JP6735304B2 - Cobalt selenide/titanium mesh electrode for water electrolysis-based oxygen generation, its manufacturing method and its application - Google Patents

Cobalt selenide/titanium mesh electrode for water electrolysis-based oxygen generation, its manufacturing method and its application Download PDF

Info

Publication number
JP6735304B2
JP6735304B2 JP2018054450A JP2018054450A JP6735304B2 JP 6735304 B2 JP6735304 B2 JP 6735304B2 JP 2018054450 A JP2018054450 A JP 2018054450A JP 2018054450 A JP2018054450 A JP 2018054450A JP 6735304 B2 JP6735304 B2 JP 6735304B2
Authority
JP
Japan
Prior art keywords
cobalt
titanium mesh
selenide
selenium
mesh electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018054450A
Other languages
Japanese (ja)
Other versions
JP2018162515A (en
Inventor
新昊 李
新昊 李
軍軍 張
軍軍 張
接勝 陳
接勝 陳
野田 克敏
克敏 野田
貴司 原山
貴司 原山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Publication of JP2018162515A publication Critical patent/JP2018162515A/en
Application granted granted Critical
Publication of JP6735304B2 publication Critical patent/JP6735304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

本発明は、遷移金属の電気触媒作用によって水を電解する分野に関するもので、より具体的には、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極、その製造方法及びその応用に関するものである。 The present invention relates to the field of electrolyzing water by the electrocatalysis of transition metals, and more specifically, to a cobalt selenide/titanium mesh electrode for water electrolysis-type oxygen generation, a method for producing the same, and applications thereof. is there.

ここ数十年、石炭や石油などの再生不可能な化石エネルギーの枯渇や、化石エネルギーの使用による環境汚染は、人々の生存と発展にひどい影響を与えている。そして、化石エネルギーの代わりとなる、環境にやさしい再生可能なエネルギーの探し及び開発は、国内外の新しいエネルギー研究解題になっており、特に太陽エネルギーの変換及び貯蔵に係る研究が着目されている。使い切れないエネルギーシステムとして、太陽エネルギーの変換及び利用は、最近数十年の科学研究の重点方向になっている。太陽エネルギーは、グリーンエネルギーとして、太陽光発電やペロブスカイト太陽電池などの技術によって電気エネルギーに変換できる。しかしながら、電気エネルギーの貯蔵は、他の形態のエネルギーに比べて、困難である。電気により水を分解して水素及び酸素を発生することで、電気エネルギーを化学物質に変換して貯蔵する方法は、上記の課題を解決するための新しい手段である。また、水電解にて必要となるエネルギーを触媒剤により低減する必要があるため、安定性及び活性の高い触媒剤が要求される。また、エネルギーに係る他の貯蔵技術、例えば、リチウム・空気電池、亜鉛空気電池、電気化学(スーパー)コンデンサ、燃料電池なども、関連電極材料の開発に係っている。低価且つ有効な電気触媒電極、光触媒電極及び電気化学デバイスにおける電極材料を量産できることは、上記の複数の分野で共通する研究テーマである。 In recent decades, the depletion of non-renewable fossil energy such as coal and oil and the environmental pollution caused by the use of fossil energy have seriously affected the survival and development of people. The search and development of environmentally friendly renewable energy, which is an alternative to fossil energy, has become a new energy research theme both at home and abroad, and particularly research on conversion and storage of solar energy has been attracting attention. As an unusable energy system, the conversion and utilization of solar energy has been a focus of scientific research for decades. Solar energy can be converted to electrical energy as green energy by technologies such as photovoltaic power generation and perovskite solar cells. However, storage of electrical energy is more difficult than other forms of energy. A method of converting electric energy into a chemical substance and storing it by decomposing water by electricity to generate hydrogen and oxygen is a new means for solving the above problems. Further, since the energy required for water electrolysis needs to be reduced by the catalyst agent, a catalyst agent having high stability and activity is required. Other energy storage technologies, such as lithium-air batteries, zinc-air batteries, electrochemical (super) capacitors, fuel cells, etc., are also involved in the development of related electrode materials. The ability to mass-produce low-cost and effective electrocatalyst electrodes, photocatalyst electrodes, and electrode materials for electrochemical devices is a common research theme in the above-mentioned fields.

電気化学式水分解によってカーボンニュートラルエネルギーキャリアとなる水素及び酸素を発生することは、グリーン的で持続可能なエネルギー変換プロセスである。現時点、水電解プロセスで使用される電極材料は、希少な貴金属(白金)や貴金属酸化物(酸化イリジウムおよび酸化ルテニウム)材料であった。これらの貴金属は、地球の地殻における含有量が非常に低いため、非常に高価になっており、その大規模な生産及び適用が著しく妨げられている。なお、陰極の還元反応(水素発生)に比べて、陽極の酸化反応(酸素発生)のほうが、より高い過電位が必要となる。そのため、水素発生用電極にマッチできるとともに、性能が安定する酸素発生用電極を見出すことは、高効率の水電解を実現するためのキーポイントになっている。そのうち、遷移金属カルコゲン化合物は、化学物理的安定性及び触媒性能が優れるとともに、低価であるため、注目されている。セレン化コバルトは、半金属性を有する遷移金属カルコゲン化合物として、他のセレン化物よりも良い導電性を有するため、よりよい電気化学触媒性能を有する。また、適切な支持材の選択は、高性能電極材料の製造のポイントステップである。従来から、活性物質を高分子導電性接着剤でガラス状炭素電極に接着させる方法が知られているが、当該方法によれば、触媒剤の性能が大幅に低下する。また、カーボンクロス、カーボンペーパー、ニッケルネットに触媒活性剤材料を直接に成長させる手段によれば、触媒性能を大幅に改善することができる。ただし、これらの支持材は、耐酸性及び耐アルカリ性に乏しいため、電極材料が損傷されやすい。なお、上記の材料は、支持材として再利用することが困難であるため、産業上に利用することが難しい。したがって、遷移金属セレン化物の良好な活性および構造安定性を確保できるとともに、支持材の利点を最大に生かす方法は、研究者にとって大きな課題になっている。 Generating hydrogen and oxygen as carbon neutral energy carriers by electrochemical water splitting is a green and sustainable energy conversion process. At present, the electrode materials used in the water electrolysis process are rare precious metal (platinum) and precious metal oxide (iridium oxide and ruthenium oxide) materials. These precious metals are very expensive due to their very low content in the earth's crust, which significantly impedes their large-scale production and application. Note that a higher overpotential is required for the oxidation reaction (oxygen generation) of the anode than for the reduction reaction (hydrogen generation) of the cathode. Therefore, finding an oxygen generating electrode that can be matched with the hydrogen generating electrode and has stable performance is a key point for realizing highly efficient water electrolysis. Of these, transition metal chalcogen compounds are attracting attention because they are excellent in chemo-physical stability and catalytic performance and have a low price. As a transition metal chalcogen compound having a semi-metallic property, cobalt selenide has better conductivity than other selenides, and thus has better electrochemical catalytic performance. Also, the selection of a suitable support material is a key step in the manufacture of high performance electrode materials. Conventionally, a method of adhering an active substance to a glassy carbon electrode with a polymer conductive adhesive has been known, but according to this method, the performance of the catalyst agent is significantly reduced. Further, the catalyst performance can be greatly improved by the means for directly growing the catalyst activator material on the carbon cloth, carbon paper or nickel net. However, since these support materials have poor acid resistance and alkali resistance, the electrode material is easily damaged. Note that the above materials are difficult to reuse as a supporting material, and therefore difficult to industrially use. Therefore, a method that can ensure good activity and structural stability of the transition metal selenide and maximize the advantages of the support material has become a major issue for researchers.

