JP6732387B2 - Variable capacity compressor - Google Patents

Variable capacity compressor Download PDF

Info

Publication number
JP6732387B2
JP6732387B2 JP2017508412A JP2017508412A JP6732387B2 JP 6732387 B2 JP6732387 B2 JP 6732387B2 JP 2017508412 A JP2017508412 A JP 2017508412A JP 2017508412 A JP2017508412 A JP 2017508412A JP 6732387 B2 JP6732387 B2 JP 6732387B2
Authority
JP
Japan
Prior art keywords
chamber
passage
valve
pressure
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017508412A
Other languages
Japanese (ja)
Other versions
JPWO2016152959A1 (en
Inventor
幸生 風早
幸生 風早
雅典 雨森
雅典 雨森
雄二郎 森田
雄二郎 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Japan Co Ltd
Original Assignee
Valeo Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Japan Co Ltd filed Critical Valeo Japan Co Ltd
Publication of JPWO2016152959A1 publication Critical patent/JPWO2016152959A1/en
Application granted granted Critical
Publication of JP6732387B2 publication Critical patent/JP6732387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/12Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members
    • F04B49/123Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members by changing the eccentricity of one element relative to another element
    • F04B49/125Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members by changing the eccentricity of one element relative to another element by changing the eccentricity of the actuation means, e.g. cams or cranks, relative to the driving means, e.g. driving shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1831Valve-controlled fluid connection between crankcase and suction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1863Controlled by crankcase pressure with an auxiliary valve, controlled by
    • F04B2027/1872Discharge pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は、制御圧室の圧力を調整することで吐出容量を可変させる可変容量型圧縮機に関し、特に、吐出室と制御圧室とを連通する給気通路、及び、制御圧室と吸入室とを連通する抽気通路を有し、給気通路上に設けられた制御弁により該給気通路の開度を調節して制御圧室の圧力を調節する可変容量型圧縮機に関する。 The present invention relates to a variable displacement compressor that adjusts the pressure of a control pressure chamber to vary the discharge capacity, and more particularly to a supply passage that connects the discharge chamber and the control pressure chamber, and a control pressure chamber and a suction chamber. The present invention relates to a variable displacement compressor having a bleed passage communicating with and a control valve provided on the air supply passage to adjust the opening of the air supply passage to adjust the pressure in the control pressure chamber.

可変容量型圧縮機は、制御圧室の圧力を調整することによって斜板の傾斜角度を変えてピストンのストローク量を調整し、これにより吐出容量を可変させる機構が採用されている。このような圧縮機としては、吐出室と制御圧室とを給気通路を介して連通すると共に制御圧室と吸入室とを抽気通路を介して常時連通し、給気通路上に設けられた制御弁により給気通路の開度を調整して制御圧室に流入する冷媒量を調節することで制御圧室の圧力を制御する構成が知られている。 The variable displacement compressor employs a mechanism that adjusts the pressure of the control pressure chamber to change the inclination angle of the swash plate to adjust the stroke amount of the piston, thereby varying the discharge capacity. Such a compressor is provided on the air supply passage so that the discharge chamber and the control pressure chamber communicate with each other through the air supply passage and the control pressure chamber and the suction chamber always communicate with each other through the bleed passage. A configuration is known in which the pressure of the control pressure chamber is controlled by adjusting the opening of the air supply passage with a control valve to adjust the amount of refrigerant flowing into the control pressure chamber.

このような構成において、制御弁によって給気通路を閉鎖すると、吐出室から制御圧室への高圧ガスの導入がなくなると共に、制御圧室は抽気通路を介して吸入室と常時連通しているので、制御圧室の圧力は、吸入室の圧力とほぼ同じ値まで低下し、圧縮機は最大容量で運転されることになる。また、制御弁によって給気通路を開くと、吐出室から制御圧室へ高圧ガスが導入され、抽気通路を介して冷媒ガスは制御圧室から吸入室へ流出されるものの、制御圧室の圧力は高められるので、圧縮機の吐出容量は制御弁による給気通路の開度調節によって制御される。 In such a configuration, when the air supply passage is closed by the control valve, the high pressure gas is not introduced from the discharge chamber to the control pressure chamber, and the control pressure chamber is always in communication with the suction chamber through the bleed passage. The pressure in the control pressure chamber drops to almost the same value as the pressure in the suction chamber, and the compressor is operated at the maximum capacity. When the air supply passage is opened by the control valve, high-pressure gas is introduced from the discharge chamber to the control pressure chamber, and the refrigerant gas flows out from the control pressure chamber to the suction chamber through the extraction passage, but the pressure in the control pressure chamber is increased. The discharge capacity of the compressor is controlled by adjusting the opening degree of the air supply passage by the control valve.

ところで、圧縮機が稼働されずに長時間停止していると、冷凍サイクル内の圧力が平衡してくるとともに、冷凍サイクル中の最も温度の低い部位で冷凍サイクル中の冷媒が液化することとなる。圧縮機は、冷凍サイクルを構成する要素の中で最も熱容量が大きく、外気温度の変化に追随して温まりにくいため、圧縮機内にて冷凍サイクル中の冷媒が液化する事象が発生する。そして圧縮機内で冷媒が液化すると、制御圧室にも液冷媒が溜まることとなる。 By the way, if the compressor is stopped for a long time without being operated, the pressure in the refrigeration cycle will equilibrate, and the refrigerant in the refrigeration cycle will be liquefied at the lowest temperature portion in the refrigeration cycle. .. Since the compressor has the largest heat capacity among the constituent elements of the refrigeration cycle and is hard to warm up as the outside air temperature changes, an event occurs in which the refrigerant in the refrigeration cycle is liquefied. When the refrigerant is liquefied in the compressor, the liquid refrigerant also accumulates in the control pressure chamber.

圧力が平衡した状態から圧縮機を起動させた場合、圧縮機の稼働により吸入室の圧力が低下し、これに伴い制御圧室の冷媒が抽気通路を介して吸入室に排出されるようになる。しかしながら、制御圧室内に液冷媒が溜まっていると、制御圧室内は気相冷媒と液相冷媒が共存する平衡状態となるため、制御圧室の冷媒が抽気通路を介して吸入室に排出されても、制御圧室の圧力は飽和圧力のまま維持されることとなる。このため、全ての液冷媒が気化して抽気通路から排出されるまでは制御圧室の圧力が下がらず、吐出容量制御が行えない(吐出容量が増加しない)という不都合が知られている。 When the compressor is started from the pressure equilibrium state, the pressure in the suction chamber decreases due to the operation of the compressor, and with this, the refrigerant in the control pressure chamber is discharged to the suction chamber through the extraction passage. .. However, when the liquid refrigerant accumulates in the control pressure chamber, the control pressure chamber is in an equilibrium state in which the vapor phase refrigerant and the liquid phase refrigerant coexist, so that the refrigerant in the control pressure chamber is discharged to the suction chamber through the extraction passage. However, the pressure in the control pressure chamber is maintained at the saturated pressure. Therefore, it is known that the pressure in the control pressure chamber does not decrease until all the liquid refrigerant is vaporized and discharged from the extraction passage, and the discharge capacity cannot be controlled (the discharge capacity does not increase).

そこで、上述の問題を解決するために、図6で示されるような構成が公知となっている(特許文献1参照)。これは、吐出室101と制御圧室102とを接続する給気通路103上にこの給気通路の開度を調節する第1制御弁104を設け、また、制御圧室102と吸入室105とを接続する抽気通路106上に第2制御弁107を設けたものである。この第2制御弁107は、ハウジングに形成されたスプール保持凹部108と、このスプール保持凹部108内に移動可能に収容されたスプール109と、スプール保持凹部108のスプール109の背後に区画形成された背圧室110と、スプール109を弁形成体111から離間する方向に付勢する付勢バネ112とを有して構成されている。スプール保持凹部108と吸入室105は隣接しており、スプール保持凹部108の背圧室110から吸入室105への漏れは、スプール保持凹部108の内壁とスプール109とのクリアランスにより小さく抑えられている。また、給気通路103の第1制御弁104の下流側には固定絞り113が設けられており、第1制御弁104と固定絞り113との間の中間領域Kと背圧室110を分岐通路114を介して接続するようにしたものである。 Therefore, in order to solve the above-mentioned problem, a configuration as shown in FIG. 6 is known (see Patent Document 1). This is because a first control valve 104 for adjusting the opening degree of the air supply passage is provided on the air supply passage 103 connecting the discharge chamber 101 and the control pressure chamber 102, and the control pressure chamber 102 and the suction chamber 105 are provided. The second control valve 107 is provided on the bleed passage 106 that connects the. The second control valve 107 is formed by partitioning the spool holding recess 108 formed in the housing, the spool 109 movably accommodated in the spool holding recess 108, and behind the spool 109 of the spool holding recess 108. The back pressure chamber 110 and a biasing spring 112 that biases the spool 109 in a direction away from the valve forming body 111 are configured. The spool holding concave portion 108 and the suction chamber 105 are adjacent to each other, and the leakage of the spool holding concave portion 108 from the back pressure chamber 110 to the suction chamber 105 is suppressed by the clearance between the inner wall of the spool holding concave portion 108 and the spool 109. .. Further, a fixed throttle 113 is provided in the air supply passage 103 on the downstream side of the first control valve 104, and the intermediate region K between the first control valve 104 and the fixed throttle 113 and the back pressure chamber 110 are divided into branch passages. The connection is made via 114.

このような構成によれば、吐出室101の圧力Pdと吸入室105の圧力Psとの差が小さい起動時においては、第1制御弁104は給気通路28を全閉状態とし、吐出室101と制御圧室102との連通状態を遮断する。すると、給気通路103の第1制御弁104よりも下流側の中間領域Kの圧力Pk、即ち背圧室110の圧力は制御圧室102の圧力Pcとほぼ等しい状態に維持され、スプール109は、付勢バネ112のバネ力によって抽気通路106を全開状態とする。 With such a configuration, at the time of start-up when the difference between the pressure Pd in the discharge chamber 101 and the pressure Ps in the suction chamber 105 is small, the first control valve 104 fully closes the air supply passage 28, and the discharge chamber 101 is closed. The communication state between the control pressure chamber 102 and the control pressure chamber 102 is shut off. Then, the pressure Pk in the intermediate region K on the downstream side of the first control valve 104 in the air supply passage 103, that is, the pressure in the back pressure chamber 110 is maintained substantially equal to the pressure Pc in the control pressure chamber 102, and the spool 109 is The bleed passage 106 is fully opened by the spring force of the urging spring 112.

その結果、制御圧室102に液冷媒が溜まっていても、制御圧室102の圧力を開度が大きい抽気通路を介して吸入室105に逃がすことで早期に低下させることが可能となり(制御圧室102に溜まっていた液冷媒が全て気化して吸入室105に排出されるまでの時間が短くなり)、吐出容量制御が行えるまでの時間が長くなる不都合を回避することが可能となる。したがって、制御圧室102の圧力Pcは、第1制御弁104の全閉によって速やかに低下し、斜板の傾斜角が速やかに増大して吐出容量を増大させることが可能となる。 As a result, even if the liquid refrigerant is stored in the control pressure chamber 102, the pressure in the control pressure chamber 102 can be reduced early by allowing the pressure in the control pressure chamber 102 to escape to the suction chamber 105 via the extraction passage having a large opening (control pressure). It is possible to avoid the inconvenience that it takes a long time until all the liquid refrigerant accumulated in the chamber 102 is vaporized and discharged to the suction chamber 105), and the time until the discharge volume control is performed becomes long. Therefore, the pressure Pc of the control pressure chamber 102 is rapidly reduced by the full closing of the first control valve 104, and the inclination angle of the swash plate is rapidly increased, so that the discharge capacity can be increased.

