JP6731810B2 - Thermoelectric module and manufacturing method thereof - Google Patents

Thermoelectric module and manufacturing method thereof Download PDF

Info

Publication number
JP6731810B2
JP6731810B2 JP2016149753A JP2016149753A JP6731810B2 JP 6731810 B2 JP6731810 B2 JP 6731810B2 JP 2016149753 A JP2016149753 A JP 2016149753A JP 2016149753 A JP2016149753 A JP 2016149753A JP 6731810 B2 JP6731810 B2 JP 6731810B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
electrode
thermoelectric
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016149753A
Other languages
Japanese (ja)
Other versions
JP2018019008A (en
Inventor
仁志 吉見
仁志 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP2016149753A priority Critical patent/JP6731810B2/en
Publication of JP2018019008A publication Critical patent/JP2018019008A/en
Application granted granted Critical
Publication of JP6731810B2 publication Critical patent/JP6731810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱電モジュールおよびその製造方法に関する。 The present invention relates to a thermoelectric module and a manufacturing method thereof.

熱を電気エネルギーに直接変換するゼーベック効果に基づく技術は、未利用廃熱を回収する技術の一つとして近年注目されている。 A technique based on the Seebeck effect, which directly converts heat into electric energy, has recently attracted attention as one of the techniques for recovering unused waste heat.

バルク型の熱電変換素子を用いる熱電モジュールは一般的にπ型構造を有する。一般的な熱電モジュールにおいて、P型とN型の熱電変換素子は、電気的には平板電極を介して直列に接続され、熱的には並列に構成される。この熱電モジュールに温度差を与えると温度差の方向に電位差が発生し、高温側から低温側へ流れる熱流に伴ってキャリアが拡散する。これによって、電流が一定の方向に流れて電力を取り出すことができる。 A thermoelectric module using a bulk type thermoelectric conversion element generally has a π type structure. In a general thermoelectric module, P-type and N-type thermoelectric conversion elements are electrically connected in series via plate electrodes and are thermally configured in parallel. When a temperature difference is applied to this thermoelectric module, a potential difference is generated in the direction of the temperature difference, and the carriers diffuse with the heat flow flowing from the high temperature side to the low temperature side. As a result, the electric current can flow in a fixed direction to extract the electric power.

熱電モジュールにおいて、一般的には、電極は熱電変換素子に半田ないしロウ材を用いてロウ接される。特許文献1は、ロウ材を保持するブレージングシートを介して、電極を熱電変換素子にロウ接する方法を提案している。 In the thermoelectric module, generally, the electrodes are brazed to the thermoelectric conversion element by using solder or brazing material. Patent Document 1 proposes a method in which an electrode is brazed to a thermoelectric conversion element via a brazing sheet holding a brazing material.

熱電モジュールの周辺技術に関して、特許文献2は、リード線を半田を用いて電極に接合するとき、半田にレーザ照射して、溶融した半田を熱電変換素子、電極およびリード線によって囲まれる隙間に充填させるリード線接合方法を提案している。 Regarding the peripheral technology of a thermoelectric module, Patent Document 2 discloses that when a lead wire is joined to an electrode by using solder, the solder is irradiated with a laser to fill the melted solder into a gap surrounded by the thermoelectric conversion element, the electrode and the lead wire. A lead wire joining method is proposed.

特開2008−300465号公報JP, 2008-300465, A 特開2005−101473号公報JP, 2005-101473, A

以下の分析は、本発明によって与えられたものである。半田およびロウ材のような接合材は、母材である熱電変換素子および電極に比べて融点が低い。このため、接合材を用いた熱電モジュールの使用温度は、接合材の融点未満に制限される。典型的には、熱電変換素子および電極の融点が1000℃以上であるのに対して、常用の接合材の融点は250℃未満であるため、熱電モジュールの使用温度は250℃未満に制限される。なお、特許文献2は、熱電変換素子と電極のレーザ溶接を用いた接合を開示していない。 The following analysis is given by the present invention. Bonding materials such as solder and brazing materials have lower melting points than the thermoelectric conversion elements and electrodes that are the base materials. Therefore, the operating temperature of the thermoelectric module using the joining material is limited to less than the melting point of the joining material. Typically, the melting point of the thermoelectric conversion element and the electrode is 1000° C. or higher, whereas the melting point of the commonly used bonding material is less than 250° C., so the working temperature of the thermoelectric module is limited to less than 250° C. .. Note that Patent Document 2 does not disclose joining using a laser welding of the thermoelectric conversion element and the electrode.

したがって、熱電モジュールの使用温度を拡大できる熱電変換素子と電極の接合技術、それを利用した熱電モジュールの製造方法および熱電モジュールが望まれる。 Therefore, a technique for joining a thermoelectric conversion element and an electrode capable of increasing the operating temperature of the thermoelectric module, a method for manufacturing a thermoelectric module using the technique, and a thermoelectric module are desired.

本開示の第1視点によれば、下記の要件を有する熱電モジュールの製造方法が提供される:
温度差を受けて電位差を生じる性質がある少なくとも1つの熱電変換素子と、前記少なくとも1つの熱電変換素子に電気的に接続される少なくとも1つの電極部材(電極または切り出されて電極となる電極用ブランク)を準備すること、
前記少なくとも1つの熱電変換素子に前記少なくとも1つの電極部材をレーザ溶接すること、
前記レーザ溶接において、
前記少なくとも1つの電極部材を部分的に前記少なくとも1つの熱電変換素子に重ね合わせること、
前記少なくとも1つの電極部材と前記少なくとも1つの熱電変換素子の重ね合わせ部分上で、前記少なくとも1つの電極部材にレーザビームを少なくとも一回は環状走査しながら照射して、前記少なくとも1つの電極部材および前記少なくとも1つの熱電変換素子を部分的に融合させて接合し、熱電モジュールの少なくとも一部を形成すること。
前記第1視点の変形として、温度差を受けて電位差を生じる性質がある少なくとも1つの熱電変換素子と、前記少なくとも1つの熱電変換素子に電気的に接続される少なくとも1つの電極部材を準備すること、前記少なくとも1つの熱電変換素子に前記少なくとも1つの電極部材をレーザ溶接すること、前記レーザ溶接において、前記少なくとも1つの電極部材を部分的に前記少なくとも1つの熱電変換素子に重ね合わせること、前記少なくとも1つの電極部材と前記少なくとも1つの熱電変換素子の重ね合わせ部分上で、前記少なくとも1つの電極部材にレーザビームを少なくとも一回は環状走査しながら照射して、前記少なくとも1つの電極部材および前記少なくとも1つの熱電変換素子を部分的に融合させて接合し、熱電モジュールの少なくとも一部を形成すること、前記レーザ溶接は、前記電極部材の重ね合わせ部分の中央部を残して、前記中央部の近位から遠位に向かって実行されること、を含む熱電モジュールの製造方法が提供される。
According to a first aspect of the present disclosure, there is provided a method of manufacturing a thermoelectric module having the following requirements:
At least one thermoelectric conversion element having a property of receiving a temperature difference to generate a potential difference, and at least one electrode member electrically connected to the at least one thermoelectric conversion element (electrode or blank for electrode to be cut out to be an electrode) ) To prepare,
Laser welding the at least one electrode member to the at least one thermoelectric conversion element,
In the laser welding,
Partially overlapping the at least one electrode member with the at least one thermoelectric conversion element,
On the overlapping portion of the at least one electrode member and the at least one thermoelectric conversion element, the at least one electrode member is irradiated with a laser beam while performing annular scanning at least once, and the at least one electrode member and Partially fusing and joining the at least one thermoelectric conversion element to form at least a portion of a thermoelectric module.
As a modification of the first aspect, at least one thermoelectric conversion element having a property of generating a potential difference due to a temperature difference and at least one electrode member electrically connected to the at least one thermoelectric conversion element are prepared. Laser welding the at least one electrode member to the at least one thermoelectric conversion element, partially overlapping the at least one electrode member with the at least one thermoelectric conversion element in the laser welding, On the overlapping portion of one electrode member and the at least one thermoelectric conversion element, the at least one electrode member is irradiated with a laser beam at least once while performing an annular scan to irradiate the at least one electrode member and the at least one electrode member. One thermoelectric conversion element is partially fused and joined to form at least a part of the thermoelectric module, and the laser welding is performed in the vicinity of the central portion, leaving the central portion of the overlapping portion of the electrode members. Performed distally to distally, a method of manufacturing a thermoelectric module is provided.

