JP6736987B2 - Condition monitoring device for rotating parts of wind power generator - Google Patents

Condition monitoring device for rotating parts of wind power generator Download PDF

Info

Publication number
JP6736987B2
JP6736987B2 JP2016111616A JP2016111616A JP6736987B2 JP 6736987 B2 JP6736987 B2 JP 6736987B2 JP 2016111616 A JP2016111616 A JP 2016111616A JP 2016111616 A JP2016111616 A JP 2016111616A JP 6736987 B2 JP6736987 B2 JP 6736987B2
Authority
JP
Japan
Prior art keywords
unit
wind
power generation
data
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016111616A
Other languages
Japanese (ja)
Other versions
JP2017218901A (en
Inventor
穎怡 温
穎怡 温
利満 前川
利満 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2016111616A priority Critical patent/JP6736987B2/en
Publication of JP2017218901A publication Critical patent/JP2017218901A/en
Application granted granted Critical
Publication of JP6736987B2 publication Critical patent/JP6736987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、風力発電装置の回転部品の状態監視装置に関する。 The present invention relates to a condition monitoring device for rotating parts of a wind turbine generator.

従来、風車、鉄道車両、工作機械などの機械装置では、回転部品の異常による不都合の発生を防止するために、定期的に検査を実施している。検査コストの低減のため、回転部品が組み込まれた機械装置を分解することなく、実稼動の振動状態から回転部品の状態を監視する方法が種々、考案されている。 Conventionally, mechanical devices such as wind turbines, railroad cars, and machine tools are regularly inspected to prevent inconveniences due to abnormalities of rotating parts. In order to reduce the inspection cost, various methods have been devised for monitoring the state of the rotating component from the vibration state in actual operation without disassembling the mechanical device in which the rotating component is incorporated.

特許文献1には、振動系センサと、回転部品の損傷に起因した周波数成分と振動系センサにより検出された実測データの周波数成分とを比較する比較照合部と、比較照合部での比較結果に基づいて回転部品の異常の有無、異常部品及び異常部位を特定する異常判定部と、を備え、機械装置を分解することなく、実稼動状態で回転部品の異常の有無と異常の部品や部位を特定する異常診断装置が開示されている。 Patent Document 1 describes a vibration system sensor, a comparison and collation unit that compares a frequency component caused by damage to a rotating component with a frequency component of actual measurement data detected by the vibration system sensor, and a comparison result in the comparison and collation unit. Based on the presence or absence of abnormalities in rotating parts, and the abnormality determination unit that identifies abnormal parts and abnormal parts, the presence or absence of abnormalities in rotating parts and abnormal parts and parts in actual operating conditions without disassembling the mechanical device. An abnormality diagnosis device for specifying is disclosed.

特許文献2には、機器に設けられたセンサを含むモニタ装置と、監視側制御装置と、監視用端末と、を備え、モニタ装置が設定するしきい値に基づいて、監視側制御装置及び監視用端末が、機器の状態を監視する状態監視システムが開示されている。 Patent Document 2 includes a monitor device including a sensor provided in a device, a monitoring side control device, and a monitoring terminal, and based on a threshold value set by the monitoring device, the monitoring side control device and the monitoring device. There is disclosed a status monitoring system in which a mobile terminal monitors the status of a device.

また、特許文献3には、風車の荷重データを用いて疲労等価荷重算出手段が算出した疲労等価荷重と、風車の耐用年数から決定される基準荷重とを比較し、その差分が所定の閾値を超えていた場合に、設定値更新手段が運転制限の条件設定値を更新して、耐用年数を確保しながら発電量の減少を極力抑えるようにした風車の運転制限調整装置が提案されている。 Further, in Patent Document 3, the fatigue equivalent load calculated by the fatigue equivalent load calculating means using the load data of the wind turbine is compared with a reference load determined from the useful life of the wind turbine, and the difference is a predetermined threshold value. There has been proposed a wind turbine operation limit adjusting device in which the set value updating means updates the condition setting value of the operation limit when it exceeds the maximum value, thereby suppressing the decrease in the power generation amount as much as possible while ensuring the useful life.

特開2006−77945号公報JP, 2006-77945, A 特開2013−185507号公報JP, 2013-185507, A 特開2010−48239号公報JP, 2010-48239, A

特許文献1,2,及び3では、測定された振動データや荷重データなどの情報を基に、回転部品の受傷の有無とその部位の診断、あるいは、運転条件の設定を行っている。しかしながら、測定されるデータは膨大であるため、異常診断や運転条件の設定には、データ転送、解析、データ保存などの大量のデータ処理が必要であり、多くの時間とコストを費やしており、改善が要望されていた。 In Patent Documents 1, 2, and 3, based on information such as measured vibration data and load data, the presence/absence of damage to a rotating component and its portion are diagnosed, or operating conditions are set. However, since the measured data is enormous, a large amount of data processing such as data transfer, analysis, and data storage is required for abnormality diagnosis and setting of operating conditions, which consumes a lot of time and cost. Improvement was requested.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、診断結果に影響を及ぼさない不要なデータを削減して、データ転送、解析、及びデータ保存に要する時間及びコストを削減可能な風力発電装置の回転部品の状態監視装置を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object thereof is to reduce unnecessary data that does not affect a diagnosis result, and reduce time and cost required for data transfer, analysis, and data storage. It is possible to provide a state monitoring device for a rotating component of a wind power generation device that can be used.