その後、制御圧室102に溜まっていた液冷媒が全て気化して吸入室105に排出された後に、徐々に吐出室101の圧力Pdと吸入室105の圧力Psとの差が大きくなってくると、第1制御弁104の全閉状態が解除されて給気通路103が開き、中間領域Kの圧力(背圧室110の圧力)が制御圧室102の圧力Pcよりも高くなる。すると、スプール109は、付勢バネ112に抗して移動して弁形成体111に当接し、抽気通路106はスプール109の先端部に形成された連通溝109aによって大きく絞られた状態となる。したがって、抽気通路106を介して制御圧室102から吸入室105へ導出される冷媒量は大幅に減少され、制御圧室102の圧力Pcは上昇し、斜板の傾斜角が減少して吐出容量は小さくなる。 After that, after all the liquid refrigerant accumulated in the control pressure chamber 102 is vaporized and discharged to the suction chamber 105, the difference between the pressure Pd of the discharge chamber 101 and the pressure Ps of the suction chamber 105 gradually increases. The fully closed state of the first control valve 104 is released, the air supply passage 103 is opened, and the pressure in the intermediate region K (the pressure in the back pressure chamber 110) becomes higher than the pressure Pc in the control pressure chamber 102. Then, the spool 109 moves against the biasing spring 112 and comes into contact with the valve forming body 111, and the bleed passage 106 is greatly narrowed by the communication groove 109 a formed at the tip of the spool 109. Therefore, the amount of the refrigerant discharged from the control pressure chamber 102 to the suction chamber 105 via the extraction passage 106 is greatly reduced, the pressure Pc of the control pressure chamber 102 is increased, the inclination angle of the swash plate is decreased, and the discharge capacity is decreased. Becomes smaller.

特開2002−021721号公報JP, 2002-021721, A

上述した従来の構成においては、制御圧室102から吸入室105への抽気量をスプール保持凹部108内に摺動可能に収容されたスプール109によって調整し、給気通路103の第1制御弁104と固定絞り113との間の中間領域Kの圧力をスプール109に作用する背圧として作用させているので、この中間領域K(背圧室110)からスプール保持凹部108に隣接する吸入室105への冷媒の漏れ量を少なくするためには、スプール保持凹部108の内壁とスプール109との間のクリアランスの管理を厳格に行う必要があり、コストが高くなる不都合がある。 In the above-described conventional configuration, the amount of bleed air from the control pressure chamber 102 to the suction chamber 105 is adjusted by the spool 109 slidably accommodated in the spool holding recess 108, and the first control valve 104 in the air supply passage 103 is adjusted. Since the pressure in the intermediate region K between the fixed throttle 113 and the fixed throttle 113 acts as a back pressure acting on the spool 109, the intermediate region K (the back pressure chamber 110) moves to the suction chamber 105 adjacent to the spool holding recess 108. In order to reduce the amount of refrigerant leakage, it is necessary to strictly manage the clearance between the inner wall of the spool holding recess 108 and the spool 109, which is disadvantageous in that the cost increases.

さらに、スプール保持凹部108の内壁とスプール109との間のクリアランスを微小な値に設定すると、背圧の漏れを有効に抑えることは可能になるが、コンタミ等がスプール保持凹部108の内壁とスプール109の摺接面に噛み込まれ易くなり、スプール109が動かなくなって制御圧室102の圧力制御に支障をきたす不都合が懸念される。 Further, if the clearance between the inner wall of the spool holding recess 108 and the spool 109 is set to a minute value, back pressure leakage can be effectively suppressed, but contamination or the like may prevent the inner wall of the spool holding recess 108 and the spool. There is a concern that the sliding contact surface of 109 may be easily bitten, the spool 109 may not move, and the pressure control of the control pressure chamber 102 may be hindered.

本発明は、係る事情に鑑みてなされたものであり、圧縮機の起動性能を高めると共に、冷媒中のコンタミ等によって制御不能に陥る恐れを無くすことが可能な可変容量型圧縮機を提供することを主たる課題としている。 The present invention has been made in view of the above circumstances, and provides a variable displacement compressor capable of improving the start-up performance of a compressor and eliminating the risk of becoming out of control due to contamination in the refrigerant. Is the main issue.

上記課題を達成するために、本発明に係る可変容量型圧縮機は、作動流体を圧縮する圧縮室と、この圧縮室に圧縮される作動流体を収容する吸入室と、前記圧縮室で圧縮され吐出された作動流体を収容する吐出室と、駆動軸が貫通されると共にこの駆動軸の回転に伴って回転する斜板を収容する制御圧室と、前記吐出室と前記制御圧室とを連通する給気通路と、前記制御圧室と前記吸入室とを常時連通する抽気通路と、前記給気通路の開度を調節する制御弁とを備え、前記制御圧室の圧力を調節することによって吐出容量を可変する可変容量型圧縮機において、前記制御圧室と前記吸入室とを連通する開放通路と、この開放通路上に形成された弁収容室と、を備え、前記開放通路は、前記制御圧室と前記弁収容室とを連通する上流側開放通路と、前記収容室の軸方向の一端に開口するように設けられ、前記弁収容室と前記吸入室とを連通する下流側開放通路と、を有して構成され、前記弁収容室に収容され、前記下流側開放通路の開口を軸方向の一端側端面で開閉する弁体と、前記弁体を前記下流側開放通路の開方向に付勢する付勢手段と、前記給気通路の前記制御弁の下流側から分岐し、前記弁収容室のこの弁収容室に収容された前記弁体に対して前記下流側開放通路とは反対側の領域に連通する圧力導入通路と、を具備することを特徴としている。
ここで、収容室の軸方向の一端とは、弁体の作動方向を軸方向とした場合の収容室の一方の終端のことであり、弁体の軸方向の一端側端面とは、弁体の作動方向の一方の端部の端面のことである。
In order to achieve the above object, a variable displacement compressor according to the present invention includes a compression chamber that compresses a working fluid, a suction chamber that stores the working fluid that is compressed in the compression chamber, and a compression chamber that compresses the working fluid. A discharge chamber containing the discharged working fluid, a control pressure chamber containing the swash plate that penetrates the drive shaft and rotates with the rotation of the drive shaft, and connects the discharge chamber with the control pressure chamber. An air supply passage, a bleed air passage that constantly connects the control pressure chamber and the suction chamber, and a control valve that adjusts the opening of the air supply passage, and adjusts the pressure of the control pressure chamber. A variable displacement compressor having a variable discharge capacity comprises an open passage communicating the control pressure chamber and the suction chamber, and a valve accommodating chamber formed on the open passage, wherein the open passage is An upstream opening passage that connects the control pressure chamber and the valve accommodating chamber, and a downstream opening passage that is provided so as to open at one axial end of the accommodating chamber and that connects the valve accommodating chamber and the suction chamber. And a valve body that is housed in the valve storage chamber and that opens and closes the opening of the downstream side opening passage at one end face in the axial direction, and the valve body in the opening direction of the downstream side opening passage. The urging means for urging the valve body and the downstream opening passage branching from the downstream side of the control valve in the air supply passage to the valve body accommodated in the valve accommodation chamber of the valve accommodation chamber. And a pressure introduction passage communicating with a region on the opposite side.
Here, one end of the accommodation chamber in the axial direction is one end of the accommodation chamber when the operating direction of the valve element is the axial direction, and the one end side end surface of the valve element in the axial direction is the valve element. Is an end face at one end in the operating direction of.

前述の通り、圧縮機が長時間停止して、冷凍サイクル内の圧力が平衡している状態においては、制御圧室に液冷媒が溜まった状態となっている。この状態においては、制御弁は給気通路を全開状態としているが、弁収容室に収容されている弁体は、その前後に作用する圧力が均衡しているため、付勢手段により付勢されて下流側開放通路を開状態としている。
この状態から圧縮機を起動すると、圧縮機の起動初期の最小容量での稼働に伴い吸入室の圧力が制御圧室の圧力よりも低下しはじめる。一方、給気通路は制御弁によって閉じられているので、制御圧室や収容室への圧力導入はない。また、制御圧室の気化冷媒は、抽気通路を介して吸入室へ排出されると共に、上流側開放通路を介して弁収容室へ流れ込み、この弁収容室から下流側開放通路を介して吸入室へ排出される。
したがって、制御圧室の冷媒を抽気通路と開放通路の2系統を介して吸入室に速やかに逃がすことが可能となり、制御圧室に溜まっていた液冷媒が全て気化して吸入室に排出されるまでの時間を短縮することが可能となる。
As described above, when the compressor is stopped for a long time and the pressure in the refrigeration cycle is in equilibrium, the liquid refrigerant is in the control pressure chamber. In this state, the control valve keeps the air supply passage fully open, but the valve element accommodated in the valve accommodating chamber is urged by the urging means because the pressure acting before and after the valve element is balanced. The downstream side open passage is opened.
When the compressor is started from this state, the pressure in the suction chamber starts to drop below the pressure in the control pressure chamber as the compressor operates at the minimum capacity at the initial stage. On the other hand, since the air supply passage is closed by the control valve, no pressure is introduced into the control pressure chamber or the storage chamber. Further, the vaporized refrigerant in the control pressure chamber is discharged to the suction chamber via the extraction passage, flows into the valve accommodation chamber via the upstream opening passage, and is sucked from the valve accommodation chamber via the downstream opening passage. Is discharged to.
Therefore, the refrigerant in the control pressure chamber can be quickly released to the suction chamber through the two systems of the extraction passage and the open passage, and all the liquid refrigerant accumulated in the control pressure chamber is vaporized and discharged to the suction chamber. It is possible to shorten the time until.

その後、制御圧室の圧力が低下して圧縮機の吐出容量が大きくなると、吐出室の圧力が上昇し、制御弁による給気通路の閉状態が解除され、給気通路の開度が大きくなる。そして、給気通路から圧力導入通路を介して弁収容室へ導入された圧力と吸入室の圧力との差によって弁体に作用する力(下流側開放通路を閉鎖する方向に弁体を付勢する力)が付勢手段の付勢力より上回ると、弁体が下流側開放通路の閉方向に移動し、弁体の軸方向一端側の端面で下流側開放通路の開口を閉状態とする。 After that, when the pressure in the control pressure chamber decreases and the discharge capacity of the compressor increases, the pressure in the discharge chamber increases, the closed state of the air supply passage by the control valve is released, and the opening degree of the air supply passage increases. .. Then, the force acting on the valve body due to the difference between the pressure introduced into the valve housing chamber from the air supply passage through the pressure introduction passage and the pressure in the suction chamber (the valve body is biased in the direction to close the downstream side open passage). Force) of the urging means exceeds the urging force of the urging means, the valve body moves in the closing direction of the downstream side open passage, and the opening of the downstream side open passage is closed at the end face of the valve body on one end side in the axial direction.

したがって、弁体の軸方向一端側の端面で下流側開放通路の開口を閉じているので、弁体と弁収容室のクリアランスに関わらず、圧力導入通路を介して弁収容室に流入した冷媒が吸入室に流れることはない。また、圧力導入通路は給気通路の制御弁の下流から分岐した通路であるので、圧力導入通路を介して弁収容室に流入した冷媒が、上流側開放通路を介して制御圧室に逆流したとしても、給気通路経由で制御圧室に流入する冷媒量と開放通路経由で制御圧室に流入する冷媒量の総和はほぼ同じものとなり、吐出容量制御に支障をきたすことはない。 Therefore, since the opening of the downstream side open passage is closed by the end surface of the valve body on the one end side in the axial direction, regardless of the clearance between the valve body and the valve storage chamber, the refrigerant flowing into the valve storage chamber via the pressure introduction passage is It does not flow into the inhalation chamber. Further, since the pressure introducing passage is a passage branched from the downstream side of the control valve of the air supply passage, the refrigerant flowing into the valve accommodating chamber via the pressure introducing passage flows back to the control pressure chamber via the upstream opening passage. Even in this case, the sum of the amount of refrigerant flowing into the control pressure chamber via the air supply passage and the total amount of refrigerant flowing into the control pressure chamber via the open passage is substantially the same, and there is no hindrance to discharge volume control.

しかも、圧力導入通路は、給気通路の制御弁の下流側から分岐して、弁収容室のうち、この弁収容室に収容された前記弁体に対して前記下流側開放通路とは反対側の領域に接続するようにしたので、制御弁の下流側の脈動の少ない圧力を弁体が下流側開放通路を閉鎖する方向へ付与することができ、脈動が多い吐出室の圧力に基づいて弁収容室内の弁体を開閉させる構成と比べて、弁収容室内の弁体をより着実に作動させることが可能となる。 Moreover, the pressure introducing passage branches off from the downstream side of the control valve of the air supply passage, and is on the side opposite to the downstream side opening passage of the valve body accommodated in the valve accommodation chamber. Since it is connected to the region of the control valve, the pressure with less pulsation on the downstream side of the control valve can be applied in the direction in which the valve body closes the downstream open passage, and the valve is based on the pressure in the discharge chamber with many pulsations. It is possible to more steadily operate the valve element in the valve accommodating chamber as compared with the configuration of opening and closing the valve element in the accommodating chamber.