本開示の第2視点によれば、下記の熱電モジュールが提供される:
温度差を受けて電位差を生じる性質がある少なくとも1つの熱電変換素子と、前記少なくとも1つの熱電変換素子に電気的に接続される少なくとも1つの電極を有し、
前記少なくとも1つの電極および前記少なくとも1つの熱電変換素子は、非溶接部または非溶融部を囲む少なくとも1つの環状溶融部によって互いに接合している。
前記第2視点の変形として、温度差を受けて電位差を生じる性質がある少なくとも1つの熱電変換素子と、前記少なくとも1つの熱電変換素子に電気的に接続される少なくとも1つの電極を有し、前記少なくとも1つの電極および前記少なくとも1つの熱電変換素子は、非溶接部または非溶融部を囲む少なくとも1つの環状溶融部によって互いに接合し、前記環状溶融部は、前記少なくとも1つの熱電変換素子の最大起電力の85%以上が得られるように構成される熱電モジュールが提供される。
According to a second aspect of the disclosure, the following thermoelectric module is provided:
At least one thermoelectric conversion element having a property of receiving a temperature difference to generate a potential difference, and at least one electrode electrically connected to the at least one thermoelectric conversion element,
The at least one electrode and the at least one thermoelectric conversion element are joined to each other by at least one annular fusion zone surrounding the non-welded zone or the non-fusion zone.
As a modification of the second aspect, at least one thermoelectric conversion element having a property of receiving a temperature difference to generate a potential difference, and at least one electrode electrically connected to the at least one thermoelectric conversion element, The at least one electrode and the at least one thermoelectric conversion element are joined to each other by at least one annular fusion portion surrounding the non-welded portion or the non-fusion portion, and the annular fusion portion is the maximum rise of the at least one thermoelectric conversion element. There is provided a thermoelectric module configured to obtain 85% or more of electric power.

本開示の第3視点によれば、下記の要件を有する熱電モジュールの製造方法が提供される:
温度差を受けて電位差を生じる性質がある少なくとも1つの熱電変換素子と、前記少なくとも1つの熱電変換素子に電気的に接続される少なくとも1つの電極用ブランクを準備すること、
前記少なくとも1つの熱電変換素子に前記少なくとも1つの電極用ブランクをレーザ溶接すること、
前記少なくとも1つの熱電変換素子にレーザ溶接された前記少なくとも1つの電極用ブランクをレーザ切断して少なくとも1つの電極を形成し、熱電モジュールの少なくとも一部を形成すること。
前記第3視点の変形として、温度差を受けて電位差を生じる性質がある少なくとも1つの熱電変換素子と、前記少なくとも1つの熱電変換素子に電気的に接続される少なくとも1つの電極用ブランクを準備すること、前記少なくとも1つの熱電変換素子に前記少なくとも1つの電極用ブランクを重ね合わせてレーザ溶接すること、前記少なくとも1つの熱電変換素子にレーザ溶接された前記少なくとも1つの電極用ブランクをレーザ切断して少なくとも1つの電極を形成し、熱電モジュールの少なくとも一部を形成すること、前記レーザ溶接は、前記電極用ブランクの前記少なくとも1つの熱電変換素子との重ね合わせ部分の中央部を残して、前記中央部の近位から遠位に向かって実行されること、を含む熱電モジュールの製造方法が提供される。
According to a third aspect of the present disclosure, there is provided a method of manufacturing a thermoelectric module having the following requirements:
Providing at least one thermoelectric conversion element having a property of receiving a temperature difference to generate a potential difference, and at least one electrode blank electrically connected to the at least one thermoelectric conversion element;
Laser welding the at least one electrode blank to the at least one thermoelectric conversion element,
Laser cutting the at least one electrode blank laser-welded to the at least one thermoelectric conversion element to form at least one electrode to form at least a portion of a thermoelectric module.
As a modification of the third aspect, at least one thermoelectric conversion element having a property of receiving a temperature difference to generate a potential difference and at least one electrode blank electrically connected to the at least one thermoelectric conversion element are prepared. Laser welding by superposing the at least one electrode blank on the at least one thermoelectric conversion element, and laser cutting the at least one electrode blank laser-welded on the at least one thermoelectric conversion element. Forming at least one electrode and forming at least a part of a thermoelectric module, said laser welding leaving said central portion of a superposed portion of said electrode blank with said at least one thermoelectric conversion element , said center Performed from proximal to distal of the section.

本開示に基づいて得ることができる効果を下記に例示する:
(1)熱電変換素子と電極をレーザ溶接を用いて直接的に接合することにより、熱電モジュールの使用温度が母材である熱電変換素子と電極の使用可能温度まで拡大できる;
(2)熱電変換素子と電極の間に形成される溶融部(溶け込み部)の制御によって、十分な接合強度と起電力を有する実用的な熱電モジュールを提供できる。
The effects that can be obtained based on the present disclosure are exemplified below:
(1) By directly joining the thermoelectric conversion element and the electrode using laser welding, the operating temperature of the thermoelectric module can be expanded to the usable temperature of the thermoelectric conversion element and the electrode, which are base materials;
(2) It is possible to provide a practical thermoelectric module having sufficient bonding strength and electromotive force by controlling the melting portion (melting portion) formed between the thermoelectric conversion element and the electrode.

一実施例に係るレーザ溶接前の工程図である。It is a process drawing before a laser welding concerning one example. 図2(A)〜(E)は、一実施例に係るレーザ溶接を説明する工程図である。2A to 2E are process diagrams for explaining laser welding according to an embodiment. (A)〜(F)は、図2(A)等のレーザ溶接によって形成される、熱電変換素子と電極の接合部、特に環状溶融部の構造例を説明する熱電変換素子および電極の縦断面図である。2A to 2F are longitudinal cross-sectional views of a thermoelectric conversion element and an electrode for explaining a structural example of a joint between the thermoelectric conversion element and the electrode, particularly an annular fusion portion, which is formed by laser welding shown in FIG. It is a figure. 図2(A)等に示したレーザ溶接後に電極用ブランクをレーザ切断するプロセス、および得られた熱電モジュールの全体構造を説明する工程図である。It is process drawing explaining the process which laser-cuts the electrode blank after the laser welding shown to FIG. 2(A) etc., and the whole thermoelectric module structure. 他の実施例に係る環状の熱電モジュールを説明する、熱電モジュールを軸方向から見た断面図である。It is sectional drawing which looked at the thermoelectric module from the axial direction explaining the annular thermoelectric module which concerns on another Example. (A)および(B)は、実験に用いたP型およびN型熱電ユニットの構造を説明する外観図である。(A) And (B) is an external view explaining the structure of the P-type and N-type thermoelectric unit used for experiment.

本開示による熱電モジュールの製造方法および熱電モジュールの好ましい形態を下記に例示する。
(形態1)少なくとも1つの熱電変換素子上に配置された少なくとも1つの電極部材側から、前記少なくとも1つの電極部材上にレーザビームを少なくとも一回は環状走査しながら照射して、前記少なくとも1つの電極部材および前記少なくとも1つの熱電変換素子を部分的に融合させて接合し、熱電モジュールの少なくとも一部を形成する。
(形態2)レーザ溶接は、前記電極部材の前記熱電変換素子との重ね合わせ部分の中央部を残して、前記中央部の近位から遠位に向かって実行される。この形態によれば、電極部材が部分的に反って熱電変換素子から剥離する現象が抑制される。逆に、前記中央部の遠位から近位に向かって実行される形態でも、電極部材が部分的に反って熱電変換素子から剥離する現象が抑制される。
(形態3)レーザビームの環状走査は、前記中央部の近位から遠位に向かって、走査径を変えて複数回実行される。この形態によれば、熱電変換素子内に形成される溶融部(溶け込み部)を可及的に浅く、かつ十分な接合強度が得られる大きさで形成できる。また、この形態によれば、電極と熱電変換素子間の熱抵抗を小さくできる。この結果、レーザ溶接による組成変化によって低下する熱電変換素子の起電力低下が抑制される。
(形態4)少なくとも1つの電極および少なくとも1つの熱電変換素子は、非溶接部または非溶融部を囲む少なくとも1つの環状溶融部によって互いに接合している。前記環状溶融部は、電極および/または熱電変換素子の厚みないし深さ方向に沿って少なくとも一部に形成されていればよい。すなわち、環状溶融部の少なくとも1つの横断面に、非溶接部または非溶融部が残存すればよい。この形態によれば、電極の周辺部が反って熱電変換素子から剥離する現象が抑制され、かつ熱電変換素子内にレーザ溶接によって形成される溶融部のボリュームが減少する。
(形態5)前記環状溶融部は、前記少なくとも1つの熱電変換素子の最大起電力の85%以上が得られるように構成される。この指標にしたがって、電極を熱電変換素子にレーザ溶接することにより、起電力、接合強度および電気抵抗のバランスがよい熱電モジュールを得ることができる。さらに好ましくは、熱電モジュールは、前記最大起電力の89%または90%が得られるような環状溶融部を有する。
(形態6)前記環状溶融部は、前記少なくとも1つの熱電変換素子の一面に全面的に前記電極部材を接合した場合の電気抵抗の100〜150%の範囲の電気抵抗が得られるように構成される。この指標にしたがって、電極を熱電変換素子にレーザ溶接することにより、起電力、接合強度および電気抵抗のバランスがよい熱電モジュールを得ることができる。
(形態7)少なくとも1つの熱電変換素子に少なくとも1つの電極用ブランクをレーザ溶接し、レーザ溶接された前記少なくとも1つの電極用ブランクをレーザ切断して少なくとも1つの電極(例えば直列回路)を形成する。この形態によれば、電極形成に関わる工数および設備が削減できる。例えば、レーザ溶接前に多数の電極をそれぞれ熱電変換素子上に位置決めする手間と位置決め用治具を削減できる。
A preferred embodiment of the thermoelectric module manufacturing method and the thermoelectric module according to the present disclosure will be exemplified below.
(Mode 1) A laser beam is radiated onto the at least one electrode member from at least one electrode member side arranged on the at least one thermoelectric conversion element at least once while performing an annular scan, and the at least one electrode member is provided. The electrode member and the at least one thermoelectric conversion element are partially fused and joined to form at least a part of the thermoelectric module.
(Mode 2) Laser welding is performed from the proximal portion to the distal portion of the central portion, leaving the central portion of the overlapping portion of the electrode member with the thermoelectric conversion element. According to this mode, the phenomenon that the electrode member is partially warped and separated from the thermoelectric conversion element is suppressed. On the contrary, even in the mode in which the central portion is executed from the distal side to the proximal side, the phenomenon that the electrode member partially warps and peels from the thermoelectric conversion element is suppressed.
(Mode 3) The annular scanning of the laser beam is executed a plurality of times from the proximal part to the distal part of the central part while changing the scanning diameter. According to this aspect, it is possible to form the melted portion (melted portion) formed in the thermoelectric conversion element as shallow as possible and have a size capable of obtaining sufficient bonding strength. Moreover, according to this aspect, the thermal resistance between the electrode and the thermoelectric conversion element can be reduced. As a result, it is possible to suppress a decrease in electromotive force of the thermoelectric conversion element, which is caused by a composition change due to laser welding.
(Feature 4) At least one electrode and at least one thermoelectric conversion element are joined to each other by at least one annular fusion zone surrounding the non-welded zone or the non-fusion zone. The annular fused portion may be formed in at least a part along the thickness or depth direction of the electrode and/or the thermoelectric conversion element. That is, the non-welded part or the non-melted part may be left on at least one cross section of the annular fused part. According to this aspect, the phenomenon that the peripheral portion of the electrode warps and is separated from the thermoelectric conversion element is suppressed, and the volume of the fusion portion formed by laser welding in the thermoelectric conversion element is reduced.
(Mode 5) The annular fusion zone is configured to obtain 85% or more of the maximum electromotive force of the at least one thermoelectric conversion element. By laser welding the electrode to the thermoelectric conversion element according to this index, a thermoelectric module having a good balance of electromotive force, bonding strength, and electric resistance can be obtained. More preferably, the thermoelectric module has an annular fusion zone such that 89% or 90% of said maximum electromotive force is obtained.
(Mode 6) The annular fusion zone is configured to obtain an electric resistance in the range of 100 to 150% of the electric resistance when the electrode member is entirely bonded to one surface of the at least one thermoelectric conversion element. It By laser welding the electrode to the thermoelectric conversion element according to this index, a thermoelectric module having a good balance of electromotive force, bonding strength, and electric resistance can be obtained.
(Feature 7) At least one electrode blank is laser-welded to at least one thermoelectric conversion element, and the laser-welded at least one electrode blank is laser-cut to form at least one electrode (for example, a series circuit). .. According to this aspect, the number of man-hours and equipment related to electrode formation can be reduced. For example, it is possible to reduce the labor and positioning jig for positioning a large number of electrodes on the thermoelectric conversion element before laser welding.