本発明の上記目的は、下記の構成により達成される。
(1) 風力発電装置の回転部品の状態監視装置であって、
風況を計測する風況計測部と、
前記風力発電装置の発電量を計測する発電量観測部と、
前記風力発電装置の回転部品から生じる物理量を検出する検出部と、
前記検出部で検出された前記物理量のデータを収録するデータ収録部と、
前記風況計測部及び前記発電量観測部によって得られる前記風況及び前記発電量に基づいて、前記検出部で検出された前記物理量のデータを前記データ収録部に収録するか否かを判定する風況・発電量判定部と、
を備えることを特徴とする風力発電装置の回転部品の状態監視装置。
(2) 前記風況・発電量判定部が前記物理量のデータを前記データ収録部に収録すると判定した後、前記物理量のデータに基づいて前記風力発電装置を簡易診断する簡易診断部と、
前記簡易診断部によって前記風力発電装置が異常と簡易診断された際、前記物理量のデータを処理して、前記風力発電装置の異常の有無、及び異常部位を特定する精密診断部と、
前記簡易診断部及び前記精密診断部による診断結果と、前記物理量のデータと、を保存するデータ保存部と、
をさらに備えることを特徴とする(1)に記載の風力発電装置の回転部品の状態監視装置。
(3) 前記風況・発電量判定部は、前記風況計測部によって得られる前記風況から推定風況値を算出すると共に、前記推定風況値及び発電量と、前記回転部品の異常発生確率と、を関連付けたデータベースを有し、
算出された前記推定風況値、及び前記発電量に最も近い異常発生確率を前記データベースから取得し、該異常発生確率に基づいて前記検出部で検出された前記物理量のデータを前記データ収録部に収録することを特徴とする(1)または(2)に記載の風力発電装置の回転部品の状態監視装置。
The above object of the present invention is achieved by the following configurations.
(1) A condition monitoring device for rotating parts of a wind turbine generator,
A wind condition measuring unit that measures the wind condition,
A power generation amount observation unit that measures the power generation amount of the wind turbine generator,
A detection unit that detects a physical quantity generated from a rotating component of the wind turbine generator,
A data recording section for recording the data of the physical quantity detected by the detection section;
Based on the wind condition and the power generation amount obtained by the wind condition measurement unit and the power generation amount observation unit, it is determined whether or not the data of the physical quantity detected by the detection unit is recorded in the data recording unit. A wind condition/power generation amount determination unit,
A condition monitoring device for rotating parts of a wind turbine generator, comprising:
(2) A simple diagnosis unit that simply diagnoses the wind turbine generator based on the data of the physical quantity after the wind condition/power generation amount determination unit determines to record the data of the physical quantity in the data recording unit,
When the wind power generator is simply diagnosed as abnormal by the simple diagnosis unit, the data of the physical quantity is processed to determine whether or not there is an abnormality in the wind power generator, and a precise diagnosis unit that identifies an abnormal portion,
A data storage unit that stores the diagnosis result by the simple diagnosis unit and the precise diagnosis unit, and the data of the physical quantity,
(1) The condition monitoring device for rotating parts of a wind turbine generator according to (1), further comprising:
(3) The wind condition/power generation amount determining unit calculates an estimated wind condition value from the wind condition obtained by the wind condition measuring unit, and at the same time, the estimated wind condition value and power generation amount, and the occurrence of an abnormality in the rotating component. Has a database that associates probability with
The estimated wind condition value calculated and the abnormality occurrence probability closest to the power generation amount are acquired from the database, and the physical quantity data detected by the detection unit based on the abnormality occurrence probability is stored in the data recording unit. The condition monitoring device for rotating parts of the wind turbine generator according to (1) or (2), which is recorded.

本発明の風力発電装置の回転部品の状態監視装置によれば、風況計測部と、発電量観測部と、回転部品の物理量の検出部と、物理量のデータを収録するデータ収録部と、物理量のデータをデータ収録部に収録するか否かを判定する風況・発電量判定部と、を備え、風況計測部が風況を計測し、発電量観測部が風力発電装置の発電量を計測と、検出部が回転部品から生じる物理量を検出する。そして、該物理量のデータをデータ収録部に収録する際、風況・発電量判定部が風況計測部及び発電量観測部によって得られる風況、及び発電量に基づいて、物理量のデータをデータ収録部に収録するか否かを判定するので、診断結果に影響を及ぼさない不要なデータを削減して、データ転送、解析、及びデータ保存に要する時間及びコストを大幅に削減できる。 According to the state monitoring device for rotating parts of the wind turbine generator of the present invention, the wind condition measuring part, the power generation amount observing part, the detecting part of the physical quantity of the rotating part, the data recording part for recording the data of the physical quantity, and the physical quantity. A wind condition/power generation amount determination unit that determines whether or not to record the data in the data recording unit, the wind condition measurement unit measures the wind condition, and the power generation observation unit determines the power generation amount of the wind power generator. The measurement and the detection unit detect the physical quantity generated from the rotating component. Then, when recording the physical quantity data in the data recording section, the wind condition/power generation amount determination section records the physical quantity data based on the wind condition and the power generation amount obtained by the wind condition measurement section and the power generation amount observation section. Since it is determined whether to record in the recording unit, unnecessary data that does not affect the diagnosis result can be reduced, and the time and cost required for data transfer, analysis, and data storage can be significantly reduced.

本発明に係る風力発電装置の回転部品の状態監視装置の構成図である。It is a block diagram of the state monitoring apparatus of the rotating components of the wind power generator which concerns on this invention. 風力発電装置の回転部品の状態監視手順を示すフローチャートである。It is a flowchart which shows the state monitoring procedure of the rotating components of a wind power generator.

以下、本発明に係る風力発電装置の回転部品の状態監視装置の実施形態を図面に基づいて詳細に説明する。
図1に示すように、風力発電装置50は、主軸51と、ブレード52と、増速機53と、発電機54と、主軸受55を備え、タワー60によって支持されるナセル61内に格納されている。
Hereinafter, an embodiment of a state monitoring device for rotating parts of a wind turbine generator according to the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the wind turbine generator 50 includes a main shaft 51, a blade 52, a speed increaser 53, a generator 54, and a main bearing 55, and is housed in a nacelle 61 supported by a tower 60. ing.

主軸51の先端に設けられたブレード52は、風力を回転トルクに変換して主軸51に伝達する。主軸51は、主軸受55によって回転自在に支持され、風力を受けたブレード52が発生する回転トルクを、増速機53の入力軸へ伝達する。増速機53は、主軸51の回転速度を増速して発電機54へ出力する。増速機53は、例えば、それぞれ軸受により回転自在に支持された複数の軸を有する歯車増速機構によって構成される。 The blade 52 provided at the tip of the main shaft 51 converts wind power into rotational torque and transmits it to the main shaft 51. The main shaft 51 is rotatably supported by a main bearing 55, and transmits the rotational torque generated by the blade 52 that receives wind force to the input shaft of the speed increaser 53. The speed increaser 53 increases the rotation speed of the main shaft 51 and outputs it to the generator 54. The speed increaser 53 is configured by, for example, a gear speed increasing mechanism having a plurality of shafts rotatably supported by bearings.

発電機54は、増速機53の出力軸に接続され、増速機53から受ける回転トルクによって発電する。発電機54は、例えば、誘導発電機によって構成され、不図示のロータが軸受により回転自在に支持されている。 The generator 54 is connected to the output shaft of the speed increaser 53, and generates electric power by the rotational torque received from the speed increaser 53. The generator 54 is, for example, an induction generator, and a rotor (not shown) is rotatably supported by bearings.