本願の発明者は、上記課題を解決するために研究を行った結果、以下のことを発見した。導電性が優れるとともに再利用できるチタンメッシュを支持材とするとともに、半金属特性を有するセレン化コバルトを活性材料とし、支持材と活性材料との間の接触形態を変えることで、オーミック接触界面を有する水電解式酸素発生用のセレン化コバルト/チタンメッシュ複合電極を製造できる。セレン化コバルト/チタンメッシュ界面におけるオーミック接触は、電解における界面抵抗を低減できるため、セレン化コバルト/チタンメッシュ電極を、電気化学式水分解分野や他の光電変換分野、エネルギー蓄蔵分野に応用できる。 The inventor of the present application, as a result of research to solve the above problems, discovered the following. By using titanium mesh, which has excellent conductivity and can be reused, as a support material, cobalt selenide having semimetal characteristics is used as an active material, and by changing the contact form between the support material and the active material, an ohmic contact interface can be formed. It is possible to manufacture the water electrolysis type oxygen selenide/cobalt selenide/titanium mesh composite electrode. Since the ohmic contact at the cobalt selenide/titanium mesh interface can reduce the interfacial resistance in electrolysis, the cobalt selenide/titanium mesh electrode can be applied to the electrochemical water splitting field, other photoelectric conversion fields, and the energy storage field.

本発明は、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極、その製造方法及び応用を提供する。 The present invention provides a cobalt selenide/titanium mesh electrode for water electrolysis-based oxygen generation, a method for producing the same, and an application thereof.

本発明の第1態様は、セレン化コバルト/チタンメッシュ電極は、水電解式酸素発生用の電極であって、チタンメッシュと、メッシュワイヤに成長されているセレン化コバルトナノシートとを含む、セレン化コバルト/チタンメッシュ電極を提供する。 A first aspect of the present invention is a cobalt selenide/titanium mesh electrode, which is an electrode for water-electrolysis oxygen generation, comprising a titanium mesh and a cobalt selenide nanosheet grown on a mesh wire. A cobalt/titanium mesh electrode is provided.

前記セレン化コバルト/チタンメッシュ電極において、前記セレン化コバルトは、Co0.85Se、CoSe、CoSe、CoSe、CoSe又はそれらの混合物であることが好ましい。 In the cobalt selenide/titanium mesh electrode, the cobalt selenide is preferably Co 0.85 Se, CoSe, CoSe 2 , Co 7 Se 8 , Co 9 Se 8 or a mixture thereof.

前記チタンメッシュにおける前記セレン化コバルトの成長量は、0.04−0.14mg/cmであり、前記セレン化コバルトナノシートの厚さは、10nm−40nmであり、前記セレン化コバルトナノシートは、チタンメッシュにおいてナノシートアレイを形成する、ことが好ましい。 The growth amount of the cobalt selenide in the titanium mesh is 0.04-0.14 mg/cm 2 , the thickness of the cobalt selenide nanosheet is 10 nm-40 nm, and the cobalt selenide nanosheet is titanium. Preferably, the nanosheet array is formed in a mesh.

前記セレン化コバルト/チタンメッシュ電極において、前記セレン化コバルトは、Co0.85Seである、ことがさらに好ましい。
前記セレン化コバルト/チタンメッシュ電極において、前記チタンメッシュにおける前記セレン化コバルトの成長量は、0.06−0.10mg/cmである、ことがさらに好ましい。
In the cobalt selenide/titanium mesh electrode, the cobalt selenide is more preferably Co 0.85 Se.
In the cobalt selenide/titanium mesh electrode, the growth amount of the cobalt selenide in the titanium mesh is more preferably 0.06-0.10 mg/cm 2 .

本発明の第2態様は、所定のコバルト/セレンモル比を有するコバルト塩とセレン粉末とを用いて、水熱法によりチタンメッシュにおいてセレン化コバルトナノシートを成長させることを含む、セレン化コバルト/チタンメッシュ電極の製造方法を提供する。 A second aspect of the present invention comprises growing a cobalt selenide nanosheet in a titanium mesh by hydrothermal method using a cobalt salt having a predetermined cobalt/selenium molar ratio and a selenium powder, the cobalt selenide/titanium mesh. An electrode manufacturing method is provided.