(形態8)レーザビームの環状走査は一回実行される。
(形態9)レーザビームの環状走査は複数回実行される。
(形態10)一の環状走査と他の環状走査は実質的に連続的に実行される。この形態によれば、熱電変換素子と電極間の接合面積ないし容積が拡大され、熱抵抗が減少する。
(形態11)一の環状走査と他の環状走査は実質的に不連続的に実行される。この形態によれば、熱電変換素子の起電力低下が抑制される。
(形態12)レーザビームの環状走査は、三角形、四角形およびそれ以上の多角形を含む矩形、楕円、長円もしくは半円径を含む円形に実行される。
(形態13)電極および熱電変換素子を接合する少なくとも1つの環状溶融部は、三角形、四角形およびそれ以上の多角形を含む矩形、楕円、長円もしくは半円形を含む円形の外形を有する。
(形態14)熱電変換素子は、例えば直方体または円柱状のバルク型立体構造を有する。
(Mode 8) The annular scanning of the laser beam is performed once.
(Mode 9) The annular scanning of the laser beam is executed a plurality of times.
(Mode 10) One circular scan and the other circular scan are executed substantially continuously. According to this aspect, the joint area or volume between the thermoelectric conversion element and the electrode is expanded, and the thermal resistance is reduced.
(Mode 11) One circular scan and the other circular scan are executed substantially discontinuously. According to this aspect, a decrease in electromotive force of the thermoelectric conversion element is suppressed.
(Mode 12) The annular scanning of the laser beam is performed in a rectangle including a triangle, a quadrangle, and polygons more than that, an ellipse, an ellipse, or a circle including a semicircular diameter.
(Feature 13) At least one annular fusion portion that joins the electrode and the thermoelectric conversion element has a circular outer shape including a rectangle including an triangle, a quadrangle, and a polygon of a rectangle, an ellipse, an ellipse, or a semicircle.
(Mode 14) The thermoelectric conversion element has, for example, a rectangular parallelepiped or columnar bulk type three-dimensional structure.

(形態15)熱電変換素子の材料は特に限定されず、シリサイド系、Si−Ge系、酸化物系、Bi−Te系、Fe−V−Al系のいずれも用いることができる。熱電変換素子の材料の詳細を下記に例示する:PbTe系、TAGS系、LaTe系、充填ステックルダイト系、Bi−Sb−Te−Se系、ZnSb系、およびFeVAl系。例えば、P型熱電変換素子として、例えば(Bi,Sb)Teを用いることができる。N型熱電変換素子として、例えばBi(Te,Se)を用いることができる。例えば、Fe−V−Al系の熱電変換素子としては、特許4750349号公報「熱電変換材料の製造方法」に開示されているものを用いることができる。 (Mode 15) The material of the thermoelectric conversion element is not particularly limited, and any of silicide-based, Si-Ge-based, oxide-based, Bi-Te-based, and Fe-V-Al-based can be used. Illustrate details of the material of the thermoelectric conversion elements below: PbTe-based, TAGS system, LATE-based, filled stick Le phosphoramidite-based, Bi-Sb-Te-Se system, Zn 4 Sb 3 type, and Fe 2 VAl system. For example, as the P-type thermoelectric conversion element, for example, (Bi,Sb) 2 Te 3 can be used. As the N-type thermoelectric conversion element, for example, Bi 2 (Te, Se) 3 can be used. For example, as the Fe-V-Al-based thermoelectric conversion element, the one disclosed in Japanese Patent No. 4750349, "Method for producing thermoelectric conversion material" can be used.

(形態16)熱電変換素子および電極は、絶縁ないし短絡防止、導電性の確保、あるいは熱抵抗の削減のために、適宜部分的または全体的に、めっきされたり、あるいは絶縁処理されたりすることができる。例えば、電極に絶縁塗料を塗布して隣接する他の電極との短絡を防止してもよい。 (Mode 16) The thermoelectric conversion element and the electrode may be partially or wholly plated or insulated in order to prevent insulation or short circuit, ensure conductivity, or reduce thermal resistance. it can. For example, an insulating coating may be applied to the electrodes to prevent short circuit with other adjacent electrodes.

(形態17)電極部材には安価な平板または帯板、あるいは板状リード線を用いることができる。電極部材の厚さは、例えばmmオーダからμmオーダまで適宜選択できる。したがって、熱電変換素子が高密度実装された熱電モジュールを簡単かつ安価に製造することができる。また熱源の形状に合わせた電極の形成が容易であり、任意の形状を持つ熱電モジュールを提供できる。例えば、電極用ブランクに円板または環状板を用い、熱源への装着前または装着後に、レーザ等を用いて電極用ブランクを切断して周状に配列された複数の電極を得ることができる。 (Mode 17) An inexpensive flat plate or strip plate, or a plate-shaped lead wire can be used for the electrode member. The thickness of the electrode member can be appropriately selected, for example, from the mm order to the μm order. Therefore, it is possible to easily and inexpensively manufacture a thermoelectric module in which thermoelectric conversion elements are mounted at high density. In addition, it is easy to form electrodes according to the shape of the heat source, and it is possible to provide a thermoelectric module having an arbitrary shape. For example, a disc or an annular plate may be used as the electrode blank, and the electrode blank may be cut with a laser or the like before or after attachment to the heat source to obtain a plurality of electrodes arranged in a circumferential shape.

(形態18)電極ないし電極用ブランクの材料は、熱伝導度が高く、電気抵抗が低く、熱電変換素子との間の熱抵抗を小さくできることが好ましい。例えば、純銅、アルミニウム、金、銀、白金、及びそれらの合金である。銅合金として、例えば、Cu−Sn系やCu−Ni系を用いることができる。 (Mode 18) It is preferable that the material of the electrode or the electrode blank has high thermal conductivity, low electric resistance, and low thermal resistance with the thermoelectric conversion element. For example, pure copper, aluminum, gold, silver, platinum, and alloys thereof. As the copper alloy, for example, a Cu-Sn system or a Cu-Ni system can be used.

(形態19)走査およびレーザ溶接には、光学的な走査が可能なガルバノ式レーザ装置を用いることができる。ガルバノ式レーザ装置は、モータ制御される走査用ミラーと、結像用のfθレンズを有し、特に数mmから数cm範囲の走査に適している。レーザ発振源としては、COレーザ、YAGレーザおよび半導体レーザ等を適宜使用できる。また、熱電モジュールおよび/またはレーザ装置を機械的に制御して走査を行ってもよい。 (Mode 19) A galvano laser device capable of optical scanning can be used for scanning and laser welding. The galvano type laser device has a motor-controlled scanning mirror and an fθ lens for image formation, and is particularly suitable for scanning in the range of several mm to several cm. A CO 2 laser, a YAG laser, a semiconductor laser, or the like can be appropriately used as the laser oscillation source. Further, the thermoelectric module and/or the laser device may be mechanically controlled for scanning.