このように、弁収容室と吸入室を連通する下流側開放通路の開口を、弁収容室に収容された弁体の軸方向一端側端面で開閉するようにしているので、弁収容室に収容される弁体はスプール弁で構成する必要はなく、また、弁体と弁収容室との間の厳格なクリアランス管理も不要となる。 In this way, since the opening of the downstream side open passage that connects the valve accommodating chamber and the suction chamber is opened and closed by the end face in the axial direction one end of the valve body accommodated in the valve accommodating chamber, it is accommodated in the valve accommodating chamber. The valve body to be formed does not need to be a spool valve, and strict clearance control between the valve body and the valve accommodating chamber is not necessary.

また、スプール弁の使用を避けることにより、冷媒中のコンタミ等によって弁体が制御不能に陥る恐れもなくなる(弁体の動きがコンタミ等によって影響を受けにくくなる)。 Further, by avoiding the use of the spool valve, there is no fear that the valve body will be out of control due to contamination or the like in the refrigerant (the movement of the valve body is less likely to be affected by the contamination or the like).

好ましくは、上流側開放通路上には、制御圧室から弁収容室への流体の流れのみを許容する第2の逆止弁を設けるとよい。Preferably, a second check valve that allows only the flow of fluid from the control pressure chamber to the valve accommodating chamber may be provided on the upstream side open passage.
前述の通り、圧力導入通路から弁収容室に流入した冷媒が上流側開放通路を介して制御圧室に逆流したとしても、給気通路経由で制御圧室に流入する冷媒量と開放通路経由で制御圧室に流入する冷媒量の総和には変わりはなく、吐出容量制御に支障をきたすことはないが、上流側開放通路を介して制御圧室に流入する冷媒量が多くなると、給気通路を介して制御圧室に流入する冷媒量が減少することになる。給気通路を介して制御圧室に流入する冷媒にはオイルが含まれており、このオイルによる制御圧室内の摺動部分への潤滑が期待されているので、給気通路を介して制御圧室に流入する冷媒量が減少すると摺動部分への潤滑が不足する恐れがある。As described above, even if the refrigerant flowing from the pressure introducing passage into the valve accommodating chamber flows back to the control pressure chamber via the upstream opening passage, the amount of refrigerant flowing into the control pressure chamber via the air supply passage and the opening passage The total amount of refrigerant flowing into the control pressure chamber does not change and does not hinder the discharge capacity control, but if the amount of refrigerant flowing into the control pressure chamber via the upstream open passage increases, the supply passage Therefore, the amount of the refrigerant flowing into the control pressure chamber via is reduced. Since the refrigerant that flows into the control pressure chamber through the air supply passage contains oil and it is expected that this oil will lubricate the sliding parts in the control pressure chamber, the control pressure will be increased through the air supply passage. If the amount of refrigerant flowing into the chamber decreases, there is a risk that lubrication of sliding parts will be insufficient.
以上の観点から、上流側開放通路上に制御圧室から弁収容室への流体の流れのみを許容する第2の逆止弁を設けることにより、弁収容室から制御圧室への逆流は完全に遮断され、開放通路を経由した制御圧室への冷媒流入を防ぐことができる。これにより給気通路を介して制御圧室に流入する冷媒量を減らさないようにして、制御圧室内の摺動部品の潤滑を確保することができる。From the above viewpoint, by providing the second check valve that allows only the flow of the fluid from the control pressure chamber to the valve accommodating chamber on the upstream side open passage, the reverse flow from the valve accommodating chamber to the control pressure chamber is completed. It is possible to prevent the refrigerant from flowing into the control pressure chamber via the open passage. As a result, the amount of refrigerant flowing into the control pressure chamber via the air supply passage is not reduced, and the lubrication of the sliding parts in the control pressure chamber can be ensured.

以上の構成において、給気通路の圧力導入通路が分岐している箇所の下流側に、さらに昇圧手段を設けるようにしてもよい。
このような昇圧手段を設けることで、昇圧手段の上流側の圧力を制御圧室の圧力よりも高く設定できるので、弁収容室に収容された弁体に対して、より高い圧力を付与することが可能となり、より安定した作動を得ることが可能となる。
In the above configuration, a pressure increasing means may be further provided on the downstream side of the branch point of the pressure introducing passage of the air supply passage.
By providing such a pressure increasing means, the pressure on the upstream side of the pressure increasing means can be set higher than the pressure in the control pressure chamber, so that a higher pressure is applied to the valve body housed in the valve housing chamber. It becomes possible to obtain more stable operation.

また、昇圧手段として給気通路の上流側から下流側への流れのみを許容する第1の逆止弁を用いることで、給気通路を流れる冷媒の大小に拘らず、逆止弁のバネ力により逆止弁前後の圧力差を所定値に調整することが可能となる。 Further, by using the first check valve that allows only the flow from the upstream side to the downstream side of the air supply passage as the pressure increasing means, the spring force of the check valve is irrespective of the magnitude of the refrigerant flowing through the air supply passage. This makes it possible to adjust the pressure difference before and after the check valve to a predetermined value.

さらに、好ましくは、前記弁体を、前記弁収容室の内周面に沿って移動する大径部と、前記大径部よりも径が小さく形成され、前記下流側開放通路を開閉する小径部とを有して構成し、前記圧力導入通路が前記弁収容室と接続する部位を、前記弁体が前記下流側開放通路から最も離れた状態において、前記大径部に対して前記下流側開放通路とは反対側に位置させるとよい。
このような構成においては、圧力導入通路を介して弁収容室に導入された冷媒を、大径部の周面と弁収容室の内壁との間の隙間を通過するときに減圧させることができ、弁体の小径部に対して、大径部に作用する圧力により強い押圧力を付与することが可能となる。
Further, preferably, a large diameter portion that moves the valve body along the inner peripheral surface of the valve accommodating chamber, and a small diameter portion that is formed with a diameter smaller than the large diameter portion and that opens and closes the downstream side open passage. And a portion where the pressure introducing passage is connected to the valve accommodating chamber is opened to the large-diameter portion in the downstream side in a state in which the valve body is farthest from the downstream opening passage. It is recommended to locate it on the opposite side of the passage.
In such a configuration, the refrigerant introduced into the valve accommodating chamber through the pressure introducing passage can be depressurized when passing through the gap between the peripheral surface of the large diameter portion and the inner wall of the valve accommodating chamber. It becomes possible to apply a stronger pressing force to the small diameter portion of the valve body due to the pressure acting on the large diameter portion.

さらに、上流側開放通路が弁収容室と接続する部位は、大径部が前記下流側開放通路に最も接近した状態において、大径部よりも下流側開放通路側に位置させるとよい。
このような構成においては、開放通路を介して弁収容室に流入した制御圧室の冷媒の圧力を大径部の下流側(小径部が設けられている側の端面)に確実に付与することが可能となり、また、大径部の周面によって開放通路が塞がれることがないので、弁体の位置に拘らず開放通路の通路抵抗の増大を避けることが可能となる。
Further, the part where the upstream side open passage is connected to the valve accommodating chamber may be located on the downstream side open passage side of the large diameter part in the state where the large diameter part is closest to the downstream side open passage.
In such a configuration, the pressure of the refrigerant in the control pressure chamber that has flowed into the valve accommodating chamber via the open passage is surely applied to the downstream side of the large diameter portion (the end surface on the side where the small diameter portion is provided). In addition, since the open passage is not closed by the peripheral surface of the large diameter portion, it is possible to avoid an increase in the passage resistance of the open passage regardless of the position of the valve body.

以上述べたように、本発明によれば、制御圧室の圧力を、吐出室と制御圧室とを連通して制御弁によって開度が調節される給気通路、及び、制御圧室と吸入室とを連通する抽気通路を介して調節する可変容量型圧縮機において、制御圧室に連通する上流側開放通路と、吸入室に連通する下流側開放通路とに接続される弁収容室を設け、この弁収容室に、下流側開放通路を開閉し、付勢手段により下流側開放通路の開方向に付勢される弁体を収容し、また、この弁収容室に、給気通路の制御弁より下流側の部分に連通する圧力導入通路を接続することで弁収容室へ導入される圧力を弁体に対して下流側開放通路を閉鎖する方向に作用させ、さらに上流側開放通路上に、制御圧室から弁収容室への流体の流れのみを許容する逆止弁を設けるようにしたので、弁体の前後の圧力(給気通路の制御弁より下流側の圧力と吸入室の圧力)がほぼ等しくなる圧縮機の起動時においては、弁収容室に収容されている弁体は、付勢手段により下流側開放通路を開状態に維持するので、制御圧室の気化冷媒を抽気通路と開放通路とを介して吸入室へ速やかに排出することが可能となり、圧縮機の起動性能を高めることが可能となる。 As described above, according to the present invention, the pressure in the control pressure chamber is adjusted so that the discharge chamber communicates with the control pressure chamber, and the opening degree is adjusted by the control valve. In a variable displacement compressor that adjusts through a bleed passage that communicates with a chamber, a valve accommodating chamber that is connected to an upstream open passage that communicates with a control pressure chamber and a downstream open passage that communicates with a suction chamber is provided. The valve accommodating chamber accommodates a valve body that opens and closes the downstream opening passage and is urged by the urging means in the opening direction of the downstream opening passage, and controls the air supply passage in the valve accommodating chamber. By connecting the pressure introduction passage communicating with the portion downstream of the valve, the pressure introduced into the valve accommodating chamber acts on the valve body in the direction of closing the downstream opening passage, and further on the upstream opening passage. Since a check valve that allows only the flow of fluid from the control pressure chamber to the valve accommodating chamber is provided, the pressure before and after the valve body (pressure downstream of the control valve in the air supply passage and pressure in the suction chamber) When the compressor is started, the valve body accommodated in the valve accommodating chamber maintains the downstream open passage in the open state by the biasing means, so that the vaporized refrigerant in the control pressure chamber is extracted from the extraction passage. It is possible to quickly discharge into the suction chamber via the open passage and the opening passage, and it is possible to improve the starting performance of the compressor.

また、吐出室の圧力が上昇し、制御弁が開いて給気通路から圧力導入通路を介して弁収容室に高圧冷媒が供給され、この弁収容室へ導入された圧力と吸入室の圧力との差が付勢手段の付勢力を上回ると、弁体は下流側開放通路を閉鎖する方向に移動し、弁体の軸方向の一端側端面で下流側開放通路の開口を閉鎖する。弁体の軸方向の一端側端面で下流側開放通路の開口を閉じているので、弁体と弁収容室のクリアランスに関わらず、圧力導入通路を介して弁収容室に流入した冷媒が吸入室に流れることはなく、内部循環冷媒が多くなって性能が低下したりする不都合がなくなる。 Further, the pressure in the discharge chamber rises, the control valve opens, high-pressure refrigerant is supplied from the air supply passage to the valve storage chamber via the pressure introduction passage, and the pressure introduced into this valve storage chamber and the pressure in the suction chamber are increased. When the difference exceeds the urging force of the urging means, the valve body moves in the direction of closing the downstream side open passage, and the axial end of the valve body closes the opening of the downstream side open passage. Since the opening of the downstream opening passage is closed at the end face on the one end side in the axial direction of the valve body, regardless of the clearance between the valve body and the valve accommodating chamber, the refrigerant flowing into the valve accommodating chamber through the pressure introducing passage is It does not flow into the air, and there is no inconvenience that the internal circulation refrigerant increases and the performance deteriorates.

このように、開放通路を開閉する弁体を制御弁の下流側の圧力に基づいて開閉させるので、圧縮機内の脈動が多い吐出室の圧力に基づいて弁収容室内の弁体を開閉させる場合と比べて、弁収容室内の弁体を着実に作動させることが可能となる。
しかも、弁体にスプール弁を用いる必要がなくなるので、冷媒中のコンタミ等によって弁体が制御不能に陥る恐れを無くすことも可能となる。
In this way, since the valve body that opens and closes the open passage is opened and closed based on the pressure on the downstream side of the control valve, it is possible to open and close the valve body inside the valve accommodating chamber based on the pressure in the discharge chamber with many pulsations in the compressor. In comparison, the valve element in the valve accommodating chamber can be operated steadily.
Moreover, since it is not necessary to use a spool valve for the valve element, it is possible to eliminate the risk of the valve element becoming uncontrollable due to contamination or the like in the refrigerant.