前記製造方法にいて、前記コバルト塩は、塩化コバルト、臭化コバルト、フッ化コバルト、酢酸コバルト、硝酸コバルト、硫酸コバルト、及び炭酸コバルトから選ばれるものであり、所定のコバルト/セレンモル比を有するコバルト塩とセレン粉末、アンモニア水及びチタンメッシュを水熱反応釜に入れて、100−180℃の水熱反応温度で1−48時間反応させた後、冷却させることで、セレン化コバルト/チタンメッシュ電極が得られる、ことが好ましい。 In the manufacturing method, the cobalt salt is selected from cobalt chloride, cobalt bromide, cobalt fluoride, cobalt acetate, cobalt nitrate, cobalt sulfate, and cobalt carbonate, and has a predetermined cobalt/selenium molar ratio. Cobalt selenide/titanium mesh electrode was prepared by placing salt, selenium powder, ammonia water and titanium mesh in a hydrothermal reaction kettle and reacting them at a hydrothermal reaction temperature of 100-180° C. for 1-48 hours and then cooling. Is preferably obtained.

前記製造方法にいて、前記コバルト/セレンモル比を1:50−50:1に設定し、好ましくは、コバルト/セレンモル比を5:6に設定して、前記チタンメッシュにおけるセレン化コバルトの成長量が0.04−0.14mg/cmになるように、110−130℃の温度範囲で、10−15時間成長させる、ことが好ましい。 In the manufacturing method, the cobalt/selenium molar ratio is set to 1:50-50:1, preferably the cobalt/selenium molar ratio is set to 5:6, and the growth amount of cobalt selenide in the titanium mesh is It is preferable that the growth is performed in a temperature range of 110 to 130° C. for 10 to 15 hours so as to be 0.04 to 0.14 mg/cm 2 .

本発明の第3態様は、水電解式酸素発生用の陽極としての前記セレン化コバルト/チタンメッシュ電極の応用を提供する。 A third aspect of the invention provides the application of the cobalt selenide/titanium mesh electrode as an anode for water electrolysis oxygen evolution.

本発明によれば、塩化コバルト、セレン粉末、アンモニア水及びチタンメッシュを原料として、成長がコントロール可能な酸素発生用のセレン化コバルト/チタンメッシュ複合電極を製造でき、プロセスが簡単で、コントロールしやすいとともに、連続的な大規模製造を実現でき、得られる電極は、活性及び安定性が良好である。 According to the present invention, a cobalt selenide/titanium mesh composite electrode for oxygen generation whose growth can be controlled can be produced from cobalt chloride, selenium powder, aqueous ammonia and titanium mesh as raw materials, and the process is simple and easy to control. At the same time, continuous large-scale production can be realized, and the obtained electrode has good activity and stability.

反応釜における水熱反応後に、メッシュワイヤの表面にセレン化コバルトナノシートのアレイが成長されたチタンメッシュを模式的に示す図である。It is a figure which shows typically the titanium mesh by which the array of the cobalt selenide nanosheet was grown on the surface of the mesh wire after the hydrothermal reaction in a reaction vessel. チタンメッシュと酸素発生用のセレン化コバルト/チタンメッシュ電極とを示すデジタル写真である。3 is a digital photograph showing a titanium mesh and a cobalt selenide/titanium mesh electrode for oxygen generation. 水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極を示す走査型電子顕微鏡画像である。It is a scanning electron microscope image showing a cobalt selenide/titanium mesh electrode for water electrolysis-type oxygen generation. 水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極を示す透過型電子顕微鏡画像である。It is a transmission electron microscope image which shows the cobalt selenide/titanium mesh electrode for water electrolysis-type oxygen generation. 実施例1及び比較例1で得られたセレン化コバルト/チタンメッシュ電極に対するリニアスキャン電圧電流グラフである。3 is a linear scan voltage-current graph for the cobalt selenide/titanium mesh electrodes obtained in Example 1 and Comparative Example 1. 実施例1で得られた電極に対して1回目のサイクル及び1000回目のサイクルで行った電圧電流測定結果を示すリニアスキャン電圧電流グラフである。5 is a linear scan voltage-current graph showing the results of voltage-current measurement performed on the electrode obtained in Example 1 in the first cycle and the 1000th cycle.

本発明において、セレン化コバルト/チタンメッシュ電極の製造方法は、以下の工程を含む。
塩化コバルトと、セレン粉末と、アンモニア水と、チタンメッシュとを原料として、塩化コバルトと、セレン粉末と、アンモニア水と、溶媒とを所定の比率で混合してから前駆体が得られ、当該前駆体とチタンメッシュとを水熱反応釜に入れて、水熱反応温度範囲を100-180℃に制御して、1−48時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。また、前記塩化コバルトの代わりに、酢酸コバルト、硝酸コバルト、硫酸コバルト及び炭酸コバルトなどの他のコバルト塩を使用してもよい。前記チタンメッシュの目数は、特に限定されない。
In the present invention, the method for producing a cobalt selenide/titanium mesh electrode includes the following steps.
Cobalt chloride, selenium powder, ammonia water, and titanium mesh as raw materials, cobalt chloride, selenium powder, ammonia water, and the solvent is mixed with a solvent at a predetermined ratio to obtain a precursor. The body and the titanium mesh are put in a hydrothermal reaction kettle, the hydrothermal reaction temperature range is controlled to 100-180° C., the reaction is performed for 1-48 hours, and then the mixture is naturally cooled to produce water electrolysis-type oxygen generation. A cobalt selenide/titanium mesh electrode for use was obtained. Further, instead of the cobalt chloride, other cobalt salts such as cobalt acetate, cobalt nitrate, cobalt sulfate and cobalt carbonate may be used. The number of meshes of the titanium mesh is not particularly limited.