(形態20)熱電モジュールが適用される廃熱源としては、雰囲気温度に対して相対的に高温の流体が流れる配管、例えば車両の排気管(例えばSUS製マニホルド)もしくは内燃機関、或いは炉、例えば熱処理炉の排気管が例示されるが、これらに限定されない。また、本開示の熱電モジュールはペルチェ効果を利用した冷却または加熱装置として利用することもできる。 (Mode 20) As a waste heat source to which the thermoelectric module is applied, a pipe through which a fluid having a relatively high temperature with respect to an ambient temperature flows, for example, an exhaust pipe of a vehicle (for example, a SUS manifold) or an internal combustion engine, or a furnace, for example, heat treatment An example is a furnace exhaust pipe, but the exhaust pipe is not limited thereto. Further, the thermoelectric module of the present disclosure can also be used as a cooling or heating device using the Peltier effect.

以下、実施形態等を、図面を参照しながら実施例として例示する。 Hereinafter, embodiments and the like will be illustrated as examples with reference to the drawings.

本開示によるレーザ溶接を用いた熱電モジュールの製造方法の一例を説明する。図1は、一実施例に係るレーザ溶接前の工程図である。図2(A)〜(E)は一実施例に係るレーザ溶接の説明図である。図3(A)〜(F)は一実施例に係るレーザ溶接によって形成される環状溶融部の構造例を示す図である。図4は一実施例に係るレーザ溶接後の電極用ブランクのレーザ切断プロセス、および得られた熱電モジュールの全体構造を説明する工程図である。 An example of a method for manufacturing a thermoelectric module using laser welding according to the present disclosure will be described. FIG. 1 is a process diagram before laser welding according to an embodiment. 2A to 2E are explanatory views of laser welding according to an embodiment. FIGS. 3A to 3F are views showing a structural example of an annular fusion portion formed by laser welding according to an embodiment. FIG. 4 is a process diagram illustrating a laser cutting process of an electrode blank after laser welding according to an embodiment and an overall structure of the obtained thermoelectric module.

図1を参照して、温度差を受けて電位差を生じる性質がある複数のP型およびN型熱電変換素子1a,1b(「熱電変換素子1」と総称する)と、熱電変換素子1に電気的に接続される一対の電極用ブランク12,12を準備する。次に、電極用ブランク12,12をP型およびN型熱電変換素子1a,1bの両端面にそれぞれ重ね合わせる。なお、本実施例では、電極部材として、熱電変換素子1にレーザ溶接された後で個片化されて複数の電極2となる電極用ブランク12を用いたが、電極部材として、予め個片化された複数の電極2を用いて、各電極2を個別に支持しながら熱電変換素子1にレーザ溶接することもできる。 Referring to FIG. 1, a plurality of P-type and N-type thermoelectric conversion elements 1a and 1b (generally referred to as "thermoelectric conversion element 1") having a property of receiving a temperature difference and generating a potential difference, and a thermoelectric conversion element 1 are electrically connected. A pair of electrode blanks 12 to be electrically connected is prepared. Next, the electrode blanks 12 and 12 are laminated on both end faces of the P-type and N-type thermoelectric conversion elements 1a and 1b, respectively. In addition, in the present embodiment, the electrode blank 12 is used as the electrode member, which is laser-welded to the thermoelectric conversion element 1 and then singulated into a plurality of electrodes 2. However, the electrode blank is previously singulated. It is also possible to perform laser welding to the thermoelectric conversion element 1 while individually supporting each electrode 2 using the plurality of electrodes 2 thus formed.

図2(A)〜(E)を参照して、実施例に係る電極用ブランク12側からのレーザ溶接によるP型およびN型熱電変換素子1a,1bの両端面と電極用ブランク12の接合を説明する。なお、図2(A)〜(D)では、図示の都合上、電極用ブランク12,12は個片化された複数の電極2として図示する。図2(A)はP型およびN型熱電変換素子1a,1bと一枚の電極2のレーザ溶接を示し、図2(B)は図2(A)の上面図であって電極2上のレーザ走査軌跡Stを示す。図2(C)はP型およびN型熱電変換素子1a,1bと三枚の電極2のレーザ溶接を示し、図2(D)は図2(C)の下面図であって電極2上のレーザ走査軌跡Stを示す。図2(E)はレーザ溶接の環状走査のパラメータを示し、ここで“ビーム径”(塗り潰しで示す)はレーザビーム3の直径(太さ)であり、“走査径”はレーザビーム3の走査軌跡Stの直径であり、“走査ピッチ”は走査軌跡St間の間隔(中心間距離)であり、走査軌跡St1〜St5において添字1〜5は走査の順番を示す。 With reference to FIGS. 2A to 2E, the joining of the electrode blank 12 to both end faces of the P-type and N-type thermoelectric conversion elements 1a and 1b by laser welding from the electrode blank 12 side according to the embodiment is performed. explain. 2A to 2D, the electrode blanks 12 and 12 are illustrated as a plurality of individual electrodes 2 for convenience of illustration. FIG. 2A shows laser welding of the P-type and N-type thermoelectric conversion elements 1a and 1b and one electrode 2, and FIG. 2B is a top view of FIG. The laser scanning locus St is shown. 2C shows laser welding of the P-type and N-type thermoelectric conversion elements 1a and 1b and the three electrodes 2, and FIG. 2D is a bottom view of FIG. The laser scanning locus St is shown. FIG. 2(E) shows the parameters of the annular scanning of laser welding, where “beam diameter” (shown by filling) is the diameter (thickness) of the laser beam 3, and “scanning diameter” is the scanning of the laser beam 3. The diameter of the locus St, the "scanning pitch" is the interval (center-to-center distance) between the scanning loci St, and the subscripts 1 to 5 in the scanning loci St1 to St5 indicate the scanning order.

図2(A)または図2(C)を参照して、電極2とP型およびN型熱電変換素子1a,1bの重ね合わせ部分上、電極2にレーザビーム3を少なくとも一回は環状走査しながら照射して、電極2およびP型およびN型熱電変換素子1a,1bをそれぞれ部分的に融合させて接合し、熱電モジュール10(図4参照)の少なくとも一部を形成する。 Referring to FIG. 2(A) or FIG. 2(C), the laser beam 3 is circularly scanned at least once on the electrode 2 on the overlapping portion of the electrode 2 and the P-type and N-type thermoelectric conversion elements 1a and 1b. While irradiating, the electrodes 2 and the P-type and N-type thermoelectric conversion elements 1a and 1b are partially fused and joined together to form at least a part of the thermoelectric module 10 (see FIG. 4).

図2(B)または図2(D)中のレーザビーム3の走査軌跡Stを参照して、レーザビーム3の環状走査の例(i)〜(iv)を説明する。(i)図2(B)の左側では、複数の環状走査を連続的(らせん状)に実行する。(ii)図2(B)の右側では、複数の環状走査の一部を連続的に、他部を不連続的に実行する。(iii)図2(D)の左側では、複数の環状走査を不連続的に実行し、各環状走査は楕円状に実行する。(iv)図2(D)の右側では、複数の環状走査の一部を不連続的に実行し、各環状走査は矩形ないし多角形状に実行する。 Examples (i) to (iv) of annular scanning of the laser beam 3 will be described with reference to the scanning locus St of the laser beam 3 in FIG. 2B or 2D. (i) On the left side of FIG. 2B, a plurality of circular scans are continuously (helically) executed. (ii) On the right side of FIG. 2B, a part of the plurality of annular scans is continuously executed and the other part is discontinuously executed. (iii) On the left side of FIG. 2D, a plurality of annular scans are discontinuously executed, and each annular scan is executed in an elliptical shape. (iv) On the right side of FIG. 2D, a part of the plurality of annular scans is discontinuously executed, and each annular scan is executed in a rectangular or polygonal shape.

図2(B)の左側または図2(E)を参照して、好ましい走査軌跡を説明する。レーザ溶接は、電極2の重ね合わせ部分の中央部を残して、前記中央部の近位から遠位に向かって図2(B)に示すように連続的または図2(E)に示すように不連続的に実行される。次に、このようにして得られる熱電変換素子1と電極2の接合部の状態を説明する。 A preferable scanning locus will be described with reference to the left side of FIG. 2B or FIG. Laser welding is performed continuously as shown in FIG. 2(B) or as shown in FIG. 2(E) from the proximal portion to the distal portion of the central portion, leaving the central portion of the overlapping portion of the electrode 2. It runs discontinuously. Next, the state of the joint between the thermoelectric conversion element 1 and the electrode 2 thus obtained will be described.

