JP6723317B2 - レーザ距離測定装置 - Google Patents

レーザ距離測定装置 Download PDF

Info

Publication number
JP6723317B2
JP6723317B2 JP2018200495A JP2018200495A JP6723317B2 JP 6723317 B2 JP6723317 B2 JP 6723317B2 JP 2018200495 A JP2018200495 A JP 2018200495A JP 2018200495 A JP2018200495 A JP 2018200495A JP 6723317 B2 JP6723317 B2 JP 6723317B2
Authority
JP
Japan
Prior art keywords
time
distance
measuring device
light receiving
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018200495A
Other languages
English (en)
Other versions
JP2020067382A (ja
Inventor
俊平 亀山
俊平 亀山
柳澤 隆行
隆行 柳澤
勝治 今城
勝治 今城
優佑 伊藤
優佑 伊藤
陽亮 津嵜
陽亮 津嵜
正浩 河合
正浩 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018200495A priority Critical patent/JP6723317B2/ja
Priority to US16/567,127 priority patent/US11592513B2/en
Priority to DE102019216084.0A priority patent/DE102019216084A1/de
Publication of JP2020067382A publication Critical patent/JP2020067382A/ja
Application granted granted Critical
Publication of JP6723317B2 publication Critical patent/JP6723317B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/20Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems
    • G01S1/30Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems the synchronised signals being continuous waves or intermittent trains of continuous waves, the intermittency not being for the purpose of determining direction or position line and the transit times being compared by measuring the phase difference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Description

本願は、レーザ距離測定装置に関する。
従来、レーザ光などの光ビームを測定対象に照射し、物体からの反射される反射光に基づいて物体までの距離を測定するレーザ距離測定装置が知られている。このようなレーザ距離測定装置は、LiDAR(Light Detection and Ranging)又はレーザレーダとも呼ばれ、光源のレーザ光を走査手段によって特定の走査範囲を走査させることで、物体の距離及び方位を取得し、3次元距離画像を取得する。自動車等の移動体に搭載されるものについては、移動体周辺の人及び障害物の監視に供されるため、測定視野を広くすると共に、単位時間あたりに取得可能な測定点数を多くすることで、人及び障害物を早期に、見逃しなく検知することが要請されている。
例えば、特許文献1には、車両に搭載されるレーザ距離測定装置が開示されている。特許文献1の技術では、出射したレーザ光の物体からの反射光を受光し、その時間差から距離を取得する原理となっている。
特開2017−173298号公報
ところで、移動体におけるレーザ距離測定装置に要請される特性として、単位時間当たりに測定できる測定点をできるだけ多くすることがある。これは障害物を検出するためには、視野を広くし、単位時間当たりのレーザ光の発光回数を増やすことで、距離測定の空間分解能を小さくし、測定の更新速度を高めることが要請されるためである。単位時間当たりにレーザ光が発光できる回数は、レーザ光が物体に反射して戻ってくるまでの時間に加え、測定した時間を処理するための時間によって律速される。特に後者について、遠方の物体までの距離を測定する場合、反射光を検出してから、次のレーザ光が発射されるまでの時間が短くなるため、測定した時間を処理するまで次回の距離測定を行うことができない。
従来のレーザ距離測定装置は、ある既定の装置条件で動作しており、距離に相当する時間情報を処理する場合、ある処理能力をもつ計算機によって、デジタル化された時間情報がデータ転送される。従って、計算機の処理能力と転送速度によって単位時間当りに計測可能な回数が制限されるため、例えば走査時に測定角度の分解能が低下したり、一走査の更新速度、すなわちフレームレートが低下したりするといった問題が生じる。一方、一測定当りの測定時間情報のデータ量を少なくするために、時間分解能を粗くすると、距離計測の精度が低下する。従って、発光回数と距離精度とはトレードオフの関係となる。制約を緩和しようと、計算機及びデータ転送の処理能力を高めると、高コスト化及び設計難度の増大といった課題が生じる。しかしながら、未だこの種の課題に対する対策はなされていない。
本願は、上記の状況を鑑みて考案されたものであり、距離測定精度及び測定可能距離を確保しつつ、測定時間を表すデータ量の増加を抑制することで、単位時間当たりの計測回数を増やすことができるレーザ距離測定装置を提供する。
本願に係るレーザ距離測定装置は、レーザ光を出射するレーザ光発生部と、
物体に反射したレーザ光の反射光を受光し、受光信号を出力する受光部と、
前記レーザ光発生部がレーザ光を出射してから前記受光部が前記受光信号を出力するまでの時間である受光時間を時間分解能で測定する時間測定器と、
前記時間測定器による前記受光時間の測定結果に基づいて、物体までの距離である物体距離を算出する距離算出部と、を備え、
前記距離算出部は、検出情報に基づいて、前記物体距離の算出に用いる前記時間測定器の時間分解能を変化させ
前記検出情報は、前記受光時間であり、
前記時間分解能が互いに異なり、前記時間分解能が大きいほど、最大測定時間が長い複数の前記時間測定器が設けられ、
前記距離算出部は、複数の前記時間測定器から、測定した前記受光時間が長いほど、前記時間分解能が大きい1つの前記時間測定器を選択し、
前記距離算出部は、選択された1つの前記時間測定器の前記受光時間の測定結果に基づいて、前記物体距離を算出するものである。