反応温度は、110−150℃が好ましいが、110−130℃がより好ましい。また、反応時間は、6−18時間が好ましいが、10−15時間がより好ましい。
通常、所望のセレン化コバルトにおけるコバルトとセレンとの比率に応じて、所定のコバルト/セレンモル比を有するコバルト塩とセレン粉末、アンモニア水及びチタンメッシュを水熱反応釜に入れる。例えば、チタンメッシュに成長されるセレン化コバルトがCo0.85Seとなるように,所定のコバルト/セレンモル比が5:6であるコバルト塩とセレン粉末とを入れる。ただし、チタンメッシュにセレン化コバルトナノシートが成長できればよく、コバルト/セレンモル比が1:50−50:1である範囲でコバルト塩とセレン粉末とを加入してよい。例えば、他の所望のセレン化コバルトが得られるためには、コバルト塩とセレン粉末とを所定の比率に設定することで、CoSe、CoSe、CoSe或いはCoSeナノシートを成長できる。
The reaction temperature is preferably 110-150°C, more preferably 110-130°C. The reaction time is preferably 6-18 hours, more preferably 10-15 hours.
Usually, a cobalt salt having a predetermined cobalt/selenium molar ratio, selenium powder, ammonia water, and a titanium mesh are placed in a hydrothermal reaction kettle according to the desired ratio of cobalt to selenium in the desired cobalt selenide. For example, a cobalt salt having a predetermined cobalt/selenium molar ratio of 5:6 and selenium powder are added so that the cobalt selenide grown on the titanium mesh becomes Co 0.85 Se. However, it suffices if the cobalt selenide nanosheet can grow on the titanium mesh, and the cobalt salt and the selenium powder may be added in the range where the cobalt/selenium molar ratio is 1:50-50:1. For example, in order to obtain another desired cobalt selenide, CoSe, CoSe 2 , Co 7 Se 8 or Co 9 Se 8 nanosheets can be grown by setting the cobalt salt and selenium powder in a predetermined ratio. ..

コバルト塩及びセレン粉末の加入量を調整することによって、チタンメッシュにおけるセレン化コバルト触媒の成長量を調整できる。例えば、チタンメッシュにおけるセレン化コバルトナノシートの成長量を0.04−0.20mg/cm、好ましくは、0.04−0.14mg/cm、より好ましくは、0.06−0.10mg/cmに制御できる。 By adjusting the addition amounts of the cobalt salt and the selenium powder, the growth amount of the cobalt selenide catalyst on the titanium mesh can be adjusted. For example, the growth amount of the cobalt selenide nanosheet on the titanium mesh is 0.04-0.20 mg/cm 2 , preferably 0.04-0.14 mg/cm 2 , and more preferably 0.06-0.10 mg/cm 2 . It can be controlled to cm 2 .

顕微鏡で観察されたセレン化コバルトナノシートは、厚さが10−60nm、好ましくは、10−40nm、より好ましくは、15−25nmである。
図1は、反応釜における水熱反応後に、メッシュワイヤの表面にセレン化コバルトナノシートのアレイが成長されたチタンメッシュを模式的に示す。
The cobalt selenide nanosheets observed under a microscope have a thickness of 10-60 nm, preferably 10-40 nm, more preferably 15-25 nm.
FIG. 1 schematically shows a titanium mesh with an array of cobalt selenide nanosheets grown on the surface of the mesh wire after hydrothermal reaction in a reactor.

[電極の製造例]
以下の実施例において、セレン化コバルトが成長されるチタンメッシュは、その面積が1cm×3cmであり、チタンワイヤの直径が100ミクロンであり、目数は、各実施例に示す。ただし、本発明において、これらのパラメータは、実施例に開示されたものに限られず、当業者が必要に応じて選択できるものである。
[Example of electrode production]
In the following examples, the titanium mesh on which cobalt selenide is grown has an area of 1 cm×3 cm, the diameter of the titanium wire is 100 μm, and the mesh number is shown in each example. However, in the present invention, these parameters are not limited to those disclosed in the examples, and those skilled in the art can select them as necessary.

[実施例1]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 1]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol: 0.192 mmol), 12 mL of water and 6 mL of ammonia water was put in a 50 mL reaction kettle and the surface was Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例2]
モル比が5:6(0.32mmol:0.384mmol)である塩化コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 2]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.32 mmol: 0.384 mmol) with 12 mL of water and 6 mL of ammonia water was placed in a 50 mL reaction kettle and the surface Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例3]
モル比が5:6(0.08mmol:0.096mmol)である塩化コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 3]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.08 mmol: 0.096 mmol), 12 mL of water and 6 mL of ammonia water was placed in a 50 mL reaction kettle and the surface Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例4]
モル比が5:6(0.04mmol:0.048mmol)である塩化コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 4]
A precursor obtained by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.04 mmol:0.048 mmol), 12 mL of water and 6 mL of ammonia water was placed in a 50 mL reaction kettle and the surface Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例5]
モル比が5:6(0.16mmol:0.192mmol)である酢酸コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 5]
A precursor prepared by mixing cobalt acetate and selenium powder having a molar ratio of 5:6 (0.16 mmol:0.192 mmol) with 12 mL of water and 6 mL of ammonia water was placed in a 50 mL reaction kettle and the surface Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例6]
モル比が5:6(0.16mmol:0.192mmol)である硫酸コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 6]
A precursor prepared by mixing cobalt sulfate and selenium powder having a molar ratio of 5:6 (0.16 mmol:0.192 mmol) with 12 mL of water and 6 mL of ammonia water was placed in a 50 mL reaction kettle and the surface was Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例7]
モル比が5:6(0.16mmol:0.192mmol)である硝酸コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 7]
A precursor prepared by mixing cobalt nitrate and selenium powder having a molar ratio of 5:6 (0.16 mmol:0.192 mmol) with 12 mL of water and 6 mL of ammonia water was placed in a 50 mL reaction kettle and the surface was Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例8]
モル比が5:6(0.16mmol:0.192mmol)である炭酸コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 8]
A precursor prepared by mixing cobalt carbonate and selenium powder having a molar ratio of 5:6 (0.16 mmol:0.192 mmol) with 12 mL of water and 6 mL of ammonia water was placed in a 50 mL reaction kettle and the surface Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例9]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで100Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 9]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol: 0.192 mmol), 12 mL of water and 6 mL of ammonia water was put in a 50 mL reaction kettle and the surface was Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 100 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例10]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで150Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 10]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol: 0.192 mmol), 12 mL of water and 6 mL of ammonia water was put in a 50 mL reaction kettle and the surface was Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 150 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例11]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで180Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 11]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol: 0.192 mmol), 12 mL of water and 6 mL of ammonia water was put in a 50 mL reaction kettle and the surface was Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in the oven to 180 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例12]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、6時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 12]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol: 0.192 mmol), 12 mL of water and 6 mL of ammonia water was put in a 50 mL reaction kettle and the surface was Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 6 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例13]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、9時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 13]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol: 0.192 mmol), 12 mL of water and 6 mL of ammonia water was put in a 50 mL reaction kettle and the surface was Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 9 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例14]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、15時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 14]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol: 0.192 mmol), 12 mL of water and 6 mL of ammonia water was put in a 50 mL reaction kettle and the surface was Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 15 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例15]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、18時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 15]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol: 0.192 mmol), 12 mL of water and 6 mL of ammonia water was put in a 50 mL reaction kettle and the surface was Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 18 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例16]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(10目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 16]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol: 0.192 mmol), 12 mL of water and 6 mL of ammonia water was put in a 50 mL reaction kettle and the surface was Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (10 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例17]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(20目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 17]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol:0.192 mmol), 12 mL of water and 6 mL of ammonia water was placed in a 50 mL reaction kettle and the surface Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (20 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例18]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(30目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 18]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol: 0.192 mmol), 12 mL of water and 6 mL of ammonia water was put in a 50 mL reaction kettle and the surface was Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (30 meshes), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例19]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(40目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 19]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol: 0.192 mmol), 12 mL of water and 6 mL of ammonia water was put in a 50 mL reaction kettle and the surface was Selenium for water electrolysis oxygen generation by putting a clean titanium mesh (40 meshes), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例20]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(60目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 20]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol:0.192 mmol), 12 mL of water and 6 mL of ammonia water was placed in a 50 mL reaction kettle and the surface Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (60 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例21]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、12mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(100目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 21]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol:0.192 mmol), 12 mL of water and 6 mL of ammonia water was placed in a 50 mL reaction kettle and the surface After putting a clean titanium mesh (100 meshes), the reaction kettle is heated to 120 ° C. in an oven, allowed to react for 12 hours, and then naturally cooled to give selenium for water electrolysis oxygen generation. A cobalt oxide/titanium mesh electrode was obtained.

