JP6722808B1 - Storage element management unit - Google Patents

Storage element management unit Download PDF

Info

Publication number
JP6722808B1
JP6722808B1 JP2019128842A JP2019128842A JP6722808B1 JP 6722808 B1 JP6722808 B1 JP 6722808B1 JP 2019128842 A JP2019128842 A JP 2019128842A JP 2019128842 A JP2019128842 A JP 2019128842A JP 6722808 B1 JP6722808 B1 JP 6722808B1
Authority
JP
Japan
Prior art keywords
battery
storage element
voltage
current
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019128842A
Other languages
Japanese (ja)
Other versions
JP2021015015A (en
Inventor
竹村 理
理 竹村
高岡 浩実
浩実 高岡
英志 田畑
英志 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GOIKU BATTERY CO., LTD.
Original Assignee
GOIKU BATTERY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GOIKU BATTERY CO., LTD. filed Critical GOIKU BATTERY CO., LTD.
Priority to JP2019128842A priority Critical patent/JP6722808B1/en
Priority to US17/421,729 priority patent/US20220082630A1/en
Priority to EP20742049.8A priority patent/EP3913726A4/en
Priority to CN202080005369.5A priority patent/CN112771708B/en
Priority to PCT/JP2020/001003 priority patent/WO2020149288A1/en
Application granted granted Critical
Publication of JP6722808B1 publication Critical patent/JP6722808B1/en
Publication of JP2021015015A publication Critical patent/JP2021015015A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】幅広い温度環境に対応して、蓄電素子の劣化度SOHを精度よく取得可能な蓄電素子管理ユニットを提供する。【解決手段】前記蓄電素子の劣化度SOHを測定する蓄電素子管理ユニットである電池管理ユニット3であって、前記蓄電素子の充電時もしくは放電時の電流を計測する電流センサー60と、所定の演算を実行する演算手段を有するマイコン3aと、を備え、マイコン3aは、前記蓄電素子の新品時の動的内部抵抗Dirと現在の動的内部抵抗Dirとに基づき、前記蓄電素子の劣化度SOHを算出する劣化度算出部49と、前記蓄電素子の充電もしくは放電を行いながら、前記蓄電素子の現在の動的内部抵抗Dirを測定する動的内部抵抗測定部50と、前記蓄電素子の新品時の動的内部抵抗Dirを記憶する記憶部51と、を備える。【選択図】図2PROBLEM TO BE SOLVED: To provide a power storage element management unit capable of accurately acquiring a deterioration degree SOH of a power storage element in response to a wide range of temperature environments. A battery management unit 3 that is a storage element management unit that measures a deterioration degree SOH of the storage element, a current sensor 60 that measures a current when the storage element is charged or discharged, and a predetermined calculation. And a microcomputer 3a having a calculation means for executing the above. A deterioration degree calculating unit 49 for calculating, a dynamic internal resistance measuring unit 50 for measuring the current dynamic internal resistance Dir of the power storage element while charging or discharging the power storage element, and A storage unit 51 that stores the dynamic internal resistance Dir. [Selection diagram] Figure 2

Description

本発明は、蓄電素子を充電もしくは放電する際に初期に比べて、どの程度劣化しているかを示す劣化度(SOH)を判定する診断が可能である診断機能を搭載した蓄電素子管理ユニットに関する。 The present invention relates to a power storage element management unit equipped with a diagnostic function capable of performing a diagnosis for determining a degree of deterioration (SOH) indicating how much the power storage element has deteriorated when being charged or discharged, compared to the initial time.

近年、太陽光発電パネル(太陽電池パネル、PVとも呼ばれる)、EV(電気駆動自動車)、蓄電装置等に搭載される電池を利用して電気エネルギーを一時的に蓄えて、蓄えた電気エネルギーを利用するものや、種々の情報端末等に搭載される小型の電池を利用して電気エネルギーを一時的に蓄えて、蓄えた電気エネルギーを利用する持ち運び可能な機器の普及が急速に進んでいる。 In recent years, electric energy is temporarily stored using a battery mounted on a photovoltaic power generation panel (also called a solar cell panel or PV), an EV (electrically driven vehicle), a power storage device, and the stored electric energy is used. And portable devices that use the stored electrical energy to temporarily store the electrical energy by utilizing small batteries installed in various information terminals and the like are rapidly spreading.

しかし、電池の出力電圧はニッケル水素で1.2V、鉛電池で2V、リチウムイオン電池で4V弱と単電池で使用するには電圧が余りにも低い。そのため、これら電池セルを複数直列に接続して組電池として構成し、少なくとも12V、高いもので360V程度の高電圧にして高電力化を図る機器が多い。 However, the output voltage of the battery is 1.2V for nickel-hydrogen, 2V for a lead battery, and a little less than 4V for a lithium-ion battery, which is too low for use in a single battery. For this reason, there are many devices in which a plurality of these battery cells are connected in series to form an assembled battery, and a high voltage of at least 12 V, which is as high as 360 V, is used to achieve high power.

このような組電池の充放電時では、充電時、放電時ともに流れる電流はいずれの電池セルでも等しく、その電流に応じた個々の電池セルの電圧は通常は異なった値をとる。したがって、組電池全体の電池電圧を観察しても個々の電池セルの電圧は異なり、ある電池セルでは電池セルとしての許容値を超えている場合もある。許容値を超えた電池セルは膨潤・発熱・発煙・爆発等の電池システム災害(ハザードと呼ばれる)を惹起する事態となる。また、負荷に接続された状態では、ある電池セルの電圧が異常に低下しても他の電池電圧でカバーし負荷への電力の供給を強制する場合がある。このような場合は、該当電池セルは、過放電状態となり、電極破壊に繋がるおそれがあり、次の充電時には該当電池セルは、他の電池セルに先んじて過充電を惹起し、種々の電池システムのハザードとなる。 During charging and discharging of such an assembled battery, the current flowing during charging and discharging is the same in all battery cells, and the voltage of each battery cell according to the current usually takes different values. Therefore, even if the battery voltage of the entire assembled battery is observed, the voltage of each battery cell is different, and a certain battery cell may exceed the allowable value as a battery cell. A battery cell that exceeds the allowable value will cause a battery system disaster (called a hazard) such as swelling, heat generation, smoke generation, and explosion. Further, in the state where the battery cell is connected to the load, even if the voltage of a certain battery cell is abnormally lowered, it may be covered by another battery voltage to force the supply of electric power to the load. In such a case, the corresponding battery cell may be in an over-discharged state and lead to electrode destruction, and at the next charging, the corresponding battery cell causes overcharge prior to other battery cells, and various battery systems Is a hazard.

前記のような種々の電池システムのハザードを防止するためには、電池システムの構成素子である個々の電池セル(単電池)の電圧を常に監視し、電圧の個々のデータと当該データに基づく適正な制御が電池システムの長寿命化および安全性の確保に不可欠となる。そのため、電池システムの個々の電池セル(単電池)の電圧を監視し、電池システムに対して所定の制御を行う装置として、従来から電池管理システム(BMS:Battery management system)が用いられる。電池管理システムは、電池システムが有する個々の電池セルの電圧や温度を測定し、電池システムを監視・制御(保護)を行うユニットとして、電池管理ユニット(BMU:Battery management unit)を有している。 In order to prevent the hazards of various battery systems as described above, the voltage of each battery cell (single battery) that is a constituent element of the battery system is constantly monitored, and the individual data of the voltage and the appropriateness based on the data are measured. Proper control is indispensable for extending the life of the battery system and ensuring safety. Therefore, a battery management system (BMS) has been conventionally used as a device that monitors the voltage of each battery cell (unit cell) of the battery system and performs a predetermined control on the battery system. The battery management system has a battery management unit (BMU) as a unit that measures the voltage and temperature of each battery cell of the battery system and monitors/controls (protects) the battery system. ..

また、蓄電素子の一例である二次電池は、電子機器、電動機器や車両などに広く用いられている。二次電池としては鉛電池、ニッケル水素電池、リチウムイオン電池等が挙げられる。二次電池は、放電と充電を繰り返して使用できる電池である。このような二次電池を利用するにあたり、二次電池の劣化度(SOH;State Of Health、初期を100%としたときの現在性能、劣化率ともいう)、二次電池の蓄電残量(SOC;State Of Charge)を知って初めて二次電池の適切な利用が可能となる。 A secondary battery, which is an example of a power storage element, is widely used in electronic devices, electric devices, vehicles, and the like. Examples of the secondary battery include a lead battery, a nickel hydrogen battery, a lithium ion battery and the like. The secondary battery is a battery that can be used by repeatedly discharging and charging. In using such a secondary battery, the degree of deterioration of the secondary battery (SOH; State Of Health, also referred to as current performance when the initial is 100%, also referred to as deterioration rate), the state of charge of the secondary battery (SOC The appropriate use of the secondary battery becomes possible only after knowing the "State Of Charge".

二次電池のSOHやSOCを推定する技術としては、従来から種々提案されている(例えば、特許文献1〜3参照)。 Various techniques have been conventionally proposed as a technique for estimating the SOH and SOC of a secondary battery (see, for example, Patent Documents 1 to 3).

ところで、蓄電素子の劣化状態などの診断を行う診断器は、任意の蓄電素子を使用される機器から取り外し診断器に取り付けることにより診断を行う。一方、電池管理システム(BMS)を用いて診断を行うことを考慮した場合は、蓄電素子が蓄電素子モジュールに取り付けられた状態で蓄電素子の診断を行う必要がある。したがって、BMSによる診断では、診断器で診断する場合と異なり、充放電中においても診断を行う必要がある。
すなわち、診断器は、未使用状態(非充放電状態)の蓄電素子に対して診断が行われるものであるが、BMSを用いて診断を行うことを考慮した場合は、蓄電素子の使用中(充電もしくは放電中)に診断を行う必要がある。
By the way, a diagnostic device for diagnosing a deteriorated state of a power storage element performs diagnostics by removing an arbitrary power storage element from a device to be used and attaching it to the diagnostic device. On the other hand, in consideration of performing diagnosis using a battery management system (BMS), it is necessary to diagnose the power storage element with the power storage element attached to the power storage element module. Therefore, in the diagnosis by BMS, it is necessary to perform the diagnosis even during charging/discharging, unlike the case where the diagnosis is performed by the diagnostic device.
That is, the diagnostic device diagnoses a storage element in an unused state (non-charged/discharged state). However, in consideration of performing the diagnosis using BMS, the storage device is in use ( It is necessary to diagnose during charging or discharging).

また、蓄電素子は、電力を供給する装置に着脱可能なものや、装置の一部(例えば、蓄電素子モジュール)として通常取り外しできない状態(着脱不可の状態)で組み付けられたりするなど様々な態様で使用される。任意の蓄電素子を接続して診断する診断器の場合は診断する場所や環境は自由に設定することができるため、使用環境(例えば、温度環境)の影響を受けにくいが、装置に組み付けられた蓄電素子を管理するBMUによって診断を行う場合は、装置の設置場所によって使用環境が変わるため、使用環境の影響を受けやすく、温度変化などによりSOHの測定結果に影響が出てくる。そのため、BMUで診断を行う場合は、蓄電素子の使用温度が異なる状態での診断、すなわち幅広い温度環境に対応して診断できる技術が必要となってくる。 In addition, the power storage element may be detachable from a device that supplies electric power, or may be assembled as a part of the device (for example, a power storage element module) in a state that cannot be normally removed (non-detachable state). used. In the case of a diagnostic device that diagnoses by connecting an arbitrary storage element, the place and environment to be diagnosed can be set freely, so it is not easily affected by the usage environment (for example, temperature environment), but it was installed in the device. When the diagnosis is performed by the BMU that manages the power storage element, the use environment changes depending on the installation location of the device, and thus the use environment is easily affected, and the SOH measurement result is affected by temperature changes and the like. Therefore, in the case of diagnosing with BMU, it is necessary to have a technique capable of diagnosing when the operating temperature of the power storage element is different, that is, capable of diagnosing in a wide temperature environment.

以上のことから、幅広い温度環境に対応して、蓄電素子のSOHを精度よく取得可能な蓄電素子管理ユニットが求められている。 From the above, there is a demand for a power storage element management unit that can accurately acquire the SOH of a power storage element in a wide range of temperature environments.