主軸受55、増速機53及び発電機54内に配設される軸受は、例えば、自動調芯ころ軸受、円すいころ軸受、円筒ころ軸受、玉軸受等の転がり軸受で構成される。 The bearings arranged in the main bearing 55, the speed increasing device 53 and the generator 54 are rolling bearings such as self-aligning roller bearings, tapered roller bearings, cylindrical roller bearings and ball bearings.

このような風力発電装置50の回転部品の状態を監視する状態監視装置10は、風況計測部11と、発電量観測部12と、振動、回転、温度、歪みなどの物理量を検出する検出部13と、データ収録部14と、風況・発電量判定部15と、簡易診断部16と、精密診断部17と、データ保存部18と、外部通信部19と、遠隔監視装置20と、出力装置21と、を備える。 The state monitoring device 10 that monitors the state of rotating components of the wind turbine generator 50 as described above includes a wind condition measuring unit 11, a power generation amount observing unit 12, and a detecting unit that detects physical quantities such as vibration, rotation, temperature, and strain. 13, a data recording unit 14, a wind condition/power generation amount determination unit 15, a simple diagnosis unit 16, a precision diagnosis unit 17, a data storage unit 18, an external communication unit 19, a remote monitoring device 20, and an output. And a device 21.

発電量観測部12、検出部13、データ収録部14、風況・発電量判定部15、簡易診断部16、精密診断部17、及びデータ保存部18は、ナセル61内に格納され、外部通信部、遠隔監視装置20、及び出力装置21は、風力発電装置50から離間して配置された制御室(図示せず)に設置されてもよい。 The power generation amount observation unit 12, the detection unit 13, the data recording unit 14, the wind condition/power generation amount determination unit 15, the simple diagnosis unit 16, the precise diagnosis unit 17, and the data storage unit 18 are stored in the nacelle 61, and external communication is performed. The unit, the remote monitoring device 20, and the output device 21 may be installed in a control room (not shown) arranged apart from the wind turbine generator 50.

風況計測部11は、風向、風速などの風況を計測するものであり、ナセル61に設けられた風向・風速計などが利用可能である。また、風況計測部11は、計測対象の移動速度を計測できる気象レーダ(ドップラーライダ)を風況計測器として利用することもでき、風車に近い地面に設置して、高度毎の風向・風速を計測するようにしてもよい。 The wind condition measuring unit 11 measures wind conditions such as the wind direction and the wind speed, and can use the wind direction and anemometer provided in the nacelle 61. Further, the wind condition measuring unit 11 can also use a weather radar (Doppler lidar) that can measure the moving speed of the measurement target as a wind condition measuring device. The wind condition measuring unit 11 can be installed on the ground close to the windmill to measure the wind direction and speed at each altitude. May be measured.

発電量観測部12は、発電機54に設置されて発電機54の発電量を計測する。 The power generation amount observation unit 12 is installed in the power generator 54 and measures the power generation amount of the power generator 54.

検出部13は、増速機53、発電機54及び主軸受55に設置された振動センサ、回転センサ、温度センサ、歪みセンサなどのセンサであり、回転部品である転がり軸受から生じる物理量のデータである振動情報及び運況情報(例えば、回転、温度、歪み)を取得する。なお、増速機53及び発電機54において、診断対象となる回転部品は、転がり軸受に限らず、歯車などであってもよい。 The detection unit 13 is a sensor such as a vibration sensor, a rotation sensor, a temperature sensor, or a strain sensor installed in the speed increaser 53, the generator 54, and the main bearing 55, and is a physical quantity data generated from a rolling bearing that is a rotating component. Obtain certain vibration information and operating condition information (for example, rotation, temperature, strain). In the gearbox 53 and the power generator 54, the rotary component to be diagnosed is not limited to a rolling bearing, but may be a gear or the like.

振動センサとしては、加速度センサが一般的であるが、AE(アコーステックエミッション)センサ、超音波センサ、ショックパルスセンサ、あるいは速度、歪み、応力、変位型センサなど、振動を電気信号に変換できるものであれば特に限定されない。ノイズが多い機械に取り付ける場合には、絶縁型を使用したほうがノイズの影響を受けることが少ないので好ましい。 An acceleration sensor is generally used as the vibration sensor, but an AE (acoustic emission) sensor, an ultrasonic sensor, a shock pulse sensor, or a speed, strain, stress, displacement type sensor or the like capable of converting vibration into an electric signal. It is not particularly limited as long as it is. When mounting on a machine with a lot of noise, it is preferable to use an insulation type because it is less affected by noise.

データ収録部14は、検出部13で検出した振動情報及び運況情報を取り込み、不図示のA/D変換装置でデジタル形式の信号に変換して収録する。デジタル形式として収録することで、その後のコンピュータによる処理が容易になる。 The data recording unit 14 takes in the vibration information and the operating condition information detected by the detection unit 13, converts them into a digital signal by an A/D converter (not shown), and records them. Recording in digital form facilitates subsequent processing by the computer.

風況・発電量判定部15は、風況計測部11及び発電量観測部12によってリアルタイムで得られる風況、及び発電量に基づいて、物理量のデータをデータ収録部14に収録するか否かを判定する。 Whether the wind condition/power generation amount determination unit 15 records the physical quantity data in the data recording unit 14 based on the wind condition and the power generation amount obtained in real time by the wind condition measurement unit 11 and the power generation amount observation unit 12. To judge.

具体的には、風況・発電量判定部15は、予め、風況値及び発電量と、回転部品の異常発生確率と、を関連付けたデータベースを備えている。また、風況・発電量判定部15は、風況計測部11によって得られた風況に基づいて推定風況値を算出する。推定風況値は、例えば、風速風向出現頻度分布、乱れ度分布、風力、吹上角、ウィンドシア等である。ここで、ウィンドシアとは、風車の鉛直方向における風速の分布である。
そして、算出された推定風況値と、発電量観測部12によって得られた発電量に最も近い異常発生確率をデータベースから取得する。この異常発生確率が、設定された閾値より大きい場合に、物理量のデータをデータ収録部14に収録するように指示する。
Specifically, the wind condition/power generation amount determination unit 15 includes a database in which the wind condition value and the power generation amount are associated with the abnormality occurrence probability of the rotating component in advance. The wind condition/power generation amount determination unit 15 also calculates an estimated wind condition value based on the wind condition obtained by the wind condition measurement unit 11. The estimated wind condition value is, for example, the wind speed/wind direction appearance frequency distribution, the turbulence degree distribution, the wind force, the upwind angle, the wind shear, or the like. Here, the wind shear is a distribution of wind speed in the vertical direction of the wind turbine.
Then, the calculated estimated wind condition value and the abnormality occurrence probability closest to the power generation amount obtained by the power generation amount observation unit 12 are acquired from the database. When the probability of occurrence of abnormality is larger than the set threshold value, the data recording unit 14 is instructed to record the physical quantity data.