図3(A)〜(F)は、熱電変換素子1と電極2の接合部、特に環状溶融部Fzの構造例を説明する熱電変換素子1および電極2の縦断面図である。図3(A)を参照すると、熱電変換素子1と電極2の間に、両者1,2がレーザ溶接により融合して形成された少なくとも1つの環状溶融部(環状の溶け込み部)Fzが形成されている。特に図3(C)および(E)を参照すると、環状溶融部Fzによって囲まれた非溶融部または非溶接部である少なくとも1つの凹部4が設けられている。環状溶融部Fzは、一回の環状走査で形成することもでき、複数回の環状走査で形成することもできる。好ましくは、溶融部Fzの深さDは、熱電変換素子1の起電力低下と、熱電変換素子1と電極2の接合強度とを考慮して設定される。溶融部Fzの深さDは、熱電変換素子1の高さHの大きくとも1/4以内、好ましくは1/6以内、さらに好ましくは1/8以内に設定することが好ましい。溶融部Fzの深さDおよびボリュームは、レーザビームの出力強度、ビーム径、照射時間によって調整できる。 3A to 3F are vertical cross-sectional views of the thermoelectric conversion element 1 and the electrode 2 for explaining a structural example of the joint portion of the thermoelectric conversion element 1 and the electrode 2, particularly the annular fusion portion Fz. Referring to FIG. 3(A), between the thermoelectric conversion element 1 and the electrode 2, at least one annular fusion portion (annular fusion portion) Fz formed by fusion of the both 1 and 2 by laser welding is formed. ing. With particular reference to FIGS. 3C and 3E, there is provided at least one recess 4 which is a non-melted portion or a non-welded portion surrounded by an annular fused portion Fz. The annular fused portion Fz can be formed by one annular scan or can be formed by a plurality of annular scans. Preferably, the depth D of the fusion zone Fz is set in consideration of the decrease in electromotive force of the thermoelectric conversion element 1 and the bonding strength between the thermoelectric conversion element 1 and the electrode 2. It is preferable that the depth D of the fusion zone Fz is set to be within at most 1/4 of the height H of the thermoelectric conversion element 1, preferably within 1/6, and more preferably within 1/8. The depth D and volume of the fusion zone Fz can be adjusted by the output intensity of the laser beam, the beam diameter, and the irradiation time.

図3(B)を参照すると、複数の環状溶融部Fzが不連続的に形成されている。図3(C)を参照すると、複数の環状溶融部Fzが上側で連続的に形成され、下側で不連続的に形成されている。図3(D)を参照すると、複数の環状溶融部Fzが下側で連続的に形成され、上側で不連続的に形成されている。図3(E)を参照すると、1つの環状溶融部Fzが上側で連続的に形成され、下側で不連続的に形成されている。 Referring to FIG. 3B, a plurality of annular fusion zones Fz are discontinuously formed. Referring to FIG. 3C, a plurality of annular fusion zones Fz are continuously formed on the upper side and discontinuously on the lower side. Referring to FIG. 3D, the plurality of annular fusion zones Fz are continuously formed on the lower side and are discontinuously formed on the upper side. Referring to FIG. 3(E), one annular fusion zone Fz is continuously formed on the upper side and is discontinuously formed on the lower side.

また図3(A)〜(D)および(F)に示すように、電極2において熱電変換素子1と電極2間の接合強度への寄与度が大きい周辺部に環状溶融部Fzを形成し、電極2の中央部を少なくとも直接的にレーザを照査せず、非溶融部(例えば図3(C)および(E)中の凹部4を参照)を残すことにより、接合強度が確保されるとともに熱電変換素子1の起電力低下が防止される。また図3(F)を参照して、環状走査によるレーザ溶接を近位から遠位に向かって実行すると、環状溶融部Fzの外周側に略垂直線、同内周側に斜線が現れる傾向がある。 Further, as shown in FIGS. 3A to 3D and 3F, an annular fused portion Fz is formed in the peripheral portion of the electrode 2, which greatly contributes to the bonding strength between the thermoelectric conversion element 1 and the electrode 2, By not directly inspecting the central portion of the electrode 2 with a laser and leaving a non-melted portion (for example, see the concave portion 4 in FIGS. 3C and 3E), the bonding strength is secured and the thermoelectricity is improved. A decrease in electromotive force of the conversion element 1 is prevented. Further, referring to FIG. 3(F), when laser welding by annular scanning is performed from the proximal side to the distal side, there is a tendency that a substantially vertical line appears on the outer peripheral side of the annular fusion zone Fz and a diagonal line appears on the inner peripheral side. is there.

このように、一対の電極用ブランク12,12を熱電変換素子1の両端面に部分的にレーザ溶接した後、P型およびN型熱電変換素子1a,1bが順に直列に接続されるよう電極用ブランク12,12を図1に示す複数の切断線CLに沿って切断して不要部分を削除し、図4に示す直列接続型の熱電モジュール10を得る。 In this way, after the pair of electrode blanks 12 and 12 are partially laser-welded to both end faces of the thermoelectric conversion element 1, the electrodes are connected so that the P-type and N-type thermoelectric conversion elements 1a and 1b are sequentially connected in series. The blanks 12 and 12 are cut along a plurality of cutting lines CL shown in FIG. 1 to remove unnecessary portions to obtain a series connection type thermoelectric module 10 shown in FIG.

図4に示した熱電モジュール10は平面状の熱源に好適に適用されるのに対して、図5に示した環状の熱電モジュール10は曲面状の熱源、例えば、配管の外周面上に好適に搭載される。図5を参照して、環状の熱電モジュール10の製造方法は、P型およびN型熱電変換素子1a,1bと、環状の内周側および外周側電極用ブランク12,12を準備し、内周側および外周側電極用ブランク12,12間にP型およびN型熱電変換素子1a,1bを配置し、上述したようにレーザ溶接し、切断線CLに沿って内周側および外周側電極用ブランク12,12の不要部分を削除し、内周側と外周側に電極2,2が交互配列された直立接続型の熱電モジュール10を形成する。なお、電極用ブランク12に代えて、電極2をレーザ溶接してもよい。 The thermoelectric module 10 shown in FIG. 4 is preferably applied to a planar heat source, while the annular thermoelectric module 10 shown in FIG. 5 is preferably applied to a curved heat source, for example, on the outer peripheral surface of a pipe. It will be installed. With reference to FIG. 5, the manufacturing method of the annular thermoelectric module 10 includes preparing P-type and N-type thermoelectric conversion elements 1a and 1b and annular inner and outer electrode blanks 12 and 12, P-type and N-type thermoelectric conversion elements 1a and 1b are arranged between the electrode side and outer peripheral side electrode blanks 12 and 12 and laser-welded as described above, and the inner peripheral side and outer peripheral side electrode blanks along the cutting line CL. By removing unnecessary portions 12 and 12, the upright connection type thermoelectric module 10 in which the electrodes 2 and 2 are alternately arranged on the inner peripheral side and the outer peripheral side is formed. The electrode 2 may be laser-welded instead of the electrode blank 12.

上述した効果に加えて、本実施例に係る熱電モジュール10およびその製造方法によって得ることができる効果を下記に例示する:
(1)熱電変換素子1と電極2の接合部の耐熱性が高い;
(2)熱電モジュール10の使用温度の上限が拡大される;
(3)熱電変換素子1内にレーザ溶接によって形成される環状溶融部Fzのボリュームが少ないため、レーザ溶接による熱電変換素子1の組成変化に起因する熱電変換素子1の起電力の低下が抑制される;
(4)熱電変換素子1側にも溶融部Fzが部分的に形成されることによって、熱電変換素子1と電極2の接合信頼性が向上される。
In addition to the effects described above, the effects that can be obtained by the thermoelectric module 10 according to the present embodiment and the manufacturing method thereof will be illustrated below:
(1) The heat resistance of the joint between the thermoelectric conversion element 1 and the electrode 2 is high;
(2) The upper limit of the operating temperature of the thermoelectric module 10 is expanded;
(3) Since the volume of the annular fusion zone Fz formed by laser welding in the thermoelectric conversion element 1 is small, the decrease in electromotive force of the thermoelectric conversion element 1 due to the composition change of the thermoelectric conversion element 1 due to laser welding is suppressed. R;
(4) Since the fusion zone Fz is partially formed also on the thermoelectric conversion element 1 side, the joining reliability between the thermoelectric conversion element 1 and the electrode 2 is improved.

半田ないしロウ材等の接合材を用いた熱電変換素子と電極の接合に対して、本実施例に係る熱電モジュール10およびその製造方法によって得ることができる効果を下記に例示する:
(1)接合材成分と、熱電変換素子および電極の材料との反応による性能低下および耐久性低下がない;
(2)ロウ材の印刷および塗布が不要となり、またクラッド材等のようなロウ材保持具が不要となるため、作業性が良く、製造コストを低減できる;
(3)半田を用いた場合には半田の加熱溶融のための時間が必要であるが、レーザ溶接の場合には瞬間的に母材が溶融し固化するため、接合プロセスに要する時間が短縮できる;
(4)熱電変換素子と電極の接合用治具を削減できる。また接合部に段差または凹凸のような3次元形状がある場合、ロウ材による接合ではロウ材の流動を考慮する必要があるために治具が複雑になる。これに対して、レーザ溶接によれば、瞬間的に溶融と固化が生じるために治具が簡素化できる。さらにモジュールの仕様毎に、ロウ材による接合では異なる治具が必要となる。
The effects that can be obtained by the thermoelectric module 10 according to the present embodiment and the method for manufacturing the same for joining a thermoelectric conversion element and an electrode using a joining material such as solder or brazing material are illustrated below:
(1) No deterioration in performance and durability due to reaction between the bonding material component and the materials of the thermoelectric conversion element and the electrode;
(2) Since printing and application of a brazing material are unnecessary, and a brazing material holder such as a clad material is unnecessary, workability is good and manufacturing cost can be reduced;
(3) When solder is used, it takes time to heat and melt the solder, but in the case of laser welding, the base material melts and solidifies instantaneously, so the time required for the joining process can be shortened. ;
(4) The number of jigs for joining the thermoelectric conversion element and the electrodes can be reduced. Further, when the joining portion has a three-dimensional shape such as a step or unevenness, the joining becomes complicated in the joining by the brazing material because the flow of the brazing material needs to be considered. On the other hand, according to the laser welding, the jig can be simplified because melting and solidification occur instantaneously. Furthermore, different jigs are required for joining with brazing material depending on the specifications of the module.