[実施例22]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、9mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 22]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol:0.192 mmol), 9 mL of water and 6 mL of ammonia water was placed in a 50 mL reaction kettle and the surface Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例23]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、15mLの水及び6mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 23]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol:0.192 mmol) with 15 mL of water and 6 mL of ammonia water was placed in a 50 mL reaction kettle and the surface was Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例24]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、12mLの水及び4mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 24]
A cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol: 0.192 mmol), 12 mL of water and 4 mL of ammonia water were mixed in a precursor of 50 mL, and the precursor was added to the surface. Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例25]
モル比が5:6(0.16mmol:0.192mmol)である塩化コバルト及びセレン粉末と、12mLの水及び8mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 25]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 5:6 (0.16 mmol:0.192 mmol), 12 mL of water and 8 mL of ammonia water was placed in a 50 ml reaction kettle and the surface was Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例26]
モル比が1:1(0.16mmol:0.16mmol)である塩化コバルト及びセレン粉末と、12mLの水及び8mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 26]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 1:1 (0.16 mmol:0.16 mmol) with 12 mL of water and 8 mL of ammonia water was placed in a 50 mL reaction kettle and the surface Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例27]
モル比が1:2(0.16mmol:0.32mmol)である塩化コバルト及びセレン粉末と、12mLの水及び8mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 27]
A mixture of cobalt chloride and selenium powder having a molar ratio of 1:2 (0.16 mmol:0.32 mmol), 12 mL of water and 8 mL of ammonia water was added to a 50 mL reaction kettle, Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例28]
モル比が7:8(0.16mmol:0.183mmol)である塩化コバルト及びセレン粉末と、12mLの水及び8mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
[Example 28]
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 7:8 (0.16 mmol:0.183 mmol) with 12 mL of water and 8 mL of ammonia water was placed in a 50 mL reaction kettle and the surface Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[実施例29]
モル比が9:8(0.16mmol:0.142mmol)である塩化コバルト及びセレン粉末と、12mLの水及び8mLのアンモニア水とを混合してなる前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。
Example 29
A precursor prepared by mixing cobalt chloride and selenium powder having a molar ratio of 9:8 (0.16 mmol:0.142 mmol) with 12 mL of water and 8 mL of ammonia water was placed in a 50 mL reaction kettle and the surface Selenium for water electrolysis-type oxygen generation by putting a clean titanium mesh (80 mesh), heating the reaction kettle in an oven to 120 ° C., reacting for 12 hours, and then naturally cooling. A cobalt oxide/titanium mesh electrode was obtained.

[比較例1]
ナノ粒子状のセレン化コバルト/チタンメッシュ電極の製造
製造されたばかりのNaHSe溶液2mLと、塩化コバルト(0.16mmol)とを、38mLの水に混合して、前駆体を調製した。当該前駆体を50mlの反応釜に入れるとともに、表面がきれいなチタンメッシュ(80目)を反応釜に入れてから、当該反応釜をオーブンで120Cまでに加熱して、12時間反応させた後に、自然に冷却させることで、水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極が得られた。上記の各実施例とは異なり、チタンメッシュに成長されたセレン化コバルトは、ナノ粒子であって、セレン化コバルトナノシートではなかった。
[Comparative Example 1]
Manufacture of nanoparticulate cobalt selenide/titanium mesh electrode 2 mL of freshly prepared NaHSe solution and cobalt chloride (0.16 mmol) were mixed with 38 mL of water to prepare a precursor. After putting the precursor in a 50 ml reaction kettle and putting a titanium mesh (80 meshes) with a clean surface in the reaction kettle, after heating the reaction kettle in an oven to 120 ° C. and reacting for 12 hours, After cooling naturally, a cobalt selenide/titanium mesh electrode for water electrolysis oxygen generation was obtained. Unlike the examples above, the cobalt selenide grown on the titanium mesh was nanoparticles, not cobalt selenide nanosheets.