なお、風況・発電量判定部15は、上記データベースを設ける代わりに、風速の閾値が、予め設定された風向ごとに設定し、風速と発電量を所定の各閾値と比較し、風速と発電量が所定の各閾値を超えた場合のみ、振動、回転、温度、歪みなどの物理量のデータをデータ収録部14に収録するようにしてもよい。 Instead of providing the above database, the wind condition/power generation amount determination unit 15 sets a wind speed threshold value for each preset wind direction, compares the wind speed and the power generation amount with each predetermined threshold value, and compares the wind speed and the power generation amount. Data of physical quantities such as vibration, rotation, temperature, and strain may be recorded in the data recording unit 14 only when the quantity exceeds each predetermined threshold value.

即ち、風況・発電量判定部15は、予め設定されている所定の条件を満足する場合(例えば、風速と発電量が十分に小さく、風向が水平、且つ平穏である場合)に、次の判定まで、物理量のデータをデータ収録部14に収録しないことで、収録するデータ量を削減している。 That is, when the wind condition/power generation amount determination unit 15 satisfies a preset predetermined condition (for example, when the wind speed and the power generation amount are sufficiently small, the wind direction is horizontal and calm), The amount of data to be recorded is reduced by not recording the physical amount data in the data recording unit 14 until the determination.

簡易診断部16は、検出部13で得られた振動情報から、実効値(RMS)、ピーク値(PEAK)、波高率(CF)などの簡易診断パラメータを算出し、簡易診断パラメータと閾値を比較する。また、検出部13で得られた回転・温度・歪みなどの運況情報も各閾値と比較し、これらの比較結果から風力発電装置50の異常の有無を簡易診断する。 The simple diagnosis unit 16 calculates simple diagnosis parameters such as an effective value (RMS), a peak value (PEAK), and a crest factor (CF) from the vibration information obtained by the detection unit 13, and compares the simple diagnosis parameter with a threshold value. To do. Further, the operating condition information such as rotation, temperature, and distortion obtained by the detection unit 13 is also compared with each threshold value, and the presence or absence of abnormality of the wind turbine generator 50 is simply diagnosed based on the comparison result.

精密診断部17は、例えば、入力された振動情報からノイズ成分を除去し、または特定の周波数成分を抽出するフィルタ処理を行った後、絶対値処理、エンベロープ処理、及び周波数分析等の各種分析処理を実施する。そして、処理された周波数成分と、回転速度信号に基づいて算出される回転部品の損傷に起因する発生周波数成分と比較照合して、異常の有無や異常個所の特定を行う。 The precision diagnosis unit 17 performs various analysis processes such as absolute value process, envelope process, and frequency analysis after performing a filtering process of removing a noise component from the input vibration information or extracting a specific frequency component, for example. Carry out. Then, the processed frequency component is compared and collated with the frequency component generated due to the damage of the rotating component calculated based on the rotation speed signal, and the presence or absence of abnormality or the location of abnormality is specified.

簡易診断部16及び精密診断部17は、風力発電装置50の異常等の状態を判定するための演算処理が可能であれば特に限定されず、例えば、コンピュータや専用マイクロチップなどで構成できる。 The simple diagnosis unit 16 and the precise diagnosis unit 17 are not particularly limited as long as they can perform arithmetic processing for determining a state such as an abnormality of the wind turbine generator 50, and can be configured by, for example, a computer or a dedicated microchip.

データ保存部18は、メモリやHDDなど記憶媒体であり、振動、回転、温度、歪みなどの振動情報及び運況情報と、簡易診断部16及び精密診断部17での診断結果と、を記憶する。データ保存部18は、外部通信部19を介して遠隔監視装置20と接続されている。外部通信部19は、有線での接続や、インターネットなどが利用可能である。 The data storage unit 18 is a storage medium such as a memory or an HDD, and stores vibration information such as vibration, rotation, temperature, and distortion, and operating condition information, and diagnostic results obtained by the simple diagnostic unit 16 and the precise diagnostic unit 17. .. The data storage unit 18 is connected to the remote monitoring device 20 via the external communication unit 19. The external communication unit 19 can use a wired connection, the Internet, or the like.

遠隔監視装置20は、データ保存部18に保存された振動情報及び運況情報から、風力発電装置50の状態を監視する。遠隔監視装置20は、風力発電装置50ごとに設けられていてもよいし、ウィンドファームに建設されている全て、或いは、一部の風力発電装置50の監視を、一元的に管理・監視する制御室(図示せず)に設けられてもよい。 The remote monitoring device 20 monitors the state of the wind turbine generator 50 based on the vibration information and the operating condition information stored in the data storage unit 18. The remote monitoring device 20 may be provided for each wind power generation device 50, or control for centrally managing and monitoring the monitoring of all or some of the wind power generation devices 50 constructed in the wind farm. It may be provided in a chamber (not shown).

出力装置21は、風力発電装置50の異常が検出された場合、異常の程度、異常部位などを、風況、運況情報、及び振動情報と共にモニタに表示する。あるいは、ライト、ブザーや、メール、SMS(ショートメッセージサービス)などで異常を通知する。 When the abnormality of the wind turbine generator 50 is detected, the output device 21 displays the degree of abnormality, the abnormal portion, and the like on the monitor together with the wind condition, operating condition information, and vibration information. Alternatively, the abnormality is notified by light, buzzer, mail, SMS (short message service), or the like.

次に、図2を参照して、風力発電装置の回転部品の状態監視装置10による監視方法について説明する。 Next, with reference to FIG. 2, a monitoring method by the state monitoring device 10 for rotating parts of the wind turbine generator will be described.

先ず、風況計測部11により風向・風速などの風況を計測し、発電量観測部12により風力発電装置50の発電量を計測する。(ステップS1)。また、風況・発電量判定部15では、風況計測部11によって得られた風況から推定風況値を算出する(ステップS2)。 First, the wind condition measuring unit 11 measures wind conditions such as wind direction and speed, and the power generation amount observing unit 12 measures the power generation amount of the wind power generator 50. (Step S1). Further, the wind condition/power generation amount determining unit 15 calculates an estimated wind condition value from the wind condition obtained by the wind condition measuring unit 11 (step S2).

