛造素材の長手方向の移動は行わない)しつつ、所定の形状に熱間鍛造した。図3に示すように1つの金型に複数個のせぎり加工用の押圧部12が形成された金型を使用し、2ヶ所同時にせぎりを行った。せぎり加工時は、鍛造素材の押圧場所を粗加工部から徐々に仕上げ加工部に移動するように行った。
前記のせぎり加工の終了後、鍛伸用押圧部を有する図3の熱間鍛造用金型11に交換した。このとき、鍛造素材はラジアル鍛造機から取り外して、再度所定の鍛造温度に再加熱行った。鍛伸用押圧部を有する熱間鍛造用金型11に交換終了後に再度鍛造素材をラジアル鍛造機に取り付けて鍛伸用押圧部による熱間鍛造を行った。鍛造素材はラジアル鍛造機によって間欠回転と長手方向への順次移動と押圧を繰返しながら所定の形状に整えて荒地形状に熱間鍛造した。次に、図8に示す熱間鍛造用金型11に交換して鍛造用素材に対して10パスのラジアル鍛造による仕上げ加工を行った。この鍛伸加工は、鍛造素材の押圧場所を粗加工部から徐々に仕上げ加工部に移動するように行った。熱間鍛造後の荒地22は、根部、翼部、ボス部の成形に好適な図5に示すような形状であった。熱間鍛造後の荒地には、特にかぶり疵等の問題も発生しなかった。全長が約1500mmの荒地の曲りについては実施例1で得られた荒地と比較して、約5mm程度の曲りの抑制が確認された。
最後に曲り取り(形状矯正)工程を図10に示す曲り取り用金型を用いて行った。前記曲り取り用金型の第一押圧部と第二押圧部とは、押圧する鍛造材の外周面に略同一形状の押圧面としたものを準備し、ラジアル鍛造機を用いて間欠的な押圧を繰返し、曲り取り(形状矯正)を行った。このときは、図11に示すように、鍛造材の小径部から曲り取り(形状矯正)を開始して順次曲り取り(形状矯正)を行いながら第三押圧部と首部が接触した時点で、鍛造材の移動を停止して、間欠回転のみとして第一、第二及び第三押圧部により曲り取りを行って形状を最終形状に整えた。曲り取り後の荒地の小径部及び大径部の直径は、曲り取り前の直径と比較して変化は殆ど無かった。曲り取り(形状矯正)後のタービンブレード用の荒地は殆ど曲り等の形状不良は見られなかった。
The forging material for the 50-inch turbine blade was heated in a heating furnace heated to 950°C. The forging material was a titanium alloy, and the dimensions were 200 mm in diameter and 1100 mm in length.
The forging material was taken out of the heating furnace, and hot forging was started by the radial forging machine. The forged material was operated by gripping it with a manipulator.
The hot forging is carried out by intermittently rotating the heated forging material 21 and repeatedly pressing the outer peripheral surface of the forging material with the pressing portions of the two hot forging dies 1 facing each other for cutting. The material was processed into a squirrel. In the first cutting process, the forging material was hot forged into a predetermined shape while rotating the forging material on the spot (without moving the forging material in the longitudinal direction). As shown in FIG. 3, a die in which a plurality of pressing portions 12 for punching was formed in one die was used, and the punching was performed simultaneously at two locations. At the time of cutting, the pressing location of the forging material was gradually moved from the rough processing portion to the finishing processing portion.
After the end of the cutting process, the die was replaced with the hot forging die 11 of FIG. 3 having the forging/pressing portion. At this time, the forging material was removed from the radial forging machine and reheated again to a predetermined forging temperature. After the hot forging die 11 having the forging and pressing portion was replaced, the forging material was attached again to the radial forging machine to perform hot forging by the forging and pressing portion. The forging material was hot-forged into a rough shape by adjusting it to a predetermined shape by repeating intermittent rotation, sequential movement in the longitudinal direction, and pressing with a radial forging machine. Next, the hot forging die 11 shown in FIG. 8 was replaced, and the forging material was subjected to a finishing process by radial forging with 10 passes. This forging processing was performed so that the pressing location of the forging material was gradually moved from the rough processing portion to the finish processing portion. The waste land 22 after hot forging had a shape as shown in FIG. 5 suitable for forming the root portion, the blade portion, and the boss portion. No particular problems such as fogging occurred on the waste land after hot forging. Regarding the bend of the wasteland having a total length of about 1500 mm, it was confirmed that the bend was suppressed by about 5 mm as compared with the wasteland obtained in Example 1.
Finally, a bending (shape correction) step was performed using the bending mold shown in FIG. The first pressing portion and the second pressing portion of the bending die are prepared by forming pressing surfaces having substantially the same shape on the outer peripheral surface of the forging material to be pressed, and intermittent pressing using a radial forging machine. By repeating the above, bending (shape correction) was performed. At this time, as shown in FIG. 11, forging is started at the time when the third pressing portion and the neck contact each other while starting bending (shape correction) from the small diameter portion of the forged material and sequentially performing bending (shape correction). The movement of the material was stopped, and only the intermittent rotation was performed to bend the material by the first, second and third pressing portions to adjust the shape to the final shape. The diameters of the small-diameter portion and the large-diameter portion of the wasteland after bending were almost unchanged as compared with the diameter before bending. After the bending (shape correction), the rough land for the turbine blade showed almost no shape defects such as bending.