ここで、NaHSe溶液は、以下のように調製された。
ガラス瓶にNaBH(7.2mg,1.9mmol)を2mLの水に溶解してから、1.5mgのSe粉末を入れて、密封状態で黒色のSe粉末が完全に溶解されるまでガラス瓶を搖動した。
Here, the NaHSe solution was prepared as follows.
Dissolve NaBH 4 (7.2 mg, 1.9 mmol) in 2 mL of water in a glass bottle, add 1.5 mg of Se powder, and rock the glass bottle in a sealed state until the black Se powder is completely dissolved. did.

モル比が5:6であるコバルト塩/セレン粉末を水熱反応させることにより得られたセレン化コバルトは、Co0.85Seであった。また、モル比は、特に限定されておらず、例えば、1:1、1:2、7:8、9:8などの他のモル比で混合することで、CoSe、CoSe、CoSe、CoSe等が得られてもよい。 The cobalt selenide obtained by hydrothermally reacting a cobalt salt/selenium powder having a molar ratio of 5:6 was Co 0.85 Se. In addition, the molar ratio is not particularly limited, and for example, by mixing at other molar ratios such as 1:1, 1:2, 7:8, 9:8, CoSe, CoSe 2 , Co 7 Se. 8 , Co 9 Se 8 and the like may be obtained.

以下のように、調製例、特に実施例1で得られたセレン化コバルト/チタンメッシュ電極に対して、観察及び評価を行った。
図2は、チタンメッシュ(左側)と、水熱反応後の酸素発生用のセレン化コバルト/チタンメッシュ電極(右側)とを示すデジタル写真である。図3は、実施例1で得られた水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極を示す走査型電子顕微鏡画像である。図4は、実施例1で得られた水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極を示す透過型電子顕微鏡画像である。
The cobalt selenide/titanium mesh electrode obtained in Preparation Example, particularly Example 1, was observed and evaluated as follows.
FIG. 2 is a digital photograph showing a titanium mesh (left side) and a cobalt selenide/titanium mesh electrode (right side) for oxygen generation after hydrothermal reaction. FIG. 3 is a scanning electron microscope image showing the cobalt selenide/titanium mesh electrode for water electrolysis-type oxygen generation obtained in Example 1. FIG. 4 is a transmission electron microscope image showing the cobalt selenide/titanium mesh electrode for water electrolysis-type oxygen generation obtained in Example 1.

ICP(誘導結合プラズマ)法によって、チタンメッシュに成長されたセレン化コバルトナノシートアレイの担持量を分析した結果、実施例1の電極において、単位面積のチタンメッシュにおけるセレン化コバルトの担持量は、0.067mg/cmであった。 As a result of analyzing the carried amount of the cobalt selenide nanosheet array grown on the titanium mesh by the ICP (inductively coupled plasma) method, the carried amount of cobalt selenide in the titanium mesh of the unit area in the electrode of Example 1 was 0. It was 0.067 mg/cm 2 .

図5は、実施例1で得られたナノシート状のセレン化コバルト/チタンメッシュ電極と、比較例1で得られたナノ粒子状のセレン化コバルト/チタンメッシュ電極とを、酸素飽和の1.0PBS溶液(pH=7.0)において測定したリニアスキャン電圧電流グラフを示す。図5に示すように、1.8V電位vs.可逆水素電極(RHE)の場合、両者の電流密度は、それぞれ29.6mAと2.4mAとであった。実施例2−3で得られた電極を同じ方法によって測定して得られたリニアスキャン電圧電流グラフを、表1に示す。 FIG. 5 shows the nanosheet-shaped cobalt selenide/titanium mesh electrode obtained in Example 1 and the nanoparticle-shaped cobalt selenide/titanium mesh electrode obtained in Comparative Example 1 in oxygen-saturated 1.0PBS. The linear scan voltage-current graph measured in the solution (pH=7.0) is shown. As shown in FIG. 5, 1.8 V potential vs. In the case of the reversible hydrogen electrode (RHE), the current densities of both were 29.6 mA and 2.4 mA, respectively. Table 1 shows a linear scan voltage-current graph obtained by measuring the electrodes obtained in Example 2-3 by the same method.

備考:ナノシートの厚さは、走査型電子顕微鏡画像(大量のナノシートを統計)層によって得られる。担持量は、誘導結合プラズマ分光計によって得られる。 Note: The thickness of the nanosheets is obtained by scanning electron microscopy image (statistical mass nanosheets) layer. The loading is obtained by inductively coupled plasma spectroscopy.

図6は、実施例1で得られた電極に対して1回目のサイクル及び1000回目のサイクルに行った電圧電流測定結果を示すリニアスキャン電圧電流グラフを示す。
図5及び図6から分かるように、本発明によれば、ナノシート状のセレン化コバルト/チタンメッシュ電極を酸素発生電極として使用する場合、非常に高い電流密度及び優れた安定性が得られた。
FIG. 6 is a linear scan voltage-current graph showing the results of voltage-current measurement performed on the electrode obtained in Example 1 in the first cycle and the 1000th cycle.
As shown in FIGS. 5 and 6, according to the present invention, when a nanosheet-shaped cobalt selenide/titanium mesh electrode is used as an oxygen generating electrode, a very high current density and excellent stability were obtained.