次いで、風況・発電量判定部15は、予め用意された風況値及び発電量と、回転部品の異常(例えば、転がり軸受のはく離)の発生確率とを関連付けたデータベースを用いて、ステップS2で算出された推定風況値及び発電量に最も近い異常発生確率を該データベースから取得する(ステップS3)。なお、算出された推定風況値及び発電量に一致するケースが存在しない場合には、近いケースの異常発生確率を内挿することで求めることができる。 Then, the wind condition/power generation amount determination unit 15 uses a database in which the wind condition value and the power generation amount prepared in advance are associated with the occurrence probability of abnormality of the rotating component (for example, rolling bearing separation) in step S2. The abnormality occurrence probability closest to the estimated wind condition value and the power generation amount calculated in step S3 is acquired from the database (step S3). If there is no case that matches the calculated estimated wind condition value and power generation amount, it can be obtained by interpolating the probability of occurrence of abnormality in a close case.

そして、風況・発電量判定部15は、データベースから取得した異常発生確率が、所定の闘値より小さいか否かを判定する(ステップS4)。異常発生確率が、所定の闘値より小さいと判定されると、取得した風況、発電量、及び振動、回転、温度、歪みなどの物理量のデータを収録することなく、ステップS1に戻り、同様のステップを繰り返し実行する。 Then, the wind condition/power generation amount determination unit 15 determines whether or not the abnormality occurrence probability acquired from the database is smaller than a predetermined threshold value (step S4). If it is determined that the probability of occurrence of an abnormality is smaller than a predetermined threshold value, the process returns to step S1 without recording the acquired wind condition, power generation amount, and physical amount data such as vibration, rotation, temperature, and distortion, and the like. Repeat step.

これにより、風力発電装置50の診断結果に影響を及ぼさない不要なデータを削減することができ、データ転送、解析、及びデータ保存に要する時間及びコストの削減が可能となる。 As a result, unnecessary data that does not affect the diagnosis result of the wind turbine generator 50 can be reduced, and the time and cost required for data transfer, analysis, and data storage can be reduced.

ステップS4で、データベースから取得した異常発生確率が、所定の闘値より大きいと判定されると、検出部13で検出されデジタル変換された回転部品から生じる振動、回転、温度、歪みなどの物理量のデータをデータ収録部14に収録する(ステップS5)。 When it is determined in step S4 that the abnormality occurrence probability acquired from the database is larger than a predetermined threshold value, the physical quantity such as vibration, rotation, temperature, or strain generated from the rotating component detected by the detection unit 13 and digitally converted is detected. The data is recorded in the data recording unit 14 (step S5).

次いで、簡易診断部16は、データ収録部14に収録した回転情報(運況情報)と振動情報とから振動の大きさを代表するパラメータである、例えば、実効値(RMS)、ピーク値(PEAK)、波高率(CF)などの振動パラメータを算出し(ステップS6)、運況情報と共にデータ保存部18に保存した後(ステップS7)、振動パラメータ、回転、温度、歪みが、それぞれの閥値より大きいか否かにより、風力発電装置50の異常の有無を簡易診断する(ステップS8)。 Next, the simple diagnosis unit 16 is a parameter representing the magnitude of vibration based on the rotation information (operational condition information) and the vibration information recorded in the data recording unit 14, for example, the effective value (RMS) and the peak value (PEAK). ), a vibration parameter such as a crest factor (CF) is calculated (step S6) and stored in the data storage unit 18 together with the operating condition information (step S7). Whether or not there is an abnormality in the wind turbine generator 50 is simply diagnosed based on whether or not it is larger (step S8).

簡易診断部16による診断結果が正常であると、この診断結果と、振動情報及び運況情報をデータ保存部18に保存する(ステップS9)。そして、ステップS1に戻り、定期的に(例えば、2回/日〜10回/日)、風況・発電量の判定を実施する。
なお、ステップS1における測定タイミングは、回転部品の使用年数により調整してもよい。具体的に、使用年数が短い(例えば、5年以内)場合には、2回/日とし、使用年数が長い(例えば、15年以上)場合には、10回/日とする。
If the diagnosis result by the simple diagnosis unit 16 is normal, the diagnosis result, the vibration information, and the operating condition information are stored in the data storage unit 18 (step S9). Then, returning to step S1, the wind condition/power generation amount is determined periodically (for example, 2 times/day to 10 times/day).
The measurement timing in step S1 may be adjusted depending on the years of use of the rotating component. Specifically, if the number of years of use is short (for example, within 5 years), it is set to 2 times/day, and if the number of years of use is long (for example, 15 years or more), it is set to 10 times/day.

簡易診断部16が異常ありと診断すると、簡易診断部16による診断結果と、振動情報及び運況情報をデータ保存部18に保存する(ステップS10)。 When the simple diagnosis unit 16 diagnoses that there is an abnormality, the diagnosis result by the simple diagnosis unit 16 and the vibration information and the operating condition information are stored in the data storage unit 18 (step S10).

そして、簡易診断にて異常ありと診断された場合には、精密診断部17による精密診断を実施する(ステップS11)。例えば、精密診断部17の異常診断が、軸受の損傷の診断である場合は、損傷フィルタ処理/包絡線処理/FFT処理を実施した振動周波数成分を対象に、軸受損傷周波数ごとの照合(ピーク周波数=軸受損傷周波数か否か)により、軸受の傷などの異常の有無と異常部位とを特定する。 If the simple diagnosis determines that there is an abnormality, the precision diagnosis unit 17 performs the precision diagnosis (step S11). For example, when the abnormality diagnosis of the precise diagnosis unit 17 is the diagnosis of the damage of the bearing, the vibration frequency components subjected to the damage filter processing/envelope curve processing/FFT processing are subjected to the verification for each bearing damage frequency (peak frequency). = Whether or not there is an abnormality such as a scratch on the bearing and the abnormal part is specified by (whether the bearing damage frequency or not).

損傷フィルタ周波数帯域は、各軸受装置における固有振動数帯域に応じて設定する。精密診断部17は、損傷部位の特定後、損傷フィルタ周波数帯域ごとにおける振動の大きさ(実効値など)や、損傷成分ピークの有無、大きさにより、損傷の進展状況(損傷の程度:初期/進展期/末期)を判別する。 The damage filter frequency band is set according to the natural frequency band of each bearing device. After identifying the damaged portion, the precise diagnosis unit 17 determines the progress of damage (degree of damage: initial/ Distinguish the development period/end period).

なお、ノイズ等の影響による誤診断を防ぐため、同一の精密診断結果が複数回連続した時点で、診断結果を確定するようにしてもよい。 In addition, in order to prevent erroneous diagnosis due to the influence of noise or the like, the diagnosis result may be settled when the same precise diagnosis result is repeated a plurality of times.