本発明の製造方法により、タービンブレード等に使用される難加工性材であっても、ラジアル鍛造機を用いて容易に鍛伸することが可能であった。また、せぎり加工をラジアル鍛造機を用いて所定の荒地形状に熱間鍛造が行えるため、従来のようにせぎり用の治具を用いるといった、煩雑な工程を省略できた。そのため、再加熱回数を低減できるにもかかわらず、精度の高いタービンブレード用の荒地を製造することが可能となった。 According to the manufacturing method of the present invention, even a hard-to-work material used for a turbine blade or the like could be easily forged using a radial forging machine. Moreover, since the hot forging can be performed into a predetermined rough shape by using a radial forging machine, the complicated process of using a jig for the conventional cutting can be omitted. Therefore, although it is possible to reduce the number of times of reheating, it is possible to manufacture a highly accurate waste land for turbine blades.

1 熱間鍛造用金型(せぎり用熱間鍛造用金型)
2 略半円状押圧部(せぎり用押圧部)
3 せぎり粗加工部
4 せぎり仕上げ加工部
5 せぎり部
7 伸長部
8 凹部
9 稜線部分
11 熱間鍛造用金型(鍛伸用熱間鍛造用金型)
12 略台形状押圧部(鍛伸用押圧部)
13 鍛伸粗加工部
14 鍛伸仕上げ加工部
21 鍛造素材
22 荒地
23 大径部
24 小径部
25 首部
31 熱間鍛造用金型(曲り取り用)
32 第一押圧部
33 第二押圧部
34 第三押圧部

1 Hot forging dies (hot forging dies for claws)
2 Substantially semi-circular pressing part (sagging pressing part)
3 Saw roughing process part 4 Saw end finishing part 5 Saw part 7 Extension part 8 Recess 9 Ridge line part 11 Hot forging die (forging hot forging die)
12 Almost trapezoidal pressing part (pressing part for forging and stretching)
13 Forging Roughing Processed Part 14 Forged Finishing Processed Part 21 Forging Material 22 Rough Land 23 Large Diameter Part 24 Small Diameter Part 25 Neck 31 Hot Forging Die (For Bending)
32 1st pressing part 33 2nd pressing part 34 3rd pressing part

Claims (4)