[実験1]
実験1では、表1に示すように、熱電変換素子1および電極2の寸法、ならびにレーザ溶接時にレーザ走査形状を変えて、試料No.1〜4の熱電モジュール10を作製してそれらの特性を測定した。得られた熱電モジュール10を切断して、レーザ溶接により形成された熱電変換素子1と電極2の接合部を観察した。実験1の条件を下記に説明する。
[Experiment 1]
In Experiment 1, as shown in Table 1, the dimensions of the thermoelectric conversion element 1 and the electrode 2 and the laser scanning shape at the time of laser welding were changed, and Sample No. The thermoelectric modules 10 of 1 to 4 were produced and their characteristics were measured. The thermoelectric module 10 thus obtained was cut, and the joint between the thermoelectric conversion element 1 and the electrode 2 formed by laser welding was observed. The conditions of Experiment 1 will be described below.

P型熱電変換素子1aとしてFe−V−Al−Ti系のP型インゴット、N型熱電変換素子1bとしてFe−V−Al−Si系のN型インゴットをそれぞれ鋳造し、ワイヤーブレードソーを用いて切断して図1に示した形状を有するP型熱電変換素子1a,N型熱電変換素子1bを得た。各18個のP型熱電変換素子1a,N型熱電変換素子1bをそれぞれ交互配置して、P型熱電変換素子1a,N型熱電変換素子1bの一端面に無酸素銅製の電極用ブランク12を載置して、図2(E)に示したように複数回の環状走査を実行して、電極用ブランク12側から下記のレーザ溶接機を用いてレーザ溶接を行い、電極用ブランク12をP型およびN型熱電変換素子1a,1bの一端面に部分的に接合した(図3(A)参照)。P型およびN型熱電変換素子1a,1bの他端面も同様に別の電極用ブランク12に部分的に接合した。 An Fe-V-Al-Ti-based P-type ingot was cast as the P-type thermoelectric conversion element 1a, and an Fe-V-Al-Si-based N-type ingot was cast as the N-type thermoelectric conversion element 1b, respectively, using a wire blade saw. After cutting, a P-type thermoelectric conversion element 1a and an N-type thermoelectric conversion element 1b having the shapes shown in FIG. 1 were obtained. Eighteen P-type thermoelectric conversion elements 1a and N-type thermoelectric conversion elements 1b are alternately arranged, and an oxygen-free copper electrode blank 12 is formed on one end surface of each of the P-type thermoelectric conversion elements 1a and N-type thermoelectric conversion elements 1b. 2B. After being mounted, a plurality of annular scans are performed as shown in FIG. 2E, laser welding is performed from the electrode blank 12 side using the following laser welding machine, and the electrode blank 12 is subjected to P Type and N-type thermoelectric conversion elements 1a and 1b were partially bonded to one end surface (see FIG. 3A). Similarly, the other end surfaces of the P-type and N-type thermoelectric conversion elements 1a and 1b were also partially bonded to another electrode blank 12.

レーザ溶接機としては、光学系によりレーザビームの位置を制御できるガルバノ式レーザを用いた。レーザビーム(スポット)径は50μm程度に設定した。各試料において、走査は、電極2の中央部にレーザビームが照射されない直径約0.1mmの中央部(未溶接部、未溶融部)が残るように、最初に直径0.1mmの円周に沿って環状走査を行い、次に0.3mmの円周に沿って環状走査を行い、以下同様に0.2mmピッチで所定回数、環状走査を実行した。例えば試験No.1では計4回の環状走査を実行し、最終回の環状走査は直径0.7mmの円周に沿って行った。 As the laser welding machine, a galvano type laser whose position can be controlled by an optical system was used. The laser beam (spot) diameter was set to about 50 μm. In each sample, the scanning was first performed on the circumference of 0.1 mm in diameter so that the center part of the electrode 2 where the laser beam was not irradiated remains about 0.1 mm in diameter (unwelded part, unmelted part). The circular scanning was performed along the circular scanning, the circular scanning was then performed along the circumference of 0.3 mm, and the circular scanning was similarly performed a predetermined number of times at a pitch of 0.2 mm. For example, test No. In No. 1, a total of 4 circular scans were performed, and the final circular scan was performed along the circumference of a diameter of 0.7 mm.

次に、図4に示したように電極用ブランク12,12をレーザ切断して、P型およびN型熱電変換素子1a,1bが電極2を介して直列接続された試験No.1〜4の熱電モジュール10を得た。 Next, as shown in FIG. 4, the electrode blanks 12 and 12 were laser-cut, and the test No. 1 in which the P-type and N-type thermoelectric conversion elements 1a and 1b were connected in series via the electrode 2 was used. The thermoelectric modules 10 of 1-4 were obtained.

Figure 0006731810
Figure 0006731810

試験No.1〜4の熱電モジュール10において、全体の電気抵抗と、熱電変換素子1と電極2間の1つの接合部の電気抵抗を四端子法により測定し、それらの結果を表2に示す。表1および2を参照すると、熱電変換素子1の横断面積が大きい試料No.2、3および4の熱電モジュール10では、全体の電気抵抗に対する接合部の寄与度が大きい。これに対して、熱電変換素子1の横断面積が小さく、熱電変換素子1の高さH(図3(A)参照)が大きい細長い試料No.1では、全体の電気抵抗に対する接合部の寄与度が低く抑制されている。 Test No. In the thermoelectric modules 10 of 1 to 4, the overall electrical resistance and the electrical resistance of one joint between the thermoelectric conversion element 1 and the electrode 2 were measured by the four-terminal method, and the results are shown in Table 2. Referring to Tables 1 and 2, Sample No. 1 having a large cross-sectional area of thermoelectric conversion element 1. In the thermoelectric modules 10 of 2, 3 and 4, the contribution of the joint portion to the overall electric resistance is large. On the other hand, the elongated sample No. 1 having a small cross-sectional area of the thermoelectric conversion element 1 and a large height H (see FIG. 3A) of the thermoelectric conversion element 1. In No. 1, the contribution of the joint portion to the overall electric resistance is suppressed to be low.

Figure 0006731810
Figure 0006731810

試験No.1〜4の熱電モジュール10において、熱電変換素子1と電極2間の接合部を縦方向(積層方向)に切断し(図3(A)〜(E)を参照)、レーザ溶接により形成される熱電変換素子1と電極2の溶融部Fzの組成および形成深さD(図3(A)参照)を観察した。いずれの熱電モジュール10においても、電極2の成分Cuと熱電変換素子1の主成分Feが溶け込んだ環状溶融部Fzが形成されていた。環状溶融部Fzは電極2を貫通し、数百μmの形成深さDで熱電変換素子1内に部分的に形成されていた。このように、熱電変換素子1内に環状溶融部Fzが食い込むことによって、熱電変換素子1と電極2の接合信頼性が向上するものと考えられる。また、熱電変換素子1の高さHに対する溶融部Fzの形成深さDの比(D/H)は、多めに見積もっても1/4以下であり、例えば試験No.1では1/10以下である。このため、環状溶融部Fzが熱電変換素子1内に形成されたことによる熱電変換素子1の起電力低下は抑制されたものになると考えられる。 Test No. In the thermoelectric modules 10 of 1 to 4, the joint between the thermoelectric conversion element 1 and the electrode 2 is cut in the vertical direction (stacking direction) (see FIGS. 3A to 3E) and formed by laser welding. The composition and the formation depth D (see FIG. 3A) of the fused portion Fz of the thermoelectric conversion element 1 and the electrode 2 were observed. In each of the thermoelectric modules 10, the annular fused portion Fz in which the component Cu of the electrode 2 and the main component Fe of the thermoelectric conversion element 1 were melted was formed. The annular fused portion Fz penetrated the electrode 2 and was partially formed in the thermoelectric conversion element 1 with a formation depth D of several hundreds of μm. Thus, it is considered that the annular fusion portion Fz bites into the thermoelectric conversion element 1 to improve the bonding reliability between the thermoelectric conversion element 1 and the electrode 2. Moreover, the ratio (D/H) of the formation depth D of the fusion zone Fz to the height H of the thermoelectric conversion element 1 is 1/4 or less, even if it is overestimated. In case of 1, it is 1/10 or less. Therefore, it is considered that the decrease in electromotive force of the thermoelectric conversion element 1 due to the formation of the annular fused portion Fz in the thermoelectric conversion element 1 is suppressed.