また、上流側開放通路上に制御圧室から弁収容室への流体の流れのみを許容する第2の逆止弁を設けることにより、弁収容室から制御圧室への逆流は完全に遮断され、開放通路を経由した制御圧室への冷媒流入を防ぐことができる。これにより給気通路を介して制御圧室に流入する冷媒量を減らさないようにして、制御圧室内の摺動部品の潤滑を確保することができる。Further, by providing the second check valve on the upstream side open passage, which allows only the flow of the fluid from the control pressure chamber to the valve accommodating chamber, the reverse flow from the valve accommodating chamber to the control pressure chamber is completely shut off. It is possible to prevent the refrigerant from flowing into the control pressure chamber via the open passage. As a result, the amount of refrigerant flowing into the control pressure chamber via the air supply passage is not reduced, and the lubrication of the sliding parts in the control pressure chamber can be ensured.

図1は、本発明に係る圧縮機を示す断面図であり、圧縮機の起動初期の状態を示す図である。FIG. 1 is a cross-sectional view showing a compressor according to the present invention, and is a view showing a state at an initial stage of starting the compressor. 図2は、本発明に係る圧縮機を示す断面図であり、フルストローク時の状態を示す図である。FIG. 2 is a sectional view showing the compressor according to the present invention, and is a view showing a state at the time of full stroke. 図3は、本発明に係る圧縮機を示す断面図であり、中間ストロークにて吐出容量制御時の状態を示す図である。FIG. 3 is a cross-sectional view showing a compressor according to the present invention, and is a view showing a state at the time of discharge capacity control at an intermediate stroke. 図4は、開放通路の開放状態を調節する開放状態調節機構の構成図であり、(a)は、圧縮機の起動初期の状態、(b)は、圧縮機の稼働中の状態を示す図である。4A and 4B are configuration diagrams of an open state adjusting mechanism that adjusts the open state of the open passage, in which FIG. 4A is a diagram showing the initial state of starting the compressor, and FIG. 4B is a diagram showing the operating state of the compressor. Is. 図5は、各弁の開閉状態、ピストンのストロークを運転状態毎にまとめた比較表である。FIG. 5 is a comparison table in which the open/closed state of each valve and the stroke of the piston are summarized for each operating state. 図6は、可変容量型圧縮機において従来において提案された構成を示す図である。FIG. 6 is a diagram showing a configuration conventionally proposed in a variable displacement compressor.

以下、この発明の実施形態を添付図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1〜図3において、エンジン等の動力源によってベルト駆動されるクラッチレスタイプの可変容量型圧縮機が示されている。この可変容量型圧縮機は、シリンダブロック1と、このシリンダブロック1のリア側(図中、右側)にバルブプレート2を介して組み付けられたリアヘッド3と、シリンダブロック1のフロント側(図中、左側)を閉塞するように組み付けられて制御圧室4を画成するフロントヘッド5とを有して構成されているもので、これらフロントヘッド5、シリンダブロック1、バルブプレート2、及び、リアヘッド3は、締結ボルト6により軸方向に締結され、圧縮機のハウジングを構成している。 1 to 3, a clutchless type variable displacement compressor driven by a power source such as an engine is shown. This variable displacement compressor includes a cylinder block 1, a rear head 3 mounted on a rear side (right side in the drawing) of the cylinder block 1 via a valve plate 2, and a front side of the cylinder block 1 (in the drawing, And a front head 5 that is assembled so as to close the left side) and defines a control pressure chamber 4. The front head 5, the cylinder block 1, the valve plate 2, and the rear head 3 are configured. Are fastened in the axial direction by fastening bolts 6 and constitute a housing of the compressor.

フロントヘッド5とシリンダブロック1とによって画設される制御圧室(クランク室ともいう)4には、一端がフロントヘッド5から突出する駆動軸7が貫通している。この駆動軸7のフロントヘッド5から突出した部分には、ボルト8によって軸方向に取り付けられた中継部材9を介してフロントヘッド5のボス部5aに回転自在に外嵌される駆動プーリ10が連結され、車両のエンジンから図示しない駆動ベルトを介して回転動力が伝達されるようになっている。また、この駆動軸7の一端側は、フロントヘッド5との間に設けられたシール部材11を介してフロントヘッド5との間が気密よく封じられると共にラジアル軸受12にて回転自在に支持されており、駆動軸7の他端側は、シリンダブロック1の略中央に形成された収容孔13に収容されたラジアル軸受14にて回転自在に支持されている。 A control shaft (also referred to as a crank chamber) 4 defined by the front head 5 and the cylinder block 1 is penetrated by a drive shaft 7 having one end protruding from the front head 5. A drive pulley 10 that is rotatably fitted onto a boss portion 5a of the front head 5 is connected to a portion of the drive shaft 7 that protrudes from the front head 5 via a relay member 9 that is axially attached by a bolt 8. The rotational power is transmitted from the engine of the vehicle via a drive belt (not shown). Further, one end of the drive shaft 7 is hermetically sealed from the front head 5 through a seal member 11 provided between the drive shaft 7 and the front head 5, and is rotatably supported by a radial bearing 12. The other end of the drive shaft 7 is rotatably supported by a radial bearing 14 housed in a housing hole 13 formed at the substantially center of the cylinder block 1.

シリンダブロック1には、前記ラジアル軸受14が収容される前記収容孔13と、この収容孔13を中心とする円周上に等間隔に配された複数のシリンダボア15とが形成されており、それぞれのシリンダボア15には、片頭ピストン16が往復摺動可能に挿入されている。 The cylinder block 1 is formed with the accommodation hole 13 for accommodating the radial bearing 14 and a plurality of cylinder bores 15 arranged at equal intervals on a circumference centered on the accommodation hole 13. A single-headed piston 16 is reciprocally slidably inserted into the cylinder bore 15.

前記駆動軸7には、制御圧室4において、該駆動軸7と一体に回転するスラストフランジ17が固装されている。このスラストフランジ17は、フロントヘッド5の内面に対してスラスト軸受18を介して回転自在に支持されており、このスラストフランジ17には、リンク部材19を介して斜板20が連結されている。 A thrust flange 17 is fixedly mounted on the drive shaft 7 so as to rotate integrally with the drive shaft 7 in the control pressure chamber 4. The thrust flange 17 is rotatably supported on the inner surface of the front head 5 via a thrust bearing 18, and a swash plate 20 is connected to the thrust flange 17 via a link member 19.

斜板20は、駆動軸7上に摺動自在に設けられたヒンジボール21を中心に傾動可能に設けられているもので、リンク部材19を介してスラストフランジ17の回転に同期して一体に回転するようになっている。そして、斜板20には、その周縁部分に一対のシュー22を介して片頭ピストン16の係合部16aが係留されている。 The swash plate 20 is provided so as to be tiltable around a hinge ball 21 slidably provided on the drive shaft 7. The swash plate 20 is integrally formed in synchronization with the rotation of the thrust flange 17 via the link member 19. It is designed to rotate. Further, the swash plate 20 has an engaging portion 16a of the single-headed piston 16 moored to a peripheral portion thereof via a pair of shoes 22.

したがって、駆動軸7が回転すると、これに伴って斜板20が回転し、この斜板20の回転運動がシュー22を介して片頭ピストン16の往復直線運動に変換され、シリンダボア15内において片頭ピストン16とバルブプレート2との間に形成された圧縮室23の容積が変更されるようになっている。 Therefore, when the drive shaft 7 rotates, the swash plate 20 rotates accordingly, and the rotational movement of the swash plate 20 is converted into the reciprocating linear movement of the single-headed piston 16 through the shoe 22 and the single-headed piston in the cylinder bore 15. The volume of the compression chamber 23 formed between 16 and the valve plate 2 is changed.

前記バルブプレート2には、それぞれのシリンダボア15に対応して吸入孔31と吐出孔32とが形成され、また、リアヘッド3には、圧縮室23で圧縮される作動流体を収容する吸入室33と、圧縮室23で圧縮吐出された作動流体を収容する吐出室34とが画設されている。吸入室33は、リアヘッド3の中央部分に形成されており、蒸発器の出口側に通じる図示しない吸入口に連通すると共に図示しない吸入弁によって開閉される前記吸入孔31を介して圧縮室23に連通可能となっている。また、吐出室34は、吸入室33の周囲に形成されており、図示しない吐出弁によって開閉される前記吐出孔32を介して圧縮室23に連通可能になっていると共に、バルブプレート2及びシリンダブロック1に形成された通路2a,1aを介してシリンダブロック1の周壁部に形成された吐出空間37に連通している。この吐出空間37は、シリンダブロック1とこれに取り付けられたカバー38とによって画成され、カバー38には、凝縮器の入口側に通じる吐出口39が形成されると共に、凝縮器から吐出空間37への冷媒の逆流を防ぐ吐出逆止弁36が設けられている。 A suction hole 31 and a discharge hole 32 are formed in the valve plate 2 so as to correspond to each cylinder bore 15, and a suction chamber 33 for storing a working fluid compressed in the compression chamber 23 is formed in the rear head 3. , And a discharge chamber 34 that accommodates the working fluid compressed and discharged in the compression chamber 23. The suction chamber 33 is formed in the central portion of the rear head 3 and communicates with a suction port (not shown) that communicates with the outlet side of the evaporator and is connected to the compression chamber 23 through the suction hole 31 that is opened and closed by a suction valve (not shown). It is possible to communicate. Further, the discharge chamber 34 is formed around the suction chamber 33, can communicate with the compression chamber 23 through the discharge hole 32 opened and closed by a discharge valve (not shown), and the valve plate 2 and the cylinder. It communicates with the discharge space 37 formed in the peripheral wall portion of the cylinder block 1 through the passages 2 a formed in the block 1. The discharge space 37 is defined by the cylinder block 1 and a cover 38 attached to the cylinder block 1. The cover 38 has a discharge port 39 communicating with the inlet side of the condenser, and the discharge space 37 from the condenser. A discharge check valve 36 is provided to prevent the reverse flow of the refrigerant into the discharge check valve 36.

この圧縮機の吐出容量は、ピストン16のストロークによって決定され、このストロークは、駆動軸7と垂直な面に対する斜板20の傾斜角度によって決定される。斜板20の傾斜角度は、それぞれのピストン16に作用する圧縮室23の圧力(シリンダボア内の圧力)と制御圧室4の圧力との差圧に由来するモーメント、斜板やピストンの慣性力に由来するモーメント、及び、ヒンジボール21を付勢するデストロークスプリング24の付勢力に由来するモーメントの総和がゼロとなる角度にてバランスする。これによりピストンストロークが決定されて吐出容量が決定されるようになっている。 The discharge capacity of this compressor is determined by the stroke of the piston 16, and this stroke is determined by the tilt angle of the swash plate 20 with respect to the plane perpendicular to the drive shaft 7. The inclination angle of the swash plate 20 depends on the moment derived from the differential pressure between the pressure of the compression chamber 23 (the pressure inside the cylinder bore) acting on each piston 16 and the pressure of the control pressure chamber 4, and the inertia force of the swash plate and the piston. Balance is performed at an angle at which the sum of the originating moment and the moment originating from the urging force of the destroke spring 24 that urges the hinge ball 21 becomes zero. As a result, the piston stroke is determined and the discharge capacity is determined.

すなわち、制御圧室4の圧力が低くなれば、圧縮室23と制御圧室4との差圧が大きくなるので、斜板20の傾斜角度を大きくする方向にモーメントが働く。したがって、図2に示されるように、斜板20の傾斜角度が大きくなると、デストロークスプリング24からの付勢力に抗してヒンジボール21がスラストフランジ側へ移動し、ピストン16のストローク量が大きくなって吐出容量が大きくなる。 That is, when the pressure in the control pressure chamber 4 decreases, the differential pressure between the compression chamber 23 and the control pressure chamber 4 increases, so that a moment acts in the direction of increasing the inclination angle of the swash plate 20. Therefore, as shown in FIG. 2, when the inclination angle of the swash plate 20 increases, the hinge ball 21 moves toward the thrust flange side against the biasing force from the destroke spring 24, and the stroke amount of the piston 16 increases. Therefore, the discharge capacity increases.

これに対して、制御圧室4の圧力が高くなって、圧縮室23と制御圧室4との差圧が小さくなると、斜板20の傾斜角度を小さくする方向にモーメントが働く。したがって、図3に示されるように、斜板20の傾斜角度が小さくなると、ヒンジボール21がスラストフランジ17から遠ざかる方向に移動し、ピストン16のストローク量が小さくなって吐出容量が小さくなる。 On the other hand, when the pressure in the control pressure chamber 4 increases and the differential pressure between the compression chamber 23 and the control pressure chamber 4 decreases, a moment acts in the direction of decreasing the tilt angle of the swash plate 20. Therefore, as shown in FIG. 3, when the inclination angle of the swash plate 20 decreases, the hinge ball 21 moves in a direction away from the thrust flange 17, the stroke amount of the piston 16 decreases, and the discharge capacity decreases.