Claims (9)

水電解式酸素発生用の電極であって、チタンメッシュと、チタンメッシュワイヤに成長されているセレン化コバルトナノシートとを含み、
前記セレン化コバルトは、Co0.85Se又はCoSeである、セレン化コバルト/チタンメッシュ電極。
An electrode for water electrolysis-based oxygen generation, comprising a titanium mesh and a cobalt selenide nanosheet grown on a wire of a titanium mesh,
The cobalt selenide/cobalt selenide/titanium mesh electrode, wherein the cobalt selenide is Co 0.85 Se or Co 9 Se 8 .
前記チタンメッシュにおける前記セレン化コバルトの成長量は、0.04−0.14mg/cmであり、
前記セレン化コバルトナノシートの厚さは、10nm−40nmであり、
前記セレン化コバルトナノシートは、チタンメッシュにおいてナノシートアレイを形成する、
請求項1に記載のセレン化コバルト/チタンメッシュ電極。
The growth amount of the cobalt selenide in the titanium mesh is 0.04-0.14 mg/cm 2 ,
The cobalt selenide nanosheet has a thickness of 10 nm-40 nm,
The cobalt selenide nanosheets form a nanosheet array in a titanium mesh,
The cobalt selenide/titanium mesh electrode according to claim 1.
前記セレン化コバルトは、Co0.85Seである、
請求項1に記載のセレン化コバルト/チタンメッシュ電極。
The cobalt selenide is Co 0.85 Se,
The cobalt selenide/titanium mesh electrode according to claim 1.
前記チタンメッシュにおける前記セレン化コバルトの成長量は、0.06−0.10mg/cmである、
請求項1に記載のセレン化コバルト/チタンメッシュ電極。
The growth amount of the cobalt selenide in the titanium mesh is 0.06-0.10 mg/cm 2 .
The cobalt selenide/titanium mesh electrode according to claim 1.
所定のコバルト/セレンモル比を有するコバルト塩とセレン粉末とを用いて、水熱法によりチタンメッシュにおいてセレン化コバルトナノシートを成長させることを含む、セレン化コバルト/チタンメッシュ電極の製造方法。 A method for producing a cobalt selenide/titanium mesh electrode, which comprises growing cobalt selenide nanosheets on a titanium mesh by a hydrothermal method using a cobalt salt having a predetermined cobalt/selenium molar ratio and selenium powder. 前記コバルト塩は、塩化コバルト、臭化コバルト、フッ化コバルト、酢酸コバルト、硝酸コバルト、硫酸コバルト、及び炭酸コバルトから選ばれるものであり、所定のコバルト/セレンモル比を有するコバルト塩とセレン粉末、アンモニア水及びチタンメッシュを水熱反応釜に入れて、100−180℃の水熱反応温度で1−48時間反応させた後、冷却させることで、セレン化コバルト/チタンメッシュ電極が得られる、請求項5に記載のセレン化コバルト/チタンメッシュ電極の製造方法。 The cobalt salt is selected from cobalt chloride, cobalt bromide, cobalt fluoride, cobalt acetate, cobalt nitrate, cobalt sulfate, and cobalt carbonate, and has a predetermined cobalt/selenium molar ratio, selenium powder, and ammonia. A cobalt selenide/titanium mesh electrode is obtained by placing water and a titanium mesh in a hydrothermal reaction vessel, reacting them at a hydrothermal reaction temperature of 100-180° C. for 1-48 hours, and then cooling. 5. The method for producing the cobalt selenide/titanium mesh electrode according to 5. 前記コバルト/セレンモル比を1:50−50:1に設定し、前記チタンメッシュにおけるセレン化コバルトの成長量が0.04−0.14mg/cmになるように、110−130℃の温度範囲で、10−15時間成長させる、請求項5又は6に記載のセレン化コバルト/チタンメッシュ電極の製造方法。 The cobalt/selenium molar ratio is set to 1:50-50:1, and the temperature range of 110-130° C. is set so that the growth amount of cobalt selenide on the titanium mesh is 0.04-0.14 mg/cm 2. The method for producing a cobalt selenide/titanium mesh electrode according to claim 5, wherein the growth is performed for 10 to 15 hours. 前記コバルト/セレンモル比を5:6に設定し、前記チタンメッシュにおけるセレン化コバルトの成長量が0.06−0.10mg/cmになる、請求項7に記載のセレン化コバルト/チタンメッシュ電極の製造方法。 The cobalt selenide/titanium mesh electrode according to claim 7, wherein the cobalt/selenium molar ratio is set to 5:6, and the growth amount of cobalt selenide in the titanium mesh is 0.06-0.10 mg/cm 2. Manufacturing method. 水分解式酸素発生用の陽極としての請求項1〜4のいずれか一項に記載のセレン化コバルト/チタンメッシュ電極、又は請求項5〜8のいずれか一項に記載の製造方法で得られたセレン化コバルト/チタンメッシュ電極の応用。
A cobalt selenide/titanium mesh electrode according to any one of claims 1 to 4 as an anode for water-splitting oxygen generation, or a production method according to any one of claims 5 to 8. Application of cobalt selenide/titanium mesh electrode.
JP2018054450A 2017-03-24 2018-03-22 Cobalt selenide/titanium mesh electrode for water electrolysis-based oxygen generation, its manufacturing method and its application Active JP6735304B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710183535.0 2017-03-24
CN201710183535.0A CN108630438B (en) 2017-03-24 2017-03-24 Cobalt selenide/titanium mesh water decomposition oxygen generation electrode and preparation method thereof

Publications (2)

Publication Number Publication Date
JP2018162515A JP2018162515A (en) 2018-10-18
JP6735304B2 true JP6735304B2 (en) 2020-08-05

Family

ID=63706764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054450A Active JP6735304B2 (en) 2017-03-24 2018-03-22 Cobalt selenide/titanium mesh electrode for water electrolysis-based oxygen generation, its manufacturing method and its application

Country Status (2)