特許第3752249号公報Japanese Patent No. 3752249 米国特許第7075269号明細書US Pat. No. 7,075,269 中国特許第100395939号明細書Chinese Patent No. 100395939

松田好晴他著「電気化学概論」(丸善出版)Yoshiharu Matsuda et al. "Introduction to Electrochemistry" (Maruzen Publishing) 春山志郎著「表面技術者のための電気化学」(丸善出版)Shiro Haruyama "Electrochemistry for Surface Engineers" (Maruzen Publishing)

本発明の目的は、幅広い温度環境に対応して、蓄電素子の劣化度SOHを精度よく取得可能な蓄電素子管理ユニットを提供することである。 An object of the present invention is to provide a power storage element management unit that can accurately acquire the degree of deterioration SOH of a power storage element in a wide temperature environment.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problem to be solved by the present invention is as described above, and the means for solving this problem will be described below.

即ち、請求項1の蓄電素子管理ユニットにおいては、
負荷に接続された蓄電素子の劣化度SOHを測定する蓄電素子管理ユニットであって、
前記蓄電素子の充電時もしくは放電時の電流を計測する電流計測手段と、
所定の演算を実行する演算手段を有する制御部と、を備え、
前記制御部は、
前記蓄電素子の新品時の動的内部抵抗Dirと現在の動的内部抵抗Dirとに基づき、前記蓄電素子の劣化度SOHを算出する劣化度算出部と、
前記蓄電素子の充電もしくは放電を行いながら、前記蓄電素子の現在の動的内部抵抗Dirを測定する動的内部抵抗測定部と、
前記蓄電素子の新品時の動的内部抵抗Dirを記憶する記憶部と、を備えるものである。


That is, in the storage element management unit according to claim 1,
A storage element management unit for measuring the degree of deterioration SOH of a storage element connected to a load ,
A current measuring unit that measures a current at the time of charging or discharging the storage element,
A control unit having a calculation means for executing a predetermined calculation,
The control unit is
A deterioration degree calculation unit that calculates a deterioration degree SOH of the power storage element based on a new dynamic internal resistance Dir and a current dynamic internal resistance Dir of the power storage element;
A dynamic internal resistance measuring unit that measures the current dynamic internal resistance Dir of the storage element while charging or discharging the storage element;
A storage unit that stores the dynamic internal resistance Dir when the power storage element is new.


請求項2の蓄電素子管理ユニットにおいては、
前記蓄電素子の温度を計測する温度計測手段をさらに備え、
前記制御部は、
前記温度計測手段により前記蓄電素子の温度を取得し、あらかじめ記憶している前記蓄電素子の温度と前記蓄電素子の新品時の動的内部抵抗Dirとの関係から当該蓄電素子の温度に対応した前記蓄電素子の新品時の動的内部抵抗Dirを取得する取得部を備え、
前記劣化度算出部は、
前記取得部で取得した前記蓄電素子の新品時の動的内部抵抗Dirを用いて、前記蓄電素子の劣化度SOHを算出するものである。
In the electric storage element management unit according to claim 2,
Further comprising temperature measuring means for measuring the temperature of the storage element,
The control unit is
The temperature of the power storage element is acquired by the temperature measuring means, and the temperature corresponding to the temperature of the power storage element is stored based on the relationship between the temperature of the power storage element stored in advance and the dynamic internal resistance Dir of the power storage element when the power storage element is new. An accumulator that acquires the dynamic internal resistance Dir when the electricity storage device is new,
The deterioration degree calculation unit,
The deterioration degree SOH of the power storage element is calculated using the dynamic internal resistance Dir when the power storage element is new, which is acquired by the acquisition unit.

請求項3の蓄電素子管理ユニットにおいて、
請求項1または請求項2に記載の蓄電素子管理ユニットは、
他の蓄電素子が組み込まれた装置に取り付けて、他の蓄電素子の劣化度SOHを測定するものである。
The storage element management unit according to claim 3,
The storage element management unit according to claim 1 or 2,
It is attached to a device in which another power storage element is incorporated, and the deterioration degree SOH of the other power storage element is measured.

本発明によれば、幅広い温度環境に対応して、蓄電素子の劣化度SOHを精度よく取得可能な蓄電素子管理ユニットを提供することができる。 According to the present invention, it is possible to provide a power storage element management unit that can accurately acquire the deterioration degree SOH of a power storage element in a wide range of temperature environments.

本発明の一実施形態に係る電池管理ユニットを有する電池管理システムを備えた充電装置の構成を模式的に示すブロック図。The block diagram which shows typically the structure of the charging device provided with the battery management system which has the battery management unit which concerns on one Embodiment of this invention. マイコンの構成を示すブロック図。The block diagram which shows the structure of a microcomputer. 充電時の電池動作を示す電池方程式の解を求める特性図。The characteristic diagram which asks for the solution of the battery equation which shows the battery operation at the time of charge. 充電時の電池内部の電気回路等価回路を示す図。The figure which shows the electric circuit equivalent circuit inside a battery at the time of charge. 長期静止状態から電流印加直後の特性図。A characteristic diagram immediately after applying a current from a long-term stationary state. 電池方程式と電流-電圧特性を複合した線図。A diagram that combines the battery equation and current-voltage characteristics. 電圧-電流の立ち上がり/立下りの時間特性を示す図。The figure which shows the time characteristic of the rise/fall of voltage-current. 充放電電流と端子電圧の変動を示すグラフ。The graph which shows the change of charge/discharge current and terminal voltage. 動的内部抵抗Dirと電圧の関係を示すグラフ。The graph which shows the relationship between dynamic internal resistance Dir and voltage. Dir温度特性を示すグラフ。The graph which shows Dir temperature characteristic. 放電による診断回路の例を示す図。The figure which shows the example of the diagnostic circuit by discharge. 充電による診断回路の例を示す図。The figure which shows the example of the diagnostic circuit by charge.

次に、本発明の一実施形態である電池管理ユニットを有する電池管理システム(BMS)を備えた充電装置1について図1及び図2を参照しながら説明する。充電装置1は、種々のエネルギー源Eにより発電された電力を充電電源2を介して電池システムの一例である二次電池100に蓄え、当該二次電池100から負荷200に電力を供給するものである。充電装置1は、二次電池100に蓄えられた電力を利用して作動する負荷200に電気的に接続されている。エネルギー源Eとしては、例えば、PV、風力、地熱等が挙げられる。負荷200としては、例えば、モータ等の動力源、各種デバイス、電灯等の照明装置、情報等の表示装置等が挙げられる。
なお、本実施形態における電池システムとは、複数の電池セルの直列接続によってパック化、モジュール化して組電池を構成したものである。
また、本実施形態では、蓄電素子の一例として単電池または組電池からなる二次電池を挙げて本発明を具体的に説明する。
Next, a charging device 1 including a battery management system (BMS) having a battery management unit according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. The charging device 1 stores electric power generated by various energy sources E in a secondary battery 100 which is an example of a battery system via a charging power source 2 and supplies electric power from the secondary battery 100 to a load 200. is there. The charging device 1 is electrically connected to a load 200 that operates using electric power stored in the secondary battery 100. Examples of the energy source E include PV, wind power, geothermal heat, and the like. Examples of the load 200 include a power source such as a motor, various devices, a lighting device such as an electric light, a display device for displaying information, and the like.
In addition, the battery system in the present embodiment is a system in which a plurality of battery cells are connected in series to form a pack and a module to form an assembled battery.
Further, in the present embodiment, the present invention will be specifically described by taking a secondary battery composed of a single battery or an assembled battery as an example of a power storage element.

ここで、本実施形態における二次電池100とは、充放電を繰り返し行うことができる電池をいい、電気エネルギーを化学エネルギーに変換して蓄え、また逆に、蓄えた化学エネルギーを電気エネルギーに変換して使用することができる電池をいう。二次電池100としては、例えば、ニッケル−カドミウム電池、ニッケル−水素金属電池、リチウムイオン電池、鉛電池等を挙げることができる。その中でも、二次電池100としては、エネルギー密度が高いリチウムイオン電池が特に好ましい。 Here, the secondary battery 100 in the present embodiment refers to a battery that can be repeatedly charged and discharged, and converts electrical energy into chemical energy and stores it, and conversely, converts the stored chemical energy into electrical energy. Refers to a battery that can be used. Examples of the secondary battery 100 include a nickel-cadmium battery, a nickel-hydrogen metal battery, a lithium ion battery, a lead battery, and the like. Among them, a lithium ion battery having a high energy density is particularly preferable as the secondary battery 100.

図1に示すように、充電装置1は、エネルギー源E、充電電源2と、二次電池100を監視・制御する電池管理ユニット(以下、BMUという)3と、バランス機構4と、電流検知/保護回路5と、表示手段6とを主に備える。充電装置1は、電池システムである二次電池100、及び負荷200に電気的に接続される。BMU3は、充電電源2、バランス機構4、電流検知/保護回路5、表示手段6、二次電池100、負荷200等に電気的に接続されている。
なお、本実施形態で説明する充電装置1、充電装置1が備えるBMU3、BMU3に接続される二次電池100の各構成は、本実施形態で説明する機能を実現可能な構成であればよく、適宜変更可能であるものとする。
As shown in FIG. 1, the charging device 1 includes an energy source E, a charging power source 2, a battery management unit (hereinafter referred to as BMU) 3 that monitors and controls the secondary battery 100, a balance mechanism 4, and a current detection/current detection unit. The protection circuit 5 and the display means 6 are mainly provided. The charging device 1 is electrically connected to a secondary battery 100, which is a battery system, and a load 200. The BMU 3 is electrically connected to the charging power source 2, the balance mechanism 4, the current detection/protection circuit 5, the display unit 6, the secondary battery 100, the load 200, and the like.
Each configuration of the charging device 1 described in the present embodiment, the BMU 3 included in the charging device 1, and the secondary battery 100 connected to the BMU 3 may be any configuration that can realize the function described in the present embodiment, It can be changed appropriately.

充電電源2は、二次電池100に充電電圧を供給する電源である。充電電源2は、交流電力を直流に変換する変圧、整流回路を有しており、変換された直流電力がBMU3を介して二次電池100に供給される。 The charging power source 2 is a power source that supplies a charging voltage to the secondary battery 100. The charging power supply 2 has a transformer and a rectifier circuit that converts AC power into DC, and the converted DC power is supplied to the secondary battery 100 via the BMU 3.

BMU3は、主に演算・指令等を実行する制御部の一例である制御回路(プロセッサー)であるマイクロコンピュータ(以下、マイコンという)3aと、充電電圧等を制御する充電電圧制御部3bと、二次電池100が有する各電池セルの電圧を検知するセル電圧検知回路3cと、を有している。BMU3は、二次電池100の各電池セル毎の電圧を計測する。 The BMU 3 mainly includes a microcomputer (hereinafter, referred to as a microcomputer) 3a that is a control circuit (processor) that is an example of a control unit that executes calculations and commands, a charging voltage control unit 3b that controls the charging voltage, and the like. And a cell voltage detection circuit 3c that detects the voltage of each battery cell of the secondary battery 100. The BMU 3 measures the voltage of each battery cell of the secondary battery 100.