以上より、熱電変換素子1と電極2の環状走査を用いたレーザ溶接による直接接合により、熱電変換素子1と電極2間の電気抵抗および接合信頼性の両方に関して十分な特性を有し、さらに耐熱性ないし使用温度範囲が拡大された熱電モジュールが提供できることが確認された。なお、表1に示す電極2の厚みtは、t=0.3〜0.7mmとサブミリのものを用いたが、電極2の厚みtはこれに限定されず、必要に応じて適宜選択される。例えば、これより薄い板状リード線を用いることもできる。 From the above, the direct joining of the thermoelectric conversion element 1 and the electrode 2 by laser welding using annular scanning has sufficient characteristics with respect to both the electrical resistance and the joining reliability between the thermoelectric conversion element 1 and the electrode 2, and further, heat resistance. It has been confirmed that a thermoelectric module having a wide range of properties or operating temperature range can be provided. Although the thickness t of the electrode 2 shown in Table 1 is t=0.3 to 0.7 mm and a submillimeter is used, the thickness t of the electrode 2 is not limited to this and may be appropriately selected as necessary. It For example, a plate-shaped lead wire thinner than this can be used.

[実験2]
実験2では、図6(A)および(B)に示す構造の単体のP型熱電変換素子ユニット10a、N型熱電変換ユニット10bを、表3〜5に示すレーザ走査条件でそれぞれ作製して、起電力および電気抵抗を測定した。P型およびN型熱電変換素子1a、1bとしては、□4mm、高さ8mmのものを用い、銅電極としては10mm×50mm×t0.7mmのものを用いた。起電力測定では、200℃に加熱した銅板と水冷冷却板の間に、P型熱電変換素子ユニット10a、N型熱電変換ユニット10bをそれぞれ挟んで密着させ、ユニット10a,10bの各両端に発生した電圧を測定した。起電力について、P型の場合には電極を接合しないNo.5のユニットが発生する起電力を100として他の試験No.6〜10の起電力を表し、N型の場合には電極を接合しないNo.11のユニットが発生する起電力を100として他の試験No.12〜15の起電力を表し、またはN型の場合には電極を接合しないNo.16のユニットが発生する起電力を100として他の試験No.17〜23の起電力を表す。電気抵抗について、P型の場合には全面的溶接したNo.9の電気抵抗を100として他の試験No.6〜8および10の電気抵抗を表し、N型の場合には全面的溶接したNo.14のユニットの電気抵抗を100として他の試験No.12、13および15の電気抵抗を表し、またはN型の場合には全面的溶接したNo.17のユニットの電気抵抗を100として他の試験No.18〜23の電気抵抗を表す。なお、特記がない限り、実験2と実験1の条件は同じである。
[Experiment 2]
In Experiment 2, a single P-type thermoelectric conversion element unit 10a and N-type thermoelectric conversion unit 10b having the structures shown in FIGS. 6A and 6B were produced under the laser scanning conditions shown in Tables 3 to 5, respectively. The electromotive force and the electric resistance were measured. The P-type and N-type thermoelectric conversion elements 1a and 1b used had a size of 4 mm and a height of 8 mm, and the copper electrodes used had a size of 10 mm×50 mm×t0.7 mm. In the electromotive force measurement, the P-type thermoelectric conversion element unit 10a and the N-type thermoelectric conversion unit 10b were respectively sandwiched between the copper plate heated to 200° C. and the water-cooled cooling plate to be in close contact, and the voltage generated at each end of the units 10a and 10b was measured. It was measured. Regarding the electromotive force, in the case of P type, no electrodes were joined to each other. The other test No. 5 was set with the electromotive force generated by the unit of No. 5 set to 100. Nos. 6 to 10 represent no electromotive force and do not bond electrodes in the case of N type. The other electromotive force of the test No. 11 was set to 100 as the electromotive force generated by the unit. Nos. 12 to 15 representing no electromotive force, or no N-type electrode bonding. The other test No. 1 is set with the electromotive force generated by the 16 units as 100. It represents the electromotive force of 17-23. Regarding the electric resistance, in the case of P type, the No. With the electric resistance of No. 9 set to 100, another test No. Nos. 6 to 8 and 10 show the electric resistance, and in the case of N type, the welded No. With the electric resistance of the unit of No. 14 as 100, another test No. Nos. 12 and 13 and 15 showing the electric resistance, or in the case of N-type, were completely welded. With the electric resistance of the unit of No. 17 as 100, another test No. It represents an electric resistance of 18 to 23. The conditions of Experiment 2 and Experiment 1 are the same unless otherwise specified.

Figure 0006731810
Figure 0006731810

Figure 0006731810
Figure 0006731810

Figure 0006731810
Figure 0006731810

表3中の試験No.7と9、または表4中の試験No.12と14を比較して、環状走査回数の増加により、レーザ溶接による接合面積が増加すると、起電力が低下する傾向がある。しかし、表3中の試験No.9と10、または表4中の試験No.14と15を比較して、電極2の周辺部のみをレーザ溶接して電極2の中央部に未溶接部ないし未溶融部を残すことにより、起電力の低下が抑制されることがわかった。さらに表5中の試験No.18〜23を参照して、このような部分的溶接(環状溶接)によっても、全面的溶接(試験No.17参照)と同程度の電気抵抗が得られることがわかった。 Test No. in Table 3 7 and 9, or the test No. in Table 4. Comparing Nos. 12 and 14, the electromotive force tends to decrease when the joining area by laser welding increases due to the increase in the number of circular scans. However, the test No. 9 and 10, or the test No. in Table 4. Comparing Nos. 14 and 15, it was found that the reduction of electromotive force was suppressed by laser welding only the peripheral portion of the electrode 2 and leaving an unwelded portion or an unmelted portion in the central portion of the electrode 2. Further, the test No. 18 to 23, it was found that even by such partial welding (annular welding), an electric resistance comparable to that of full-scale welding (see Test No. 17) can be obtained.

以上の実験結果に基づいて、環状溶融部Fzは、熱電変換素子1の最大起電力の89%または90%が得られるように形成されること、および/または最小電気抵抗の100〜150%、さらに好ましくは100〜115%の範囲の電気抵抗が得られるように構成されることが好ましい。さらなる条件の最適化を考慮すると、環状溶融部Fzは、熱電変換素子1の最大起電力の85%以上が得られるように構成されることが好ましい。 Based on the above experimental results, the annular fused portion Fz is formed so as to obtain 89% or 90% of the maximum electromotive force of the thermoelectric conversion element 1, and/or 100 to 150% of the minimum electric resistance, More preferably, it is preferable that the electric resistance is in the range of 100 to 115%. In consideration of further optimization of the conditions, it is preferable that the annular fusion zone Fz be configured so as to obtain 85% or more of the maximum electromotive force of the thermoelectric conversion element 1.

本開示の熱電モジュールは、ゼーベック効果を利用する発電装置またはセンサ、あるいはペルチェ効果を利用する冷却装置および/または加熱装置に適用できる。本開示の熱電モジュールは、外部からの給電が困難な箇所および強制冷却が困難な箇所に設置することができる。例えば、熱電モジュールはマイクロセンサと併置されてマイクロセンサに給電し、あるいは熱電モジュール単独で温度差の変化に基づいて状態変化を検出するセンサとして機能することができる。熱電モジュールが、外部から給電されて冷却装置および/または加熱装置として機能する場合には、放熱効率が高いため熱効率が向上する。本開示の熱電モジュールは、熱源の装着面が平面である場合だけでなく、曲面である場合にも適用される。 INDUSTRIAL APPLICABILITY The thermoelectric module of the present disclosure can be applied to a power generation device or a sensor that utilizes the Seebeck effect, or a cooling device and/or a heating device that utilizes the Peltier effect. The thermoelectric module of the present disclosure can be installed in a place where it is difficult to feed power from the outside or where forced cooling is difficult. For example, the thermoelectric module can be co-located with the microsensor to power the microsensor, or the thermoelectric module alone can function as a sensor to detect a change in state based on a change in temperature difference. When the thermoelectric module is supplied with power from the outside and functions as a cooling device and/or a heating device, the heat dissipation efficiency is high and the heat efficiency is improved. The thermoelectric module of the present disclosure is applied not only when the mounting surface of the heat source is a flat surface but also when it is a curved surface.

なお、上記の特許文献の開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。 The disclosures of the above patent documents are incorporated herein by reference. Modifications and adjustments of the exemplary embodiments and examples are possible within the scope of the overall disclosure (including claims) of the present invention and based on the basic technical concept of the invention. In addition, various combinations or selections of various disclosed elements (including each element of each claim, each element of each embodiment or example, each element of each drawing, etc.) within the scope of the claims of the present invention Is possible. That is, it goes without saying that the present invention includes various variations and modifications that can be made by those skilled in the art according to the entire disclosure including the claims and the technical idea. In particular, with regard to the numerical range described in this specification, any numerical value or small range included in the range should be construed as being specifically described even if not otherwise specified.