時間分解能を変化させると、受光時間を表すデータ量が同じでも、距離測定精度及び測定可能距離が変化する。本願に係るレーザ距離測定装置によれば、検出情報に基づいて、時間分解能が変化されるので、受光時間を表すデータ量を変化させなくても、検出情報に応じて、距離測定精度及び測定可能距離を適切に調節できる。よって、受光時間を表すデータ量の増加を抑制し、計算機の処理能力及びデータ転送に与える負荷の増加を抑制することができる。これにより、計算機の処理能力及びデータ転送速度を高めることなく、単位時間当たりの計測回数を増やすことができる。したがって、視野の角度分解能が小さく、走査の更新速度が速いレーザ距離測定装置を実現することができる。
実施の形態1に係るレーザ距離測定装置の概略構成を示す図である。 実施の形態1に係るレーザ距離測定装置の模式図である。 実施の形態1に係るMEMSミラーを説明するための図である。 実施の形態1に係るMEMSミラーの駆動電流を説明するためのタイムチャートである。 実施の形態1に係る上下方向及び左右方向の照射角度範囲を説明するための図である。 実施の形態1に係る制御装置のハードウェア構成図である。 実施の形態1に係る物体までの距離の検出を説明するための図である。 実施の形態1に係る出射信号と受光信号とを説明するタイムチャートである。 実施の形態1に係る時間測定器の概略構成を示す図である。 実施の形態1に係る時間測定器の概略構成を示す図である。 実施の形態1に係る受光時間の測定挙動を説明するためのタイムチャートである。 実施の形態1に係るレーザ光を左右に走査した場合の受光時間の測定の挙動を説明するための図である。 実施の形態1に係るレーザ光が近距離物体に当る前後の挙動を説明するためのタイムチャートである。 実施の形態1に係るレーザ光が近距離物体に当る前後の受光時間の測定の挙動を説明するためのタイムチャートである。 実施の形態1に係る分解能設定データの設定例を説明するための図である。 実施の形態1に係る距離測定の処理を説明するためのフローチャートである。 実施の形態2に係る1フレームにおける測定点を示す図である。 実施の形態2に係る距離測定の処理を説明するためのフローチャートである。 実施の形態3に係る受光時間の測定の挙動を説明するためのタイムチャートである。 実施の形態5に係る受光時間の測定の挙動を説明するためのタイムチャートである。 実施の形態6に係るコンデンサチャージ方式の時間測定器を説明するための図である。 実施の形態9に係る車両の傾きが水平である場合の照射範囲を示す図である。 実施の形態9に係る車両が前方に傾いている場合の照射範囲を示す図である。 実施の形態10に係る自車両と対向車両との関係を説明するための図である。
1.実施の形態1
実施の形態1に係るレーザ距離測定装置10について図面を参照して説明する。図1は、レーザ距離測定装置10の概略構成を示すブロック図である。図2は、レーザ距離測定装置10の光学系の概略配置構成を示す模式図である。レーザ距離測定装置10は、LiDAR(Light Detection and Ranging)又はレーザレーダとも呼ばれる。レーザ距離測定装置10は、自車両に搭載され、自車両の前方にレーザ光L1を2次元走査して照射し、レーザ距離測定装置10(自車両)から自車両の前方に存在する物体までの距離を測定する。
レーザ距離測定装置10は、レーザ光発生部11、走査機構12、受光部13、走査制御部14、距離算出部15、及び時間測定器94等を備えている。後述するように、走査制御部14、距離算出部15、及び時間測定器94は、制御装置20に備えられている。レーザ光発生部11は、レーザ光L1を出射する。走査機構12は、レーザ光L1の照射角度を変化させる機構である。走査制御部14は、走査機構12を制御してレーザ光の照射角度を周期的に走査させる。受光部13は、物体に反射したレーザ光の反射光L2を受光し、受光信号を出力する。時間測定器94は、レーザ光発生部11がレーザ光L1を出射してから受光部13が受光信号を出力するまでの時間である受光時間Tctを、時間分解能Δtで測定する。距離算出部15は、受光信号に基づいて物体までの距離である物体距離を算出する。距離算出部15は、検出情報に基づいて、物体距離の算出に用いる時間測定器94の時間分解能Δtを変化させる。
1−1.レーザ光発生部11
レーザ光発生部11は、レーザ光L1を出射する。レーザ光発生部11は、レーザ光源111、及びレーザ光源駆動回路112を備えている。レーザ光源駆動回路112は、図8に示すように、パルス周期Tpでオンになるパルス状の出力信号(出射信号)を生成する。レーザ光源駆動回路112は、後述する送受光制御部16からの指令信号に基づいて、パルス状の出力信号を生成する。レーザ光源111は、レーザ光源駆動回路112から伝達された出力信号がオンになったときに、近赤外波長のレーザ光L1を発生し、走査機構12に向かって出射する。なお、レーザ光源111から出射されたレーザ光L1は、レーザ光源111と走査機構12との間に配置された集光ミラー133を透過する。
1−2.走査機構12
走査機構12は、レーザ光L1の照射角度を変化させる。本実施の形態では、走査機構12は、自車両の前方に照射するレーザ光L1の照射角度を、自車両の進行方向(照射中心線)に対して左右方向及び上下方向に変化させる。走査機構12は、可動ミラー121、及びミラー駆動回路122を備えている。図2に示すように、レーザ光源111から出射したレーザ光L1は、集光ミラー133を透過した後、可動ミラー121に反射し、筐体9に設けられた透過窓19を透過して、可動ミラー121の角度に応じた照射角度で自車両の前方に照射される。
本実施の形態では、可動ミラー121は、MEMSミラー121(Micro Electro Mechanical Systems)とされている。図3に示すように、MEMSミラー121は、互いに直交する第1軸C1と第2軸C2の回りにミラー121aを回転させる回転機構を備えている。MEMSミラー121は、ミラー121aが設けられた矩形板状の内側フレーム121bと、内側フレーム121bの外側に配置された矩形環板状の中間フレーム121cと、中間フレーム121cの外側に配置され矩形板状の外側フレーム121dと、を備えている。外側フレーム121dは、MEMSミラー121の本体に固定されている。
外側フレーム121dと中間フレーム121cとは、ねじり弾性を有する左右2つの第1トーションバー121eにより連結されている。中間フレーム121cは、外側フレーム121dに対して、2つの第1トーションバー121eを結ぶ第1軸C1回りに捩れる。第1軸C1回りに一方側又は他方側に捩れると、レーザ光L1の照射角度が上側又は下側に変化する。中間フレーム121cと内側フレーム121bとは、弾性を有する上下2つの第2トーションバー121fにより連結されている。内側フレーム121bは、中間フレーム121cに対して、2つの第2トーションバー121fを結ぶ第2軸C2回りに捩れる。第2軸C2回りに一方側又は他方側に捩れると、レーザ光L1の照射角度が左側又は右側に変化する。
中間フレーム121cには、フレームに沿った環状の第1コイル121gが設けられており、第1コイル121gに接続された第1電極パット121hが、外側フレーム121dに設けられている。内側フレーム121bには、フレームに沿った環状の第2コイル121iが設けられており、第2コイル121iに接続された第2電極パット121jが、外側フレーム121dに設けられている。MEMSミラー121には、不図示の永久磁石が設けられている。第1コイル121gに正側又は負側の電流が流れると、中間フレーム121cを第1軸C1回りに一方側又は他方側にねじるローレンツ力が生じ、捩れ角度は、電流の大きさに比例する。第2コイル121iに正側又は負側の電流が流れると、内側フレーム121bを第2軸C2回りに一方側又は他方側にねじるローレンツ力が生じ、捩れ角度は、電流の大きさに比例する。
図4の上段のタイムチャートに示すように、ミラー駆動回路122は、走査制御部14の指令信号に従って、正の第1最大電流値Imx1と負の第1最小電流値Imn1との間を、第1周期T1で振動する電流を、第1電極パット121hを介して第1コイル121gに供給する。第1周期T1は、2次元走査の1フレーム分の周期となる。電流の振動波形は、のこぎり波又は三角波等とされる。図5に示すように、レーザ光は、正の第1最大電流値Imx1に対応する上下方向の最大照射角度θUDmxと、負の第1最小電流値Imn1に対応する上下方向の最小照射角度θUDmnとの間を、第1周期T1で振動する。第1最大電流値Imx1及び第1最小電流値Imn1は、運転条件に応じて変化されてもよい。
図4の下段グラフに示すように、ミラー駆動回路122は、走査制御部14の指令信号に従って、正の第2最大電流値Imx2と負の第2最小電流値Imn2との間を、第2周期T2で振動する電流を、第2電極パット121jを介して第2コイル121iに供給する。第2周期T2は、第1周期T1よりも短い値に設定されており、第1周期T1を、1フレームにおける左右方向の往復走査回数で除算した値に設定される。電流の振動波形は、正弦波又は矩形波等とされる。図5に示すように、レーザ光は、正の第2最大電流値Imx2に対応する左右方向の最大照射角度θLRmxと、負の第2最小電流値Imn2に対応する左右方向の最小照射角度θLRmnとの間を、第2周期T2で振動する。第2最大電流値Imx2及び第2最小電流値Imn2は、運転条件に応じて変化されてもよい。
1−3.受光部13
受光部13は、自車両の前方の物体に反射したレーザ光の反射光L2を受光する。受光部13は、光検出器131、光検出器制御回路132、及び集光ミラー133を備えている。図2に示すように、自車両の前方にある物体40に反射した反射光L2は、透過窓19を透過し、可動ミラー121に反射した後、集光ミラー133に反射し、光検出器131に入射する。
光検出器131は、APD(Avalanche Photo Diode)等を受光素子として備え、受光した反射光L2に応じた受光信号を出力する。光検出器制御回路132は、送受光制御部16からの指令信号に基づいて、光検出器131の動作を制御する。光検出器131が出力した受光信号は、時間測定器94に入力される。
1−4.制御装置20
レーザ距離測定装置10は、制御装置20を備えている。制御装置20は、走査制御部14、距離算出部15、及び送受光制御部16等の機能部を備えている。制御装置20の各機能は、制御装置20が備えた処理回路により実現される。具体的には、制御装置20は、図6に示すように、処理回路として、CPU(Central Processing Unit)等の演算処理装置90(コンピュータ)、演算処理装置90とデータのやり取りをする記憶装置91、演算処理装置90に外部の信号を入出力する入出力装置92、レーザ距離測定装置10の外部の外部装置とデータ通信を行う外部通信装置93、及び時間測定器94等を備えている。
演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置90として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置91として、演算処理装置90からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、演算処理装置90からデータを読み出し可能に構成されたROM(Read Only Memory)等が備えられている。なお、記憶装置91として、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)等の各種の記憶装置が用いられてもよい。
入出力装置92は、レーザ光源駆動回路112、ミラー駆動回路122、光検出器131、及び光検出器制御回路132等が接続され、これらと演算処理装置90との間でデータ及び制御指令の送受信を行う通信回路、A/D変換器、D/A変換器、及び出力ポート等を備えている。また、入出力装置92は、各回路を制御する演算処理装置を備えている。外部通信装置93は、カーナビゲーション装置30、外部演算処理装置31等の外部装置と通信を行う。