精密診断部17による診断結果が正常である場合、ステップS9へ進み、この診断結果と、振動情報及び運況情報をデータ保存部18に保存する。そして、ステップS1に戻り、定期的に(例えば、2回/日〜10回/日)、風況・発電量の判定を実施する。 When the diagnosis result by the precise diagnosis unit 17 is normal, the process proceeds to step S9, and this diagnosis result, vibration information, and operation condition information are stored in the data storage unit 18. Then, returning to step S1, the wind condition/power generation amount is determined periodically (for example, 2 times/day to 10 times/day).

精密診断部17により異常ありと診断されると、その診断結果を、振動情報及び運況情報と共に、データ保存部18に保存し、出力装置21で異常警告する。また、測定タイミングを、ステップS9の測定タイミングよりも短い、2回/時間に再設定すると共に、軸受組込みアプリケーションの運転条件にフィードバックして、回転数を低下させるなどの処置を行う(ステップS12)。そして、再び、ステップS1に戻り、再設定された条件で運転しながら、同様のステップを繰り返し実行する。 When the precise diagnosis unit 17 diagnoses that there is an abnormality, the diagnosis result is stored in the data storage unit 18 together with the vibration information and the operating condition information, and the output device 21 warns the abnormality. In addition, the measurement timing is reset to 2 times/hour, which is shorter than the measurement timing of step S9, and the operation condition is fed back to the bearing built-in application to reduce the rotation speed (step S12). .. Then, the process returns to step S1 again, and the same steps are repeatedly executed while operating under the reset conditions.

以上説明したように、本実施形態の風力発電装置の回転部品の状態監視装置10及び状態監視方法によれば、風況計測部11と、発電量観測部12と、回転部品の物理量の検出部13と、物理量のデータを収録するデータ収録部14と、物理量のデータをデータ収録部14に収録するか否かを判定する風況・発電量判定部15と、を備え、風況計測部11が風況を計測し、発電量観測部12が発電機54の発電量を計測と、検出部13が回転部品から生じる振動、回転、温度、歪みなどの物理量を検出する。そして、該物理量のデータをデータ収録部14に収録する際、風況・発電量判定部15が、風況計測部11及び発電量観測部12によって得られる風況、及び発電量に基づいて、物理量のデータをデータ収録部14に収録するか否かを判定するので、診断結果に影響を及ぼさない不要なデータを削減することができ、データ転送、解析、及びデータ保存に要する時間及びコストを大幅に削減できる。 As described above, according to the state monitoring device 10 and the state monitoring method for the rotating component of the wind turbine generator of the present embodiment, the wind condition measuring unit 11, the power generation amount observing unit 12, and the detecting unit for the physical amount of the rotating component. 13, a data recording unit 14 that records physical quantity data, and a wind condition/power generation amount determination unit 15 that determines whether or not to record physical quantity data in the data recording unit 14, and the wind condition measurement unit 11 Measures the wind conditions, the power generation amount observation unit 12 measures the power generation amount of the generator 54, and the detection unit 13 detects physical quantities such as vibration, rotation, temperature, and distortion generated from the rotating parts. Then, when the data of the physical quantity is recorded in the data recording unit 14, the wind condition/power generation amount determination unit 15 determines, based on the wind condition and the power generation amount obtained by the wind condition measurement unit 11 and the power generation amount observation unit 12, Since it is determined whether or not the data of the physical quantity is recorded in the data recording unit 14, unnecessary data that does not affect the diagnostic result can be reduced, and the time and cost required for data transfer, analysis, and data storage can be reduced. It can be greatly reduced.

また、計測された物理量のデータに基づいて風力発電装置50を簡易診断する簡易診断部16と、風力発電装置50が異常と簡易診断された際、風力発電装置50の異常の有無、及び異常部位を特定する精密診断部17と、簡易診断部16及び精密診断部17による診断結果と、物理量のデータと、を保存するデータ保存部18と、を備えるので、風力発電装置50の回転部品の異常を精度よく診断することができる。 Further, the simple diagnosis unit 16 that simply diagnoses the wind turbine generator 50 based on the measured physical quantity data, and the presence or absence of abnormality of the wind turbine generator 50 and the abnormal portion when the wind turbine generator 50 is simply diagnosed as abnormal. Since the precise diagnosis unit 17 for identifying the above and the data storage unit 18 for storing the diagnostic results by the simple diagnosis unit 16 and the precise diagnosis unit 17, and the data of the physical quantity are provided, the abnormality of the rotating parts of the wind turbine generator 50. Can be accurately diagnosed.

また、風況・発電量判定部15は、風況計測部11によって得られる風況から推定風況値を算出すると共に、推定風況値及び発電量と、回転部品の異常発生確率と、を関連付けたデータベースを有しており、算出された推定風況値と、発電量に最も近い異常発生確率をデータベースから取得し、該異常発生確率に基づいて検出部13で検出された振動、回転、温度、歪みなどの物理量のデータをデータ収録部14に収録するので、診断結果に影響を及ぼさない不要なデータを削減して、物理量のデータを効率よくデータ収録部14に収録することができる。また、これにより、データ収録部14の記憶容量を削減できる。 Further, the wind condition/power generation amount determination unit 15 calculates the estimated wind condition value from the wind condition obtained by the wind condition measurement unit 11, and at the same time, calculates the estimated wind condition value and the power generation amount, and the abnormality occurrence probability of the rotating component. It has a database associated with it, acquires the calculated estimated wind condition value and the probability of occurrence of abnormality closest to the amount of power generation from the database, and detects the vibration and rotation detected by the detection unit 13 based on the probability of occurrence of abnormality. Since physical quantity data such as temperature and strain is recorded in the data recording section 14, unnecessary data that does not affect the diagnosis result can be reduced and the physical quantity data can be efficiently recorded in the data recording section 14. Further, this can reduce the storage capacity of the data recording unit 14.

尚、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, etc. can be appropriately made.