そして、本構成例においては、シリンダブロック1、バルブプレート2、及びリアヘッド3に亘って形成された通路1b,2b,3bによって吐出室34と制御圧室4とを連通する給気通路40が形成され、また、シリンダブロック1に形成された収容孔13やこれに続いて形成された通路1c、この通路1cに連通するバルブプレート2に形成されたオリフィス孔2c、駆動軸7に形成された通路7c、ラジアル軸受14の隙間などを介して制御圧室4と吸入室33とを連通する抽気通路41が形成されている。 In this configuration example, the air supply passage 40 that connects the discharge chamber 34 and the control pressure chamber 4 is formed by the passages 1b, 2b, and 3b formed across the cylinder block 1, the valve plate 2, and the rear head 3. Further, the accommodation hole 13 formed in the cylinder block 1, the passage 1c formed subsequently to the accommodation hole 13, the orifice hole 2c formed in the valve plate 2 communicating with the passage 1c, and the passage formed in the drive shaft 7. A bleed passage 41 is formed that connects the control pressure chamber 4 and the suction chamber 33 with each other through a gap 7c, the radial bearing 14, and the like.

また、給気通路40上には圧力制御弁42が設けられ、この圧力制御弁42により吐出室34から給気通路40を介して制御圧室4へ流入する冷媒流量を調節し、制御圧室4の圧力を制御するようにしている。
ここで、圧力制御弁42は、リアヘッド3に形成された装着孔43に挿着され、吸入圧力が目標値となるよう給気通路40の開度を調節して制御圧室の圧力を制御すると共に、通電を停止することで給気通路40を全開状態とし、制御圧室4の圧力を高めて吐出容量を最小にし、また、起動初期においては、通電量を最大(デューティー比を100%)とすることで給気通路40を閉状態とし、制御圧室への圧力供給を停止するなどの動作を行う。
A pressure control valve 42 is provided on the air supply passage 40. The pressure control valve 42 adjusts the flow rate of the refrigerant flowing from the discharge chamber 34 into the control pressure chamber 4 via the air supply passage 40 to control the pressure control chamber. The pressure of 4 is controlled.
Here, the pressure control valve 42 is inserted into the mounting hole 43 formed in the rear head 3, and adjusts the opening degree of the air supply passage 40 to control the pressure in the control pressure chamber so that the suction pressure reaches a target value. At the same time, by stopping the energization, the air supply passage 40 is fully opened, the pressure in the control pressure chamber 4 is increased to minimize the discharge capacity, and the energization amount is maximized (duty ratio 100%) in the initial stage of startup. By doing so, the air supply passage 40 is closed, and operation such as stopping the pressure supply to the control pressure chamber is performed.

したがって、圧縮機が回転駆動している状態で圧力制御弁42への通電が停止していると、圧縮機の内部に、圧縮室23から吐出室34に吐出された冷媒が、吐出室34から、給気通路40(途中に圧力制御弁42あり)、制御圧室4、抽気通路41、吸入室33、吸入孔31、圧縮室23、吐出孔32、吐出室34の順で循環する内部循環経路が形成され、この内部循環経路を循環する冷媒ガスにより、圧縮機内部の摺動部分を潤滑及び冷却するようにしている。 Therefore, when the power supply to the pressure control valve 42 is stopped while the compressor is rotationally driven, the refrigerant discharged from the compression chamber 23 to the discharge chamber 34 is discharged from the discharge chamber 34 into the compressor. , An air supply passage 40 (with a pressure control valve 42 in the middle), a control pressure chamber 4, an extraction passage 41, a suction chamber 33, a suction hole 31, a compression chamber 23, a discharge hole 32, and an internal circulation that circulates in this order. A passage is formed, and the sliding portion inside the compressor is lubricated and cooled by the refrigerant gas circulating in the internal circulation passage.

このような圧縮機において、制御圧室4と吸入室33とを連通する開放通路50が設けられている。この開放通路50は、この例では、シリンダブロック1に形成された収容孔13とオリフィス孔2cとを連通する通路1c(抽気通路41のオリフィス孔2cより上流側の部分)に一端が接続され、他端がバルブプレート2を介して吸入室33に接続されている。
ところで本願発明において制御圧室4とは、駆動軸や斜板を収容する空間のみならず、駆動軸や斜板が収容される空間の圧力がそのまま反映されている空間も含むものであり、この例では、シリンダブロック1に形成された収容孔13とオリフィス孔2cとを連通する通路1cも制御圧室4の一部となる。
In such a compressor, an open passage 50 that connects the control pressure chamber 4 and the suction chamber 33 is provided. In this example, one end of the open passage 50 is connected to a passage 1c (a portion of the bleed passage 41 on the upstream side of the orifice hole 2c) that communicates the accommodation hole 13 formed in the cylinder block 1 with the orifice hole 2c. The other end is connected to the suction chamber 33 via the valve plate 2.
In the present invention, the control pressure chamber 4 includes not only the space for accommodating the drive shaft and the swash plate but also the space for directly reflecting the pressure of the space for accommodating the drive shaft and the swash plate. In the example, the passage 1c that connects the housing hole 13 formed in the cylinder block 1 and the orifice hole 2c also becomes part of the control pressure chamber 4.

そして、この開放通路50には、図4にも示されるように、この通路の開放状態を自動調節する開放状態調節機構が設けられている。
この開放状態調節機構は、開放通路50上に形成された弁収容室51と、この弁収容室51内に設けられた弁体52と、この弁体52を押圧するスプリング53からなるもので、開放通路50の制御圧室4と弁収容室51とを連通する部分を上流側開放通路50aとし、開放通路50の弁収容室51と吸入室33とを連通する部分を下流側開放通路50bとした場合に、下流側開放通路50bを弁体52により開閉する構成となっている。具体的には、弁収容室51は、円柱形状に形成され、この弁収容室51の軸方向の一端側端部に下流側開放通路50bが開口しており、この下流側開放通路50bの開口50b−1を、弁体52の軸方向の一端側端面52b−1(後述する第1の小径部52bの端面である)で開閉する構成となっている。弁体52はスプリング53(付勢手段)によって下流側開放通路50bを開放する方向に付勢されている。この例においては、弁収容室51は、シリンダブロック1に形成された円筒状の有底孔をバルブプレート2により閉塞することで構成され、このバルブプレート2に形成した弁収容室51の径より小さい貫通孔により下流側開放通路50bを構成している。
Then, as shown in FIG. 4, the open passage 50 is provided with an open state adjusting mechanism for automatically adjusting the open state of the passage.
The open state adjusting mechanism includes a valve accommodating chamber 51 formed on the open passage 50, a valve body 52 provided in the valve accommodating chamber 51, and a spring 53 that presses the valve body 52. A portion of the open passage 50 that connects the control pressure chamber 4 and the valve storage chamber 51 is defined as an upstream open passage 50a, and a portion of the open passage 50 that communicates between the valve storage chamber 51 and the suction chamber 33 is defined as a downstream open passage 50b. In this case, the downstream open passage 50b is opened and closed by the valve body 52. Specifically, the valve accommodating chamber 51 is formed in a columnar shape, and the downstream opening passage 50b is opened at one axial end of the valve accommodating chamber 51, and the downstream opening passage 50b is opened. 50b-1 is configured to be opened and closed by an end surface 52b-1 on one end side in the axial direction of the valve body 52 (which is an end surface of a first small diameter portion 52b described later). The valve body 52 is biased by a spring 53 (biasing means) in a direction to open the downstream side opening passage 50b. In this example, the valve accommodating chamber 51 is configured by closing a cylindrical bottomed hole formed in the cylinder block 1 with a valve plate 2, and the diameter of the valve accommodating chamber 51 formed in the valve plate 2 is The small through hole constitutes the downstream open passage 50b.

また、弁収容室51には、給気通路40の圧力制御弁42の下流側で分岐した圧力導入通路54が接続されている(弁収容室51と給気通路40の圧力制御弁42の下流側とは、圧力導入通路54を介して連通している)。この圧力導入通路54は、弁収容室51を略円柱状に形成し、下流側開放通路50bが弁収容室51の軸方向の一端部に接続されている場合に、弁収容室51の下流側開放通路50bが接続された端部とは反対側の端部寄りに接続され、前記上流側開放通路50aは、弁収容室51の下流側開放通路50bが接続された端部寄りに接続されている。 Further, a pressure introducing passage 54 that is branched on the downstream side of the pressure control valve 42 of the air supply passage 40 is connected to the valve storage chamber 51 (downstream of the pressure control valve 42 of the valve storage chamber 51 and the air supply passage 40). The side communicates with the side via the pressure introducing passage 54). The pressure introducing passage 54 forms the valve accommodating chamber 51 in a substantially columnar shape, and when the downstream opening passage 50b is connected to one axial end of the valve accommodating chamber 51, the downstream side of the valve accommodating chamber 51. The open passage 50b is connected to an end portion on the opposite side to the connected end portion, and the upstream open passage 50a is connected to an end portion of the valve accommodating chamber 51 connected to the downstream open passage 50b. There is.

弁収容室51に収容される弁体52は、下流側開放通路50bを閉鎖する状態において、弁収容室51の圧力導入通路54が開口する部位と上流側開放通路50aが開口する部位との間に適度な絞りが形成されるような形状となっている。
具体的には、弁体52は、弁収容室51の内周面との間に所定の隙間を持たせた状態で内周面に沿って移動する大径部52aと、この大径部52aに続いて形成されると共に大径部52aよりも径が小さく形成され、前記下流側開放通路50bを端面によって開閉する第1の小径部52bと、大径部52aの第1の小径部とは反対側に続いて形成されると共に大径部52aよりも径が小さく形成された第2の小径部52cと、を有して構成されている。
The valve body 52 accommodated in the valve accommodating chamber 51 is located between the portion where the pressure introducing passage 54 of the valve accommodating chamber 51 is open and the portion where the upstream opening passage 50a is open in the state where the downstream opening passage 50b is closed. The shape is such that an appropriate diaphragm is formed.
Specifically, the valve body 52 has a large-diameter portion 52a that moves along the inner peripheral surface of the valve accommodating chamber 51 with a predetermined gap therebetween, and the large-diameter portion 52a. And a first small diameter portion 52b formed to have a diameter smaller than that of the large diameter portion 52a to open and close the downstream side open passage 50b by an end surface, and a first small diameter portion of the large diameter portion 52a. A second small-diameter portion 52c, which is formed on the opposite side and has a smaller diameter than the large-diameter portion 52a, is configured.

前記弁収容室51において、前記圧力導入通路54が接続している部位は、この圧力導入通路54を介して導入された圧力が弁体52に対して下流側開放通路50bを閉鎖する方向に作用する位置であり、弁体52が下流側開放通路50bから最も離れた位置にいる状態において、大径部52aに対して下流側開放通路50b(第1の小径部52b)とは反対側となる部位である。この例では、弁体52が弁収容室51内にて下流側開放通路50bから最も離れた位置にある状態において、弁体52の第2の小径部52cの周面と対峙する弁収容室51の周面に、圧力導入通路54が接続するように構成されている。 In the valve accommodating chamber 51, the portion to which the pressure introducing passage 54 is connected acts in a direction in which the pressure introduced through the pressure introducing passage 54 closes the downstream opening passage 50b with respect to the valve body 52. In the state where the valve body 52 is farthest from the downstream opening passage 50b, it is on the opposite side of the downstream opening passage 50b (first small diameter portion 52b) with respect to the large diameter portion 52a. It is a part. In this example, in the state where the valve body 52 is located farthest from the downstream opening passage 50b in the valve storage chamber 51, the valve storage chamber 51 facing the peripheral surface of the second small diameter portion 52c of the valve body 52. The pressure introducing passage 54 is connected to the peripheral surface of the.