そして、制御装置20が備える各機能部14〜16等の各機能は、演算処理装置90が、ROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入出力装置92、及び外部通信装置93等の制御装置20の他のハードウェアと協働することにより実現される。なお、各機能部14〜16等が用いる分解能設定データ等の設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置91に記憶されている。以下、制御装置20の各機能について詳細に説明する。
<送受光制御部16>
送受光制御部16は、レーザ光源駆動回路112に指令信号を伝達し、パルス周期Tpで、パルス幅を有するパルス状のレーザ光を出力させる。また、送受光制御部16は、光検出器制御回路132に指令信号を伝達し、光検出器131に受光信号を出力させる。
<走査制御部14>
走査制御部14は、走査機構12を制御してレーザ光の照射角度を走査させる。本実施の形態では、走査制御部14は、自車両の進行方向に対する左右方向の照射角度範囲でレーザ光を走査させると共に、自車両の進行方向に対する上下方向の照射角度範囲でレーザ光L1を走査させる2次元走査を行う。
走査制御部14は、レーザ光の照射角度を、上下方向の照射角度範囲及び第1周期T1で走査させる指令信号を、ミラー駆動回路122に伝達する。具体的には、走査制御部14は、第1コイル121gに供給する電流の正の第1最大電流値Imx1及び負の第1最小電流値Imn1、及び第1周期T1の指令信号を、ミラー駆動回路122に伝達する。
また、走査制御部14は、レーザ光の照射角度を、左右方向の照射角度範囲及び第2周期T2で走査させる指令信号を、ミラー駆動回路122に伝達する。具体的には、走査制御部14は、第2コイル121iに供給する電流の正の第2最大電流値Imx2及び負の第2最小電流値Imn2、及び第2周期T2の指令信号を、ミラー駆動回路122に伝達する。走査制御部14は、第1周期T1を、1フレームにおける左右方向の往復走査回数で除算した値を、第2周期T2に設定する。
図5に示すように、第1周期T1で、レーザ光L1の照射角度を、矩形状の2次元の走査範囲を1回走査させることができる。この2次元の走査範囲の1回の走査を、1フレームという。
<時間測定器94>
時間測定器94は、レーザ光発生部11がレーザ光L1を出射してから受光部13が受光信号を出力するまでの時間である受光時間Tctを、時間分解能Δtで測定する。時間測定器94には、レーザ光の出射信号と、受光信号とが入力され、レーザ光の出射信号が入力された時点から受光信号が入力された時点までの時間Tct(受光時間Tct)を測定し、受光時間Tctの測定結果を表す信号を出力する。出力信号は、演算処理装置90に入力される。本実施の形態では、時間測定器94は、後述する距離算出部15(演算処理装置90)から伝達された時間分解能Δtで、受光時間Tctを測定する。
本実施の形態では、時間測定器94は、カウンタ方式である。時間測定器94は、いわゆる、時間領域の信号をデジタル値に変換するタイムデジタルコンバータ(TDC:Time to Digital Converter)とされている。
時間測定器94には、レーザ光源駆動回路112からレーザ光源111への出力信号(発光信号)と、光検出器131の出力信号(受光信号)と、距離算出部15(演算処理装置90)からの時間分解能Δtの指令信号と、が入力される。時間測定器94は、スタート信号としてのレーザ光源駆動回路112の出力信号(発光信号)が閾値を超えると、演算処理装置90から指令された時間分解能Δtの時間が経過する毎に、カウンタ値を0から1つずつ増加させる。そして、時間測定器94は、ストップ信号としての光検出器131の出力信号(受光信号)が閾値を超えた時点のカウンタ値を、受光時間Tctとして出力する。時間測定器94は、受光時間Tctとしてのカウンタ値を、2進数のデジタルデータで演算処理装置90に伝達する。この際、時間測定器94は、カウンタ値を、シリアル通信又はパラレル通信で1ビット又は複数ビットずつ演算処理装置90に伝達する。或いは、時間測定器94は、カウンタ値をアナログデータ(電圧値)で、入出力装置92のA/D変換器に出力してもよく、A/D変換器は、A/D変換した所定のビット数のデジタルデータをシリアル通信又はパラレル通信で演算処理装置90に伝達するように構成されてもよい。
本実施の形態では、図9に示すように、時間測定器94は、振動信号を出力するリング発振器94aと、リング発振器94aが出力した振動信号の立ち上がり又は立ち下がり回数をカウントアップするカウンタ94bとを備えている。リング発振器94aは、指令された振動周期で振動する振動信号を出力する。この振動周期が、時間分解能Δtとなる。カウンタ94bは、入力されたスタート信号がオンになると、カウンタ値のカウントアップを開始する。そして、カウンタ94bは、ストップ信号がオンになると、カウント値を出力する。
或いは、時間測定器94は、複数の遅延回路94c及びフリップフロップ94d、及びカウンタ94e(エンコーダともいう)を備えたタイプとされてもよい。図10にシンプルな構成の例を示す。なお、遅延回路94c及びフリップフロップ94dの配置構成には、様々なバリエーションがある。時間測定器94に入力されたスタート信号は、直列接続された複数の遅延回路94cを順番に伝達する。各遅延回路94cは、入力された信号を、演算処理装置90(距離算出部15)から指令された遅延時間Δtだけ遅らせて出力する。よって、各遅延回路94cの遅延時間Δtは、時間測定器94の時間分解能になる。各遅延回路94cの出力信号は、フリップフロップ94dに入力される。時間測定器94に入力されたストップ信号がオンになると、各フリップフロップ94dの出力信号が、ラッチされる。複数のフリップフロップ94dの出力信号は、カウンタ94eに入力され、カウンタ94eは、複数のフリップフロップ94dの出力信号に応じたカウント値を出力する。
図7に示すように、レーザ光源111から出射したレーザ光L1は、距離Lだけ前方にある物体40に反射し、反射光L2は、距離Lだけ後方にある光検出器131に入射する。図8は、レーザ光源111から出射したレーザ光L1の出射信号と、光検出器131で受光した反射光L2の受光信号との関係を示している。出射信号の立ち上がりから受光信号のピークまで時間Tct(受光時間Tct)は、レーザ光源111及び光検出器131と物体40との間の距離Lをレーザ光が往復する時間である。よって、受光時間Tctに光速c0を乗算し、2で除算すれば、物体40までの距離Lを算出することができる(L=Tct×c0/2)。
<距離算出部15>
距離算出部15は、時間測定器94が測定した受光時間Tctに基づいて、照射角度に存在する物体までの距離を算出する。
距離算出部15は、受光時間Tctに光速c0を乗算し、2で除算した値を、レーザ光L1の発光時点の照射角度に存在する物体までの距離Lとして算出する(L=Tct×c0/2)。なお、距離算出部15は、時間測定器94が受光時間Tctを出力していない場合は、その時点の照射角度に存在する物体を検出できないと判定して、距離Lを算出しない。距離算出部15は、距離の算出結果を外部演算処理装置31に伝達する。
<受光時間の計測挙動>
図11は、レーザ光が出射してから反射光を受光し、時間計測するまでの時間測定器94のカウンタ処理、及びデータ処理の流れを説明するタイムチャートである。図11の最上段のタイムチャートは、レーザ光源駆動回路112からレーザ光源111への出力信号(以下、出射信号と称す)の時間波形を示している。図11の上から2段目のタイムチャートは、光検出器131が出力した受光信号の時間波形を示している。図11の上から3段目のタイムチャートは、時間測定器94のカウント間隔を示している。図11の最下段のタイムチャートは、カウンタのデータ処理が可能な時間帯を示している。
まず、レーザ光源駆動回路112からレーザ光源111に伝達される出力信号がオンになり、レーザ光源111がレーザ光の出射を開始する。レーザ光源駆動回路112からレーザ光源111への出力信号は、時間測定器94にも入力される。時間測定器94は、時間0でレーザ光源駆動回路112の出力信号が閾値を超えた時に、カウンタのカウントアップを0から開始する。
そして、光検出器131が反射光を受光すると、光検出器131の出力信号(受光信号)が増加し始める。光検出器131の出力信号(受光信号)は、時間測定器94に入力される。時間測定器94は、光検出器131の出力信号(受光信号)が、閾値を超えた直後のタイミング(時間Tct)で、カウンタのカウントアップを停止する。そして、光検出器131は、停止したカウンタ値Cntの2進数のデジタルデータを1ビット又は複数ビットずつ演算処理装置90に伝達する。このカウンタ値Cntは、実際の受光時間tctを、時間分解能であるカウントアップ間隔Δtで除算し、除算した値の小数点以下を切り上げた値に相当する((tct/Δt)の小数点以下の切り上げ値)。カウンタ値Cntに、時間分解能Δtを乗算すると、時間測定器94により測定された受光時間Tctになる(Tct=Cnt×Δt)。tct/Δtの小数点以下の部分に、時間分解能Δtを乗算した値は、実際の受光時間tctと、時間測定器94により計測された受光時間Tctとの誤差Δterである(Δter=(tct/Δtの小数点以下の部分)×Δt)。従って、時間分解能Δtを小さくすると誤差Δterは減少し、距離測定の精度が向上する。
例えば、物体の距離がLである場合を考える。光速をc0とすると、レーザ光が物体に反射して戻るまでの受光時間tctは、次式で与えられる。
tct=2×L/c0 ・・・(1)
よって、受光時間tctは、物体の距離Lに依存する。レーザ光の強度及び反射光の受光感度等から定まる、レーザ距離測定装置10が測定可能な最大の測定距離をLmとすると、それに対応する測定可能な最大の受光時間Tct1mは、次式で与えられる。
Tct1m=2×Lm/c0 ・・・(2)
2×Lm/c0からtctを差し引いた時間をt2とする(t2=2×Lm/c0−tct)。計測した受光時間Tctの転送に必要な時間t3は、受光時間Tctのビット数をNとし、信号演算及び処理時間を含めた1秒当たりの転送ビット数をBとすると、次式で与えられる。
t3=N/B ・・・(3)
ここで、図11の最下段のタイムチャートに示した時間帯のうち、データ処理に使用できる時間は、t2+t3になる。最大の測定距離Lmまでの距離測定を行うためには、単位時間当りの測定回数の最大値Mは、次式で与えられる。
M=1/(Tct+t2+t3) ・・・(4)
ここで、Tct+t2=2×Lm/c0である。カウンタ値のビット数Nは、次式で与えられる。ここで、RoundUP1(A)は、Aの小数点以下を切り上げる処理を行う関数である。
N=RoundUP1(log2(2×Lm/c0/Δt))
・・・(5)
よって、計測した受光時間Tctの転送に必要な最小限の時間t3は、次式で与えられる。
t3=RoundUP1(log2(2×Lm/c0/Δt))/B
・・・(6)
よって、単位時間当りの測定回数の最大値Mは、次式で与えられる。
M=1/{Tct+t2
+RoundUP1(log2(2×Lm/c0/Δt))/B}
・・・(7)
よって、式(5)及び式(7)から、時間分解能Δtを大きくすると、カウンタ値のビット数Nを減少させることができるため、単位時間当たりの測定回数の最大値Mを増加させることが可能になる。
<物体の距離と時間分解能との関係>
図12は、レーザ光の照射角度を左から右に走査した場合の各照射角度200と、各照射角度200において、レーザ光が物体に当った箇所を黒丸201で示した図である。図12の例では、物体40の後方に遠方背景物41がある。
図13は、レーザ光が、物体40に当たる前後を示した図である。レーザ光は、照射角度210、211、212の順で走査され、210では、レーザ光は、遠方背景物41に当たり、211、212では、物体40に当たっている。
図14は、照射角度210、211、212のそれぞれにおける、出射信号、受光信号、及びカウンタ値の挙動を示すタイムチャートである。各照射角度210、211、212のタイムチャートにおける横軸の時間軸は、レーザ光の出射時点を時間0に設定して揃えている。