以上の通り、本明細書には、以下の事項が記載されている。
(1) 風力発電装置の回転部品の状態監視装置であって、
風況を計測する風況計測部と、
前記風力発電装置の発電量を計測する発電量観測部と、
前記風力発電装置の回転部品から生じる物理量を検出する検出部と、
前記検出部で検出された前記物理量のデータを収録するデータ収録部と、
前記風況計測部及び前記発電量観測部によって得られる前記風況及び前記発電量に基づいて、前記検出部で検出された前記物理量のデータを前記データ収録部に収録するか否かを判定する風況・発電量判定部と、
を備えることを特徴とする風力発電装置の回転部品の状態監視装置。
(2) 前記風況・発電量判定部が前記物理量のデータを前記データ収録部に収録すると判定した後、前記物理量のデータに基づいて前記風力発電装置を簡易診断する簡易診断部と、
前記簡易診断部によって前記風力発電装置が異常と簡易診断された際、前記物理量のデータを処理して、前記風力発電装置の異常の有無、及び異常部位を特定する精密診断部と、
前記簡易診断部及び前記精密診断部による診断結果と、前記物理量のデータと、を保存するデータ保存部と、
をさらに備えることを特徴とする(1)に記載の風力発電装置の回転部品の状態監視装置。
(3) 前記風況・発電量判定部は、前記風況計測部によって得られる前記風況から推定風況値を算出すると共に、前記推定風況値及び発電量と、前記回転部品の異常発生確率と、を関連付けたデータベースを有し、
算出された前記推定風況値、及び前記発電量に最も近い異常発生確率を前記データベースから取得し、該異常発生確率に基づいて前記検出部で検出された前記物理量のデータを前記データ収録部に収録することを特徴とする(1)または(2)に記載の風力発電装置の回転部品の状態監視装置。
(4) 風力発電装置の回転部品の状態監視方法であって、
風況計測部が、風況を計測する工程と、
発電量観測部が、前記風力発電装置の発電量を計測する工程と、
検出部が、前記風力発電装置の前記回転部品から生じる物理量を検出する工程と、
前記検出部で検出された前記物理量のデータをデータ収録部に収録する工程と、
風況・発電量判定部が、前記風況計測部及び前記発電量観測部によって得られる前記風況、及び前記発電量に基づいて、前記検出部で検出された前記物理量のデータを前記データ収録部に収録するか否かを判定する工程と、
を備えることを特徴とする風力発電装置の回転部品の状態監視方法。
As described above, the following items are described in this specification.
(1) A condition monitoring device for rotating parts of a wind turbine generator,
A wind condition measuring unit that measures the wind condition,
A power generation amount observation unit that measures the power generation amount of the wind turbine generator,
A detection unit that detects a physical quantity generated from a rotating component of the wind turbine generator,
A data recording section for recording the data of the physical quantity detected by the detection section;
Based on the wind condition and the power generation amount obtained by the wind condition measurement unit and the power generation amount observation unit, it is determined whether or not the data of the physical quantity detected by the detection unit is recorded in the data recording unit. A wind condition/power generation amount determination unit,
A condition monitoring device for rotating parts of a wind turbine generator, comprising:
(2) A simple diagnosis unit that simply diagnoses the wind turbine generator based on the data of the physical quantity after the wind condition/power generation amount determination unit determines to record the data of the physical quantity in the data recording unit,
When the wind power generator is simply diagnosed as abnormal by the simple diagnosis unit, the data of the physical quantity is processed to determine whether or not there is an abnormality in the wind power generator, and a precise diagnosis unit that identifies an abnormal portion,
A data storage unit that stores the diagnosis result by the simple diagnosis unit and the precise diagnosis unit, and the data of the physical quantity,
(1) The condition monitoring device for rotating parts of a wind turbine generator according to (1), further comprising:
(3) The wind condition/power generation amount determining unit calculates an estimated wind condition value from the wind condition obtained by the wind condition measuring unit, and at the same time, the estimated wind condition value and power generation amount, and the occurrence of an abnormality in the rotating component. Has a database that associates probability with
The estimated wind condition value calculated and the abnormality occurrence probability closest to the power generation amount are acquired from the database, and the physical quantity data detected by the detection unit based on the abnormality occurrence probability is stored in the data recording unit. The condition monitoring device for rotating parts of the wind turbine generator according to (1) or (2), which is recorded.
(4) A method for monitoring the condition of rotating parts of a wind turbine generator,
The process of measuring the wind condition by the wind condition measuring unit,
A step of measuring the amount of power generated by the wind power generation device,
A step of detecting a physical quantity generated from the rotating component of the wind turbine generator;
Recording the data of the physical quantity detected by the detection unit in a data recording unit,
A wind condition/power generation amount determination unit records the data of the physical quantity detected by the detection unit based on the wind condition obtained by the wind condition measurement unit and the power generation amount observation unit and the power generation amount. The process of determining whether to record in the section,
A method for monitoring the state of rotating parts of a wind turbine generator, comprising:

10 風力発電装置の回転部品の状態監視装置
11 風況計測部
12 発電量観測部
13 検出部
14 データ収録部
15 風況・発電量判定部
16 簡易診断部
17 精密診断部
18 データ保存部
50 風力発電装置
55 主軸受(回転部品)
10 State Monitoring Device for Rotating Parts of Wind Power Generator 11 Wind Condition Measuring Unit 12 Power Generation Observing Unit 13 Detection Unit 14 Data Recording Unit 15 Wind Condition/Power Generation Determining Unit 16 Simple Diagnosis Unit 17 Precision Diagnosis Unit 18 Data Storage Unit 50 Wind Power generator 55 Main bearing (rotating parts)

Claims (5)