また、前記弁収容室51において、前記上流側開放通路50aが接続している部位は、弁体52が下流側開放通路50bに最も接近した状態において(弁体52が下流側開放通路50bを閉塞した状態において)、大径部52aに対して下流側開放通路50b(第1の小径部52b)と同じ側となる領域であり、この例では、弁体52が弁収容室51内にて下流側開放通路50bに最も接近した位置にある状態において、弁体52の第1の小径部52bの周面と対峙する弁収容室51の周面に、上流側開放通路50aが接続するように構成されている。 Further, in the valve accommodating chamber 51, the portion to which the upstream side open passage 50a is connected is in a state where the valve body 52 is closest to the downstream side open passage 50b (the valve body 52 closes the downstream side open passage 50b). In the state where the valve body 52 is located on the same side as the downstream open passage 50b (first small diameter portion 52b) with respect to the large diameter portion 52a, in this example, the valve body 52 is located downstream in the valve accommodating chamber 51. The upstream side open passage 50a is connected to the peripheral surface of the valve accommodating chamber 51 facing the peripheral surface of the first small diameter portion 52b of the valve body 52 in the state of being closest to the side open passage 50b. Has been done.

また、給気通路40の圧力導入通路54が分岐している箇所の下流側には、昇圧手段としての第1の逆止弁60が設けられている。この第1の逆止弁60は、給気通路40の上流側から下流側への流れのみを許容するもので、給気通路40上に設けられた弁体収容部60aにボール状弁体60bを収容し、このボール状弁体60bを弁体収容部60aの上流側に設けられた着座面60cに下流側から着座可能とし、このボール状弁体60bを所定の開弁圧を有するように着座面60cに向かって下流側からスプリング60dによって付勢するようにしている。 Further, a first check valve 60 as a pressure increasing means is provided on the downstream side of the portion of the air supply passage 40 where the pressure introduction passage 54 branches. The first check valve 60 allows only the flow from the upstream side to the downstream side of the air supply passage 40, and the ball-shaped valve body 60b is provided in the valve body accommodating portion 60a provided on the air supply passage 40. The ball-shaped valve element 60b can be seated on the seating surface 60c provided on the upstream side of the valve-element housing portion 60a from the downstream side so that the ball-shaped valve element 60b has a predetermined valve opening pressure. A spring 60d biases the seating surface 60c from the downstream side.

さらに、上流側開放通路50aには、制御圧室4(シリンダブロック1に形成された通路1c)から弁収容室51への流体の流れのみを許容する第2の逆止弁70が設けられている。
この第2の逆止弁70は、上流側開放通路50a上に設けられた弁体収容部70aにボール状弁体70bを収容し、このボール状弁体70bを弁体収容部70aの制御圧室側に設けられた着座面70cに弁収容室側から着座可能としているもので、制御圧室4と弁収容室51との圧力差により上流側開放通路50を開閉するようにしている。
Further, the upstream side open passage 50a is provided with a second check valve 70 which allows only the flow of fluid from the control pressure chamber 4 (the passage 1c formed in the cylinder block 1) to the valve accommodating chamber 51. There is.
The second check valve 70 accommodates a ball-shaped valve body 70b in a valve body accommodating portion 70a provided on the upstream side open passage 50a, and controls the ball-shaped valve body 70b to control the valve body accommodating portion 70a. The seating surface 70c provided on the chamber side can be seated from the valve accommodating chamber side, and the upstream open passage 50 is opened and closed by the pressure difference between the control pressure chamber 4 and the valve accommodating chamber 51.

なお、上述した例では、上流側開放通路50aや給気通路40上に設けられる逆止弁(第1の逆止弁60、第2の逆止弁70)としてボール状弁体を用いた例を示したが、これに限定されるものではない。 In the above-described example, a ball-shaped valve element is used as the check valve (first check valve 60, second check valve 70) provided on the upstream side open passage 50a or the air supply passage 40. However, the present invention is not limited to this.

以上の構成において、圧縮機が長時間停止している状態(エンジン停止時)においては、吐出室34の圧力Pd、制御圧室4の圧力Pc、及び吸入室33の圧力Psは、ほぼ等しくなっており、制御圧室4には液化した冷媒が停留している。また、圧力制御弁42は、通電が停止していることから全開状態となっているので、抽気通路41の中間領域K(給気通路41の圧力制御弁42と第1の逆止弁60との間の領域)の圧力(制御弁下流圧Pk)も吸入室33の圧力Psとほぼ等しくなっている。この状態においては、図1に示されるように、斜板20は、デストロークスプリング24の付勢力により駆動軸7と垂直な面に対する傾斜角度が最も小さくなるように付勢され、図5の「エンジン停止時」にも示されるように、第1の逆止弁60は、スプリング60dの付勢力により閉状態であり、弁体52は、スプリング53の付勢力により開状態であり、第2の逆止弁70は開状態であり、吐出逆止弁36は閉状態である。 In the above configuration, when the compressor is stopped for a long time (when the engine is stopped), the pressure Pd of the discharge chamber 34, the pressure Pc of the control pressure chamber 4 and the pressure Ps of the suction chamber 33 become substantially equal. Therefore, the liquefied refrigerant remains in the control pressure chamber 4. Further, since the pressure control valve 42 is in the fully open state because the energization is stopped, the intermediate region K of the extraction passage 41 (the pressure control valve 42 of the air supply passage 41 and the first check valve 60). The pressure in the region (between them) (control valve downstream pressure Pk) is also substantially equal to the pressure Ps of the suction chamber 33. In this state, as shown in FIG. 1, the swash plate 20 is urged by the urging force of the destroke spring 24 so that the inclination angle with respect to the plane perpendicular to the drive shaft 7 becomes the smallest, and the swash plate 20 shown in FIG. As also shown when the engine is stopped, the first check valve 60 is closed by the biasing force of the spring 60d, the valve element 52 is open by the biasing force of the spring 53, and the second check valve 60 is The check valve 70 is open and the discharge check valve 36 is closed.

この状態から車両のエンジンを始動すると、圧力制御弁42への通電が停止された状態であっても、エンジンの回転動力が駆動ベルトを介してコンプレッサの駆動プーリ10に伝えられ、コンプレッサの駆動軸7が回転されることにより、ピストン16は最少ストロークでシリンダボア15内を往復運動する。これにより、コンプレッサの内部を循環する程度の量の冷媒が吐出室34に吐出されるが、吐出空間37に設けた吐出逆止弁36を押し開くまでの量ではなく、外部冷凍サイクルに対して冷媒は供給されない。 When the engine of the vehicle is started from this state, the rotational power of the engine is transmitted to the drive pulley 10 of the compressor via the drive belt even when the power supply to the pressure control valve 42 is stopped, and the drive shaft of the compressor is driven. When 7 is rotated, the piston 16 reciprocates in the cylinder bore 15 with a minimum stroke. As a result, a sufficient amount of the refrigerant to circulate inside the compressor is discharged to the discharge chamber 34, but not to the amount until the discharge check valve 36 provided in the discharge space 37 is pushed open, but to the external refrigeration cycle. No refrigerant is supplied.

その後、車両の空調装置のスイッチがONとなり、圧力制御弁42への通電が開始され、給気通路40が閉状態(圧力制御弁42が閉状態)になると、吐出室34から制御圧室4への圧力供給がなくなり、その分、吐出室34の圧力Pdが高められる。この際、制御圧室4は、給気通路40を介して吐出室34から圧力は供給されなくなるが、制御圧室4に溜まった液冷媒が気化され続けるので、制御圧室4の圧力は低下されずに維持された状態となる。 After that, when the switch of the air conditioner of the vehicle is turned on, the pressure control valve 42 is started to be energized, and the air supply passage 40 is closed (the pressure control valve 42 is closed), the discharge chamber 34 to the control pressure chamber 4 is closed. The pressure Pd in the discharge chamber 34 is increased correspondingly by no pressure supply to the discharge chamber 34. At this time, the pressure in the control pressure chamber 4 is no longer supplied from the discharge chamber 34 via the air supply passage 40, but the liquid refrigerant accumulated in the control pressure chamber 4 continues to be vaporized, so that the pressure in the control pressure chamber 4 decreases. It will be maintained without being maintained.

したがって、空調装置および圧縮機の起動初期においては、給気通路40の圧力制御弁42と昇圧手段(第1の逆止弁60)との間の中間領域Kの圧力(制御弁下流圧Pk)は、吸入室33の圧力Psとほぼ等しく、制御圧室4の圧力Pcよりも低い状態である。その結果、圧力制御弁42の下流側の圧力(制御弁下流圧Pk)と吸入室33の圧力(Ps)との差は小さいので、図4(a)及び図5の「起動初期(液冷媒寝込み時)」に示されるように、弁体52は、スプリング53の付勢力によって下流側開放通路50bを開状態とする位置に維持され、また、制御圧室4の圧力Pcは制御弁下流圧Pkよりも高くなるため、昇圧手段を構成する第1の逆止弁60は閉状態となり(ボール状弁体60bが給気通路40上に設けられた着座面60cに当接した状態となり)、制御圧室4の冷媒が圧力導入通路54を介して弁収容室51に逆流しないようになる。
また、制御圧室4の圧力Pcは、吸入室33の圧力Psより高いので、第2の逆止弁70は開状態となり(ボール状弁体70bが上流側開放通路50a上に設けられた着座面70cから離反した状態となり)、制御圧室4の気化冷媒は上流側開放通路50aを通って弁収容室51へ流れ、この弁収容室51から吸入室33へ流出される。
Therefore, in the initial stage of activation of the air conditioner and the compressor, the pressure in the intermediate region K (control valve downstream pressure Pk) between the pressure control valve 42 of the air supply passage 40 and the pressure increasing means (first check valve 60). Is substantially equal to the pressure Ps of the suction chamber 33 and lower than the pressure Pc of the control pressure chamber 4. As a result, since the difference between the pressure on the downstream side of the pressure control valve 42 (control valve downstream pressure Pk) and the pressure in the suction chamber 33 (Ps) is small, the “starting stage (liquid refrigerant) in FIGS. As shown in "when lying down", the valve body 52 is maintained at a position where the downstream side open passage 50b is opened by the urging force of the spring 53, and the pressure Pc of the control pressure chamber 4 is set to the control valve downstream pressure. Since it becomes higher than Pk, the first check valve 60 constituting the pressure increasing means is closed (the ball-shaped valve body 60b is in contact with the seating surface 60c provided on the air supply passage 40), The refrigerant in the control pressure chamber 4 does not flow back into the valve accommodating chamber 51 via the pressure introducing passage 54.
Further, since the pressure Pc of the control pressure chamber 4 is higher than the pressure Ps of the suction chamber 33, the second check valve 70 is opened (the ball-shaped valve body 70b is seated on the upstream side open passage 50a). After being separated from the surface 70c), the vaporized refrigerant in the control pressure chamber 4 flows to the valve accommodating chamber 51 through the upstream open passage 50a, and is discharged from the valve accommodating chamber 51 to the suction chamber 33.

このように、制御圧室4に溜まっている液冷媒が気化している最中においては、オリフィス孔2cを介して流れる従来の抽気通路41に加えて、気化冷媒が開放通路50を介して吸入室33へ流出され続けるので、制御圧室4の冷媒を抽気通路41と開放通路50の2系統を介して吸入室33に速やかに逃がすことが可能となり、制御圧室4の圧力を早期に低下させ(制御圧室に溜まっていた液冷媒が全て気化して吸入室に排出されるまでの時間を短くして、吐出容量制御が行えるまでの時間が長くなる不都合を回避でき)、斜板20の傾斜角を速やかに増大して吐出容量を増大させることが可能となる(図2)。 As described above, while the liquid refrigerant accumulated in the control pressure chamber 4 is being vaporized, the vaporized refrigerant is sucked through the open passage 50 in addition to the conventional extraction passage 41 flowing through the orifice hole 2c. Since the refrigerant continues to flow into the chamber 33, the refrigerant in the control pressure chamber 4 can quickly escape to the suction chamber 33 via the two systems of the extraction passage 41 and the open passage 50, and the pressure in the control pressure chamber 4 is reduced early. The swash plate 20 can be avoided (the time until the liquid refrigerant accumulated in the control pressure chamber is completely vaporized and discharged to the suction chamber can be shortened, and the time until the discharge volume control can be performed becomes long). It is possible to increase the discharge angle by rapidly increasing the inclination angle of (Fig. 2).