照射角度210の時は、時間分解能Δtは比較的に大きい値に設定されており、レーザ距離測定装置10が測定可能な最大の測定距離Lm及びそれに対応する最大の受光時間Tct1mは、遠方背景物41の距離及び受光時間よりも少し大きくなっている。なお、時間分解能Δtは、Δt=Tct1m/(2)である。カウンタ値は、最大値2に到達するとカウントアップを停止し、時間測定ができなくなる。カウンタ値が、最大値2に到達する少し前に、受光信号が閾値を超え、カウントアップを停止している。この閾値を超えた実際の受光時間をtct1とする。一方、停止したカウンタ値は整数であるので、カウンタ値により計測された受光時間Tct1は、時間分解能Δtの整数倍となる。実際の受光時間tct1とカウンタにより測定された受光時間Tctとの測定誤差Δter1は、Δter1=Tct1−tct1となる。従って、距離の測定誤差ΔL1は、ΔL1=Δter1×c0/2である。
照射角度211の時の時間分解能Δtは、照射角度210の時と同じにされている。レーザ光は、遠方背景物41よりも近くに位置する物体40に反射するため、カウンタ値は、最大値2に到達するよりもだいぶ前に、受光信号が閾値を超え、カウントアップを停止している。なお、図には、カウンタ値を2進数で示しており、最大値を、1111…で表示している。よって、照射角度211の時の実際の受光時間tct2は、照射角度210の時の実際の受光時間tct1よりも小さくなっている(tct2<tct1)。実際の受光時間tct2とカウンタにより測定された受光時間Tct2との測定誤差Δter2は、Δter2=Tct2−tct2となる。
照射角度210の誤差Δter1の最大値と照射角度211の誤差Δter2の最大値は、ともにΔtである。よって、設定された時間分解能における最大の測定距離に対して、物体の距離が短くなるほど、真の距離に対する測定誤差の割合が大きくなり、測定精度が低下する。一方、最大の測定距離よりも物体の距離が長くなると、距離を測定できなくなる。従って、最大の測定距離よりも物体の距離が長くならない範囲で、最大の測定距離が物体の距離に近づくように、時間分解能Δtを調節することで、真値に対する測定誤差の割合を小さくできる。
一方、照射角度212の時の時間分解能Δtは、照射角度210及び照射角度211の時の半分にされている。よって、最大の測定距離及び最大の受光時間Tct2mは、照射角度210及び照射角度211の時の半分になっている。そのため、照射角度212の誤差Δter3の最大値は、照射角度210の誤差Δter1の最大値及び照射角度211の誤差Δter2の最大値の半分になる。よって、照射角度211の場合よりも、真の距離に対する測定誤差の割合を半分にすることができる。なお、カウンタ値の最大値は、同じ2であるので、照射角度210及び照射角度211の場合の半分の時間で、カウントアップを停止しているが、物体40の距離は、最大の測定距離の範囲内であるので、受光時間を測定できている。よって、時間分解能Δtを小さくすることで、時間測定器94から出力されるデータ量(ビット数N)を増加させずに、近距離に位置する物体40の距離を精度良く測定することができる。
すなわち、測定物体が近距離にある場合は、時間測定器94の時間分解能Δtを小さくし、測定物体が遠距離にある場合は、時間分解能Δtを大きくすることで、少ないデータ量で、近距離の物体の距離を精度よく測定するとともに、遠距離の物体の距離を測定することができる。よって、データ転送に必要な時間t3の増大を抑制することができ、単位時間当たりの測定回数を増加させることができる。
<距離算出部15による時間分解能の変化>
そこで、距離算出部15は、検出情報としての受光時間Tctに基づいて、物体距離の算出に用いる時間測定器94の時間分解能Δtを変化させるように構成されている。距離算出部15は、測定した受光時間Tctが長くなるに従って、時間分解能Δtを大きくする。なお、測定した受光時間Tctの代わりに、受光時間Tctと比例関係になる、測定距離が用いられてもよい。
この構成によれば、測定物体が近距離にある場合に時間測定器94の時間分解能Δtを小さくし、測定物体が遠距離にある場合に時間分解能Δtを大きくすることで、近距離の物体の距離を精度よく測定するとともに、遠距離の物体の距離を測定できる。
なお、時間測定器94が出力する、受光時間Tctを表すデータ量は変化しないように構成されている。本実施の形態では、時間測定器94は、シリアル通信又はパラレル通信により、演算処理装置90(距離算出部15)に、固定のビット数Nのカウンタ値を1ビット又は複数ビットずつ転送する。
この構成によれば、近距離の物体も遠距離の物体も、できるだけ少ない同じデータ量で、距離を測定することができ、例えば、遠距離の物体の距離を測定しても、データ転送に必要な時間の増大を抑制することができ、単位時間当たりの測定回数を増加させることができる。
また、距離算出部15は、時間測定器94が受光時間Tctを計測できなかった場合は、時間分解能Δtを大きくするように構成されている。本実施の形態では、距離算出部15は、時間測定器94が受光時間Tctを計測できなかった場合は、時間分解能Δtを最大値に設定する。時間分解能Δtを小さくすると、測定可能な最大受光時間及び最大測定距離が短くなり、時間測定器94は、最大測定距離よりも遠方にある物体を検出できず、受光時間Tctを計測できない場合がある。その場合に、時間分解能Δtを大きくすることで、測定可能な最大受光時間及び最大測定距離を長くすることができ、遠方にある物体の受光時間Tctを測定できる。
本実施の形態では、図14の例のように、距離算出部15は、直前に測定した受光時間Tctに基づいて、今回の測定の時間分解能Δtを変化させるように構成されている。図14の例のように、照射角度211の測定を行う場合は、直前の照射角度210で測定した受光時間Tctが長いので、照射角度211の測定を行う場合の時間分解能Δtは大きい値に設定される。照射角度212の測定を行う場合は、直前の照射角度211で測定した受光時間Tctが短いので、照射角度212の測定を行う場合の時間分解能Δtは小さい値に設定される。直前の測定結果に応じて、時間分解能Δtを適応的に最適化することができる。
本実施の形態では、距離算出部15は、受光時間Tctがとり得る範囲を複数の領域に分割した複数の分割領域のそれぞれに時間分解能Δtの設定値が予め設定された分解能設定データを参照し、測定した受光時間Tctに対応する分割領域の時間分解能Δtを設定する。よって、距離算出部15は、測定した受光時間Tctが長くなるに従って、段階的に時間分解能Δtを大きくする。
本実施の形態では、図15に示すように、分解能設定データは、2つの領域に分割されている。具体的には、分解能設定データでは、0から、レーザ距離測定装置10が測定可能な最大の受光時間Tct1mの範囲が、第1領域R1と第2領域R2とに分割されている。第1領域R1に第1の時間分解能Δt1が予め設定されており、第2領域R2に第2の時間分解能Δt2が予め設定されている。受光時間Tctが境界値Tct2m以下の領域が、第2領域R2であり、受光時間Tctが境界値Tct2mより大きい領域が、第1領域R1である。すなわち、受光時間Tctが0から境界値Tct2mまでの領域が、第2領域R2であり、受光時間Tctが境界値Tct2mから最大の受光時間Tct1mまでの領域が、第1領域R1である。
第2の時間分解能Δt2は、第1の時間分解能Δt1よりも小さい値に設定されている。距離算出部15は、測定した受光時間Tctが境界値Tct2m以下である場合は、第2領域R2であると判定し、第2の時間分解能Δt2を、時間測定器94の時間分解能Δtに設定し、測定した受光時間Tctが境界値Tct2mより大きい場合は、第1領域R1であると判定し、第1の時間分解能Δt1を、時間測定器94の時間分解能Δtに設定する。
図15の例では、境界値Tct2mは、測定可能な最大の受光時間Tct1mの半分の値に設定されており、第2の時間分解能Δt2は、第1の時間分解能Δt1の半分の値に設定されている。なお、式(2)に示したように、最大の受光時間Tct1mは、レーザ距離測定装置10が測定可能な最大の測定距離Lmの2倍値を、光速c0で除算した値に設定され(Tct1m=2×Lm/c0)、第1の時間分解能Δt1は、Δt1=Tct1m/(2)に設定される。境界値Tct2mの設定値、及び第2の時間分解能Δt2の設定値は、任意の値に設定されてもよい。また、領域数は、2より大きい数に設定されてもよい。
<フローチャート>
図16のフローチャートを用いて処理を説明する。処理を開始すると、ステップS01で、走査制御部14は、走査機構12を制御してレーザ光の照射角度を走査させる。そして、ステップS02で、送受光制御部16は、レーザ光源駆動回路112に指令信号を伝達し、パルス周期Tpのパルス状のレーザ光を発光させる。ステップS03で、時間測定器94は、レーザ光源駆動回路112からレーザ光源111への出力信号が閾値を超えると、カウンタ値のカウントアップを開始する。ステップS04で、受光部13は、反射光を受光すると受光信号を出力する。ステップS05で、時間測定器94は、受光部13が出力した受光信号が閾値を超えると、カウントアップを停止する。
そして、ステップS06で、時間測定器94は、カウンタ値Cntを演算処理装置90(距離算出部15)に転送する。距離算出部15は、カウンタ値Cntに時間分解能Δtを乗算して、受光時間Tctを算出する(Tct=Cnt×Δt)。距離算出部15は、受光時間Tctに基づいて、物体までの距離である物体距離を算出する。
ステップS07で、距離算出部15は、時間分解能Δtにカウンタの最大値2を乗算した最大の受光時間を経過しても、カウンタ値Cntを受信できない場合は、照査角度に物体が存在しない、又は時間分解能Δtに応じた最大測定距離の範囲内に物体が存在しないため、受光部13が反射光を受光できなかったと判定し、ステップS08に進み、カウンタ値Cntを受信した場合は、受光部13が反射光を受光できたと判定し、ステップS09に進む。
距離算出部15は、反射光を受光できなかったと判定した場合(ステップS07:No)は、ステップS08で、次回の測定に用いる時間分解能Δtを大きくする。本実施の形態では、距離算出部15は、時間分解能Δtを、最大値の第1の時間分解能Δt1に設定する。時間分解能Δtが小さい状態で、遠方に物体がある場合、反射光が帰ってくるまでの時間の方が、測定可能な最大時間よりも長くなるため、受光時間Tctを取得できない。よって、この場合に時間分解能Δtを大きくして、次回の測定を行うことで、遠方の物体の距離を測定することができる。
一方、距離算出部15は、反射光を受光できたと判定した場合(ステップS07:Yes)は、ステップS09で、受光時間Tctが、境界値Tct2mよりも大きいか否かを判定し、大きいと判定した場合は、ステップS12に進み、大きくないと判定した場合は、ステップS10に進む。距離算出部15は、受光時間Tctが境界値Tct2mよりも大きくないと判定した場合(ステップS09:No)は、ステップS10で、時間分解能Δtを小さくできるか否かを判定し、小さくできると判定した場合は、ステップS11に進み、小さくできないと判定した場合は、ステップS12に進む。
本実施の形態では、距離算出部15は、現在の時間分解能Δtが第1の時間分解能Δt1である場合は、小さくできると判定し、現在の時間分解能Δtが第2の時間分解能Δt2である場合は、小さくできないと判定する。距離算出部15は、小さくできると判定した場合(ステップS10:Yes)は、ステップS11で、時間分解能Δtを小さくする。本実施の形態では、距離算出部15は、時間分解能Δtを第2の時間分解能Δt2に設定する。ステップS12で、距離算出部15は、距離測定を継続する場合は、ステップS01に戻り、処理を継続し、距離測定を継続しない場合は、一連の処理を終了する。
2.実施の形態2
次に、実施の形態2に係るレーザ距離測定装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係るレーザ距離測定装置10の基本的な構成は実施の形態1と同様であるが、距離算出部15の時間分解能Δtの変化方法が実施の形態1と異なる。
本実施の形態でも、実施の形態1と同様に、距離算出部15は、検出情報としての受光時間Tctに基づいて、物体距離の算出に用いる時間測定器94の時間分解能Δtを変化させる。距離算出部15は、測定した受光時間Tctが長くなるに従って、時間分解能Δtを大きくする。距離算出部15は、時間測定器94が受光時間Tctを計測できなかった場合は、時間分解能Δtを大きくする。また、距離算出部15は、受光時間Tctがとり得る範囲を複数の領域に分割した複数の分割領域のそれぞれに時間分解能Δtの設定値が予め設定された分解能設定データを参照し、測定した受光時間Tctに対応する分割領域の時間分解能Δtを設定する。