棒状の鍛造素材をラジアル鍛造機を用いて、前記鍛造素材の中心軸に向かって対向配置された一対の熱間鍛造用金型により、前記鍛造素材の外周面を押圧して外径の異なる大径部と小径部とをそれぞれ1ヶ所以上形成して棒状の鍛造材とする鍛造工程と、
前記鍛造工程の後、前記鍛造材の中心軸に向かって対向配置された一対の曲り取り金型により、前記鍛造材の曲り取りを行う曲り取り工程と、
を含む熱間鍛造方法であって、
前記鍛造工程は、前記鍛造素材の外周面に周方向の溝部を形成するせぎり加工工程と、前記鍛造素材を長手方向に伸長させる鍛伸加工工程とを含み、
前記曲り取り金型は、前記鍛造材の曲りを矯正する押圧部を有し、
前記押圧部は、前記鍛造材の大径部と小径部とを同時に押圧する第一押圧部と第二押圧部とを有し、
前記第一押圧部と第二押圧部とは、前記鍛造材の外周面を周方向に沿って取り囲むように形成されていることを特徴とする熱間鍛造方法。
Using a radial forging machine for a rod-shaped forging material, a pair of hot forging dies opposed to each other toward the central axis of the forging material is used to press the outer peripheral surface of the forging material to have a large outer diameter. A forging step for forming a rod-shaped forging material by forming one or more diameter portions and one or more diameter portions, respectively;
After the forging step, a bending step for bending the forging material by a pair of bending tools that are arranged facing each other toward the central axis of the forging material,
A hot forging method including
The forging step includes a narrowing step for forming a circumferential groove portion on the outer peripheral surface of the forging material, and a forging step for extending the forging material in the longitudinal direction,
The bending die has a pressing portion that corrects the bending of the forged material,
The pressing portion has a first pressing portion and a second pressing portion that simultaneously press the large diameter portion and the small diameter portion of the forged material,
The hot forging method, wherein the first pressing portion and the second pressing portion are formed so as to surround the outer peripheral surface of the forged material along the circumferential direction.
前記せぎり加工用の熱間鍛造用金型は、前記鍛造素材を鍛造する場合の前記鍛造素材の長手方向に相当する方向に沿った垂直な断面形状が凸形状である略半円状押圧部を有し、
前記略半円状押圧部は、せぎり粗加工部とせぎり仕上げ加工部とを有し、前記せぎり仕上げ加工部は前記せぎり粗加工部よりも曲率半径が大きい凸形状であり、
前記略半円状押圧部は、前記曲率半径を有する凸形状の頂点を連続的に結ぶ稜線部分が前記鍛造素材を鍛造する場合に前記鍛造素材の外周面を周方向に取り囲むように形成され、
前記鍛伸加工用の熱間鍛造用金型は、前記鍛造素材を鍛造する場合の前記鍛造素材の長手方向に相当する方向に沿った垂直な断面形状が凸形状である略台形状押圧部を有し、
前記略台形状押圧部は、鍛伸粗加工部と鍛伸仕上げ加工部とを有し、前記鍛伸仕上げ加工部は、前記鍛造素材の長手方向に相当する方向の凸形状の先端の幅が、前記鍛伸粗加工部における幅よりも広い凸形状であり、
前記略台形状押圧部は、前記鍛造素材を鍛造する場合に前記鍛造素材の外周面を周方向に取り囲むように形成されていることを特徴とする請求項1に記載の熱間鍛造方法。
The die for hot forging for the forging is a substantially semi-circular pressing portion in which a vertical cross-sectional shape along a direction corresponding to the longitudinal direction of the forging material when the forging material is forged is a convex shape. Have
The substantially semi-circular pressing portion has a rough cutting portion and a fine finishing portion, and the fine finishing portion has a convex shape with a larger radius of curvature than the rough cutting portion,
The substantially semicircular pressing portion is formed so as to surround the outer peripheral surface of the forging material in the circumferential direction when the ridge line portion that continuously connects the apexes of the convex shape having the radius of curvature forging the forging material,
The hot forging die for forging is a substantially trapezoidal pressing portion having a convex vertical cross-sectional shape along a direction corresponding to the longitudinal direction of the forging material when forging the forging material. Have,
The substantially trapezoidal pressing portion has a roughening and forging finishing portion and a forging and finishing portion, and the forging and finishing portion has a width of a convex tip in a direction corresponding to the longitudinal direction of the forging material. , A convex shape wider than the width in the forged and roughened portion,
The hot forging method according to claim 1, wherein the substantially trapezoidal pressing portion is formed so as to surround an outer peripheral surface of the forging material in a circumferential direction when the forging material is forged.
前記棒状の鍛造素材がNi基超耐熱合金またはTi合金であることを特徴とする請求項1または2に記載の熱間鍛造方法。 The hot forging method according to claim 1 or 2, wherein the rod-shaped forging material is a Ni-based superheat-resistant alloy or a Ti alloy. 前記鍛造材が、タービンブレード用の荒地であることを特徴とする請求項1乃至3の何れかに記載の熱間鍛造方法。 The hot forging method according to claim 1, wherein the forged material is a waste land for a turbine blade.
JP2016193521A 2016-09-30 2016-09-30 Hot forging method Active JP6738537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016193521A JP6738537B2 (en) 2016-09-30 2016-09-30 Hot forging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016193521A JP6738537B2 (en) 2016-09-30 2016-09-30 Hot forging method