マイコン3aは、充電電圧制御部3b及びセル電圧検知回路3cに電気的に接続されている。図2に示すように、マイコン3aは、中央演算装置であるマイクロプロセッシングユニット(以下、MPU)40と、記憶手段であるリードオンリーメモリ(以下、ROM)41と、ランダムアクセスメモリ(以下、RAM)42と、セル電圧検知回路3cが有するスイッチング素子(図示せず)のON/OFFを制御するスイッチング制御部43と、時間計測手段であるタイマ44と、勘定手段であるカウンタ45と、充電時もしくは放電時において二次電池100に通電される電流値を電流検出手段(後述する電流センサー60)を介して検出する電流検出部46と、二次電池100の各電池セルの端子間の電圧値(電池セル電圧)を監視する電池電圧監視部47と、A/D変換機能を有するA/D変換部48と、電池セルの劣化度SOHを算出する劣化度算出部49と、動的内部抵抗測定部50と、動的内部抵抗記憶部51と、温度補正値取得部52等を備えている。ROM41には、充電装置1内で処理される各種処理プログラム(例えば、二次電池100が有する個々の電池セルの電圧を検知し、その状態に応じて充電および放電時の印加する電圧および電流を制御するためのプログラム等)が格納される。RAM42には、例えば、本実施形態係るグラフ、当該グラフに関する近似式等が記憶される。マイコン3aは、前記スイッチング制御部43を有し、スイッチング素子のON/OFFを制御する制御回路である。
なお、劣化度算出部49、動的内部抵抗測定部50、動的内部抵抗記憶部51及び温度補正値取得部52の詳細については後述する。
The microcomputer 3a is electrically connected to the charging voltage controller 3b and the cell voltage detection circuit 3c. As shown in FIG. 2, the microcomputer 3a includes a micro processing unit (hereinafter, MPU) 40 which is a central processing unit, a read only memory (hereinafter, ROM) 41 which is a storage unit, and a random access memory (hereinafter, RAM). 42, a switching control unit 43 that controls ON/OFF of a switching element (not shown) included in the cell voltage detection circuit 3c, a timer 44 that is a time measuring unit, a counter 45 that is an accounting unit, and at the time of charging or The voltage value between the terminals of the battery cells of the secondary battery 100 and the current detection unit 46 that detects the current value that is passed through the secondary battery 100 during discharging through the current detection means (current sensor 60 described later). A battery voltage monitoring unit 47 that monitors the battery cell voltage), an A/D conversion unit 48 that has an A/D conversion function, a deterioration degree calculation unit 49 that calculates the deterioration degree SOH of the battery cell, and a dynamic internal resistance measurement. It includes a unit 50, a dynamic internal resistance storage unit 51, a temperature correction value acquisition unit 52, and the like. The ROM 41 detects various processing programs processed in the charging device 1 (for example, the voltage of each battery cell of the secondary battery 100 is detected, and the voltage and current to be applied at the time of charging and discharging are detected according to the state. A program for controlling) is stored. The RAM 42 stores, for example, the graph according to the present embodiment, an approximate expression regarding the graph, and the like. The microcomputer 3a is a control circuit that has the switching control unit 43 and controls ON/OFF of the switching element.
The details of the deterioration degree calculation unit 49, the dynamic internal resistance measurement unit 50, the dynamic internal resistance storage unit 51, and the temperature correction value acquisition unit 52 will be described later.

バランス機構4は、二次電池100の各電池セル間の電圧バランスを維持する機能を有するバランス手段であり、例えば、当該機能を組み込んだICチップで構成される。バランス機構4は、BMU3のマイコン3aにより動作する。バランス機構4は、複数の電池セルの電圧を比較し、必要に応じて、各電池セル毎に独立して放電または必要に応じて適宜定電流で充電し、各電池セルのSOC(State of Charge)レベルを平準化するものである。すなわち、バランス機構4は、放電または充電して、二次電池100の各電池セル間の電圧バランスを調整するための充放電回路を構成している。 The balance mechanism 4 is a balance unit having a function of maintaining the voltage balance between the battery cells of the secondary battery 100, and is composed of, for example, an IC chip incorporating the function. The balance mechanism 4 is operated by the microcomputer 3a of the BMU 3. The balance mechanism 4 compares the voltages of a plurality of battery cells, discharges each battery cell independently or charges the battery cell with a constant current as needed, if necessary, and charges each battery cell's SOC (State of Charge). ) Leveling the level. That is, the balance mechanism 4 constitutes a charge/discharge circuit for discharging or charging and adjusting the voltage balance between the battery cells of the secondary battery 100.

電流検知/保護回路5は、充電電流及び放電電流の電流値を検知するとともに、過充電停止、過放電停止のための保護回路である。電流検知/保護回路5は、電子回路によって電圧を計測し、電圧が一定値以上となった際に充電を停止する。過放電の場合も同様、電圧が一定値以下となった場合に放電を停止する。電流検知/保護回路5は、BMU3のマイコン3aにより動作する。 The current detection/protection circuit 5 is a protection circuit for detecting the current values of the charging current and the discharging current and for stopping overcharging and overdischarging. The current detection/protection circuit 5 measures the voltage by an electronic circuit and stops charging when the voltage becomes a certain value or more. Similarly, in the case of over-discharging, the discharging is stopped when the voltage becomes a certain value or less. The current detection/protection circuit 5 is operated by the microcomputer 3a of the BMU 3.

表示手段6は、リアルタイムで二次電池100の充電状態(SOC等)や電池の総電圧や電池セル個々の電圧等を表示するものである。表示手段6は、例えば、所定の表示装置やPC(パーソナルコンピューター)のLCD等で構成される。 The display unit 6 displays the state of charge (SOC, etc.) of the secondary battery 100, the total voltage of the battery, the voltage of each battery cell, etc. in real time. The display unit 6 is composed of, for example, a predetermined display device or an LCD of a PC (personal computer).

二次電池100は、複数の電池セル(電池反応の基本となる単一セル)を直列接続し電圧を高めてエネルギー源として使用する電池システムの一例である。二次電池100は、複数の電池セルが直列接続された組電池であり、複数の電池セルを電気的に積み上げて電圧を高めたものである。二次電池100としては、例えば、リチウムイオンバッテリーが挙げられる。 The secondary battery 100 is an example of a battery system in which a plurality of battery cells (single cells that are the basis of battery reaction) are connected in series to increase the voltage and are used as an energy source. The secondary battery 100 is an assembled battery in which a plurality of battery cells are connected in series, and a plurality of battery cells are electrically stacked to increase the voltage. Examples of the secondary battery 100 include a lithium ion battery.

[セル電圧検知回路について]
次に、BMU3(セル電圧検知回路3c)による二次電池100の各電池セルの電圧検知方法及びデータ処理方法については、本願発明者が出願した特願2017−66404に記載した電圧検知方法及びデータ処理方法を適用することができる。
なお、セル電圧検知回路3cは、蓄電素子である電池セルの端子間の電圧を計測する電圧計測手段の一例である。電圧計測手段としては、例えば、抵抗分割方式の回路などによって電池セルの電圧を計測してもよい。
[About cell voltage detection circuit]
Next, regarding the voltage detection method and data processing method of each battery cell of the secondary battery 100 by the BMU3 (cell voltage detection circuit 3c), the voltage detection method and data described in Japanese Patent Application No. 2017-66404 filed by the inventor of the present application. A treatment method can be applied.
The cell voltage detection circuit 3c is an example of a voltage measuring unit that measures the voltage between the terminals of the battery cell that is a storage element. As the voltage measuring means, for example, the voltage of the battery cell may be measured by a resistance division type circuit or the like.

また、マイコン3aは、電池セルのすべての電圧値の結果に基づいて、電流検知/保護回路5を動作させ、二次電池100を構成する電池セルの一つが、規定の制限電圧を超えれば充電は、即時停止し、又、規定の下限電圧に達すると即時、放電を停止する電池防御の機能を有している。さらに、負荷200への電力供給を遮断する遮断リレーを二次電池100の装備として付帯させ、マイコン3aからのこれらを停止する停止信号を、遮断リレーの駆動信号として適用して、電力を遮断する構成とすることも可能である。
すなわち、マイコン3aは、各電池セルのそれぞれの電圧に応じて、二次電池100を充電するための充電電源2の充電電圧を制御して、二次電池100全体の充電及び放電の動作を最適化することができる。
In addition, the microcomputer 3a operates the current detection/protection circuit 5 based on the results of all the voltage values of the battery cells, and charges one of the battery cells forming the secondary battery 100 if the voltage exceeds a specified limit voltage. Has a battery protection function of immediately stopping and stopping the discharge immediately when the specified lower limit voltage is reached. Further, a cutoff relay for cutting off the power supply to the load 200 is attached as an equipment of the secondary battery 100, and a stop signal from the microcomputer 3a for stopping these is applied as a drive signal for the cutoff relay to cut off the power. It can also be configured.
That is, the microcomputer 3a controls the charging voltage of the charging power source 2 for charging the secondary battery 100 in accordance with the voltage of each battery cell to optimize the operation of charging and discharging the entire secondary battery 100. Can be converted.

また、マイコン3aは、各電池セルの電圧のバラつき程度を観察し、充電の電流強度を調整し、又、放電電流を低下させ、二次電池100のパワーに応じた負荷パワーの適合性を自動調整し、二次電池100の異常動作を防止することができる。ひいては、BMU3によれば、電池の安全性と長寿命化を目的とした機能が実現可能となる。 Further, the microcomputer 3a observes the degree of variation in the voltage of each battery cell, adjusts the current intensity of charging, lowers the discharge current, and automatically adjusts the adaptability of the load power according to the power of the secondary battery 100. Adjustment can be performed to prevent abnormal operation of the secondary battery 100. As a result, according to the BMU 3, it is possible to realize a function for the purpose of safety and long life of the battery.

更に、例えば、二次電池100の各電池セルに制御リレーを介し固定抵抗負荷を装備して構成した場合、電池セルの最小値に他の電池セルの電圧を一致させることが可能となり、いわゆるパッシブセルバランス機能を持たせることも可能となる。
なお、パッシブセルバランスとは、高い電圧の電池セルを放電し低い電圧の電池セルに合わすことである。
Furthermore, for example, when each battery cell of the secondary battery 100 is equipped with a fixed resistance load via a control relay, it becomes possible to match the voltage of another battery cell with the minimum value of the battery cell, so-called passive. It is also possible to have a cell balance function.
The passive cell balance is to discharge a high voltage battery cell to match a low voltage battery cell.

また、例えば、二次電池100の各電池セルに制御リレーを介し独立電源を装備して構成した場合、電池セルの最大値に他の電池セルの電圧を一致させる補充電が可能となり、いわゆるアクティブセルバランス機能を持たせることも可能となる。
なお、アクティブセルバランスとは、低い電圧の電池セルを充電し高い電圧の電池セルに合わすことである。本実施形態のBMU3が備えるアクティブセルバランス機能としては、以下の充電方式も実行することができる。
In addition, for example, when each battery cell of the secondary battery 100 is equipped with an independent power source through a control relay, it becomes possible to perform supplementary charging in which the voltage of another battery cell matches the maximum value of the battery cell, so-called active. It is also possible to have a cell balance function.
The active cell balance is to charge a battery cell having a low voltage and match it with a battery cell having a high voltage. As the active cell balance function included in the BMU 3 of this embodiment, the following charging method can also be executed.

次に、本発明に係る二次電池等の蓄電素子の劣化度SOH及び蓄電残量SOCを計測するための計測原理について図面を参照しながら説明する。以下においては、蓄電素子の一例として二次電池を挙げて本発明を具体的に説明する。なお、以下においては、二次電池のことを単に電池と呼ぶ場合もある。 Next, a measurement principle for measuring the deterioration degree SOH and the remaining charge SOC of a power storage element such as a secondary battery according to the present invention will be described with reference to the drawings. In the following, the present invention will be specifically described by taking a secondary battery as an example of a power storage element. In the following, the secondary battery may be simply referred to as a battery.

[計測原理]
二次電池の正確な蓄電残量の検出のためには、起電力(Electro Motive Force)の増減と蓄電残量の増減の関係を正確に計量化しておき、起電力を計測し蓄電残量を計数化することが一つの手法となる。しかし、元の蓄電残量が正確に分かっていれば、計量しながら元の蓄電残量から使用分を抜き取り、その差し引き勘定から現在の蓄電残量は得られるが、元の蓄電残量を正確に計測することが出来なければ、その後の残量数値は信頼性の乏しいものとなる。特に、充電時の電気量の注入、放電時の電気量の取り出しは電池内部の電気的抵抗(内部抵抗)による熱損失が伴い差し引き勘定に誤差が伴うため正確な蓄電残量の計測は不可能に近い。
[Measurement principle]
In order to accurately detect the remaining charge of the secondary battery, the relationship between the increase/decrease in electromotive force (Electro Motive Force) and the increase/decrease in the charge remaining is accurately quantified, and the electromotive force is measured to determine the charge remaining. Digitization is one method. However, if the original remaining battery charge is accurately known, the usage amount is extracted from the original remaining battery charge while weighing, and the current remaining battery charge can be obtained from the deduction account, but the original remaining battery charge can be calculated accurately. If it cannot be measured, the remaining amount after that becomes unreliable. In particular, the injection of the amount of electricity during charging and the extraction of the amount of electricity during discharging are accompanied by heat loss due to the internal electrical resistance (internal resistance) inside the battery, which causes an error in the deduction account, making it impossible to accurately measure the remaining charge. Close to.