本実施の形態では、実施の形態1とは異なり、距離算出部15は、今回の測定の照射角度に対応する前回の走査周期(フレーム)の照射角度で測定した受光時間Tctに基づいて、今回の測定の時間分解能Δtを変化させるように構成されている。
この構成によれば、一旦、各照射角度で物体距離を検出すると、次回の走査周期(フレーム)以降において、各照射角度の時間分解能Δtを適切化して、物体距離の検出精度を向上させることができる。
図17の上段及び下段の図に、同じフレームにおいて、距離が測定される複数の照射角度を点で示す。距離算出部15は、各照射角度において測定した受光時間Tctに基づいて、次回の測定で用いる時間分解能Δtを設定し、次回の時間分解能Δtを、照射角度と対応させてRAM等の記憶装置91に記憶する。
図17の上段の図において、照射角度P11及び照射角度P21において、比較的近くに配置された物体40の受光時間Tctが測定される。受光時間Tctが境界値Tct2mより小さいので、次回の時間分解能Δtを小さい値(本例では、第2の時間分解能Δt2)に設定し、設定情報(フラグ情報等)を、照射角度P11及び照射角度P21と対応させてRAM等の記憶装置91に記憶する。
一方、P11及びP12以外の照射角度において、比較的に遠くに配置された物体41の受光時間Tctが測定される。受光時間Tctが境界値Tct2mよりも大きいので、次回の時間分解能Δtを大きい値(本例では、第1の時間分解能Δt1)に設定し、設定情報(フラグ情報等)を、照射角度P11及び照射角度P21以外の各照射角度と対応させてRAM等の記憶装置91に記憶する。
そして、図17の下段の図に、次のフレームを示す。各照射角度において、距離算出部15は、前回のフレームで設定された、対応する照射角度の時間分解能の設定情報を記憶装置91から読出して、今回の測定で用いる時間分解能Δtに設定する。
<フローチャート>
図18のフローチャートを用いて処理を説明する。処理を開始すると、ステップS21で、走査制御部14は、走査機構12を制御してレーザ光の照射角度を走査させる。そして、ステップS22で、距離算出部15は、前回のフレームで判定された、対応する照射角度の時間分解能の設定情報を記憶装置91から読み出す。そして、ステップS23で、距離算出部15は、読み出した設定情報に対応する時間分解能Δtを時間測定器94に伝達する。
ステップS24で、送受光制御部16は、レーザ光源駆動回路112に指令信号を伝達し、パルス周期Tpのパルス状のレーザ光を発光させる。ステップS25で、時間測定器94は、レーザ光源駆動回路112からレーザ光源111への出力信号が閾値を超えると、ステップS23で伝達された時間分解能Δtの時間間隔で、カウンタ値Cntのカウントアップを開始する。
ステップS26で、受光部13は、反射光を受光すると受光信号を出力する。ステップS27で、時間測定器94は、受光部13が出力した受光信号が閾値を超えると、カウントアップを停止する。そして、ステップS28で、時間測定器94は、カウンタ値Cntを演算処理装置90(距離算出部15)に転送する。距離算出部15は、カウンタ値Cntに時間分解能Δtを乗算して、受光時間Tctを算出する。距離算出部15は、受光時間Tctに基づいて、物体までの距離である物体距離を算出する。
ステップS29で、距離算出部15は、時間分解能Δtにカウンタの最大値(2)を乗算した最大の受光時間を経過しても、カウンタ値Cntを受信できない場合は、照査角度に物体が存在しない、又は時間分解能Δtに応じた最大測定距離の範囲内に物体が存在しないため、受光部13が反射光を受光できなかったと判定し、ステップS30に進み、カウンタ値Cntを受信した場合は、受光部13が反射光を受光できたと判定し、ステップS31に進む。
距離算出部15は、反射光を受光できなかったと判定した場合(ステップS29:No)は、ステップS30で、次回のフレームで用いる時間分解能Δtを大きくする。本実施の形態では、距離算出部15は、時間分解能Δtを、最大値の第1の時間分解能Δt1に設定する。そして、距離算出部15は、時間分解能Δtの設定情報を、今回の照射角度と対応させてRAM等の記憶装置91に記憶する。
一方、距離算出部15は、反射光を受光できたと判定した場合(ステップS29:Yes)は、ステップS31で、受光時間Tctが、境界値Tct2mよりも大きいか否かを判定し、大きいと判定した場合は、ステップS34に進み、大きくないと判定した場合は、ステップS32に進む。距離算出部15は、受光時間Tctが境界値Tct2mよりも大きくないと判定した場合(ステップS31:No)は、ステップS32で、時間分解能Δtを小さくできるか否かを判定し、小さくできると判定した場合は、ステップS33に進み、小さくできないと判定した場合は、ステップS34に進む。
本実施の形態では、距離算出部15は、現在の時間分解能Δtが第1の時間分解能Δt1である場合は、小さくできると判定し、現在の時間分解能Δtが第2の時間分解能Δt2である場合は、小さくできないと判定する。距離算出部15は、小さくできると判定した場合(ステップS32:Yes)は、ステップS33で、時間分解能Δtを小さくする。本実施の形態では、距離算出部15は、時間分解能Δtを第2の時間分解能Δt2に設定する。そして、距離算出部15は、時間分解能Δtの設定情報を、今回の照射角度と対応させてRAM等の記憶装置91に記憶する。ステップS34で、距離算出部15は、距離測定を継続する場合は、ステップS21に戻り、処理を継続し、距離測定を継続しない場合は、一連の処理を終了する。
3.実施の形態3
次に、実施の形態3に係るレーザ距離測定装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係るレーザ距離測定装置10の基本的な構成は実施の形態1と同様であるが、距離算出部15の時間分解能Δtの変化方法が実施の形態1と異なる。
本実施の形態でも、実施の形態1と同様に、距離算出部15は、検出情報としての受光時間Tctに基づいて、物体距離の算出に用いる時間測定器94の時間分解能Δtを変化させる。距離算出部15は、測定した受光時間Tctが長くなるに従って、時間分解能Δtを大きくする。距離算出部15は、時間測定器94が受光時間Tctを計測できなかった場合は、時間分解能Δtを大きくする。
本実施の形態では、実施の形態1とは異なり、距離算出部15は、測定した受光時間Tctに余裕時間ΔTmgを加算した値が、測定可能な最大の受光時間になるように、時間分解能Δtを変化させるように構成されている。例えば、距離算出部15は、式(8)に示すように、測定した受光時間Tctに余裕時間ΔTmgを加算した値を、最大のカウンタ値2で除算した値を、時間分解能Δtに設定する。或いは、距離算出部15は、式(9)に示すように、受光時間Tctに余裕係数Kmを乗算した値を、最大のカウンタ値2で除算した値を、時間分解能Δtに設定してもよい。ここで、余裕係数Kmは、1より大きい値に設定されており、(Km−1)×Tctが、余裕時間ΔTmgに相当する。なお、時間分解能Δtは、レーザ距離測定装置10が測定可能な最大の測定距離Lmに対応する受光時間Tct1mを、最大のカウンタ値2で除算した値により、上限制限される。
Δt=(Tct+ΔTmg)/(2) ・・・(8)
Δt=Km×Tct/(2) ・・・(9)
この構成によれば、測定した受光時間Tctに応じて、適応的に最適な時間分解能Δtを設定することができ、物体の距離が変化しても、距離測定の精度を保つことができる。
図19に、実施の形態1の図14と同じ条件で、時間分解能Δtを変化させた時の挙動をしめす。距離算出部15は、直前に測定した受光時間Tctに基づいて、今回の測定の時間分解能Δtを変化させるように構成されている。図19の照射角度212において設定された時間分解能Δtは、直前の照射角度211で測定した受光時間Tctに余裕時間ΔTmgを加算した値を、最大のカウンタ値2で除算した値に設定されている。
なお、実施の形態2のように、距離算出部15は、今回の測定の照射角度に対応する前回の走査周期(フレーム)の照射角度で測定した受光時間Tctに基づいて、今回の測定の時間分解能Δtを変化させてもよい。
4.実施の形態4
次に、実施の形態4に係るレーザ距離測定装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係るレーザ距離測定装置10の基本的な構成は実施の形態1と同様であるが、複数の時間測定器94が設けられている点が実施の形態1と異なる。
本実施の形態では、時間分解能が互いに異なる複数の時間測定器94が設けられている。そして、距離算出部15は、測定した受光時間Tctに基づいて、複数の時間測定器94から今回の測定に用いる1つの時間測定器94を選択する。受光時間Tctの測定に用いる時間測定器を選択することにより、物体距離の算出に用いる時間測定器の時間分解能が変化される。そして、距離算出部15は、選択された1つの時間測定器の受光時間Tctの測定結果に基づいて、物体距離を算出する。距離算出部15は、測定した受光時間Tctが長くなるに従って、選択する時間測定器の時間分解能Δtを大きくする。
この構成によれば、既定の時間分解能を有する安価な複数の時間測定器を用いて、物体距離の測定精度を向上することができる。
実施の形態1と同様に、距離算出部15は、直前に測定した受光時間Tctに基づいて、選択する時間測定器の時間分解能Δtを変化させる。或いは、実施の形態2と同様に、距離算出部15は、今回の測定の照射角度に対応する前回のフレームの照射角度で測定した受光時間Tctに基づいて、選択する時間測定器の時間分解能Δtを変化させる。
例えば、第1の時間測定器と第2の時間測定器とが設けられており、第1の時間測定器に設定される第1の時間分解能Δt1と、第2の時間測定器に設定される第2の時間分解能Δt2とが、互いに異なる値に設定されている。
実施の形態1と同様に、第1の時間分解能Δt1は、レーザ距離測定装置10が測定可能な最大の測定距離Lmに対応する最大の受光時間Tct1mを、最大のカウンタ値2で除算した値に設定される(Δt1=Tct1m/2)。第2の時間分解能Δt2は、第1の時間分解能Δt1よりも小さい値に設定される。
距離算出部15は、測定した受光時間Tctが境界値Tct2m以上である場合は、第1の時間測定器を今回の測定に用いる時間測定器に選択し、測定した受光時間Tctが境界値Tct2mよりも小さい場合は、第2の時間測定器を今回の測定に用いる時間測定器に選択する。境界値Tct2mは、第2の時間分解能Δt2に最大のカウンタ値2を乗算した値に設定される。そして、距離算出部15は、距離算出部15により選択された時間測定器が出力したカウンタ値に、選択された時間測定器の時間分解能を乗算した値を、受光時間Tctとして算出する。そして、距離算出部15は、受光時間Tctの測定結果に基づいて、物体距離を算出する。
5.実施の形態5
次に、実施の形態5に係るレーザ距離測定装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係るレーザ距離測定装置10の基本的な構成は実施の形態1と同様であるが、複数の時間測定器94が設けられている点が実施の形態1と異なる。
本実施の形態では、時間分解能が互いに異なる複数の時間測定器94が設けられている。そして、距離算出部15は、複数の時間測定器94が測定した複数の受光時間Tctの測定結果から、物体距離の算出に用いる1つの受光時間の測定結果を選択する。複数の受光時間Tctの測定結果から1つを選択することにより、物体距離の算出に用いる時間測定器の時間分解能が変化される。そして、距離算出部15は、距離算出部15により選択された1つの受光時間Tctの測定結果に基づいて、物体距離を算出する。
この構成によれば、複数の受光時間の測定結果から最適な測定結果が選択される。よって、各照射角度における物体の初回検出時から、適切に選択された時間分解能を用いた受光時間を測定できるため、近距離の物体の距離測定精度を向上できると共に、遠距離の物体の距離を測定することができる。また、既定の時間分解能を有する安価な複数の時間測定器を用いてコスト低減を行うことができる。