Country Link
JP (1) JP6735304B2 (en)
CN (1) CN108630438B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950055B (en) * 2019-03-22 2021-02-02 电子科技大学 Cobalt diselenide composite material, preparation method and application thereof
CN110038599B (en) * 2019-04-28 2022-02-15 浙江大学台州研究院 Preparation method of efficient cobalt diselenide/cobalt tungstate composite electrocatalyst
CN110479320B (en) * 2019-08-22 2021-12-24 内蒙古民族大学 High-efficiency bifunctional decomposition water electric catalyst and preparation method thereof
CN111111728A (en) * 2019-12-18 2020-05-08 济南大学 N-doped graphitized carbon-coated CoSe2Preparation of nano wire and application of electrocatalytic oxygen evolution performance of nano wire
CN111349915B (en) * 2020-02-20 2021-11-19 齐鲁工业大学 CoSe with controllable appearance2/Ti composite material and preparation method thereof
CN112877680A (en) * 2021-01-11 2021-06-01 延安大学 Composite electrode material and preparation method and application thereof
CN112663088B (en) * 2021-01-14 2023-06-02 江西省科学院能源研究所 Preparation method of cobalt diselenide/iron oxyhydroxide composite material with nanometer petal-shaped structure
CN112850662B (en) * 2021-02-10 2024-02-09 中国科学技术大学 Strong-coupling layered cobalt diselenide, preparation method thereof and application thereof in preparation of hydrogen peroxide through electrocatalytic oxygen reduction reaction
CN113145138B (en) * 2021-03-11 2022-12-13 福州大学 Thermal response type composite photocatalyst and preparation method and application thereof
CN113215613B (en) * 2021-03-18 2022-11-29 武汉工程大学 Selenium mixture array and preparation method and application thereof
CN113725432B (en) * 2021-07-28 2022-11-11 国网镇江综合能源服务有限公司 ZIF-67 and preparation method of cobalt selenide/carbon electrode material derived from ZIF-67
CN114908371A (en) * 2022-02-07 2022-08-16 武汉工程大学 Cobalt selenide heterojunction electro-catalytic material and preparation method and application thereof
CN114481198B (en) * 2022-02-21 2024-01-30 阜阳师范大学 Cobalt diselenide catalyst and preparation method and application thereof
CN114525546B (en) * 2022-03-30 2023-09-26 合肥工业大学 Preparation method of binary nickel cobalt selenide nanosheet material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100233070A1 (en) * 2009-02-19 2010-09-16 Nicolas Alonso-Vante CARBON-SUPPORTED CoSe2 NANOPARTICLES FOR OXYGEN REDUCTION AND HYDROGEN EVOLUTION IN ACIDIC ENVIRONMENTS
CN102079513B (en) * 2011-02-25 2013-05-29 安徽大学 Preparation method of non-integer ratio graphene selenium cobalt nano sheet
CN102610392A (en) * 2012-03-21 2012-07-25 复旦大学 Metal selenide counter-electrode for dye-sensitized solar cell and preparation method of metal selenide counter-electrode
CN104923268A (en) * 2015-06-08 2015-09-23 中国科学院长春应用化学研究所 Self-support transition metal selenide catalyst as well as preparation method and application thereof
CN105428647B (en) * 2015-11-14 2017-08-11 华中科技大学 A kind of two cobaltous selenides/carbon nanomaterial and preparation method and application
CN105355459A (en) * 2015-11-24 2016-02-24 华中科技大学 Knittable asymmetric capacitor and preparation method thereof
CN105789584B (en) * 2016-03-27 2019-05-14 华南理工大学 A kind of cobaltous selenide/carbon sodium-ion battery composite negative pole material and the preparation method and application thereof

Also Published As

Publication number Publication date
CN108630438A (en) 2018-10-09
CN108630438B (en) 2021-04-30
JP2018162515A (en) 2018-10-18

Similar Documents

Publication Publication Date Title
JP6735304B2 (en) Cobalt selenide/titanium mesh electrode for water electrolysis-based oxygen generation, its manufacturing method and its application
CN109954503B (en) Nickel selenide and ternary nickel-iron selenide composite electrocatalyst, preparation method and application
Zhang et al. Self-supported ternary Co 0.5 Mn 0.5 P/carbon cloth (CC) as a high-performance hydrogen evolution electrocatalyst
Tang et al. Metal–organic frameworks-derived metal phosphides for electrochemistry application
CN109852994B (en) Co9S8Preparation method of nitrogen-doped carbon composite array electrode
CN110474057A (en) A kind of preparation method and application of the oxygen reduction electro-catalyst based on lignocellulose-like biomass carbon
Guan et al. Facile synthesis of double-layered CoNiO2/CoO nanowire arrays as multifunction electrodes for hydrogen electrocatalysis and supercapacitors
CN110655656A (en) Cobalt metal organic framework material and preparation method and application thereof
Liu et al. Hematite nanorods array on carbon cloth as an efficient 3D oxygen evolution anode
CN109621981B (en) Metal oxide-sulfide composite oxygen evolution electrocatalyst and preparation method and application thereof
CN110479271B (en) Preparation method of two-dimensional nickel-carbon nanosheet catalyst for hydrogen production through water electrolysis
JP6932751B2 (en) Tricobalt tetraoxide array / titanium mesh electrode for generating hydrolyzed oxygen and its manufacturing method
CN110983361B (en) Tantalum nitride carbon nano film integrated electrode for limited-area growth of cobalt nanoparticles and preparation method and application thereof
CN109261177B (en) Nano-scale nickel phosphide/carbon cloth composite material, preparation method thereof and application thereof in electrocatalyst
CN111663152B (en) Preparation method and application of foam nickel-loaded amorphous phosphorus-doped nickel molybdate bifunctional electrocatalytic electrode
CN112430828B (en) Preparation method of transition metal doped nickel-based metal organic framework three-dimensional electrode material, product and application thereof
Xie et al. Facile construction of self-supported Fe-doped Ni 3 S 2 nanoparticle arrays for the ultralow-overpotential oxygen evolution reaction
Loni et al. Cobalt-based electrocatalysts for water splitting: an overview
CN110565113B (en) Preparation method of composite electrocatalytic material for alkaline electrocatalytic hydrogen evolution
CN114182289B (en) Preparation method of molybdenum-nickel-based nitride for hydrogen evolution through electro-oxidative coupling of organic matters
Wang et al. CoMoO4 nanoparticles decorated ultrathin nanoplates constructed porous flower as an electrocatalyst toward overall water splitting and Zn-air batteries
CN107803212A (en) A kind of rich defect Fe2O3‑FeF2Nano-porous film, preparation method and applications
CN109097788B (en) Double-carbon coupling transition metal nickel-based quantum dot electrocatalyst and preparation method thereof
CN110721711A (en) Phosphide/selenide electrolyzed water hydrogen production catalyst and preparation method thereof
Liu et al. Metallic nickel anchored on amorphous nickel cobalt oxide nanorods as efficient electrocatalysts toward oxygen evolution reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R150 Certificate of patent or registration of utility model

Ref document number: 6735304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250