Publications (2)

Publication Number Publication Date
JP2018051617A JP2018051617A (en) 2018-04-05
JP6738537B2 true JP6738537B2 (en) 2020-08-12

Family

ID=61833812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016193521A Active JP6738537B2 (en) 2016-09-30 2016-09-30 Hot forging method

Country Status (1)

Country Link
JP (1) JP6738537B2 (en)

Also Published As

Publication number Publication date
JP2018051617A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6132030B2 (en) Manufacturing method of forged crankshaft
US10350671B2 (en) Method for producing a forged crankshaft
KR100418464B1 (en) Forging method and dies of crank throw using the unbended preform
JP6774625B2 (en) Hot forging die and hot forging method
RU2403119C2 (en) Method to produce gas turbine engine vanes
JP6287631B2 (en) Manufacturing method of forged crankshaft
JP6738537B2 (en) Hot forging method
JP6108259B2 (en) Die for hot forging and hot forging method
JP6541024B2 (en) Mold for hot forging and hot forging method
CN205324588U (en) Mould is forged to subdivision formula of bucket tooth
JP6761576B2 (en) Bending mold and bending method and manufacturing method of wasteland for turbine blades
JP6761579B2 (en) Hot forging die and hot forging method
RU2380209C1 (en) Method for manufacturing of hollow blade
JP6108258B2 (en) Die for hot forging and hot forging method
JP4881152B2 (en) gear
JP6206739B2 (en) Turbine blade manufacturing method
KR100197023B1 (en) Die forging method and mold of large crank thrower for ship engine
JPS6040332B2 (en) How to make incisors for saw chains
RU150113U1 (en) DEVICE FOR MANUFACTURE OF CUTTING TOOLS
RU158818U1 (en) RING Billets FOR PRODUCING RING DETAILS OF CASES OF COMBUSTION OF GAS-TURBINE ENGINES
SU649492A1 (en) Method of manufacturing hollow blades of turbomachines
RU2441729C1 (en) Method of hollow blade production
JP6447117B2 (en) Manufacturing method of forged crankshaft
RU152210U1 (en) RING Billets FOR PRODUCING RING DETAILS OF GAS-TURBINE POWER INSTALLATIONS BY FORGING-ROLLING
RU2524023C1 (en) Method for producing blade of gas-turbine engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200701

R150 Certificate of patent or registration of utility model

Ref document number: 6738537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350