本実施の形態では、第1の時間測定器と第2の時間測定器とが設けられており、第1の時間測定器に設定される第1の時間分解能Δt1と、第2の時間測定器に設定される第2の時間分解能Δt2とが、互いに異なる値に設定されている。
実施の形態1と同様に、第1の時間分解能Δt1は、レーザ距離測定装置10が測定可能な最大の測定距離Lmに対応する最大の受光時間Tct1mを、最大のカウンタ値2で除算した値に設定される(Δt1=Tct1m/2)。第2の時間分解能Δt2は、第1の時間分解能Δt1よりも小さい値に設定される。
距離算出部15は、第1の時間測定器が出力したカウンタ値Cnt1に第1の時間分解能Δt1を乗算した値を、第1の受光時間Tct1として算出し、第2の時間測定器が出力したカウンタ値Cnt2に第2の時間分解能Δt2を乗算した値を、第2の受光時間Tct2として算出する。
距離算出部15は、第1の受光時間Tct1が境界値Tct2m以上である場合は、第1の受光時間Tct1を物体距離の算出に用いる受光時間の測定結果として選択し、第1の受光時間Tct1が境界値Tct2mよりも小さい場合は、第2の受光時間Tct2を物体距離Lの算出に用いる受光時間の測定結果として選択する。境界値Tct2mは、第2の時間分解能Δt2に最大のカウンタ値2を乗算した値に設定される(Tct2m=Δt2×2)。そして、距離算出部15は、距離算出部15により選択された1つの受光時間の測定結果に基づいて、物体距離を算出する。
図20に例を示す。図20の上段のタイムチャート群では、物体が比較的近くにあり、第1の受光時間Tct1が境界値Tct2mよりも小さくなっている。そのため、第2の受光時間Tct2が、物体距離の算出に用いる受光時間の測定結果に選択されている。よって、近距離の物体の距離測定精度が向上される。一方、図20の下段のタイムチャート群では、物体が比較遠くにあり、第1の受光時間Tct1が境界値Tct2mよりも大きくなっている。そのため、第1の受光時間Tct1が、物体距離の算出に用いる受光時間の測定結果に選択されている。よって、遠距離の物体の距離を測定できている。
6.実施の形態6
次に、実施の形態6に係るレーザ距離測定装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係るレーザ距離測定装置10の基本的な構成は実施の形態1と同様であるが、時間測定器94の構成が実施の形態1と異なる。
本実施の形態では、時間測定器94は、コンデンサチャージ方式の時間測定器とされている。図21は、コンデンサチャージ方式の時間計測器の原理を示す模式図である。コンデンサにVcの電圧を充電した後、コンデンサに負荷を接続し放電させると、コンデンサの端子電圧Vは、次式に従って、時間tの経過と伴に低下する。
V=Vc×e(−t/(R×C)) ・・・(10)
ここで、Rは負荷の抵抗であり、Cは、コンデンサの静電容量である。したがって、R、Cが既知である時、レーザ光の出射をトリガに負荷を接続し、コンデンサの端子電圧VをA/D変換器によりA/D変換し、取得することで、受光時間Tctが求まる。
例えば、端子電圧Vと受光時間Tctの関係をあらかじめメモリに記憶させることで時間に変換できる。この場合、時間分解能Δtは、A/D変換器の分解能に依存する。したがって、時間分解能Δtを変更する場合は、A/D変換器の分解能を変更するか、分解能の異なる複数のA/D変換器を用いればよい。
図21は、電圧測定レンジの幅が大きい第1のA/D変換器(A/D1)、電圧測定レンジの幅の小さい第2のA/D変換器(A/D2)を使用する場合を示している。第1のA/D変換器(A/D1)及び第2のA/D変換器(A/D2)のデジタル変換値は、同じビット数Nとされている。距離算出部15は、受光時間Tctが境界値Btよりも小さい場合は、第2のA/D変換器(A/D2)のA/D変換値を用いて、受光時間Tctを算出し、受光時間Tctが境界値Bt以上である場合は、第1のA/D変換器(A/D1)のA/D変換値を用いて、受光時間Tctを算出する。
7.実施の形態7
次に、実施の形態7に係るレーザ距離測定装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係るレーザ距離測定装置10の基本的な構成は実施の形態1と同様であるが、検出情報が、レーザ距離測定装置10が搭載された車両の速度である点が実施の形態1と異なる。
レーザ距離測定装置10を搭載した車両の速度を用い、その大小に応じて、時間分解能Δtを変更することが考えられる。車両速度が高速である場合は遠方の物体は、短時間で接近する。車両が高速で走行する場合は、車両付近に測定対象物が存在する可能性が低いため、遠方の物体監視の重要性が増す。したがって、距離算出部15は、車両速度が大きくなるに従って、時間分解能Δtを大きくする。距離算出部15は、カーナビゲーション装置30又は車両の制御装置等から車両の速度の情報を取得する。
例えば、距離算出部15は、車両速度が境界速度以下である場合は、時間分解能Δtを小さくする(例えば、実施の形態1の第2の時間分解能Δt2)。低速時は車両の近くにある障害物を、距離精度よく検出することができる。距離算出部15は、車両速度が境界速度より大きい場合は、時間分解能Δtを大きくする(例えば、実施の形態1の第1の時間分解能Δt1)。高速時は時間分解能を大きくすることで、距離精度よりもレーザ光の照射回数及び更新速度を優先し、障害物の検出性能を向上させることが可能である。
8.実施の形態8
次に、実施の形態8に係るレーザ距離測定装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係るレーザ距離測定装置10の基本的な構成は実施の形態1と同様であるが、検出情報が、レーザ距離測定装置10が搭載された車両の加速度である点が実施の形態1と異なる。
車両の加速度を用いて時間分解能を変更する方法が考えられる。たとえば、車両が加速する場合は、遠方の障害物を監視する重要性が増すため、時間分解能を大きくすることで、遠方の物体距離を測定可能とし、障害になりうる物体の存在を早期に発見することができる。また、減速する場合は、近距離にある障害物を詳細に取得するために、時間分解能を小さくし、物体距離の測定精度を向上させることが考えられる。したがって、距離算出部15は、車両の加速度が大きくなるに従って、時間分解能Δtを大きくする。距離算出部15は、カーナビゲーション装置30又は車両の制御装置等から車両の加速度の情報を取得する。
例えば、距離算出部15は、車両の加速度が境界加速度以下である場合は、時間分解能Δtを小さくする(例えば、実施の形態1の第2の時間分解能Δt2)。距離算出部15は、車両の加速度が境界加速度より大きい場合は、時間分解能Δtを大きくする(例えば、実施の形態1の第1の時間分解能Δt1)。
9.実施の形態9
次に、実施の形態9に係るレーザ距離測定装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係るレーザ距離測定装置10の基本的な構成は実施の形態1と同様であるが、検出情報が、車両の傾きである点が実施の形態1と異なる。
図22に、車両の傾きが水平である場合を示す。図23に、車両の傾きθが、前方に傾斜している場合をしめす。車両の傾きθは、路面に対する車両の前後方向の角度とされている。なお、車両162には、車両の傾きを検出する姿勢センサ161、及びレーザ距離測定装置10が搭載されている。姿勢センサ161の出力信号は、レーザ距離測定装置10に入力される。
レーザ距離測定装置10のレーザ光の照射範囲Rのうち、レーザ光が路面に当たる照射角度では、受光時間が短くなることが予測される。そのため、距離算出部15は、レーザ光が路面に当たる照射角度では、時間分解能Δtを小さくする。これにより、距離の測定精度を高めることが可能である。
路面にあたるレーザ光の照射角度の範囲は車両の傾きよって変化する。図22の水平の場合は、路面に照射される照射角度は、P1、P2である。一方、図23の前方に傾斜している場合は、路面に照射される照射角度は、P1、P2、P3、P4に増加する。従って、距離算出部15は、車両の傾きに応じて、時間分解能を小さくする下側の照射角度の範囲を変化させる。距離算出部15は、車両の傾きが前方に傾くに従って、時間分解能を小さくする下側の照射角度の範囲を増加させる。これにより車両の走行時の振動又は乗員の多寡により車両の傾きが変化しても、近距離の物体に対する距離の測定精度を高めることが可能になる。
10.実施の形態10
次に、実施の形態10に係るレーザ距離測定装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係るレーザ距離測定装置10の基本的な構成は実施の形態1と同様であるが、検出情報が、受光時間の時間変化である点が実施の形態1と異なる。
受光時間の時間変化は、レーザ距離測定装置10と測定物体との相対速度に比例する。図24に、レーザ距離測定装置10を搭載した自車両162と、対向車両192との例をしめす。レーザ距離測定装置10は、照射角度の範囲Rで、自車両162に接近する対向車両192の距離を検出する。距離算出部15は、受光時間の時間変化(相対速度)に応じて、時間分解能を変化させる。距離算出部15は、受光時間の時間変化(相対速度)が大きくなるに従って、時間分解能を小さくする。また、距離算出部15は、受光時間の時間変化(相対速度)に応じて、受光時間を測定した照射角度191の時間分解能を変化させてもよい。相対速度が大きい物体は、自車両162に速く接近する。時間分解能を小さくすることで、自車両に速く接近する対向車両等の物体の距離を、精度よく測定することが可能になる。
〔その他の実施の形態〕
最後に、本願のその他の実施の形態について説明する。なお、以下に説明する各実施の形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施の形態の構成と組み合わせて適用することも可能である。
(1)上記の各実施の形態においては、走査機構12は、MEMSミラー121を備えている場合を例に説明した。しかし、走査機構12は、MEMSミラー121以外の走査機構を備えてもよい。例えば、走査機構12は、可動ミラーとして回転ポリゴンミラーを備え、上下方向の照射角度範囲が上側又は下側に移動するように、回転ポリゴンミラーの回転軸を傾ける機構等を備えていてもよい。
(2)上記の各実施の形態においては、微小ミラーは、ローレンツ力により可動される場合を例に説明した。しかし、微小ミラーの可動機構は、ローレンツ力のような電磁方式に限られるものではなく、圧電素子を利用した圧電方式、又はミラーと電極間の電位差による静電力を利用した静電方式とされてもよい。
(3)上記の各実施の形態においては、MEMSミラー121を用い、図5に示すような走査を行って2次元走査を行う場合を例に説明した。しかし、MEMSミラー121を用い、リサージュ走査又はラスタ走査を行って、2次元走査を行ってもよく、球面ミラーを用いて、歳差走査を行ってもよい。
(4)上記の各実施の形態においては、2つの回転軸回りにミラーを回転させるMEMSミラー121を用いて2次元走査させる場合を例に説明した。しかし、1つの回転軸回りにミラーを回転させるMEMSミラーを2つ用いて、2次元走査させるように構成されてもよい。
(5)上記の各実施の形態においては、1つのレーザ光源111のレーザ光を、MEMSミラー121に反射させる場合を例に説明した。しかし、複数のレーザ光源111のレーザ光をMEMSミラー121に反射させるように構成されてもよい。
(6)上記の各実施の形態においては、光検出器131は、MEMSミラー121及び集光ミラー133に反射した反射光L2を受光する場合を例に説明した。しかし、光検出器131は、物体に反射した反射光L2を直接受光するように構成されてもよい。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
10 レーザ距離測定装置、11 レーザ光発生部、12 走査機構、13 受光部、14 走査制御部、15 距離算出部、16 送受光制御部、40 物体、94 時間測定器、Tct 受光時間、Δt 時間分解能