制御圧室4に溜まっていた液冷媒が全て気化して吸入室33に排出され、圧縮機が最大容量での運転に移行することにより、吐出逆止弁36は開状態となって外部冷凍サイクルに十分な冷媒が供給され(図5の「最大容量運転時」参照)、徐々に冷凍サイクルの蒸発器の温度が低下し、吸入室33の圧力Psが低下してくる。そして蒸発器での冷凍能力が十分な値に達すると、圧力制御弁42の通電量が調節されて給気通路40が開かれ(圧力制御弁42が開かれ)、吐出室34の高圧ガスが給気通路40を介して制御圧室4に供給される。 All the liquid refrigerant accumulated in the control pressure chamber 4 is vaporized and discharged into the suction chamber 33, and the compressor shifts to the operation at the maximum capacity, whereby the discharge check valve 36 is opened and the external refrigeration cycle. Sufficient refrigerant is supplied (see "during maximum capacity operation" in FIG. 5), the temperature of the evaporator in the refrigeration cycle gradually decreases, and the pressure Ps of the suction chamber 33 decreases. Then, when the refrigerating capacity in the evaporator reaches a sufficient value, the energization amount of the pressure control valve 42 is adjusted and the air supply passage 40 is opened (the pressure control valve 42 is opened), so that the high pressure gas in the discharge chamber 34 is discharged. It is supplied to the control pressure chamber 4 via the air supply passage 40.

この際、給気通路40の制御弁の下流には、昇圧手段(第1の逆止弁60)が設けられているため、冷媒がこの昇圧手段を通過する際の通路抵抗を利用して、制御弁下流圧Pkを速やかに上昇させ、これにより、弁収容室51に収容された弁体52に対して制御圧室4の圧力Pcよりも高い圧力を付与することが可能となる。本例では、前述の通り、昇圧手段は、所定の開弁圧を有する第1の逆止弁60にて構成されており、これにより、給気通路40を通過する冷媒ガスの量にかかわらず、昇圧手段の前後に所定の圧力差を発生させることが可能となる。
そして、圧力導入通路54を介して弁収容室51へ導入される制御弁下流圧Pkと吸入室33の圧力Psとの差がスプリング53の付勢力よりも大きくなると、図4(b)及び図5の「中間ストローク(吐出容量制御運転)時」に示されるように、弁体52は、スプリング53のバネ力に抗して下流側開放通路50bを閉鎖する方向に移動し、下流側開放通路50bを閉状態とする。
At this time, since the pressure increasing means (first check valve 60) is provided downstream of the control valve of the air supply passage 40, the passage resistance when the refrigerant passes through the pressure increasing means is used to The control valve downstream pressure Pk is quickly increased, and thereby it is possible to apply a pressure higher than the pressure Pc of the control pressure chamber 4 to the valve body 52 housed in the valve housing chamber 51. In the present example, as described above, the pressure increasing means is configured by the first check valve 60 having a predetermined valve opening pressure, and thus, regardless of the amount of the refrigerant gas passing through the air supply passage 40. It is possible to generate a predetermined pressure difference before and after the booster.
Then, when the difference between the control valve downstream pressure Pk introduced into the valve accommodating chamber 51 through the pressure introducing passage 54 and the pressure Ps of the suction chamber 33 becomes larger than the biasing force of the spring 53, FIG. As shown in "intermediate stroke (discharging capacity control operation)" of 5, the valve body 52 moves in the direction of closing the downstream side open passage 50b against the spring force of the spring 53, and the downstream side open passage is opened. 50b is closed.

それと同時に圧力導入通路54を介して弁収容室51へ流入した冷媒は、弁収容室51の内壁と弁体52の大径部52aとの間の隙間を通って上流側開放通路50aを介して制御圧室4に流れようとするが、上流側開放通路50aには、制御圧室4から弁収容室51への流体の流れのみを許容する第2の逆止弁70が設けられているため、第2の逆止弁70は閉状態となり、上流側開放通路50aを介した制御圧室4への冷媒の流れを阻止する。 At the same time, the refrigerant flowing into the valve accommodating chamber 51 via the pressure introducing passage 54 passes through the gap between the inner wall of the valve accommodating chamber 51 and the large diameter portion 52a of the valve body 52 and the upstream side open passage 50a. Although trying to flow into the control pressure chamber 4, the upstream side open passage 50a is provided with the second check valve 70 which allows only the flow of the fluid from the control pressure chamber 4 to the valve accommodating chamber 51. The second check valve 70 is closed to block the flow of the refrigerant to the control pressure chamber 4 via the upstream open passage 50a.

したがって、制御圧室4の冷媒は、従来の抽気通路41を介してのみ吸入室33へ排出され、制御圧室4から吸入室33へ導出される冷媒量が大幅に減少した状態で給気通路40を介して高圧ガスが制御圧室4に供給されるので、制御圧室4の圧力Pcは速やかに上昇し、斜板20の傾斜角が速やかに減少して吐出容量は小さくなる(図3)。 Therefore, the refrigerant in the control pressure chamber 4 is discharged to the suction chamber 33 only through the conventional extraction passage 41, and the amount of the refrigerant discharged from the control pressure chamber 4 to the suction chamber 33 is significantly reduced, so that the supply passage is closed. Since the high-pressure gas is supplied to the control pressure chamber 4 via 40, the pressure Pc of the control pressure chamber 4 rapidly rises, the inclination angle of the swash plate 20 rapidly decreases, and the discharge capacity becomes small (FIG. 3). ).

ここで、この例では、圧力導入通路54を、弁体52が下流側開放通路50bから最も遠ざかった状態において、大径部52aに対して下流側開放通路50b(第1の小径部52b)とは反対側となる弁収容室51の部位に接続しているので、圧力導入通路54を介して弁収容室51に導入された冷媒を、大径部52aの周面と弁収容室51の内壁との間の隙間を通過するときに減圧させることができ、これにより弁体52の軸方向一端側に作用する圧力と軸方向他端側に作用する圧力に差を生じさせて、弁体52をスプリング53の付勢力に抗して下流側開放通路50bを閉鎖する方向に押圧力を付与することが可能となる。 Here, in this example, when the valve body 52 is farthest from the downstream opening passage 50b, the pressure introducing passage 54 is connected to the downstream opening passage 50b (first small diameter portion 52b) with respect to the large diameter portion 52a. Is connected to the opposite side of the valve accommodating chamber 51, so that the refrigerant introduced into the valve accommodating chamber 51 through the pressure introducing passage 54 is supplied to the peripheral surface of the large diameter portion 52a and the inner wall of the valve accommodating chamber 51. The pressure can be reduced when passing through the gap between the valve body 52 and the valve body 52, and a pressure acting on one end side in the axial direction of the valve body 52 and a pressure acting on the other end side in the axial direction are caused to differ from each other. It is possible to apply a pressing force against the urging force of the spring 53 in the direction of closing the downstream side open passage 50b.

また、上流側開放通路50aを、弁体52が下流側開放通路50bに最も接近した状態(弁体52によって下流側開放通路50bを閉塞した状態)において、大径部52aよりも下流側開放通路側となる部位に接続しているので、上流側開放通路50aを介して弁収容室51に流入した制御圧室4の冷媒圧力Pcを大径部の下流側(第1の小径部52bが設けられている側の端面)に確実に付与することができ、また、大径部52aの周面によって開放通路50が塞がれることがないので、弁体52の位置に拘らず開放通路50の通路抵抗の増大を避けることが可能となる。 Further, in the state where the valve body 52 is closest to the downstream side open passage 50b (the downstream side open passage 50b is closed by the valve body 52), the upstream side open passage 50a is located downstream of the large diameter portion 52a. Since it is connected to the portion that becomes the side, the refrigerant pressure Pc of the control pressure chamber 4 that has flowed into the valve accommodating chamber 51 via the upstream open passage 50a is provided on the downstream side of the large diameter portion (the first small diameter portion 52b is provided). (The end surface on the closed side), and since the open passage 50 is not blocked by the peripheral surface of the large diameter portion 52a, the open passage 50 of the valve body 52 is not affected by the position of the valve body 52. It becomes possible to avoid an increase in passage resistance.

なお、最大容量運転時又は吐出容量制御運転時からアイドル状態になった場合には、図5の「アイドル時(クラッチレスoff運転)」に示されるように、圧縮機の吐出容量を最小にするために、圧力制御弁42を全開として給気通路40を介して吐出室34から高圧冷媒を制御圧室4に供給し、ピストンストロークを最小にする。このような場合には、圧力導入通路54を介して給気通路40から高圧ガスが弁収容室51にも供給されるので、弁体52は即座に閉となり、制御圧室4の圧力Pcは速やかに上昇し、斜板20の傾斜角が速やかに減少して吐出容量は小さくなる。 When the engine enters the idle state from the maximum capacity operation or the discharge capacity control operation, the discharge capacity of the compressor is minimized as shown in “idle time (clutchless off operation)” in FIG. Therefore, the pressure control valve 42 is fully opened to supply the high-pressure refrigerant from the discharge chamber 34 to the control pressure chamber 4 through the air supply passage 40 to minimize the piston stroke. In such a case, since the high pressure gas is also supplied from the air supply passage 40 to the valve housing chamber 51 via the pressure introduction passage 54, the valve body 52 is immediately closed and the pressure Pc of the control pressure chamber 4 is reduced. It rapidly rises, the inclination angle of the swash plate 20 rapidly decreases, and the discharge capacity decreases.

このように、給気通路40の圧力制御弁42の下流側の圧力(制御弁下流圧Pk)に基づいて弁収容室51内の弁体を開閉制御するようにしたので、脈動が多い吐出室34の圧力に基づいて弁収容室内の弁体を開閉制御する場合と比べて、弁収容室内の弁体をより着実に作動させることが可能となる。 In this way, the valve body in the valve accommodating chamber 51 is controlled to be opened/closed based on the pressure on the downstream side of the pressure control valve 42 in the air supply passage 40 (control valve downstream pressure Pk). Compared with the case where the valve body in the valve accommodating chamber is controlled to open and close based on the pressure of 34, the valve body in the valve accommodating chamber can be operated more steadily.

また、弁体52をスプール弁のような構成にしなくても、弁体52によって下流側開放通路50bが閉状態となった際には、第2の逆止弁70によって弁収容室51から制御圧室4への冷媒の流れを阻止できるので、給気通路を介して制御圧室に供給される冷媒の量が減少する不都合がなくなり、制御圧室内の摺動部品の潤滑を確保することができる。 Even if the valve body 52 is not configured as a spool valve, the second check valve 70 controls the valve accommodating chamber 51 when the downstream open passage 50b is closed by the valve body 52. Since the flow of the refrigerant into the pressure chamber 4 can be blocked, there is no inconvenience that the amount of the refrigerant supplied to the control pressure chamber via the air supply passage decreases, and the lubrication of the sliding parts in the control pressure chamber can be ensured. it can.

さらに、上記構成においては、弁体52としてスプール弁を避けることが可能となるので、弁体52と弁収容室51との間の厳格なクリアランス管理が不要となり、また、冷媒中のコンタミ等が弁体の動きに影響を与えることがなくなる。 Further, in the above configuration, since it is possible to avoid the spool valve as the valve body 52, strict clearance management between the valve body 52 and the valve accommodating chamber 51 becomes unnecessary, and contamination in the refrigerant and the like are eliminated. It does not affect the movement of the valve body.