風力発電装置の回転部品の状態監視装置であって、
風況を計測する風況計測部と、
前記風力発電装置の発電量を計測する発電量観測部と、
前記風力発電装置の回転部品から生じる物理量を検出する検出部と、
前記検出部で検出された前記物理量のデータを収録するデータ収録部と、
前記風況計測部及び前記発電量観測部によって得られる前記風況及び前記発電量に基づいて前記回転部品の異常発生確率を算出し当該異常発生確率に基づいて前記検出部で検出された前記物理量のデータを前記データ収録部に収録するか否かを判定する風況・発電量判定部と、
を備えることを特徴とする風力発電装置の回転部品の状態監視装置。
A condition monitoring device for rotating parts of a wind turbine generator,
A wind condition measuring unit that measures the wind condition,
A power generation amount observation unit that measures the power generation amount of the wind turbine generator,
A detection unit that detects a physical quantity generated from a rotating component of the wind turbine generator,
A data recording section for recording the data of the physical quantity detected by the detection section;
The abnormality occurrence probability of the rotating component is calculated based on the wind condition and the power generation amount obtained by the wind condition measurement unit and the power generation amount observation unit, and the abnormality detected by the detection unit based on the abnormality occurrence probability. A wind condition/power generation amount determination unit that determines whether or not to record physical quantity data in the data recording unit,
A condition monitoring device for rotating parts of a wind turbine generator, comprising:
前記風況・発電量判定部は、前記風況計測部によって得られる前記風況から推定風況値を算出すると共に、前記推定風況値及び発電量と、前記回転部品の異常発生確率と、を関連付けたデータベースを有し、
算出された前記推定風況値、及び前記発電量に最も近い異常発生確率を前記データベースから取得し、該異常発生確率に基づいて前記検出部で検出された前記物理量のデータを前記データ収録部に収録するか否かを判定することを特徴とする請求項に記載の風力発電装置の回転部品の状態監視装置。
The wind condition/power generation amount determining unit calculates an estimated wind condition value from the wind condition obtained by the wind condition measuring unit, the estimated wind condition value and the power generation amount, and an abnormality occurrence probability of the rotating component, Has a database associated with
The estimated wind condition value calculated and the abnormality occurrence probability closest to the power generation amount are acquired from the database, and the physical quantity data detected by the detection unit based on the abnormality occurrence probability is stored in the data recording unit. The condition monitoring device for rotating parts of a wind turbine generator according to claim 1 , wherein it is determined whether or not to record.
前記風況・発電量判定部が前記物理量のデータを前記データ収録部に収録すると判定した後、前記物理量のデータに基づいて前記風力発電装置を簡易診断する簡易診断部と、After the wind condition/power generation determination unit determines to record the physical quantity data in the data recording unit, a simple diagnosis unit that simply diagnoses the wind turbine generator based on the physical quantity data,
前記簡易診断部によって前記風力発電装置が異常と簡易診断された際、前記物理量のデータを処理して、前記風力発電装置の異常の有無、及び異常部位を特定する精密診断部と、When the wind power generator is simply diagnosed as abnormal by the simple diagnosis unit, the data of the physical quantity is processed to determine whether or not there is an abnormality in the wind power generator, and a precise diagnosis unit that identifies an abnormal portion,
前記簡易診断部及び前記精密診断部による診断結果と、前記物理量のデータと、を保存するデータ保存部と、A data storage unit that stores the diagnosis result by the simple diagnosis unit and the precise diagnosis unit, and the data of the physical quantity,
をさらに備えることを特徴とする請求項1または2に記載の風力発電装置の回転部品の状態監視装置。The condition monitoring apparatus for rotating parts of a wind turbine generator according to claim 1 or 2, further comprising:
前記簡易診断部または前記精密診断部の少なくともいずれかによる診断結果に応じて、前記風況計測部、前記発電量観測部、および前記検出部による計測結果を用いた前記風力発電装置の状態監視のタイミングが切り替えられることを特徴とする請求項3に記載の風力発電装置の回転部品の状態監視装置。Depending on the diagnosis result by at least one of the simple diagnosis unit or the precise diagnosis unit, the wind condition measurement unit, the power generation amount observation unit, and the state monitoring of the wind power generator using the measurement result by the detection unit The state monitoring device for rotating parts of a wind turbine generator according to claim 3, wherein the timing is switched. 前記データ保存部に保存されたデータを用いて、外部への警告が行われることを特徴とする請求項3または4に記載の風力発電装置の回転部品の状態監視装置。The condition monitoring device for rotating parts of a wind turbine generator according to claim 3, wherein a warning is given to the outside by using the data stored in the data storage unit.
JP2016111616A 2016-06-03 2016-06-03 Condition monitoring device for rotating parts of wind power generator Active JP6736987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016111616A JP6736987B2 (en) 2016-06-03 2016-06-03 Condition monitoring device for rotating parts of wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016111616A JP6736987B2 (en) 2016-06-03 2016-06-03 Condition monitoring device for rotating parts of wind power generator

Publications (2)

Publication Number Publication Date
JP2017218901A JP2017218901A (en) 2017-12-14
JP6736987B2 true JP6736987B2 (en) 2020-08-05

Family

ID=60658900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016111616A Active JP6736987B2 (en) 2016-06-03 2016-06-03 Condition monitoring device for rotating parts of wind power generator

Country Status (1)

Country Link
JP (1) JP6736987B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114294A (en) * 2001-10-04 2003-04-18 Toshiba Corp Monitor, diagnosis, inspection and maintenance system for power-generating plant
US8326577B2 (en) * 2011-09-20 2012-12-04 General Electric Company System and method for predicting wind turbine component failures
DK2824324T3 (en) * 2012-03-08 2018-08-06 Ntn Toyo Bearing Co Ltd Condition Monitoring
JP6250345B2 (en) * 2013-09-24 2017-12-20 Ntn株式会社 Monitoring system and monitoring method
JP5931844B2 (en) * 2013-12-27 2016-06-08 三菱重工業株式会社 Diagnosis system and diagnosis method for hydraulic machine, hydraulic transmission and wind power generator

Also Published As

Publication number Publication date
JP2017218901A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
JP7013787B2 (en) Condition monitoring device, condition monitoring method, and condition monitoring system for wind turbines for wind power generation
EP3093486B1 (en) Computing system, wind power generating system, and method of calculating remaining life or fatigue damage of windmill
EP3431952B1 (en) Condition monitoring system and wind turbine generation apparatus
JP6377464B2 (en) Wind power generator condition monitoring device
CN1707262B (en) Methods and apparatus for rotor blade ice detection
KR101288329B1 (en) Monitoring apparatus of wind power generator
CN110234972B (en) Condition monitoring system and wind turbine
JP6553970B2 (en) Abnormality diagnosis device and sensor disconnection detection method
EP2026160A1 (en) Event monitoring via combination of signals
US20150322924A1 (en) Method of monitoring the condition of a wind turbine
WO2008135789A2 (en) Wind turbine monitoring
CN103140672A (en) A method for performing condition monitoring in a wind farm
JP6158100B2 (en) Wind generator abnormality level determination system or wind generator abnormality level determination method
CN107448362A (en) State monitoring method and device for slewing bearing and wind generating set
US20210148336A1 (en) A method for determining wind turbine blade edgewise load recurrence
KR20170133471A (en) A method for determining the remaining lifetime of a wind power plant
KR102226971B1 (en) Method for fault diagnosis based on multiple variables and apparatus using the method
JP6714844B2 (en) Abnormality diagnosis method
JP6824076B2 (en) Condition monitoring system and wind power generator
Nielsen et al. Analysis of pitch system data for condition monitoring
JP6736987B2 (en) Condition monitoring device for rotating parts of wind power generator
US10865772B2 (en) Data collection system and method for wind turbine power generation facility, and wind turbine power generation facility
CN108825452B (en) Method and device for determining blade icing of wind generating set
Roy Performance assesment of SCADA based wind turbine: condition monitoring approaches
JP2017219325A (en) Abnormality diagnostic device and abnormality diagnostic method of rotary part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R150 Certificate of patent or registration of utility model

Ref document number: 6736987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150