二次電池の蓄電残量を正確に計量する他の手法として、電池の起電力の計測がある。しかし、動作中の電圧は起電力を示すものでなく、動作を止めると非常に緩慢に計測値は変動する。例えば、充電を遮断した場合は、電圧値は徐々に低下し長時間かけ一定値に落ち着く。また放電を遮断すれば電圧は徐々に上昇し、これも長時間かけ一定値に収斂する。 Another method of accurately measuring the remaining charge of the secondary battery is to measure the electromotive force of the battery. However, the voltage during operation does not show an electromotive force, and when the operation is stopped, the measured value fluctuates very slowly. For example, when the charge is cut off, the voltage value gradually decreases and stabilizes at a constant value over a long period of time. When the discharge is cut off, the voltage gradually rises and also converges to a constant value over a long period of time.

この収斂した電圧が電池の起電力であり、電池の蓄電残量(SOC)の指標となる。すなわち起電力の計測は極めて長時間を要し、いったん充電なり放電するとその後何時間も放置しておかないと起電力は計測不可能であり、電池に存在する蓄電残量、即ち引出し得る電気量(パワー)は時々刻々には計測計量することはできず、したがって電池を適用した機器の制御を難しくし、また電池使用の扱いを厄介なものとしていた。 This converged voltage is the electromotive force of the battery and serves as an index of the state of charge (SOC) of the battery. That is, it takes an extremely long time to measure the electromotive force, and once the battery is charged and discharged, the electromotive force cannot be measured unless it is left for many hours after that. (Power) cannot be measured and measured moment by moment, which makes it difficult to control the equipment to which the battery is applied and makes the use of the battery cumbersome.

本発明の蓄電素子管理ユニットに係る計測原理は、二次電池における、瞬時且つ正確な残量等の計量を目的に、電池反応論の帰結により得られた「電池方程式」を応用するものである。
なお、「電池方程式」とは、具体的には二次電池に関する電池反応の理論から導かれる方程式であり、酸化/還元反応に伴う過電圧と反応抵抗による回路方程式のことである。
The measurement principle of the power storage element management unit of the present invention is to apply the "battery equation" obtained by the result of the battery reaction theory for the purpose of instantaneous and accurate measurement of the remaining amount and the like in the secondary battery. ..
The “battery equation” is specifically an equation derived from the theory of a battery reaction relating to a secondary battery, and is a circuit equation based on an overvoltage and a reaction resistance associated with an oxidation/reduction reaction.

本実施形態の蓄電素子管理ユニットは、二次電池の電池容量を特定する際に同じく電池方程式から動的内部抵抗Dir(Dynamic Internal Resistance)を瞬時に計量し、電池種による固有の定数を使用して、二次電池の現在容量である蓄電残量(SOC)あるいは劣化度(SOH、健全度とも呼ばれる)を算出するものである。 The power storage element management unit of the present embodiment instantaneously measures the dynamic internal resistance Dir (Dynamic Internal Resistance) from the battery equation when specifying the battery capacity of the secondary battery, and uses a unique constant depending on the battery type. Then, the state of charge (SOC) or the degree of deterioration (also called SOH or soundness), which is the current capacity of the secondary battery, is calculated.

また、本実施形態の蓄電素子管理ユニットは、上記とは異なる他の手法として、電池方程式と電圧−電流式を併用し電流特性係数を瞬時に計量し、この係数に比例する容量を即座に計量化して、電池の現在容量である蓄電残量(SOC)あるいは劣化度(SOH)を算出するものである。 In addition, as another method different from the above, the power storage element management unit of the present embodiment uses the battery equation and the voltage-current formula in combination to instantly measure the current characteristic coefficient, and immediately measures the capacity proportional to this coefficient. Then, the remaining capacity (SOC) or deterioration degree (SOH), which is the current capacity of the battery, is calculated.

ここで、電池反応に関する論理の概要を述べ、本願発明者らが確立した「電池方程式」に関し説明を加えておく。
なお、以下では、便宜上リチウムイオン電池の構成に基づいて説明するが、特に電池種を限定するものではない。
Here, an outline of the logic regarding the battery reaction will be described, and a description will be added regarding the “battery equation” established by the inventors of the present application.
It should be noted that the description below is based on the configuration of the lithium-ion battery for convenience, but the battery type is not particularly limited.

まず、負極の電池反応を反応速度の律速とし過電圧と電流に関し考察する。尚、ここで律速に関し説明を加えておく。電池は正極、負極、その間のイオン電導を司る電解質が主たる構成部材であるが、それぞれを通過する時間当たりの電子の量、あるいは、イオンの量は連続の論理から等しい。従って、一番流れ難い部材を流れる量が全体の流れを律することから律速と称す。 First, the battery reaction of the negative electrode is set as the rate-determining reaction rate, and the overvoltage and current are considered. Incidentally, here, a description will be added regarding the rate limiting. A battery is mainly composed of a positive electrode, a negative electrode, and an electrolyte that controls ionic conduction between them, but the amount of electrons or the amount of ions passing through each of them is equal from the continuous logic. Therefore, it is called rate-determining because the amount of flow through the most difficult member controls the overall flow.

酸化/還元反応はアレニウスの理論に基づき、次のように数式化され、式中の各符号を定義したとき、電流密度は次式で与えられる。 The oxidation/reduction reaction is mathematically expressed as follows based on the Arrhenius theory, and when each sign in the formula is defined, the current density is given by the following formula.

平衡時は電流がゼロであるから、[数1]から平衡電圧ηeqは容易に算出される。 Since the current is zero at equilibrium, the equilibrium voltage ηeq can be easily calculated from [Equation 1].

即ち、平衡電圧ηeqは、濃度比c(0,t)/cr(0,t)によって異なった数値をとる。 That is, the equilibrium voltage ηeq takes different values depending on the concentration ratio c 0 (0,t)/cr(0,t).

反応界面の濃度は時間tが無限に経過したとき、ある一定値をとる。これを次式で表現する。 The concentration at the reaction interface has a certain constant value when the time t elapses infinitely. This is expressed by the following equation.

従って、これらを[数2]に代入すると次のネルンスト(Nernst)の式が得られる。 Therefore, by substituting these into [Equation 2], the following Nernst equation is obtained.

ここで、上記Ec´は次のように表される。 Here, the Ec 0 ′ is represented as follows.

時間を十分にとったときの平衡状態の電圧を基準に、過度状態の平衡電圧を表現する。時間t0−までは、充電電流は流れており、したがって、界面での酸化材濃度は、時刻t0+で電流が遮断された直後はこの濃度を保っていると考える(図7参照)。
この時の平衡電圧は[数3]で示され、長期放置後の平衡過電圧は、[数4]で表される。その差をとると次式となる。
The balanced voltage in the transient state is expressed based on the voltage in the balanced state when sufficient time is taken. It is considered that the charging current is flowing until time t 0− , and therefore the concentration of the oxidant at the interface is maintained at this concentration immediately after the current is cut off at time t 0+ (see FIG. 7).
The equilibrium voltage at this time is represented by [Equation 3], and the equilibrium overvoltage after being left for a long time is represented by [Equation 4]. Taking the difference gives the following formula.

このΔηeq(t)は、電極から遠い沖合での溶融和形態での電解質中のリチウムイオン、及び、電極の極近辺での、酸化/還元場でのリチウムイオンの拡散、あるいは、電界場での電気泳動によって電気等価回路的にコンデンサーと抵抗のタンク回路を形成することによって現れる電位であり(図4参照)、定常充電中に、ある時点で充電遮断し、その後の時々刻々の電圧の変化を計測することによって、電解質中のリチウムイオンの導電率、電気二重層としてのキャパシター成分が同定できることを以下に示す手順で解明した。
なお、電気二重層とは、電極と電解液の界面で正の電荷及び負の電荷が非常に短い間隔を隔てて対向し、配列する層のことである。
This Δη eq (t) is the lithium ion in the electrolyte in the melted form offshore far from the electrode, and the diffusion of the lithium ion in the oxidation/reduction field in the vicinity of the electrode, or in the electric field. It is a potential that appears by forming a tank circuit of a capacitor and a resistance in an electrical equivalent circuit by electrophoresis (see Fig. 4). During steady charging, the charge is cut off at a certain point, and the change in voltage every moment thereafter is changed. It was clarified by the following procedure that the conductivity of lithium ion in the electrolyte and the capacitor component as the electric double layer can be identified by measuring.
The electric double layer is a layer in which positive charges and negative charges are opposed to each other and are arranged at a very short distance at the interface between the electrode and the electrolytic solution.

[Δηeq(t)の形成過程に関して]
長期静止状態から充電電流Iの立ち上げに際し、たとえば負極の還元反応は反応面に存在する酸化材濃度c(0,t)でt=0に相当し、長期静止状態であるからこの値はc*に等しい。負極反応によって、この濃度は消費され還元されてc*に変わり格納される。
前記消費分を補充するためには沖合からの酸化材の補充流入を要し、初期のc*と補充中のc(0,t)の比の自然対数に物理定数を掛けたものがΔηeq(t)となる。
このΔηeq(t)は、勇み反応面に到達したイオンが先客イオンに反発されイオン対抗ゾーンが、所謂、電気二重層として形成され、同時に拡散によって安定したタンク回路となる。この形成過程は次式で表現される。
[Regarding the formation process of Δηeq(t)]
When the charging current I is raised from the long-term stationary state, for example, the reduction reaction of the negative electrode corresponds to t=0 at the concentration of the oxidant c 0 (0,t) existing on the reaction surface, and this value is the long-term stationary state. Equal to c 0 *. By the negative electrode reaction, this concentration is consumed, reduced, converted into cr *, and stored.
In order to replenish the above-mentioned consumption, replenishment inflow of oxidant from the offshore is required, and the natural logarithm of the ratio of initial c 0 * and replenishing c 0 (0,t) is multiplied by a physical constant. Δηeq(t).
In this Δηeq(t), the ions that have reached the brave reaction surface are repelled by the guest ions, the ion counter zone is formed as a so-called electric double layer, and at the same time, it becomes a stable tank circuit by diffusion. This formation process is expressed by the following equation.

時間(τ=t)充電後、遮断したとすると遮断直後のタンク回路の電位差は次式となる。 If the battery is cut off after being charged for a time (τ=t c ), the potential difference of the tank circuit immediately after the cutoff is given by the following equation.

遮断以降の電圧ν(t)は、次式の一般式で与えられる。 The voltage ν(t) after the interruption is given by the following general formula.

この式は、未知数としてΔηeq(0)、T、ηeq*,があり、3つの、連立方程式からこの未知定数が固定される。 This equation has Δηeq(0), T, ηeq*, 1 as unknowns, and this unknown constant is fixed from three simultaneous equations.

ここで、t=2tと置き、時間等間隔で3点電圧計測し、さらに、e−t1/T=xと置くと、上記3式は次の代数方程式になる。 Here, if t 2 =2t 1 is set, voltage at three points is measured at equal time intervals, and further, e −t1/T =x is set, the above three equations become the following algebraic equations.

この方程式の解は次のように求まる。 The solution of this equation is found as follows.

この関係を使えば、遮断後の電圧ν(0)、ν(t)、ν(2t)を計測すれば、充電電流に応じタンク回路電圧Δηeq(0)、該タンク回路が完全放電した時に相当する起電力ηeq*,、それにタンク回路時定数Tが確定し、電解質の特性が定量化される。 Using this relationship, if the voltages ν(0), ν(t 1 ), and ν(2t 1 ) after interruption are measured, the tank circuit voltage Δηeq(0) is completely discharged according to the charging current. The electromotive force ηeq*, 1 corresponding to time and the tank circuit time constant T are determined, and the characteristics of the electrolyte are quantified.