1 熱電変換素子(Thermo Electronic Conversion Element)
1a P型熱電変換素子
1b N型熱電変換素子
2 電極(電極部材)
3 レーザビーム
4 溶融部Fzによって囲まれた凹部
10 熱電モジュール(Thermo Electronic Conversion Module)
10a P型熱電変換ユニット
10b N型熱電変換ユニット
12 電極用ブランク(電極部材)、電極用帯板、電極用平板
D 熱電変換素子1における溶融部Fzの形成深さ
H 熱電変換素子1の高さ(厚み)
Fz 環状の溶融部(Fusion Zone、JIS Z 3001-1参照)、環状の溶け込み部
St 走査軌跡(Scanning Traffic)
St1〜St5 第1〜5回の走査軌跡
CL 切断線(Cutting Line)
1 Thermoelectric Conversion Element
1a P-type thermoelectric conversion element 1b N-type thermoelectric conversion element 2 Electrode (electrode member)
3 Laser beam 4 Recessed portion surrounded by fusion zone Fz 10 Thermoelectric Conversion Module
10a P-type thermoelectric conversion unit 10b N-type thermoelectric conversion unit 12 Electrode blank (electrode member), electrode strip, flat plate for electrode D Depth of formation of fusion zone Fz in thermoelectric conversion element H Height of thermoelectric conversion element 1 (Thickness)
Fz Annular fusion zone (Fusion Zone, see JIS Z 3001-1), Annular fusion zone St Scanning Traffic
St1 to St5 1st to 5th scanning loci CL Cutting Line

Claims (5)

温度差を受けて電位差を生じる性質がある少なくとも1つの熱電変換素子と、前記少なくとも1つの熱電変換素子に電気的に接続される少なくとも1つの電極部材を準備すること、
前記少なくとも1つの熱電変換素子に前記少なくとも1つの電極部材をレーザ溶接すること、
前記レーザ溶接において、
前記少なくとも1つの電極部材を部分的に前記少なくとも1つの熱電変換素子に重ね合わせること、
前記少なくとも1つの電極部材と前記少なくとも1つの熱電変換素子の重ね合わせ部分上で、前記少なくとも1つの電極部材にレーザビームを少なくとも一回は環状走査しながら照射して、前記少なくとも1つの電極部材および前記少なくとも1つの熱電変換素子を部分的に融合させて接合し、熱電モジュールの少なくとも一部を形成すること、
前記レーザ溶接は、前記電極部材の重ね合わせ部分の中央部を残して、前記中央部の近位から遠位に向かって実行されること、
を特徴とする熱電モジュールの製造方法。
Providing at least one thermoelectric conversion element having a property of receiving a temperature difference to generate a potential difference and at least one electrode member electrically connected to the at least one thermoelectric conversion element;
Laser welding the at least one electrode member to the at least one thermoelectric conversion element,
In the laser welding,
Partially overlapping the at least one electrode member with the at least one thermoelectric conversion element,
On the overlapping portion of the at least one electrode member and the at least one thermoelectric conversion element, the at least one electrode member is irradiated with a laser beam while performing annular scanning at least once, and the at least one electrode member and Partially fusing and joining the at least one thermoelectric conversion element to form at least a portion of a thermoelectric module;
The laser welding is performed from the proximal portion to the distal portion of the central portion, leaving the central portion of the overlapping portion of the electrode members.
And a method for manufacturing a thermoelectric module.
前記環状走査は、前記中央部の近位から遠位に向かって、走査径を変えて複数回実行されることを特徴とする請求項1記載の熱電モジュールの製造方法。 The method for manufacturing a thermoelectric module according to claim 1, wherein the annular scanning is performed a plurality of times with the scanning diameter changed from the proximal portion to the distal portion of the central portion. 温度差を受けて電位差を生じる性質がある少なくとも1つの熱電変換素子と、前記少なくとも1つの熱電変換素子に電気的に接続される少なくとも1つの電極を有し、
前記少なくとも1つの電極および前記少なくとも1つの熱電変換素子は、非溶接部または非溶融部を囲む少なくとも1つの環状溶融部によって互いに接合し
前記環状溶融部は、前記少なくとも1つの熱電変換素子の最大起電力の85%以上が得られるように構成されることを特徴とする熱電モジュール。
At least one thermoelectric conversion element having a property of receiving a temperature difference to generate a potential difference, and at least one electrode electrically connected to the at least one thermoelectric conversion element,
The at least one electrode and the at least one thermoelectric conversion element are joined to each other by at least one annular fusion zone surrounding the non-welded zone or the non-fusion zone ,
The thermoelectric module , wherein the annular fusion portion is configured to obtain 85% or more of the maximum electromotive force of the at least one thermoelectric conversion element .
前記環状溶融部は、前記少なくとも1つの熱電変換素子の一面に全面的に前記電極部材を接合した場合の電気抵抗の100〜150%の範囲の電気抵抗が得られるように構成されることを特徴とする請求項記載の熱電モジュール。 The annular fusion part is configured to obtain an electric resistance in the range of 100 to 150% of the electric resistance when the electrode member is entirely bonded to one surface of the at least one thermoelectric conversion element. The thermoelectric module according to claim 3 . 温度差を受けて電位差を生じる性質がある少なくとも1つの熱電変換素子と、前記少なくとも1つの熱電変換素子に電気的に接続される少なくとも1つの電極用ブランクを準備すること、
前記少なくとも1つの熱電変換素子に前記少なくとも1つの電極用ブランクを重ね合わせてレーザ溶接すること、
前記少なくとも1つの熱電変換素子にレーザ溶接された前記少なくとも1つの電極用ブランクをレーザ切断して少なくとも1つの電極を形成し、熱電モジュールの少なくとも一部を形成すること、
前記レーザ溶接は、前記電極用ブランクの前記少なくとも1つの熱電変換素子との重ね合わせ部分の中央部を残して、前記中央部の近位から遠位に向かって実行されること、
を特徴とする熱電モジュールの製造方法。
Providing at least one thermoelectric conversion element having a property of receiving a temperature difference to generate a potential difference, and at least one electrode blank electrically connected to the at least one thermoelectric conversion element;
Laser welding by superimposing the at least one electrode blank on the at least one thermoelectric conversion element,
Laser cutting the at least one electrode blank laser-welded to the at least one thermoelectric conversion element to form at least one electrode, forming at least a portion of a thermoelectric module;
The laser welding is performed from a proximal portion to a distal portion of the central portion, leaving a central portion of an overlapping portion of the electrode blank with the at least one thermoelectric conversion element ,
And a method for manufacturing a thermoelectric module.
JP2016149753A 2016-07-29 2016-07-29 Thermoelectric module and manufacturing method thereof Active JP6731810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016149753A JP6731810B2 (en) 2016-07-29 2016-07-29 Thermoelectric module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016149753A JP6731810B2 (en) 2016-07-29 2016-07-29 Thermoelectric module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018019008A JP2018019008A (en) 2018-02-01
JP6731810B2 true JP6731810B2 (en) 2020-07-29

Family

ID=61082055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016149753A Active JP6731810B2 (en) 2016-07-29 2016-07-29 Thermoelectric module and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6731810B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102588422B1 (en) * 2022-11-14 2023-10-11 한국전기연구원 Ring-shape thermoelectric module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321351A (en) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd Electrode plate
DE69735589T2 (en) * 1996-05-28 2007-01-04 Matsushita Electric Works, Ltd., Kadoma Production method for a thermoelectric module
DE102008005694B4 (en) * 2008-01-23 2015-05-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a thermoelectric component
JP2010046674A (en) * 2008-08-19 2010-03-04 Nissan Motor Co Ltd Laser welding method, laser welding device, and welding material
JP5386239B2 (en) * 2009-05-19 2014-01-15 古河機械金属株式会社 Thermoelectric conversion module
JP2016092174A (en) * 2014-11-04 2016-05-23 古河機械金属株式会社 Thermoelectric conversion material and thermoelectric conversion module

Also Published As

Publication number Publication date
JP2018019008A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP5427462B2 (en) Thermoelectric conversion module
CN101425558B (en) Thermoelectric device
JP5638087B2 (en) Method for forming a conductive connection
CN107949454A (en) The welding structure and welding method of hardware
JP5435468B2 (en) Friction stir welding apparatus and friction stir welding method
JP2004192948A (en) Method and structure for connecting power supply cable to connecting terminal
JP2007109942A (en) Thermoelectric module and manufacturing method thereof
CN109996642A (en) The welding structure and welding method of metal component
JP4395733B2 (en) Thermoelectric conversion element module manufacturing method and electrode structure used in thermoelectric conversion element module manufacturing method
JP4765853B2 (en) Manufacturing method of semiconductor device
WO2016084488A1 (en) Dissimilar metal bonded structure, method for producing same and water-cooled power conversion element provided with same
JP2001267642A (en) Method of manufacturing thermoelectric conversion module
JP2009130118A (en) Semiconductor device, method for manufacturing the same, and solar battery
TW201448294A (en) Thermoelectric device fabrication using direct bonding
JP6731810B2 (en) Thermoelectric module and manufacturing method thereof
JP4800019B2 (en) Semiconductor laser package device and manufacturing method thereof
JP2011005499A (en) Method for laser butt-welding aluminum member and copper member
JP2011067830A (en) Method of joining copper sheet and steel sheet by laser
JP2008177356A (en) Thermoelectric power generation element
JP4224050B2 (en) Heater chip thermocouple mounting structure and thermocouple mounting method
JP2022013800A (en) Semiconductor device and welding method
JP7110907B2 (en) Lap welding method for dissimilar metal members
WO2021047307A1 (en) Spot welding method for multi-layer conductor of motor winding
JP2012252935A (en) Semiconductor device for electricity
US20210205926A1 (en) Method for connecting two components and component composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200707

R150 Certificate of patent or registration of utility model

Ref document number: 6731810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250