なお、その後、圧縮機の吐出容量を最大とする要請があった場合、圧力制御弁42への通電量が増加されて給気通路40が閉じられ、吐出室34から圧力制御弁42を介して制御圧室4への圧力供給がなくなる。給気通路40の中間領域Kの圧力(制御弁下流圧Pk)は、制御圧室4の圧力Pcより低くなるので、第1の逆止弁60のボール状弁体60bは、着座面60cに当接して給気通路40は閉塞した状態となる。中間領域K(圧力制御弁42の下流と昇圧手段の上流の間)には、吐出室34からの圧力供給も、制御圧室4からの逆流もなくなるので、中間領域Kの圧力(制御弁下流圧Pk)は速やかに低下し、圧力導入通路54を介して弁収容室51に導入される圧力も低下することとなる。これにより、弁体52は、図4(a)に示されるように、スプリング53のバネ力により下流側開放通路50bを開状態とする位置へ移動する。また、弁収容室51の圧力は制御圧室4の圧力Pcよりも低くなるので、第2の逆止弁70は開状態となる。
したがって、制御圧室4の冷媒は、上流側開放通路50a、弁収容室51、下流側開放通路50bを介して吸入室33へ流出されるので、制御圧室4の圧力は速やかに低下し、吐出容量は最大状態となる。
After that, when there is a request for maximizing the discharge capacity of the compressor, the amount of electricity supplied to the pressure control valve 42 is increased to close the air supply passage 40, and the discharge chamber 34 passes through the pressure control valve 42. The pressure supply to the control pressure chamber 4 is lost. Since the pressure in the intermediate region K of the air supply passage 40 (control valve downstream pressure Pk) becomes lower than the pressure Pc of the control pressure chamber 4, the ball-shaped valve element 60b of the first check valve 60 is seated on the seating surface 60c. The air supply passage 40 is brought into contact with the air supply passage 40 to be closed. In the intermediate region K (between the downstream of the pressure control valve 42 and the upstream of the pressurizing means), there is no pressure supply from the discharge chamber 34 or backflow from the control pressure chamber 4, so the pressure in the intermediate region K (downstream of the control valve). The pressure Pk) rapidly decreases, and the pressure introduced into the valve accommodating chamber 51 via the pressure introducing passage 54 also decreases. As a result, as shown in FIG. 4A, the valve body 52 moves to the position where the downstream opening passage 50b is opened by the spring force of the spring 53. Further, since the pressure of the valve accommodating chamber 51 becomes lower than the pressure Pc of the control pressure chamber 4, the second check valve 70 is opened.
Therefore, the refrigerant in the control pressure chamber 4 flows out to the suction chamber 33 through the upstream side open passage 50a, the valve accommodating chamber 51, and the downstream side open passage 50b, so that the pressure in the control pressure chamber 4 quickly decreases. The discharge capacity becomes maximum.

なお、圧力導入通路54の弁収容室51への開口する部位は、弁収容室51へ導入される制御弁下流圧Pkが弁体52に対して下流側開放通路50bを閉鎖する方向に作用する構成であれば足りるので、図4に示す構成例に限定されるものではない。
また、上述の例では、給気通路40の圧力導入通路54が分岐している箇所より下流側に昇圧手段としての第1の逆止弁60を設けた構成を示したが、昇圧手段をオリフィス孔によって代用するようにしても、また、昇圧手段を割愛するようにしてもよい。
It should be noted that at the portion of the pressure introducing passage 54 that opens to the valve accommodating chamber 51, the control valve downstream pressure Pk introduced into the valve accommodating chamber 51 acts on the valve body 52 in a direction that closes the downstream side open passage 50b. The structure is sufficient, and the structure is not limited to the example shown in FIG.
In the above example, the first check valve 60 as the pressure increasing means is provided on the downstream side of the branch of the pressure introducing path 54 of the air supply passage 40. The holes may be substituted, or the boosting means may be omitted.

4 制御圧室
7 駆動軸
20 斜板
23 圧縮室
33 吸入室
34 吐出室
40 給気通路
41 抽気通路
42 圧力制御弁
50 開放通路
50a 上流側開放通路
50b 下流側開放通路
51 弁収容室
52 弁体
52a 大径部
52b 小径部
53 スプリング(付勢手段)
54 圧力導入通路
60 第1の逆止弁
70 第2の逆止弁
4 control pressure chamber 7 drive shaft 20 swash plate 23 compression chamber 33 suction chamber 34 discharge chamber 40 air supply passage 41 bleed passage 42 pressure control valve 50 open passage 50a upstream open passage 50b downstream open passage 51 valve housing chamber 52 valve body 52a large diameter portion 52b small diameter portion 53 spring (biasing means)
54 pressure introduction passage 60 first check valve 70 second check valve

Claims (5)

作動流体を圧縮する圧縮室と、この圧縮室で圧縮される作動流体を収容する吸入室と、前記圧縮室で圧縮され吐出された作動流体を収容する吐出室と、駆動軸が貫通されると共にこの駆動軸の回転に伴って回転する斜板を収容する制御圧室と、前記吐出室と前記制御圧室とを連通する給気通路と、前記制御圧室と前記吸入室とを常時連通する抽気通路と、前記給気通路の開度を調節する制御弁とを備え、
前記制御圧室の圧力を調節することによって吐出容量を可変する可変容量型圧縮機において、
前記制御圧室と前記吸入室とを連通する開放通路と、
この開放通路上に形成された弁収容室と、を備え、
前記開放通路は、前記制御圧室と前記弁収容室とを連通する上流側開放通路と、前記収容室の軸方向の一端に開口するように設けられ、前記弁収容室と前記吸入室とを連通する下流側開放通路と、を有して構成され、
前記弁収容室に収容され、前記下流側開放通路の開口を軸方向の一端側端面で開閉する弁体と、
前記弁体を前記下流側開放通路の開方向に付勢する付勢手段と、
前記給気通路の前記制御弁の下流側から分岐し、前記弁収容室のうち、この弁収容室に収容された前記弁体に対して前記下流側開放通路とは反対側の領域に連通する圧力導入通路と、
前記上流側開放通路上に設けられ、前記制御圧室から前記弁収容室への流体の流れのみを許容する第2の逆止弁と、
を具備することを特徴とする可変容量型圧縮機。
A compression chamber that compresses the working fluid, a suction chamber that stores the working fluid that is compressed in the compression chamber, a discharge chamber that stores the working fluid that is compressed and discharged in the compression chamber, and a drive shaft that penetrates A control pressure chamber that accommodates a swash plate that rotates with the rotation of the drive shaft, an air supply passage that connects the discharge chamber and the control pressure chamber, and a control pressure chamber and the suction chamber that always communicate with each other. An extraction passage and a control valve for adjusting the opening of the supply passage,
In a variable capacity compressor that varies the discharge capacity by adjusting the pressure of the control pressure chamber,
An open passage that connects the control pressure chamber and the suction chamber,
A valve accommodating chamber formed on the open passage,
The open passage is provided so as to open at an upstream side open passage that communicates the control pressure chamber and the valve accommodating chamber with one end in the axial direction of the accommodating chamber, and connects the valve accommodating chamber and the suction chamber. And a downstream open passage communicating with each other,
A valve body that is housed in the valve housing chamber and that opens and closes the opening of the downstream side opening passage at one end side end surface in the axial direction;
Urging means for urging the valve element in the opening direction of the downstream side open passage,
The air supply passage branches off from the downstream side of the control valve and communicates with a region of the valve storage chamber opposite to the downstream opening passage with respect to the valve body accommodated in the valve storage chamber. A pressure introducing passage,
A second check valve which is provided on the upstream side open passage and allows only a fluid flow from the control pressure chamber to the valve accommodating chamber;
A variable capacity compressor, comprising:
前記給気通路の前記圧力導入通路が分岐している箇所より下流側には、昇圧手段が設けられていることを特徴とする請求項1記載の可変容量型圧縮機。 2. The variable displacement compressor according to claim 1, wherein a booster is provided at a downstream side of a portion of the air supply passage where the pressure introduction passage is branched. 前記昇圧手段は、前記給気通路の上流側から下流側への流れのみを許容する第1の逆止弁により構成されることを特徴とする請求項2記載の可変容量型圧縮機。 3. The variable displacement compressor according to claim 2, wherein the booster is composed of a first check valve that allows only the flow from the upstream side to the downstream side of the air supply passage. 前記弁体は、前記弁収容室の内周面に沿って移動する大径部と、前記大径部よりも径が小さく形成され、前記下流側開放通路を開閉する小径部とを有して構成され、
前記圧力導入通路が前記弁収容室と接続する部位は、前記弁体が前記下流側開放通路から最も離れた状態において、前記大径部に対して前記下流側開放通路とは反対側の領域に位置していることを特徴とする請求項1乃至3のいずれかに記載の可変容量型圧縮機。
The valve body has a large-diameter portion that moves along the inner peripheral surface of the valve accommodating chamber, and a small-diameter portion that has a diameter smaller than that of the large-diameter portion and that opens and closes the downstream side opening passage. Composed,
The portion where the pressure introducing passage is connected to the valve accommodating chamber is located in a region opposite to the downstream opening passage with respect to the large-diameter portion in a state where the valve body is farthest from the downstream opening passage. The variable displacement compressor according to claim 1, wherein the variable displacement compressor is located.
前記上流側開放通路が前記弁収容室と接続する部位は、前記弁体が前記下流側開放通路に最も接近した状態において、前記大径部よりも前記下流側開放通路側に位置していることを特徴とする請求項4記載の可変容量型圧縮機。 The portion where the upstream side open passage is connected to the valve accommodating chamber is located closer to the downstream side open passage than the large diameter portion when the valve body is closest to the downstream side open passage. The variable capacity compressor according to claim 4, wherein
JP2017508412A 2015-03-26 2016-03-24 Variable capacity compressor Active JP6732387B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015064294 2015-03-26
JP2015064294 2015-03-26
PCT/JP2016/059317 WO2016152959A1 (en) 2015-03-26 2016-03-24 Variable-capacity compressor

Publications (2)

Publication Number Publication Date
JPWO2016152959A1 JPWO2016152959A1 (en) 2018-02-22
JP6732387B2 true JP6732387B2 (en) 2020-07-29

Family

ID=56977480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017508412A Active JP6732387B2 (en) 2015-03-26 2016-03-24 Variable capacity compressor

Country Status (5)

Country Link
US (1) US20180073499A1 (en)
EP (1) EP3293395A4 (en)
JP (1) JP6732387B2 (en)
CN (1) CN107407267A (en)
WO (1) WO2016152959A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7191957B2 (en) * 2018-07-13 2022-12-19 イーグル工業株式会社 capacity control valve

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119483U (en) * 1986-01-21 1987-07-29
JP2001073939A (en) * 1999-08-31 2001-03-21 Toyota Autom Loom Works Ltd Control valve for variable displacement compressor and variable displacement compressor
JP2003028059A (en) * 2001-07-13 2003-01-29 Toyota Industries Corp Throttle structure of displacement control of variable displacement type compressor
JP2005009422A (en) * 2003-06-19 2005-01-13 Toyota Industries Corp Capacity control mechanism for variable displacement compressor
JP2005307882A (en) * 2004-04-22 2005-11-04 Toyota Industries Corp Capacity control mechanism in variable displacement compressor
JP2006105007A (en) * 2004-10-04 2006-04-20 Toyota Industries Corp Displacement control mechanism in variable displacement compressor
JP4412184B2 (en) * 2005-01-27 2010-02-10 株式会社豊田自動織機 Variable capacity compressor
JP4858409B2 (en) * 2007-11-05 2012-01-18 株式会社豊田自動織機 Variable capacity compressor
JP5181808B2 (en) * 2008-04-28 2013-04-10 株式会社豊田自動織機 Capacity control mechanism in variable capacity compressor
JP5391648B2 (en) * 2008-10-28 2014-01-15 株式会社豊田自動織機 Capacity control mechanism in variable capacity compressor
JP5458965B2 (en) * 2010-03-08 2014-04-02 株式会社豊田自動織機 Capacity control mechanism in variable capacity compressor
JP5182393B2 (en) * 2011-03-31 2013-04-17 株式会社豊田自動織機 Variable capacity compressor

Also Published As

Publication number Publication date
US20180073499A1 (en) 2018-03-15
EP3293395A4 (en) 2019-01-23
EP3293395A1 (en) 2018-03-14
CN107407267A (en) 2017-11-28
JPWO2016152959A1 (en) 2018-02-22
WO2016152959A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
US8714938B2 (en) Variable displacement compressor
US8882474B2 (en) Variable displacement type compressor with displacement control mechanism
JP5181808B2 (en) Capacity control mechanism in variable capacity compressor
JP6804443B2 (en) Variable capacitance compressor
US6572341B2 (en) Variable displacement type compressor with suction control valve
JP2005098155A (en) Variable displacement clutchless compressor
JP6732387B2 (en) Variable capacity compressor
JP4501112B2 (en) Control unit for variable capacity compressor
WO2019151191A1 (en) Variable capacity compressor
WO2016098822A1 (en) Variable capacity compressor
CN111656012B (en) Variable capacity swash plate type compressor
JP2008031962A (en) Variable displacement compressor
JP2019065740A (en) Variable displacement compressor
JP2017150315A (en) Variable displacement swash plate compressor
JP2022126942A (en) Variable displacement compressor
JP2009108818A (en) Compressor
JP3331829B2 (en) Compressor
JP5584476B2 (en) Compressor
JP2009257289A (en) Swash plate type compressor
JP2009138630A (en) Variable displacement compressor
JP2019178660A (en) Compressor
JP2009203831A (en) Coolant control mechanism and swash plate compressor using it
JP2017106331A (en) Compressor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200707

R150 Certificate of patent or registration of utility model

Ref document number: 6732387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250