図7に示すように、充電遮断した時点でΔηeq(0)が存在し、その後、タンク回路中の荷電量は並列抵抗で時間とともに消失、時間経過後Δηeq(∞)=0となる。 As shown in FIG. 7, Δηeq(0) exists at the time of charging interruption, and thereafter, the charge amount in the tank circuit disappears with time due to the parallel resistance, and Δηeq(∞)=0 after the lapse of time.

[電極反応による電荷移動過程に関して]
次に、負極の電池反応を反応速度の律速とし過電圧と電流に関し考察する。
電流は、平衡電圧(Δηeq+η*eq)を超えた過電圧δが加算されて、初めて流れる。[数1]でη=δ+Δηeq+η*eq の関係を導入して変形すると次式となる。
ここで、[数1]、[数2]、[数3]、[数4]の関係式、及び、移動度α=1/2、荷電子数n=1と置いて演算した。
[Regarding charge transfer process by electrode reaction]
Next, the battery reaction of the negative electrode is set as the rate-determining reaction rate, and the overvoltage and current are considered.
The current flows only after the overvoltage δ exceeding the equilibrium voltage (Δηeq+η*eq) is added. When the relation of η=δ+Δηeq+η*eq is introduced and transformed in [Equation 1], the following equation is obtained.
Here, the relational expressions of [Equation 1], [Equation 2], [Equation 3], and [Equation 4], the mobility α c =1/2, and the number of charged electrons n=1 were used for the calculation.

[数13]は任意の平衡電圧からの変位δに関し成立する電流密度を与える関係式である。電流Iに関しては、この式に有効電極面積Sを乗じたもの、になるから電流−電位関係式は次式となる。 [Equation 13] is a relational expression that gives a current density that holds for displacement δ from an arbitrary equilibrium voltage. The current I is obtained by multiplying this formula by the effective electrode area S, and therefore the current-potential relational expression is as follows.

ここで、[数14]のKxは以下のように表せる。 Here, Kx in [Equation 14] can be expressed as follows.

δは、仮想平衡(平衡電圧;η*eq+Δηeq)を超えた過電圧値となる。ただし、電流値は、平衡電圧η*eqを超えたδ+Δηeqによって決まる。
η*eqは、安定期の電極界面での酸化材と還元材の濃度比によって決まる電位で、Δηeqは動作反応時、動作電流に応じて必要となる反応界面での濃度の過剰分に相当し平衡電位に変化を与える(図3参照)。
δ is an overvoltage value that exceeds the virtual equilibrium (equilibrium voltage; η*eq+Δηeq). However, the current value is determined by δ+Δηeq which exceeds the balanced voltage η*eq.
η*eq is a potential determined by the concentration ratio of the oxidizing agent and the reducing agent at the electrode interface in the stable period, and Δηeq corresponds to the excess concentration at the reaction interface required according to the operating current during the operation reaction. Changes the equilibrium potential (see Figure 3).

電流Iの微小な過電圧δに対する依存性は動作点でのコンダクタンスとなり、その逆数は動作点での抵抗すなわち動的内部抵抗Dirとなる。これを表記すると以下の式となる。
The dependence of the current I on the minute overvoltage δ is the conductance at the operating point, and the reciprocal thereof is the resistance at the operating point, that is, the dynamic internal resistance Dir. When this is written, it becomes the following formula.

また、Kは、[数6]を使い、次のように変形される。 Also, K X is transformed as follows using [Equation 6].

[数16]により導出される動的内部抵抗Dirと[数14]による電流Iの積は次式[数18]に示すように電池に関わらず動作過電圧δだけに従属する関数となる。 The product of the dynamic internal resistance Dir derived from [Equation 16] and the current I obtained from [Equation 14] is a function dependent only on the operating overvoltage δ regardless of the battery, as shown in the following Equation [18].

電圧−電流特性を確定する諸要素(δ,Δηeq,Dir,I)が上記で確定できたので特性の概略図(図3参照)及び電池の等価回路(図4参照)が描ける。 Since the elements (δ, Δηeq, Dir, I) that determine the voltage-current characteristics can be determined as described above, a schematic diagram of the characteristics (see FIG. 3) and an equivalent circuit of the battery (see FIG. 4) can be drawn.

[電池方程式(一般式)]
動作中には電解質中のイオンの流れにより、電極界面に上述した電気二重層が形成されて、図3、図4で示すΔηeqの平衡電位の加算が起きる。
図3は、充電時の電圧−電流の特性図である。
図3より、起動時の端子電圧Δvは次式を満たす。
[Battery equation (general formula)]
During operation, the electric double layer described above is formed at the electrode interface due to the flow of ions in the electrolyte, and the addition of the equilibrium potential of Δηeq shown in FIGS. 3 and 4 occurs.
FIG. 3 is a voltage-current characteristic diagram during charging.
From FIG. 3, the terminal voltage Δv at startup satisfies the following equation.

ここで、電流式は次式となる。 Here, the current equation is as follows.

また、動作点でのDirは次式で求まる。 Further, Dir at the operating point is obtained by the following equation.

従って、次式が導ける。 Therefore, the following equation can be derived.

これを、[数19]に代入して、次式“電池方程式”が樹立される。 Substituting this into [Equation 19], the following equation "battery equation" is established.

過電圧δに関する図表示をすると図3となる。 FIG. 3 is a diagram showing the overvoltage δ.

[電池方程式(特殊解)]
静止状態からの立ち上がり時には電流式は次式となる。電極表面には、電界質中の電気二重層がまだ形成されていないから一般式でΔηeq=0と置いた式となる。
[Battery equation (special solution)]
When rising from the stationary state, the current equation is as follows. Since the electric double layer in the electrolyte is not yet formed on the surface of the electrode, the general formula is Δηeq=0.

図5は、静止状態からの立ち上がり充電時の電圧−電流の特性図である。
図5より、起動時の端子電圧Δvは次式を満たす。
FIG. 5 is a voltage-current characteristic diagram at the time of rising and charging from a stationary state.
From FIG. 5, the terminal voltage Δv at startup satisfies the following equation.

静止状態からの動的内部抵抗Dirは次式のように表せる。 The dynamic internal resistance Dir from the stationary state can be expressed by the following equation.

DirとIの積は、次のように示すことができる。
The product of Dir and I can be shown as:

以上、纏めると、次の3つの式になる。
The above can be summarized into the following three expressions.

[数29]を使用して、過電圧δを変数として、過電圧δに関する数値計算を行いグラフに描くと図6となる。なお、図6のグラフは、電池の種類、大きさ等にかかわらず成立する。
ここで、図6における横軸は過電圧δである。図6における上段グラフの縦軸はΔvであり、下段グラフの縦軸は後述するI/Koである。
Using [Equation 29], the overvoltage δ is used as a variable to perform a numerical calculation regarding the overvoltage δ, and the result is shown in FIG. The graph of FIG. 6 holds regardless of the type and size of the battery.
Here, the horizontal axis in FIG. 6 is the overvoltage δ. The vertical axis of the upper graph in FIG. 6 is Δv, and the vertical axis of the lower graph is I/Ko described later.

具体的には、図6のグラフは、電池の電圧(起電力)すなわち、その時点の平衡電圧(ηeq*)より高い電圧を電池に印加すると、電池は電池の種類にかかわらず、このΔv(=ν−ηeq*)だけで動作点δを決定することを意味している。即ち、電池反応は、どんな電池でもその動作が同一の式によって表現され、電池の種類、性能の違いは、この動作点δによって、電流、および電池内部抵抗が決定されることを示唆するものである。
なお、図6のようなグラフデータ(マップデータ)は、後述するマイコン3aに記憶される。
Specifically, the graph of FIG. 6 shows that when a voltage (electromotive force) of the battery, that is, a voltage higher than the equilibrium voltage (ηeq*) at that time is applied to the battery, the Δv( =ν-ηeq*) alone means that the operating point δ is determined. That is, the battery reaction is expressed by the same formula for any battery, and the difference in battery type and performance suggests that the operating point δ determines the current and the battery internal resistance. is there.
The graph data (map data) as shown in FIG. 6 is stored in the microcomputer 3a described later.

[解の誘導例(図6の適用例)]
実際には、BMU3の内部に装着しているマイコン3aがすべて演算することになるが、マイコンがどのような演算過程を踏まえ演算結果を提示するのかを以下説明を加えておく。
二次電池の充電時において、
1)電流印加する。
2)Δvを実測し、図6を用いてΔvの曲線グラフとの交点を求める。この交点に対応するδ値が確定する。
3)δに関する電流関数はSOCよって異なる係数を持ち図6に示すようにSOCに対応した特性曲線となる。何故なら、係数式を変形して次のように表せる。
[Example of solution guidance (application example of FIG. 6)]
Actually, all the microcomputers 3a mounted inside the BMU 3 perform calculations, but the following description will be added regarding what kind of calculation process the microcomputers present based on the calculation results.
When charging the secondary battery,
1) Apply current.
2) Measure Δv and find the intersection of Δv 1 and the curve graph using FIG. The δ value corresponding to this intersection is determined.
3) The current function with respect to δ has different coefficients depending on the SOC, and becomes a characteristic curve corresponding to the SOC as shown in FIG. This is because the coefficient equation can be modified and expressed as follows.

この式から以下の式が導かれる。 The following equation is derived from this equation.

この式が図6の電流式である。 This equation is the current equation in FIG.

従って、動作時のSOCが既知であれば、その交点から電極の種類による(I/K00Sc)の交点を通る点(δ,I/KooSc)が決定し、この点はSOCに対応した動作点となる。
[数31]の式で、その右辺が確定すれば、左辺の計測電流Iを導入すれば、電池種固有の特性値Koo及び有効電極面積Scが確定する。
Therefore, if the SOC during operation is known, a point (δ, I/KooSc) passing from the intersection to the intersection of (I/K 00 Sc) depending on the type of electrode is determined, and this point corresponds to the operation corresponding to the SOC. It becomes a point.
If the right side of the equation (31) is determined, and the measured current I on the left side is introduced, the characteristic value Koo and the effective electrode area Sc specific to the battery type are determined.

図6に示す特性図で、過電圧δに対する電流値Iはチャージング状態(即ちSOC)によって大きく異なる。すなわち、SOCの小さいときには一定の電流値を得るには、大きなδ値が、また充電が進み、SOC;50%近辺で、過電圧δは最小となり、さらに、充電が進むと再びδは大きくなる。電池が“空”から“満”までの充電過程は図6に示す矢印に沿って動作点が変わる。SOC;50%を何らかの手法で固定でき、図6でSOC=0.5曲線から電流I及びδが固定されると[数12]は次式となる。 In the characteristic diagram shown in FIG. 6, the current value I with respect to the overvoltage δ greatly differs depending on the charging state (that is, SOC). That is, in order to obtain a constant current value when the SOC is small, a large δ value is charged again, and the overvoltage δ is minimized when the SOC is about 50%, and δ is increased again when the charging is further advanced. During the charging process from "empty" to "full" of the battery, the operating point changes along the arrow shown in FIG. SOC; 50% can be fixed by some method, and if the currents I and δ are fixed from the SOC=0.5 curve in FIG. 6, [Equation 12] becomes the following equation.

この式から電池の現在の性能を示す電池性能指数となるSOHが確定し、図6に示す線図から電池性能指数であるSOHが確定される。
以上が上記「電池方程式」に基づいて二次電池の劣化度SOH及び蓄電残量SOCを検出するための原理である。
From this equation, SOH which is the battery performance index indicating the current performance of the battery is determined, and SOH which is the battery performance index is determined from the diagram shown in FIG.
The above is the principle for detecting the deterioration degree SOH and the remaining charge SOC of the secondary battery based on the above-mentioned “battery equation”.