Claims (6)

  1. レーザ光を出射するレーザ光発生部と、
    物体に反射したレーザ光の反射光を受光し、受光信号を出力する受光部と、
    前記レーザ光発生部がレーザ光を出射してから前記受光部が前記受光信号を出力するまでの時間である受光時間を時間分解能で測定する時間測定器と、
    前記時間測定器による前記受光時間の測定結果に基づいて、物体までの距離である物体距離を算出する距離算出部と、を備え、
    前記距離算出部は、検出情報に基づいて、前記物体距離の算出に用いる前記時間測定器の時間分解能を変化させ
    前記検出情報は、前記受光時間であり、
    前記時間分解能が互いに異なり、前記時間分解能が大きいほど、最大測定時間が長い複数の前記時間測定器が設けられ、
    前記距離算出部は、複数の前記時間測定器から、測定した前記受光時間が長いほど、前記時間分解能が大きい1つの前記時間測定器を選択し、
    前記距離算出部は、選択された1つの前記時間測定器の前記受光時間の測定結果に基づいて、前記物体距離を算出するレーザ距離測定装置。
  2. レーザ光を出射するレーザ光発生部と、
    物体に反射したレーザ光の反射光を受光し、受光信号を出力する受光部と、
    前記レーザ光発生部がレーザ光を出射してから前記受光部が前記受光信号を出力するまでの時間である受光時間を時間分解能で測定する時間測定器と、
    前記時間測定器による前記受光時間の測定結果に基づいて、物体までの距離である物体距離を算出する距離算出部と、を備え、
    前記距離算出部は、検出情報に基づいて、前記物体距離の算出に用いる前記時間測定器の時間分解能を変化させ、
    前記検出情報は、前記受光時間であり、
    前記時間分解能が互いに異なり、前記時間分解能が大きいほど、最大測定時間が長い複数の前記時間測定器が設けられ、
    前記距離算出部は、複数の前記時間測定器が測定した複数の前記受光時間の測定結果から、測定した前記受光時間が長いほど前記時間分解能が大きい1つの前記時間測定器により測定された前記受光時間の測定結果を選択し、
    前記距離算出部は、選択された1つの前記受光時間の測定結果に基づいて、前記物体距離を算出するレーザ距離測定装置。
  3. 記距離算出部は、直前に測定した前記受光時間に基づいて、今回の測定において選択する前記時間測定器の前記時間分解能を変化させる請求項1に記載のレーザ距離測定装置。
  4. 前記レーザ光の照射角度を変化させる走査機構と、
    前記走査機構を制御して前記レーザ光の照射角度を周期的に走査させる走査制御部と、を更に備え
    記距離算出部は、今回の測定の照射角度に対応する前回の走査周期の照射角度で測定した受光時間に基づいて、今回の測定において選択する前記時間測定器の前記時間分解能を変化させる請求項1に記載のレーザ距離測定装置。
  5. 前記時間測定器は、カウンタ方式であり、時間領域の信号をデジタル値に変換するタイムデジタルコンバータである請求項1からのいずれか一項に記載のレーザ距離測定装置。
  6. 複数の前記時間測定器は、前記受光時間の測定結果を表すデータ量が互いに同じである請求項1から5のいずれか一項に記載のレーザ距離測定装置。
JP2018200495A 2018-10-25 2018-10-25 レーザ距離測定装置 Expired - Fee Related JP6723317B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018200495A JP6723317B2 (ja) 2018-10-25 2018-10-25 レーザ距離測定装置
US16/567,127 US11592513B2 (en) 2018-10-25 2019-09-11 Laser distance measuring apparatus
DE102019216084.0A DE102019216084A1 (de) 2018-10-25 2019-10-18 Laser-entfernungsmessvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018200495A JP6723317B2 (ja) 2018-10-25 2018-10-25 レーザ距離測定装置