ここで、前記数式解析と定性的現象論との連関に関し、説明を加えておく。
[電池起電力と動的内部抵抗について]
図4には、充電の概念を示す電気等価回路を示す。
次に、図4に示す電池(本実施形態では二次電池100の電池セル)の等価回路を用いて、電池起電力Vemfと動的内部抵抗Dirについて説明する。
電池を等価回路で表すと単純な電気回路となる。すなわち、電気エネルギーであるチャージ量(蓄電容量)Q(単位はクーロン)を持つ電池素子と、この電池に直結した純抵抗(コンダクタンス)の直列接続で表される。具体的には、以下に示すように、電池端子間(A−B)の電圧をV、電池端子間(A−B)に流れる電流をI、動的内部抵抗をDir、電池起電力をVemfとすると、図4に示すように、電池を等価回路で表すことができる。
V;電池端子間(A−B)の電圧
I;電池端子間(A−B)に流れる電流
Dir;動的内部抵抗(Dynamic Internal Resistance)
Vemf(=ηeq*);電池起電力(静止時の正極・負極間電位差)
Here, the relation between the mathematical expression analysis and the qualitative phenomenology will be explained.
[Battery electromotive force and dynamic internal resistance]
FIG. 4 shows an electrical equivalent circuit showing the concept of charging.
Next, the battery electromotive force Vemf and the dynamic internal resistance Dir will be described using the equivalent circuit of the battery (the battery cell of the secondary battery 100 in this embodiment) shown in FIG.
If a battery is represented by an equivalent circuit, it becomes a simple electric circuit. That is, it is represented by a series connection of a battery element having a charge amount (storage capacity) Q (unit is Coulomb), which is electric energy, and a pure resistance (conductance) directly connected to the battery. Specifically, as shown below, the voltage between the battery terminals (A-B) is V, the current flowing between the battery terminals (A-B) is I, the dynamic internal resistance is Dir, and the battery electromotive force is Vemf. Then, as shown in FIG. 4, the battery can be represented by an equivalent circuit.
V: Voltage between battery terminals (A-B) I: Current flowing between battery terminals (AB) Dir: Dynamic internal resistance (Dynamic Internal Resistance)
Vemf (=ηeq*); Battery electromotive force (potential difference between positive and negative electrodes at rest)

電池起電力Vemfとは電池が外部の回路と接続しておらず、電流が流れていない状態(静止時)での電池端子間(A−B)の電圧を意味する。例えば二次電池の一例であるリチウムイオン電池の場合、前記電池起電力Vemfは、リチウムイオンLiや電子eの流れではなく、陰極と陽極のイオンポテンシャル差となる。したがって、イオンポテンシャル差は陰極と陽極の間のリチウムイオンLiのサイトの占有率の差によって表される。 The battery electromotive force Vemf means the voltage between the battery terminals (AB) when the battery is not connected to an external circuit and no current is flowing (at rest). For example, in the case of a lithium ion battery, which is an example of a secondary battery, the battery electromotive force Vemf is not the flow of lithium ions Li + or electrons e , but the difference in ion potential between the cathode and the anode. Therefore, the difference in ion potential is represented by the difference in the site occupancy of lithium ions Li + between the cathode and the anode.

蓄電容量Qとは、例えばリチウムイオン電池の場合、リチウムイオンLiが陰極に蓄えられる空間の大きさを意味する。すなわち、蓄電容量Qが大きいとは、陰極及び陽極の体積が大きい(サイト数が大きい)ことであり([数32]のK値が大きい)、また、作用面が大きく([数32]のSc値が大きい)、両極へのリチウムイオンLiの浸透が早く、多いことを意味する。
蓄電容量Qは、電池の劣化に伴い減少する。当該電池の劣化とは、動的内部抵抗Dirが増加して、リチウムイオンが電池電極に接触せず機能しないことを意味する。動的内部抵抗Dirが増加する原因としては、リチウムイオンの電気泳動における抵抗の増加、反応速度の低下、拡散速度の低下、陽極及び陰極におけるリチウムイオンのサイト数の低下などが考えられる。前記動的内部抵抗Dirは充電及び放電を重ねることにより増加し、その結果電池の劣化が進行する。
The storage capacity Q means, for example, in the case of a lithium ion battery, the size of a space in which lithium ions Li + are stored in the cathode. That is, the large storage capacity Q means that the cathode and the anode have large volumes (the number of sites is large) (the K 0 value of [Equation 32] is large), and the action surface is large ([Equation 32]). Has a large Sc value), and it means that the penetration of lithium ions Li + into both electrodes is rapid and large.
The storage capacity Q decreases as the battery deteriorates. The deterioration of the battery means that the dynamic internal resistance Dir increases and the lithium ion does not contact the battery electrode and does not function. The cause of the increase in the dynamic internal resistance Dir is considered to be an increase in the resistance of the lithium ion during electrophoresis, a decrease in the reaction rate, a decrease in the diffusion rate, a decrease in the number of lithium ion sites in the anode and the cathode, and the like. The dynamic internal resistance Dir increases due to repeated charging and discharging, and as a result, deterioration of the battery progresses.

[充放電時の診断方法:蓄電素子(電池セル)の劣化度SOHの算出]
本実施形態に係るBMU3は、蓄電素子(電池セル)の劣化度SOHの算出する診断機能を有しており、当該診断機能について以下において説明する。
[Diagnosis Method During Charging/Discharging: Calculation of Degradation SOH of Storage Element (Battery Cell)]
The BMU 3 according to the present embodiment has a diagnostic function of calculating the deterioration degree SOH of the power storage element (battery cell), and the diagnostic function will be described below.

BMU3(マイコン3a)は、電池セルの新品時の動的内部抵抗Dirと現在の動的内部抵抗Dirとに基づき、電池セルの劣化度SOHを算出する劣化度算出部49と、電池セルの充電もしくは放電を行いながら、電池セルの現在の動的内部抵抗Dirを測定する動的内部抵抗測定部50と、電池セルの新品時の動的内部抵抗Dirを記憶する記憶部51と、を備える。 The BMU 3 (microcomputer 3a) uses a deterioration degree calculation unit 49 that calculates the deterioration degree SOH of the battery cell based on the new dynamic internal resistance Dir of the battery cell and the current dynamic internal resistance Dir, and charging of the battery cell. Alternatively, it includes a dynamic internal resistance measuring unit 50 that measures the current dynamic internal resistance Dir of the battery cell while discharging, and a storage unit 51 that stores the dynamic internal resistance Dir when the battery cell is new.

BMU3による二時電池100の各電池セルの診断は、電池セルの充電時の電圧変化測定、または放電時の電圧変化測定により行われる。
また、上述したように電池セルの劣化の進行は、電池セルの動的内部抵抗Dirの変化率として表せるため、蓄電素子(電池セル)の劣化率SOHは、
(新品時の蓄電素子のDir)/(現在の蓄電素子のDir)×100(%)
と表すことができる。
そのため、劣化度算出部49において電池セルの劣化率SOHを算出する場合、BMU3では、新品時の電池セルのDirを下記で説明する方法で算出して予め所定の動的内部抵抗記憶部51に記憶しておき、その動的内部抵抗記憶部51に記憶された新品時の電池セルのDirと、動的内部抵抗測定部50において測定される、現在診断を実行中(充電もしくは放電中)の電池セルのDirとを比較することで電池セルの劣化状態を判断し、SOHや満充電容量を取得することができる。
なお、現在の電池セルのDirは、動的内部抵抗測定部50により上述した原理に基づいて測定される。
The diagnosis of each battery cell of the secondary battery 100 by the BMU 3 is performed by measuring the voltage change during charging of the battery cell or the voltage change during discharging of the battery cell.
Further, as described above, since the progress of deterioration of the battery cell can be expressed as a change rate of the dynamic internal resistance Dir of the battery cell, the deterioration rate SOH of the storage element (battery cell) is
(Dir of new storage element)/(Dir of current storage element) x 100 (%)
It can be expressed as.
Therefore, when the deterioration rate calculation unit 49 calculates the deterioration rate SOH of the battery cell, the BMU 3 calculates the Dir of the new battery cell by the method described below and stores it in the predetermined dynamic internal resistance storage unit 51 in advance. The Dir of a new battery cell stored in the dynamic internal resistance storage unit 51 and the current internal diagnostic measured in the dynamic internal resistance measurement unit 50 (currently in charge or discharge) The deterioration state of the battery cell can be determined by comparing with Dir of the battery cell, and SOH and full charge capacity can be acquired.
The current Dir of the battery cell is measured by the dynamic internal resistance measuring unit 50 based on the principle described above.

また、新品時の電池セルのDirをあらかじめ動的内部抵抗記憶部51に記憶しておく必要があるが、Dirは一定ではなくSOC(起電力Vemf)の違いにより変化する。新品時の電池セルのDirの算出方法については後述する。 Further, the Dir of a new battery cell needs to be stored in advance in the dynamic internal resistance storage unit 51, but the Dir is not constant but changes depending on the SOC (electromotive force Vemf). The method for calculating the Dir of a battery cell when it is new will be described later.

新品時の電池セルのDirを算出するためには、この電池セルの現在のSOC(起電力Vemf)を知る必要がある。
起電力Vemfは、電池セルの充放電を停止し、しばらく放置して電圧を測定すれば求められるが、BMSは充放電中にも診断を行う必要があるため、その測定方法を以下で説明する。
In order to calculate the Dir of a new battery cell, it is necessary to know the current SOC (electromotive force Vemf) of this battery cell.
The electromotive force Vemf can be obtained by stopping the charging/discharging of the battery cells and leaving it for a while and measuring the voltage. However, since the BMS needs to be diagnosed during charging/discharging, its measuring method will be described below. ..

(充放電中のVemfの算出)
図8は、蓄電素子(電池セル)に流れる充放電電流と、充放電による端子電圧の変化を示したものである。この図8に示すグラフでは、Vemfが異なる4条件で測定を行った。
充放電電流がプラス側である充電中の傾きにややばらつきがあるが、Vemfの値によらず同一の傾きであると仮定し、下記近似直線の式により充放電中の端子電圧によりVemfを求めることができる。
図8のグラフから、V0を端子電圧、Iを充放電電流(+側:充電、−側:放電)とすると、下記が近似式として導かれる。
放電中:Vemf=V0−0.08I(I<0)
充電中:Vemf=V0−0.15I(0<I)
このように近似式を導出することで、電池セルの端子電圧と電流センサー60によって電流(充放電電流)を測定することにより起電力Vemfを求めることができる。
なお、二次電池100の各電池セルに対応して充電もしくは放電の際に流れる電流を測定するための電流センサー60(図11、図12参照)が設けられている。
(Calculation of Vemf during charging/discharging)
FIG. 8 shows the charging/discharging current flowing in the storage element (battery cell) and the change in the terminal voltage due to charging/discharging. In the graph shown in FIG. 8, the measurement was performed under four different Vemf conditions.
Although the charging/discharging current is on the positive side and the slope during charging is somewhat uneven, it is assumed that the slope is the same regardless of the value of Vemf, and Vemf is calculated from the terminal voltage during charging/discharging by the following approximate straight line formula. be able to.
From the graph of FIG. 8, letting V0 be the terminal voltage and I the charge/discharge current (+ side: charge, − side: discharge), the following is derived as an approximate expression.
During discharge: Vemf=V0-0.08I (I<0)
Charging: Vemf=V0-0.15I (0<I)
By deriving the approximate expression in this manner, the electromotive force Vemf can be obtained by measuring the terminal voltage of the battery cell and the current (charge/discharge current) by the current sensor 60.
A current sensor 60 (see FIGS. 11 and 12) for measuring the current flowing during charging or discharging is provided for each battery cell of the secondary battery 100.

[Dir初期特性:Vemfから新品時の蓄電素子のDirの算出]
上記にて算出された充放電中の電圧(起電力Vemf)と、当該電圧に対する測定されたDirをプロットしたグラフを図9に示す。
初期Dir(新品時の電池セルのDir)は、プロットした値を近似する所定の近似式(図9に示すグラフでは、例えば、図中で示す近似式)に起電力Vemfを式中のVに代入することで求めることができる。図9では、電池セルのDirは、実際には一定の値を取らず、充電が進んでいくと下がっていくことがわかる。
このようにして、本実施形態のBMU3では、Dir初期特性を正確に導き出せるため、従来よりもSOHの精度がより向上する。
[Dir initial characteristics: calculation of Dir of new storage element from Vemf]
FIG. 9 shows a graph in which the voltage (electromotive force Vemf) during charging/discharging calculated above and the measured Dir with respect to the voltage are plotted.
The initial Dir (Dir of a new battery cell) is obtained by using a predetermined approximation formula (for example, the approximation formula shown in the graph in FIG. 9) that approximates the plotted value, and the electromotive force Vemf to V in the formula. It can be obtained by substituting. In FIG. 9, it can be seen that the Dir of the battery cell does not actually take a constant value and decreases as the charging progresses.
In this way, in the BMU 3 of the present embodiment, the Dir initial characteristic can be accurately derived, so that the accuracy of SOH is further improved as compared with the conventional case.

[新品時の蓄電素子のDirにおける温度補正]
本実施形態に係るBMU3は、Dirを電池セルの温度に対応して補正する機能を有しており、当該機能について以下において説明する。
[Temperature correction in Dir of new storage element]
The BMU 3 according to the present embodiment has a function of correcting Dir according to the temperature of the battery cell, and the function will be described below.

BMU3(マイコン3a)は、温度計測手段である温度センサー70により電池セルの温度を取得し、あらかじめ記憶している電池セルの温度と当該電池セルの新品時の動的内部抵抗Dirとの関係から当該電池セルの温度に対応した新品時の動的内部抵抗Dirを取得する温度補正値取得部52を備える。換言すれば、温度補正値取得部52は、Dirを温度補正する温度補正手段である。 The BMU 3 (microcomputer 3a) acquires the temperature of the battery cell by the temperature sensor 70, which is a temperature measuring means, and based on the relationship between the temperature of the battery cell stored in advance and the dynamic internal resistance Dir when the battery cell is new. A temperature correction value acquisition unit 52 that acquires a dynamic internal resistance Dir at the time of a new product corresponding to the temperature of the battery cell is provided. In other words, the temperature correction value acquisition unit 52 is a temperature correction means for correcting the temperature of Dir.

図10に示すグラフは、あらかじめ温度変化によるDir変動(温度依存性)を実測した測定結果であり、このグラフが示すように、環境温度が変化するとDirも変化する。また、このグラフの関係式(近似式)を用いることで、電池セルの温度が変化した時の新品時の電池セルのDirを求めることができる。このように温度補正された新品時の電池セルのDirを用いて、BMU3は電池セルの劣化度SOHを算出する。このようにして、本実施形態のBMU3では、幅広い温度環境に対応して、Dir初期特性を正確に導き出せるため、従来よりも電池セルの劣化度SOHを精度よく取得することができる。
なお、二次電池100の各電池セルに対応して電池の表面温度を測定するための温度計測手段である温度センサー70(図11、図12参照)が設けられている。
The graph shown in FIG. 10 is a measurement result obtained by actually measuring Dir fluctuation (temperature dependence) due to temperature change in advance, and as the graph shows, Dir also changes when the environmental temperature changes. Further, by using the relational expression (approximate expression) of this graph, it is possible to obtain the Dir of a new battery cell when the temperature of the battery cell changes. The BMU 3 calculates the deterioration degree SOH of the battery cell by using the temperature-corrected Dir of the new battery cell. In this way, in the BMU 3 of the present embodiment, the Dir initial characteristics can be accurately derived in response to a wide range of temperature environments, and thus the deterioration degree SOH of the battery cell can be acquired more accurately than in the conventional case.
A temperature sensor 70 (see FIG. 11 and FIG. 12) which is a temperature measuring means for measuring the surface temperature of the battery is provided for each battery cell of the secondary battery 100.

また、蓄電残量SOCについては、上述した計測原理等により電池起電力Vemfを正確に取得することができれば、該取得された電池起電力を二次電池10の充電率が100%となる電圧と定義すればよい。 As for the remaining charge SOC, if the battery electromotive force Vemf can be accurately acquired based on the above-described measurement principle or the like, the acquired battery electromotive force becomes a voltage at which the charging rate of the secondary battery 10 becomes 100%. Just define it.

また、本発明のBMSに搭載される診断機能を有する制御回路に関しては、例えば、以下のものが挙げられる。 Further, the control circuit having a diagnostic function mounted on the BMS of the present invention includes, for example, the following.

[(1)放電による診断回路]
図11は、放電による診断が可能な回路300を示した回路図である。
図11に示すように、回路300は、直列に接続された複数の蓄電素子である電池セルB1、B2、・・、BNと、前記各電池セルB1、B2、・・、BNの(+)、(−)端子にそれぞれ接続されたスイッチング素子であるSW1、SW2、・・、SWNと、電流センサー60と、各電池セルB1、B2、・・、BN毎の温度を測定可能な温度センサー70と、負荷200と、二次電池100の両端部となる(+)、(−)端子に接続される充電器210と、を主に有している。また、回路300は、電池セルB1、B2、・・、BN毎の端子電圧を測定するための電圧計を備えている。
なお、回路300は、上述したようにマイコン3aにより動作制御される。
このように回路を構成したことにより、電池の診断として、上述したように放電しながら幅広い温度環境に対応して各電池セルB1、B2、・・、BNにおけるSOHを精度良く算出することができる。
[(1) Diagnostic circuit based on discharge]
FIG. 11 is a circuit diagram showing a circuit 300 that can be diagnosed by discharging.
As shown in FIG. 11, the circuit 300 includes battery cells B1, B2,..., BN, which are a plurality of power storage elements connected in series, and (+) of each of the battery cells B1, B2,. , SWN, which are switching elements respectively connected to the (-) terminals, a current sensor 60, and a temperature sensor 70 capable of measuring the temperature of each battery cell B1, B2,. And a charger 210 connected to the (+) and (−) terminals that are both ends of the secondary battery 100. The circuit 300 also includes a voltmeter for measuring the terminal voltage of each of the battery cells B1, B2,..., BN.
The operation of the circuit 300 is controlled by the microcomputer 3a as described above.
By configuring the circuit in this manner, as a battery diagnosis, the SOH in each of the battery cells B1, B2,..., BN can be accurately calculated in response to a wide temperature environment while discharging as described above. ..

[(2)充電による診断回路]
図12は、充電による診断が可能な回路400を示した回路図である。
図12に示すように、回路400は、直列に接続された複数の蓄電素子である電池セルB1、B2、・・、BNと、前記各電池セルの(+)、(−)端子にそれぞれ接続されたスイッチング素子であるSW1、SW2、・・、SWNと、電流センサー60と、各電池セルB1、B2、・・、BN毎の温度を測定可能な温度センサー70と、負荷200と、二次電池100の両端部となる(+)、(−)端子に接続される充電器210と、を主に有している。また、回路400は、各電池セルB1、B2、・・、BN毎に充電するための充電器と、電池セルB1、B2、・・、BN毎の端子電圧を測定するための電圧計とを備えている。
なお、回路400は、上述したようにマイコン3aにより動作制御される。
このように回路を構成したことにより、電池の診断として、上述したように充電しながら幅広い温度環境に対応して各電池セルB1、B2、・・、BNにおけるSOHを精度良く算出することができる。
[(2) Diagnostic circuit by charging]
FIG. 12 is a circuit diagram showing a circuit 400 capable of diagnosis by charging.
As shown in FIG. 12, a circuit 400 is connected to battery cells B1, B2,..., BN, which are a plurality of power storage elements connected in series, and the (+) and (−) terminals of the battery cells, respectively. , SWN that are switching elements that have been switched, a current sensor 60, a temperature sensor 70 that can measure the temperature of each battery cell B1, B2,..., BN, a load 200, and a secondary It mainly has a charger 210 that is connected to the (+) and (−) terminals that are both ends of the battery 100. Further, the circuit 400 includes a charger for charging each of the battery cells B1, B2,..., BN and a voltmeter for measuring the terminal voltage of each of the battery cells B1, B2,. I have it.
The operation of the circuit 400 is controlled by the microcomputer 3a as described above.
By configuring the circuit in this way, as a battery diagnosis, the SOH in each of the battery cells B1, B2,..., BN can be accurately calculated while being charged as described above, corresponding to a wide temperature environment. ..

なお、本実施形態のBMU3は、診断機能を有することを特徴としているが、例えば、すでにBMSが組み込まれた蓄電素子ユニットに、本実施形態のBMU3を外付けすることにより、この蓄電素子ユニットが有する蓄電素子の診断をすることも可能である。つまり、本実施形態のBMU3を、他の蓄電素子が組み込まれた装置に取り付けて、他の蓄電素子の劣化度SOHを測定することが可能である。これにより、BMU3にあらかじめ接続される蓄電素子だけでなく、他の装置に接続された蓄電素子の診断も可能となるため、BMU3の汎用性が向上する。 Although the BMU 3 of the present embodiment is characterized by having a diagnostic function, for example, by attaching the BMU 3 of the present embodiment to a storage element unit in which BMS is already incorporated, the storage element unit is It is also possible to diagnose the power storage element that it has. That is, it is possible to attach the BMU 3 of the present embodiment to a device in which another power storage element is incorporated and measure the deterioration degree SOH of the other power storage element. As a result, not only the electricity storage device connected in advance to the BMU 3 but also the electricity storage device connected to another device can be diagnosed, so that the versatility of the BMU 3 is improved.

[手法1]
以上のように、本実施形態のBMU3によれば、制御部の一例であるマイコン3aは、二次電池100の充電開始時の立ち上がり電圧および電流の計測値をもとに[数25]に記載の電池方程式及び[数28]に記載の式を使って、二次電池100の動作時の過電圧δと、Dirを演算により求めることができる。さらに、このDirと、新品の二次電池のDirとの対比によって前記劣化度SOHを検出することができる。これにより、二次電池100のSOHが精度良くかつ瞬時に検出することができる。したがって、二次電池100の電池状態(例えば充電状態)の認識がいつでも可能となる。
[Method 1]
As described above, according to the BMU 3 of the present embodiment, the microcomputer 3a, which is an example of the control unit, describes in [Equation 25] based on the measured values of the rising voltage and the current at the start of charging the secondary battery 100. The overvoltage δ during operation of the secondary battery 100 and Dir can be calculated by using the battery equation of 1 and the equation described in [Equation 28]. Furthermore, the deterioration degree SOH can be detected by comparing this Dir with the Dir of a new secondary battery. As a result, the SOH of the secondary battery 100 can be detected accurately and instantaneously. Therefore, the battery state (for example, the charging state) of the secondary battery 100 can be recognized at any time.

[手法2]
また、本実施形態のBMU3によれば、マイコン3aは、二次電池100の充電を遮断した時の立下がり電圧の計測値と[数9]〜[数11]とから求められるΔηeq及びηeq*と「電池方程式」を用いて静止時の正確な起電力の変化を求め、その起電力があらかじめ計測された対比テーブルとの照合により蓄電残量SOCを確定する。これにより、二次電池100が長期間使用により容量低下となっても、その時点の蓄電残量が比率としても、絶対値としても取得され、ユーザのエネルギー枯渇による不安感が払拭される。
[Method 2]
Further, according to the BMU 3 of the present embodiment, the microcomputer 3a obtains Δηeq and ηeq* obtained from the measured value of the fall voltage when the charging of the secondary battery 100 is cut off and [Equation 9] to [Equation 11]. And the “battery equation” are used to obtain an accurate change in electromotive force at rest, and the remaining charge SOC is determined by comparison with a comparison table in which the electromotive force is measured in advance. As a result, even if the secondary battery 100 has decreased in capacity due to long-term use, the remaining power storage amount at that time is acquired as a ratio and an absolute value, and the user's anxiety due to energy depletion is eliminated.

上述した手法1では、BMU3が二次電池100の「充電開始時の立ち上がり電圧および電流の計測値」をもとに[数25]に記載の電池方程式及び[数28]に記載の式を使って、二次電池100の動作時の過電圧δと、Dirを演算により求めている。ここで、上記「充電開始時の立ち上がり電圧および電流の計測値」は、マイコン3aが各種計測手段を介して取得する二次電池の「充電または放電に関する所定の条件」の一例である。 In the above-described method 1, the BMU 3 uses the battery equation described in [Equation 25] and the equation described in [Equation 28] based on the “measured values of the rising voltage and current at the start of charging” of the secondary battery 100. Then, the overvoltage δ during the operation of the secondary battery 100 and the Dir are calculated. Here, the "measurement value of the rising voltage and current at the start of charging" is an example of the "predetermined condition for charging or discharging" of the secondary battery acquired by the microcomputer 3a via various measuring means.

上記「充電または放電に関する所定の条件」としては、例えば、以下のものが挙げられる。
(1)放電開始時の立下り電圧の時間経過
(2)充電開始時の立ち上がり電圧の時間経過
(3)放電遮断時の立ち上がり電圧の計測値
(4)充電遮断時の立下り電圧の計測値
(5)充電電流を増加させた時または放電電流を減少させた時の立ち上がり電圧の計測値
(6)充電電流を減少させた時または放電電流を増加させた時の立下り電圧の時間経過
(7)充電から放電へ移行させた時の立下り電圧の時間経過
(8)放電から充電へ移行させた時の立ち上がり電圧の計測値
BMU3は、これらの各条件に基づいて、[数25]に記載の電池方程式及び[数28]に記載の式を使って、二次電池100の動作時の過電圧δと、Dirを演算により求めることができる。よって、本発明と同様の効果を奏する。
Examples of the above-mentioned “predetermined condition regarding charging or discharging” include the following.
(1) Time-lapse of falling voltage at the start of discharging (2) Time-lapse of rising voltage at the start of charging (3) Measured value of rising voltage at discharge interruption (4) Measured value of falling voltage at charge interruption (5) Measured value of rising voltage when charging current is increased or discharging current is decreased (6) Time-lapse of falling voltage when charging current is decreased or discharging current is increased ( 7) Elapsed time of falling voltage when shifting from charging to discharging (8) Measured value of rising voltage when shifting from discharging to charging BMU3 is calculated based on each of these conditions into [Equation 25]. The overvoltage δ during operation of the secondary battery 100 and Dir can be calculated by using the battery equation described and the formula described in [Equation 28]. Therefore, the same effect as the present invention is achieved.

本実施形態では、二次電池を用いた場合の充放電について説明したが、本発明は二次電池に限定するものではなく、蓄電素子に広く適用することができる。
ここで、蓄電素子とは、蓄電機能を有する素子全般を指し、例えば、一対の電極と、電解質を少なくとも有し、蓄電することができる機能を有する素子のことである。なお、蓄電素子を蓄電装置としてもよい。
In the present embodiment, the charging/discharging in the case of using the secondary battery has been described, but the present invention is not limited to the secondary battery and can be widely applied to power storage elements.
Here, the electricity storage element refers to all elements having an electricity storage function, for example, an element having at least a pair of electrodes and an electrolyte and having a function capable of electricity storage. The power storage element may be a power storage device.

蓄電素子としては、例えばリチウムイオン二次電池、鉛蓄電池、リチウムイオンポリマー二次電池、ニッケル水素蓄電池、ニッケルカドミウム蓄電池、ニッケル鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池等の二次電池、レドックス・フロー電池、亜鉛・塩素電池、亜鉛臭素電池等の液循環型の二次電池、アルミニウム・空気電池、空気亜鉛電池、ナトリウム・硫黄電池、リチウム・硫化鉄電池等の高温動作型の二次電池などを用いることができる。なお、これらに限定されず、例えばリチウムイオンキャパシタ、電気二重層キャパシタなどを用いて蓄電素子を構成してもよい。 As the storage element, for example, a lithium ion secondary battery, a lead storage battery, a lithium ion polymer secondary battery, a nickel hydrogen storage battery, a nickel cadmium storage battery, a nickel iron storage battery, a nickel/zinc storage battery, a secondary battery such as a silver oxide/zinc storage battery, Liquid circulation type secondary batteries such as redox flow batteries, zinc/chlorine batteries, zinc bromine batteries, aluminum/air batteries, zinc-air batteries, sodium/sulfur batteries, lithium/iron sulfide batteries, etc. A battery or the like can be used. Note that the present invention is not limited to these, and the storage element may be configured using, for example, a lithium ion capacitor, an electric double layer capacitor, or the like.

3 BMU
3a マイコン(制御部)
49 劣化度算出部
50 動的内部抵抗測定部
51 動的内部抵抗記憶部(記憶部)
52 温度補正値取得部(取得部)
100 二次電池(蓄電素子)
60 電流センサー(電流計測手段)
70 温度センサー(温度計測手段)
3 BMU
3a Microcomputer (control unit)
49 Deterioration degree calculation unit 50 Dynamic internal resistance measurement unit 51 Dynamic internal resistance storage unit (storage unit)
52 Temperature correction value acquisition unit (acquisition unit)
100 Secondary battery (electric storage element)
60 current sensor (current measuring means)
70 Temperature sensor (temperature measuring means)

Claims (3)

負荷に接続された蓄電素子の劣化度SOHを測定する蓄電素子管理ユニットであって、
前記蓄電素子の充電時もしくは放電時の電流を計測する電流計測手段と、
所定の演算を実行する演算手段を有する制御部と、を備え、
前記制御部は、
前記蓄電素子の新品時の動的内部抵抗Dirと現在の動的内部抵抗Dirとに基づき、前記蓄電素子の劣化度SOHを算出する劣化度算出部と、
前記蓄電素子の充電もしくは放電を行いながら、前記蓄電素子の現在の動的内部抵抗Dirを測定する動的内部抵抗測定部と、
前記蓄電素子の新品時の動的内部抵抗Dirを記憶する記憶部と、を備えることを特徴とする蓄電素子管理ユニット。
A storage element management unit for measuring the degree of deterioration SOH of a storage element connected to a load ,
A current measuring unit that measures a current at the time of charging or discharging the storage element,
A control unit having a calculation means for executing a predetermined calculation,
The control unit is
A deterioration degree calculation unit that calculates a deterioration degree SOH of the power storage element based on a new dynamic internal resistance Dir and a current dynamic internal resistance Dir of the power storage element;
A dynamic internal resistance measuring unit that measures the current dynamic internal resistance Dir of the storage element while charging or discharging the storage element;
A storage unit that stores a dynamic internal resistance Dir when the storage device is new, and a storage unit management unit.
前記蓄電素子の温度を計測する温度計測手段をさらに備え、
前記制御部は、
前記温度計測手段により前記蓄電素子の温度を取得し、あらかじめ記憶している前記蓄電素子の温度と前記蓄電素子の新品時の動的内部抵抗Dirとの関係から当該蓄電素子の温度に対応した前記蓄電素子の新品時の動的内部抵抗Dirを取得する取得部を備え、
前記劣化度算出部は、
前記取得部で取得した前記蓄電素子の新品時の動的内部抵抗Dirを用いて、前記蓄電素子の劣化度SOHを算出することを特徴とする請求項1に記載の蓄電素子管理ユニット。
Further comprising temperature measuring means for measuring the temperature of the storage element,
The control unit is
The temperature of the power storage element is acquired by the temperature measuring means, and the temperature corresponding to the temperature of the power storage element is stored based on the relationship between the temperature of the power storage element stored in advance and the dynamic internal resistance Dir of the power storage element when the power storage element is new. An accumulator that acquires the dynamic internal resistance Dir when the electricity storage device is new,
The deterioration degree calculation unit,
The storage element management unit according to claim 1, wherein the deterioration degree SOH of the storage element is calculated using the dynamic internal resistance Dir of the storage element when the storage section is new.
他の蓄電素子が組み込まれた装置に取り付けて、他の蓄電素子の劣化度SOHを測定することを特徴とする請求項1または請求項2に記載の蓄電素子管理ユニット。 The power storage element management unit according to claim 1 or 2, wherein the power storage element management unit is attached to a device in which another power storage element is incorporated to measure a deterioration degree SOH of the other power storage element.
JP2019128842A 2019-01-15 2019-07-10 Storage element management unit Active JP6722808B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019128842A JP6722808B1 (en) 2019-07-10 2019-07-10 Storage element management unit
US17/421,729 US20220082630A1 (en) 2019-01-15 2020-01-15 Soh/soc detecting device for power storage element, and power storage element managing unit
EP20742049.8A EP3913726A4 (en) 2019-01-15 2020-01-15 Soh/soc detecting device for power storage element, and power storage element managing unit
CN202080005369.5A CN112771708B (en) 2019-01-15 2020-01-15 Degradation degree of power storage element, power storage remaining amount detection device, and power storage element management unit
PCT/JP2020/001003 WO2020149288A1 (en) 2019-01-15 2020-01-15 Soh/soc detecting device for power storage element, and power storage element managing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019128842A JP6722808B1 (en) 2019-07-10 2019-07-10 Storage element management unit

Publications (2)

Publication Number Publication Date
JP6722808B1 true JP6722808B1 (en) 2020-07-15
JP2021015015A JP2021015015A (en) 2021-02-12

Family

ID=71523956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019128842A Active JP6722808B1 (en) 2019-01-15 2019-07-10 Storage element management unit

Country Status (1)

Country Link
JP (1) JP6722808B1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270491A (en) * 1999-03-16 2000-09-29 Nissan Motor Co Ltd Lithium ion battery charging method and lithium ion battery charger
JP2010124629A (en) * 2008-11-20 2010-06-03 Sony Corp Battery pack
JP2015109237A (en) * 2013-12-05 2015-06-11 パナソニックIpマネジメント株式会社 Battery control system and battery control method
JP6294786B2 (en) * 2014-08-07 2018-03-14 矢崎総業株式会社 Degradation factor estimation method and remaining life estimation method
JP6214001B2 (en) * 2014-08-26 2017-10-18 矢崎総業株式会社 Degradation factor estimation method and remaining life estimation method
WO2017047192A1 (en) * 2015-09-18 2017-03-23 住友電気工業株式会社 Internal resistance calculation device, computer program, and internal resistance calculation method
JP2017090426A (en) * 2015-11-13 2017-05-25 ゴイク電池株式会社 Battery life diagnosis and diagnostic circuit
KR102571525B1 (en) * 2015-11-25 2023-08-29 한국전력공사 Apparatus and method for diagnosing the condition of the energy storage device
JP6589080B1 (en) * 2019-01-15 2019-10-09 ゴイク電池株式会社 Deterioration degree of storage element and remaining storage capacity detection device

Also Published As

Publication number Publication date
JP2021015015A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
WO2020149288A1 (en) Soh/soc detecting device for power storage element, and power storage element managing unit
CN109586373B (en) Battery charging method and device
JP6383500B2 (en) Storage battery control device, control method, program, power storage system, power system
EP4130767A1 (en) Lithium plating detection method and apparatus, and polarization proportion acquisition method and apparatus
US6504344B1 (en) Monitoring battery packs
US10186726B2 (en) Method and apparatus for measuring transient state-of-charge using inlet/outlet potentials
EP3958006B1 (en) Battery diagnosis apparatus and method
KR20080077572A (en) Method of determining the energy capacity of a battery
US7507497B2 (en) Method and apparatus for judging degradation of storage battery
TWI579575B (en) Battery health detection method and its circuit
JP6301048B1 (en) Battery management device and battery pack system
JP6589080B1 (en) Deterioration degree of storage element and remaining storage capacity detection device
JP2009064682A (en) Battery deterioration judging device, and lithium ion battery pack equipped with the same
KR20220045358A (en) Battery apparatus and method for predicting battery output
US20190041468A1 (en) Systems and methods for battery micro-short estimation
CN117836644A (en) Method for estimating state of health of secondary battery, program for estimating state of health of secondary battery, and device for estimating state of health of secondary battery
KR101744560B1 (en) Hybrid battery management system
JP6722808B1 (en) Storage element management unit
JP2010008133A (en) Portable charger, and deterioration diagnosis method of secondary battery used therefor
JP6478293B2 (en) Battery management unit and control method thereof
WO2015059738A1 (en) Secondary battery control apparatus and secondary battery control method
KR20220167847A (en) Battery management system, battery pack, electric vehicle and battery management method
KR20180067140A (en) Method and apparatus for detecting short of a battery cell
JP7393822B1 (en) Lithium secondary battery deterioration determination method, battery deterioration determination device
Bhatt Experimental Study About Effect of Temperature on Performance Parameters of Valve Regulated Lead Acid (VRLA) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190723

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190723

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R150 Certificate of patent or registration of utility model

Ref document number: 6722808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250