Publications (2)

Publication Number Publication Date
JP2020067382A JP2020067382A (ja) 2020-04-30
JP6723317B2 true JP6723317B2 (ja) 2020-07-15

Family

ID=70326858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018200495A Expired - Fee Related JP6723317B2 (ja) 2018-10-25 2018-10-25 レーザ距離測定装置

Country Status (3)

Country Link
US (1) US11592513B2 (ja)
JP (1) JP6723317B2 (ja)
DE (1) DE102019216084A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471927B2 (ja) 2020-06-10 2024-04-22 アルプスアルパイン株式会社 障害物検出装置、車両、障害物検出システム、及び障害物検出方法
CN112904354B (zh) * 2021-01-22 2024-06-18 西安应用光学研究所 一种高精度激光测距距离模拟装置
CN112987018B (zh) * 2021-02-08 2023-06-13 中国科学院光电技术研究所 利用平面微纳结构透镜实现大凝视视场探测的激光成像光学***

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05119152A (ja) * 1991-10-29 1993-05-18 Mazda Motor Corp 距離検出装置
JP2000137077A (ja) * 1998-11-02 2000-05-16 Nec Corp パルスレーザ測距装置
JP2003167053A (ja) * 2001-12-03 2003-06-13 Sokkia Co Ltd 光波距離計
JP2006053076A (ja) * 2004-08-12 2006-02-23 Nikon Vision Co Ltd 測距装置
JP2009257981A (ja) * 2008-04-18 2009-11-05 Calsonic Kansei Corp 車両用距離画像データ生成装置
JP5962637B2 (ja) 2013-11-29 2016-08-03 株式会社デンソー 計測装置
JP6942966B2 (ja) 2016-03-16 2021-09-29 株式会社リコー 物体検出装置及び移動体装置
EP3223034B1 (en) 2016-03-16 2022-07-20 Ricoh Company, Ltd. Object detection apparatus and moveable apparatus
US10739456B2 (en) 2016-06-17 2020-08-11 Kabushiki Kaisha Toshiba Distance measuring device
JP6848364B2 (ja) * 2016-11-10 2021-03-24 株式会社リコー 測距装置、移動体、ロボット、3次元計測装置、監視カメラ及び測距方法
EP3574344B1 (en) * 2017-01-25 2024-06-26 Apple Inc. Spad detector having modulated sensitivity

Also Published As

Publication number Publication date
DE102019216084A1 (de) 2020-04-30
US11592513B2 (en) 2023-02-28
JP2020067382A (ja) 2020-04-30
US20200132797A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
JP6824236B2 (ja) レーザ距離測定装置
JP6547942B2 (ja) 半導体レーザ駆動装置、光走査装置、物体検出装置及び移動体装置
CN110244316B (zh) 接收光脉冲的接收器组件、LiDAR模组和接收光脉冲的方法
JP6723317B2 (ja) レーザ距離測定装置
CN111352091B (zh) 用于lidar应用的激光和检测器阵列中的实时选通和信号路由
JP6537011B2 (ja) 光走査装置、物体検出装置及びセンシング装置
JP2016057141A (ja) 距離測定装置、移動体装置及び距離測定方法
US20170307758A1 (en) Scanning Lidar Systems for Three-Dimensional Sensing
JP2016133341A (ja) 物体検出装置、センシング装置、移動体装置及び物体検出方法
KR102478719B1 (ko) 측정 프로세스를 수행하는 방법
JP6481405B2 (ja) 演算装置
US20160096474A1 (en) Object detector and sensing apparatus
JP2019158693A (ja) 受光装置、物体検出装置、距離測定装置、移動体装置、ノイズ計測方法、物体検出方法及び距離測定方法
WO2023284318A1 (zh) 激光雷达的探测方法、发射单元以及激光雷达
JP2016125970A (ja) 光走査装置、距離測定装置及び移動体装置
JP6723307B2 (ja) レーザ距離測定装置
US20200292667A1 (en) Object detector
JP2021001787A (ja) レーザ距離測定装置
JP6804619B1 (ja) レーザ距離測定装置
JP2020144025A (ja) 光測距装置
JP2013003114A (ja) 距離測定装置およびそれを備えた輸送機器
JP2019007892A (ja) 情報取得装置、プログラムおよび情報取得システム
US20220075036A1 (en) Range estimation for lidar systems using a detector array
CN115166693A (zh) 一种混合固态式激光雷达及激光雷达扫描方法
JP2020073878A (ja) 光制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200623

R151 Written notification of patent or utility model registration

Ref document number: 6723317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees