JP6712420B1 - Electrolytic cell, ozone water generator including the same, conductive diamond electrode, and method for manufacturing the same - Google Patents

Electrolytic cell, ozone water generator including the same, conductive diamond electrode, and method for manufacturing the same Download PDF

Info

Publication number
JP6712420B1
JP6712420B1 JP2019167655A JP2019167655A JP6712420B1 JP 6712420 B1 JP6712420 B1 JP 6712420B1 JP 2019167655 A JP2019167655 A JP 2019167655A JP 2019167655 A JP2019167655 A JP 2019167655A JP 6712420 B1 JP6712420 B1 JP 6712420B1
Authority
JP
Japan
Prior art keywords
comb
conductive diamond
shaped portion
electrode
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019167655A
Other languages
Japanese (ja)
Other versions
JP2021042457A (en
Inventor
量 杉本
量 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takamitsu Sangyou Co Ltd
Original Assignee
Takamitsu Sangyou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takamitsu Sangyou Co Ltd filed Critical Takamitsu Sangyou Co Ltd
Priority to JP2019167655A priority Critical patent/JP6712420B1/en
Application granted granted Critical
Publication of JP6712420B1 publication Critical patent/JP6712420B1/en
Publication of JP2021042457A publication Critical patent/JP2021042457A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

【課題】高濃度のオゾン水を生成可能な電解セルに適用される導電性ダイヤモンド電極を効率的に製造する方法を提供する。【解決手段】本開示の一側面に係る導電性ダイヤモンド電極の製造方法は、(a)第一の櫛状部と、第一の櫛状部に嵌り合う第二の櫛状部との組合せを複数有する板状の母材を準備する工程と、(b)上記母材の少なくとも一方の面上に導電性ダイヤモンド層を形成する工程と、(c)工程(b)後、上記母材を複数の上記組合せに分割するとともに、当該組合せを第一の櫛状部と第二の櫛状部とに分離する工程とを含む。【選択図】図2PROBLEM TO BE SOLVED: To provide a method for efficiently producing a conductive diamond electrode applied to an electrolysis cell capable of producing high-concentration ozone water. A method for manufacturing a conductive diamond electrode according to an aspect of the present disclosure includes (a) a combination of a first comb-shaped portion and a second comb-shaped portion that fits into the first comb-shaped portion. A step of preparing a plate-shaped base material having a plurality of base materials; (b) a step of forming a conductive diamond layer on at least one surface of the base material; and (c) a plurality of base materials after the step (b). And dividing the combination into a first comb-shaped portion and a second comb-shaped portion. [Selection diagram] Figure 2

Description

本開示は、電解セル及びこれを備えるオゾン水生成装置並びに導電性ダイヤモンド電極及びその製造方法に関する。 The present disclosure relates to an electrolytic cell, an ozone water generator including the same, a conductive diamond electrode, and a method for manufacturing the same.

オゾン水は、その酸化作用により、消毒又は殺菌に利用されている。特許文献1には原料水を電解してオゾン水を生成する電解セルが開示されている。 Ozone water is used for disinfection or sterilization due to its oxidizing action. Patent Document 1 discloses an electrolytic cell in which raw material water is electrolyzed to generate ozone water.

特許第6258566号公報Japanese Patent No. 6258566

本開示は、高濃度のオゾン水を生成可能な電解セル及びこれを備えるオゾン水生成装置を提供する。また、本開示は、上記電解セルに適用可能な導電性ダイヤモンド電極及びこれを効率的に製造する方法を提供する。 The present disclosure provides an electrolytic cell capable of generating high-concentration ozone water and an ozone water generator including the same. The present disclosure also provides a conductive diamond electrode applicable to the electrolytic cell and a method for efficiently manufacturing the same.

本開示の一側面は導電性ダイヤモンド電極の製造方法に関する。この製造方法は、以下の工程を含む。
(a)第一の櫛状部と、第一の櫛状部に嵌り合う第二の櫛状部との組合せを複数有する板状の母材を準備する工程
(b)上記母材の少なくとも一方の面上に導電性ダイヤモンド層を形成する工程
(c)工程(b)後、上記母材を複数の上記組合せに分割するとともに、当該組合せを第一の櫛状部と第二の櫛状部とに分離する工程
One aspect of the present disclosure relates to a method for manufacturing a conductive diamond electrode. This manufacturing method includes the following steps.
(A) a step of preparing a plate-shaped base material having a plurality of combinations of a first comb-shaped portion and a second comb-shaped portion fitted to the first comb-shaped portion (b) at least one of the base materials After the step (c) and the step (b) of forming a conductive diamond layer on the surface of the substrate, the base material is divided into a plurality of the combinations, and the combination is divided into a first comb-shaped portion and a second comb-shaped portion. Process of separating into

上述のとおり、工程(a)で準備した母材に対し、工程(b)において、例えば、化学蒸着によって導電性ダイヤモンド層を形成する。これにより、複数の第一の櫛状部及び複数の第二の櫛状部を先に準備し、これらに対して導電性ダイヤモンド層を個別に形成するよりも、効率的に導電性ダイヤモンド電極を製造することができる。 As described above, in the step (b), the conductive diamond layer is formed on the base material prepared in the step (a) by, for example, chemical vapor deposition. Thereby, the conductive diamond electrode can be efficiently provided, as compared with the case where the plurality of first comb-shaped portions and the plurality of second comb-shaped portions are prepared first and the conductive diamond layers are individually formed for them. It can be manufactured.

上記製造方法により、本開示の一側面に係る導電性ダイヤモンド電極が製造される。すなわち、この導電性ダイヤモンド電極は、互いに離間し且つ並行して延びている複数の金属部材からなる電解部と複数の金属部材の一方の端部を繋げているフレーム部とを有する櫛状部と、櫛状部の少なくとも一方の表面上に形成された導電性ダイヤモンド層とを備える。 By the above manufacturing method, the conductive diamond electrode according to one aspect of the present disclosure is manufactured. That is, the conductive diamond electrode is a comb-shaped portion having an electrolytic portion formed of a plurality of metal members that are spaced apart from each other and extend in parallel, and a frame portion that connects one end portions of the plurality of metal members. And a conductive diamond layer formed on at least one surface of the comb-shaped portion.

上記製造方法の工程(a)で準備する母材において、第一の櫛状部の隙間の幅が第二の櫛状部の隙間の幅と同じである場合、一つの上記組合せから、実質的に互いに同じ電解部を有する二つの導電性ダイヤモンド電極が得られる(図4(a)及び図4(b)参照)。 In the base material prepared in the step (a) of the above manufacturing method, when the width of the gap of the first comb-shaped portion is the same as the width of the gap of the second comb-shaped portion, one of the above combinations is substantially Thus, two conductive diamond electrodes having the same electrolysis portion are obtained (see FIGS. 4(a) and 4(b)).

他方、上記製造方法の工程(a)で準備する母材において、第一の櫛状部の隙間の幅が第二の櫛状部の隙間の幅よりも大きい場合、第一の櫛状部は相対的に細い複数の金属部材で構成される電解部を有する一方、第二の櫛状部材は相対的に太い複数の金属部材で構成される電解部を有する(図6(a)及び図6(b)参照)。仮に、第一の櫛状部の金属部材が細すぎると、水の電解に寄与する面積が不足する。これを防ぐため、工程(c)を経て得られた二つの第一の櫛状部が互いに嵌り合うように組み合わせて一つの導電性ダイヤモンド電極を得てもよい。すなわち、この場合、本開示の一側面に係る導電性ダイヤモンド電極は、上記導電性ダイヤモンド電極からなる第一の電極と、上記導電性ダイヤモンド電極からなる第二の電極とを備え、第一の電極の櫛状部と第二の電極の櫛状部とが互いに嵌り合うように構成されたものとすればよい(図7参照)。 On the other hand, in the base material prepared in the step (a) of the manufacturing method, when the width of the gap of the first comb-shaped portion is larger than the width of the gap of the second comb-shaped portion, the first comb-shaped portion is The second comb-shaped member has an electrolysis section composed of a plurality of relatively thin metal members, while the second comb-shaped member has an electrolysis section composed of a plurality of relatively thick metal members (FIGS. 6A and 6A). (See (b)). If the first comb-shaped metal member is too thin, the area contributing to electrolysis of water will be insufficient. In order to prevent this, one conductive diamond electrode may be obtained by combining the two first comb-shaped portions obtained through the step (c) so as to fit each other. That is, in this case, the conductive diamond electrode according to one aspect of the present disclosure includes a first electrode made of the conductive diamond electrode and a second electrode made of the conductive diamond electrode, and the first electrode The comb-shaped part and the comb-shaped part of the second electrode may be fitted to each other (see FIG. 7).

本開示の一側面に係る電解セルは、原料水を電解してオゾン水を生成するためのものであり、上記導電性ダイヤモンド電極からなる陽極と、陰極と、陽極と陰極との間に配置されたイオン交換膜とを備える。この電解セルによれば、陽極が複雑な形状(櫛状)であるため、陽極に対して水とイオン交換膜の両方が接する領域(三相面)を十分に確保することができる。これにより、上記電解セルによれば、高濃度のオゾン水を生成することができる。 An electrolytic cell according to one aspect of the present disclosure is for electrolyzing raw material water to generate ozone water, and is disposed between an anode composed of the conductive diamond electrode, a cathode, and the anode and the cathode. And an ion exchange membrane. According to this electrolytic cell, since the anode has a complicated shape (comb shape), it is possible to sufficiently secure a region (three-phase surface) where both the water and the ion exchange membrane are in contact with the anode. Thereby, according to the above-mentioned electrolysis cell, high-concentration ozone water can be generated.

本開示の一側面に係るオゾン水生成装置は、上記電解セルと、上記電解セル及び原料水を収容する容器と、電解セルに原料水を供給するポンプと、電解セルに電気を供給する電源とを備える。電解セルに電気を供給するとともに、ポンプにより電解セルに原料水を供給することで、電解セルにおいてオゾンを発生させることができる。このオゾンが容器内の水(原料水)に溶け込むことでオゾン水が得られる。 An ozone water generator according to one aspect of the present disclosure includes the electrolysis cell, a container that stores the electrolysis cell and the raw water, a pump that supplies the raw water to the electrolysis cell, and a power source that supplies electricity to the electrolysis cell. Equipped with. By supplying electricity to the electrolysis cell and supplying raw material water to the electrolysis cell by the pump, ozone can be generated in the electrolysis cell. Ozone water is obtained by dissolving this ozone in the water (raw material water) in the container.

本開示によれば、高濃度のオゾン水を生成可能な電解セル及びこれを備えるオゾン水生成装置が提供される。また、本開示によれば、上記電解セルに適用可能な導電性ダイヤモンド電極及びこれを効率的に製造する方法が提供される。 According to the present disclosure, an electrolytic cell capable of generating high-concentration ozone water and an ozone water generator including the same are provided. Moreover, according to this indication, the electroconductive diamond electrode applicable to the said electrolysis cell and the method of manufacturing this efficiently are provided.

図1は、プレカット加工が施された母材の一例を模式的に示す平面図である。FIG. 1 is a plan view schematically showing an example of a base material that has been precut. 図2は、図1に示された母材を拡大して示す平面図である。FIG. 2 is an enlarged plan view showing the base material shown in FIG. 図3は、導電性ダイヤモンド層が形成された後の母材を模式的に示す縦断面図である。FIG. 3 is a vertical cross-sectional view schematically showing the base material after the conductive diamond layer is formed. 図4(a)及び図4(b)は、第一実施形態に係る第一及び第二の導電性ダイヤモンド電極を模式的に示す平面図である。FIG. 4A and FIG. 4B are plan views schematically showing first and second conductive diamond electrodes according to the first embodiment. 図5は、第二実施形態に係る第一の櫛状部と第二の櫛状部の組合せを模式的に示す平面図である。FIG. 5 is a plan view schematically showing a combination of the first comb-shaped portion and the second comb-shaped portion according to the second embodiment. 図6(a)及び図6(b)は、第二実施形態に係る第一及び第二の導電性ダイヤモンド電極を模式的に示す平面図である。6(a) and 6(b) are plan views schematically showing the first and second conductive diamond electrodes according to the second embodiment. 図7は、二つの導電性ダイヤモンド電極を組み合わせて構成された導電性ダイヤモンド電極を模式的に示す平面図である。FIG. 7 is a plan view schematically showing a conductive diamond electrode formed by combining two conductive diamond electrodes. 図8は、本開示に係る電解セルの一実施形態を模式的に示す分解斜視図である。FIG. 8 is an exploded perspective view schematically showing an embodiment of the electrolytic cell according to the present disclosure. 図9は、本開示に係る電解セルの一実施形態を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing an embodiment of the electrolytic cell according to the present disclosure. 図10は、本開示に係るオゾン水生成装置の一実施形態を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing an embodiment of the ozone water generation device according to the present disclosure.

以下、添付図面を参照して、本開示の実施形態について詳細に説明する。なお、以下の説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the following description, the same elements or elements having the same function will be denoted by the same reference symbols, without redundant description.

<導電性ダイヤモンド電極>
(第一実施形態)
図1〜4を参照しながら、本実施形態に係る導電性ダイヤモンド電極について説明する。本実施形態の導電性ダイヤモンド電極の製造方法は、
(a)第一の櫛状部1Aと、第一の櫛状部1Aに嵌り合う第二の櫛状部2Aとの組合せ5Aを複数有する板状の母材10Aを準備する工程と、
(b)母材10Aの少なくとも一方の面上に導電性ダイヤモンド層12を形成する工程と、
(c)工程(b)後、母材10Aを複数の組合せ5Aに分割するとともに、組合せ5Aを第一の櫛状部1Aと第二の櫛状部2Aとに分離する工程と、
を含み、第一の櫛状部1Aの隙間の幅W1が第二の櫛状部2Aの隙間の幅W2と同じである(図4参照)。以下、各工程について説明する。
<Conductive diamond electrode>
(First embodiment)
The conductive diamond electrode according to the present embodiment will be described with reference to FIGS. The manufacturing method of the conductive diamond electrode of the present embodiment,
(A) a step of preparing a plate-shaped base material 10A having a plurality of combinations 5A of the first comb-shaped portion 1A and the second comb-shaped portion 2A fitted to the first comb-shaped portion 1A;
(B) forming a conductive diamond layer 12 on at least one surface of the base material 10A,
(C) After step (b), dividing the base material 10A into a plurality of combinations 5A and separating the combination 5A into a first comb-shaped portion 1A and a second comb-shaped portion 2A,
And the width W1 of the gap of the first comb-shaped portion 1A is the same as the width W2 of the gap of the second comb-shaped portion 2A (see FIG. 4). Hereinafter, each step will be described.

[工程(a)]
工程(a)は、母材10Aを準備する工程である。母材10Aは、例えば、厚さ0.8〜1.5mm程度の板状部材からなる。母材10Aの材質としては、ニオブ、タンタル、チタン、ジルコニウム及びこれらの合金が挙げられる。母材10Aは、プレカット加工が施されており、図2に示されたとおり、複数の開口H1,H2及び複数の切れ目L1が形成されている。複数の開口H1,H2及び複数の切れ目L1によって組合せ5Aが画成されている。複数の組合せ5は、繋ぎ部C1を介して互いに連結しており、工程(b)において母材10Aが複数の組合せ5に分割されない程度の強度を有する。本実施形態に係る組合せ5Aは八角形であり、八つの頂点のうち四つの頂点が各頂点と隣接する他の組合せ5Aと繋ぎ部C1を介して連結している(図2参照)。
[Step (a)]
The step (a) is a step of preparing the base material 10A. The base material 10A is, for example, a plate-shaped member having a thickness of about 0.8 to 1.5 mm. Examples of the material of the base material 10A include niobium, tantalum, titanium, zirconium and alloys thereof. The base material 10A is pre-cut, and has a plurality of openings H1 and H2 and a plurality of cuts L1 as shown in FIG. The combination 5A is defined by the plurality of openings H1 and H2 and the plurality of cuts L1. The plurality of combinations 5 are connected to each other via the connecting portion C1 and have such strength that the base material 10A is not divided into the plurality of combinations 5 in the step (b). The combination 5A according to the present embodiment is an octagon, and four vertices of the eight vertices are connected to another combination 5A adjacent to each vertices via the connecting portion C1 (see FIG. 2 ).

組合せ5は、第一の櫛状部1Aと第二の櫛状部2Aに構成されている。組合せ5Aにおいて、第一の櫛状部1Aと第二の櫛状部2Aは互いに嵌り合うように形成されている。第一の櫛状部1Aは、互いに離間し且つ並行して延びている複数の金属部材1bからなる電解部1cと、複数の金属部材1bの一方の端部を繋げているフレーム部1dとを有する(図4(a)参照)。第二の櫛状部2Aは、互いに離間し且つ並行して延びている複数の金属部材2bからなる電解部2cと、複数の金属部材2bの一方の端部を繋げているフレーム部2dとを有する(図4(b)参照)。なお、金属部材1bの長さは、例えば、3〜20mmであり、20〜50mmであってもよい。金属部材2bの長さはこれと同様である。 The combination 5 is composed of the first comb-shaped portion 1A and the second comb-shaped portion 2A. In the combination 5A, the first comb-shaped portion 1A and the second comb-shaped portion 2A are formed so as to fit each other. The first comb-shaped portion 1A includes an electrolysis portion 1c formed of a plurality of metal members 1b that are spaced apart from each other and extend in parallel, and a frame portion 1d that connects one end portions of the plurality of metal members 1b. It has (see FIG. 4A). The second comb-shaped portion 2A includes an electrolysis portion 2c composed of a plurality of metal members 2b that are spaced apart from each other and extend in parallel, and a frame portion 2d that connects one end of the plurality of metal members 2b. It has (see FIG. 4B). The length of the metal member 1b is, for example, 3 to 20 mm, and may be 20 to 50 mm. The length of the metal member 2b is the same as this.

第一の櫛状部1Aと第二の櫛状部2Aはジグザグに形成された切れ目L2によって分断されているものの、繋ぎ部C2において連結している(図2における拡大図参照)。これにより、工程(b)において、組合せ5が第一の櫛状部1Aと第二の櫛状部2Aに分離しない程度の強度を有する。繋ぎ部C2は、第一の櫛状部1Aの金属部材1bの先端と第二の櫛状部2Aのフレーム部2dとの間に形成されている。本実施形態において、繋ぎ部C2は、図2における拡大図に示すとおり、二つの開口H3によって構成されており、二つの開口H3の間に位置している。かかる構成の繋ぎ部C2を採用することで、工程(c)において第一の櫛状部1Aと第二の櫛状部2Aとを分離しやすいという利点がある。なお、繋ぎ部C2は、第二の櫛状部2Aの金属部材2bの先端と第一の櫛状部1Aのフレーム部1dとの間に形成してもよい。 The first comb-shaped portion 1A and the second comb-shaped portion 2A are separated by a cut L2 formed in zigzag, but are connected at a connecting portion C2 (see an enlarged view in FIG. 2). Accordingly, in step (b), the combination 5 has such strength that the combination 5 does not separate into the first comb-shaped portion 1A and the second comb-shaped portion 2A. The connecting portion C2 is formed between the tip of the metal member 1b of the first comb-shaped portion 1A and the frame portion 2d of the second comb-shaped portion 2A. In the present embodiment, as shown in the enlarged view of FIG. 2, the connecting portion C2 is composed of two openings H3 and is located between the two openings H3. By employing the connecting portion C2 having such a configuration, there is an advantage that the first comb-shaped portion 1A and the second comb-shaped portion 2A can be easily separated in the step (c). The connecting portion C2 may be formed between the tip of the metal member 2b of the second comb-shaped portion 2A and the frame portion 1d of the first comb-shaped portion 1A.

開口H1,H2,H3及び切れ目L1,L2は、例えば、レーザによって形成することができる。母材10Aにプレカット加工が施されていることで、工程(c)において、導電性ダイヤモンド層12を形成後の母材10Aを複数の組合せ5Aに分割でき、また、組合せ5Aを第一の櫛状部1Aと第二の櫛状部2Aとに分離できる。 The openings H1, H2, H3 and the cuts L1, L2 can be formed by, for example, a laser. Since the base material 10A is pre-cut, the base material 10A after forming the conductive diamond layer 12 can be divided into a plurality of combinations 5A in the step (c), and the combination 5A can be divided into the first combs. It can be separated into a rib portion 1A and a second comb portion 2A.

[工程(b)]
工程(b)は母材10Aの面上に導電性ダイヤモンド層12を形成する工程である。母材10Aに対して必要に応じて表面処理を施した後、例えば、化学蒸着によって導電性ダイヤモンド層12を母材10Aの表面上に形成する。導電性ダイヤモンド層12は、ダイヤモンドと、これにドープされた元素(例えば、窒素又はホウ素)とを含む。図3は、導電性ダイヤモンド層12が形成された後の母材10Aを模式的に示す縦断面図である。導電性ダイヤモンド層12の厚さは、例えば、3〜10μmである。
[Step (b)]
Step (b) is a step of forming the conductive diamond layer 12 on the surface of the base material 10A. After subjecting the base material 10A to a surface treatment as necessary, a conductive diamond layer 12 is formed on the surface of the base material 10A by, for example, chemical vapor deposition. The conductive diamond layer 12 includes diamond and an element (for example, nitrogen or boron) doped therein. FIG. 3 is a vertical cross-sectional view schematically showing the base material 10A after the conductive diamond layer 12 is formed. The thickness of the conductive diamond layer 12 is, for example, 3 to 10 μm.

[工程(c)]
工程(c)は、導電性ダイヤモンド層12が形成された母材10Aを複数の導電性ダイヤモンド電極に個片化する工程である。すなわち、母材10Aを複数の組合せ5Aに分割するとともに、組合せ5Aを第一の櫛状部1Aと第二の櫛状部2Aとに分離する。繋ぎ部C1を切断することで母材10Aが複数の組合せ5Aに分割される。繋ぎ部C2を切断することで、組合せ5Aが第一の櫛状部1Aと第二の櫛状部2Aとに分離される。なお、導電性ダイヤモンド層12は、上述のとおり、十分に薄いため、組合せ5Aが第一の櫛状部1Aと第二の櫛状部2Aに分離されると、これに伴って導電性ダイヤモンド層12も第一の櫛状部1A及び第二の櫛状部2Aと同じ形状に分離される。
[Step (c)]
The step (c) is a step of dividing the base material 10A having the conductive diamond layer 12 into a plurality of conductive diamond electrodes. That is, the base material 10A is divided into a plurality of combinations 5A, and the combination 5A is separated into the first comb-shaped portion 1A and the second comb-shaped portion 2A. By cutting the connecting portion C1, the base material 10A is divided into a plurality of combinations 5A. By cutting the connecting portion C2, the combination 5A is separated into the first comb-shaped portion 1A and the second comb-shaped portion 2A. Since the conductive diamond layer 12 is sufficiently thin as described above, when the combination 5A is separated into the first comb-shaped portion 1A and the second comb-shaped portion 2A, the conductive diamond layer 12 is accompanied by this. 12 is also divided into the same shape as the first comb-shaped portion 1A and the second comb-shaped portion 2A.

上記工程を経ることで、第一の櫛状部1Aと、その表面上に形成された導電性ダイヤモンド層12とを備える第一の導電性ダイヤモンド電極3Aが得られる。また、第二の櫛状部2Aと、その表面上に形成された導電性ダイヤモンド層12とを備える第二の導電性ダイヤモンド電極4Aが得られる。図4(a)は第一の導電性ダイヤモンド電極3Aを示す平面図であり、図4(b)は第二の導電性ダイヤモンド電極4Aを示す平面図である。第一の導電性ダイヤモンド電極3Aの隙間(第一の櫛状部1Aの隙間と同じ)の幅W1は、例えば、0.05〜10mmであり、0.2〜0.5mmであってもよい。本実施形態では第二の導電性ダイヤモンド電極4Aの隙間(第二の櫛状部2Aの隙間と同じ)の幅W2は、幅W1と同じである。なお、幅W1と幅W2の比(W1/W2)が0.9〜1.1程度であれば、幅W1は幅W2と同じ又は実質的に同じであるといえる。 Through the above steps, the first conductive diamond electrode 3A including the first comb-shaped portion 1A and the conductive diamond layer 12 formed on the surface thereof is obtained. Further, the second conductive diamond electrode 4A including the second comb-shaped portion 2A and the conductive diamond layer 12 formed on the surface thereof is obtained. FIG. 4A is a plan view showing the first conductive diamond electrode 3A, and FIG. 4B is a plan view showing the second conductive diamond electrode 4A. The width W1 of the gap between the first conductive diamond electrodes 3A (the same as the gap between the first comb-shaped portions 1A) is, for example, 0.05 to 10 mm, and may be 0.2 to 0.5 mm. .. In this embodiment, the width W2 of the gap between the second conductive diamond electrodes 4A (the same as the gap between the second comb-shaped portions 2A) is the same as the width W1. If the ratio (W1/W2) of the width W1 and the width W2 is about 0.9 to 1.1, it can be said that the width W1 is the same as or substantially the same as the width W2.

(第二実施形態)
第一実施形態においては、隙間の幅W1と幅W2の比(W1/W2)が同じ(実質的に同じ場合を含む)である態様を例示したが、第一の櫛状部の隙間の幅が第二の櫛状部の隙間の幅よりも大きくてもよい。以下、第二実施形態に関し、第一実施形態と相違する点について主に説明する。
(Second embodiment)
In the first embodiment, a mode in which the ratio (W1/W2) of the width W1 and the width W2 of the gap is the same (including substantially the same case) is exemplified, but the width of the gap of the first comb-shaped portion is illustrated. May be larger than the width of the gap of the second comb portion. Hereinafter, with respect to the second embodiment, differences from the first embodiment will be mainly described.

図5は、第二実施形態に係る第一の櫛状部1Bと第二の櫛状部2Bの組合せ5Bを模式的に示す平面図である。図6(a)は第一の櫛状部1Bから得られる第一の導電性ダイヤモンド電極3Bを示す平面図であり、図6(b)は第二の櫛状部2Bから得られた第二の導電性ダイヤモンド電極4Bを示す平面図である。なお、強度の観点から、図5に示すように、繋ぎ部C2は第二の櫛状部2Bの金属部材2bの先端と第一の櫛状部1Bのフレーム部1dとの間に形成されている。 FIG. 5 is a plan view schematically showing a combination 5B of the first comb-shaped portion 1B and the second comb-shaped portion 2B according to the second embodiment. FIG. 6A is a plan view showing the first conductive diamond electrode 3B obtained from the first comb-shaped portion 1B, and FIG. 6B is the second view obtained from the second comb-shaped portion 2B. FIG. 6 is a plan view showing the conductive diamond electrode 4B of FIG. From the viewpoint of strength, as shown in FIG. 5, the connecting portion C2 is formed between the tip of the metal member 2b of the second comb-shaped portion 2B and the frame portion 1d of the first comb-shaped portion 1B. There is.

第一の導電性ダイヤモンド電極3Bの隙間の幅W1は第二の導電性ダイヤモンド電極4Bの隙間の幅W2よりも大きい。本実施形態において、幅W1は、例えば、0.07〜10mmであり、0.25〜0.5mmであってもよい。他方、幅W2は、例えば、0.05〜9mmであり、0.2〜0.45mmであってもよい。幅W1と幅W2の比(W1/W2)は、例えば、1.8〜2.2であり、1.9〜2.1又は約2であってもよい。図6(a)に示す形状の第一の導電性ダイヤモンド電極3B及び図6(b)に示す第二の導電性ダイヤモンド電極4Bが得られるように、工程(a)においてプレカット加工を実施すればよい。 The width W1 of the gap between the first conductive diamond electrodes 3B is larger than the width W2 of the gap between the second conductive diamond electrodes 4B. In the present embodiment, the width W1 is, for example, 0.07 to 10 mm, and may be 0.25 to 0.5 mm. On the other hand, the width W2 is, for example, 0.05 to 9 mm, and may be 0.2 to 0.45 mm. The ratio of the width W1 to the width W2 (W1/W2) is, for example, 1.8 to 2.2, and may be 1.9 to 2.1 or about 2. If a precut process is performed in step (a) so that the first conductive diamond electrode 3B having the shape shown in FIG. 6(a) and the second conductive diamond electrode 4B shown in FIG. 6(b) are obtained. Good.

図6(b)に示す第二の導電性ダイヤモンド電極4Bは、隙間の幅W2が十分に狭いため、換言すれば、電極部材4cの幅が十分に太いため、単独で電解セルの陽極として機能し得る。なお、電極部材4cは金属部材2bと、その表面上に形成された導電性ダイヤモンド層12とからなる。後述の電極部材3cは金属部材1bと、その表面上に形成された導電性ダイヤモンド層12とからなる。一方、図6(a)に示す第一の導電性ダイヤモンド電極3Bは、隙間の幅W1が広いため、換言すれば、電極部材3cの幅が細いため、電解セルの陽極として機能させるためには二つの第一の導電性ダイヤモンド電極3Bを組み合わせて使用する。図7は、二つの第一の導電性ダイヤモンド電極3B,3B(第一の電極及び第二の電極)を組み合わせて構成された導電性ダイヤモンド電極6を模式的に示す平面図である。組合せからなる導電性ダイヤモンド電極6は、第二の導電性ダイヤモンド電極4Bと実質的に同じ性能であると推察される。 In the second conductive diamond electrode 4B shown in FIG. 6(b), the width W2 of the gap is sufficiently narrow, in other words, the width of the electrode member 4c is sufficiently large, and thus the second conductive diamond electrode 4B independently functions as the anode of the electrolytic cell. You can The electrode member 4c is composed of the metal member 2b and the conductive diamond layer 12 formed on the surface thereof. An electrode member 3c described later includes a metal member 1b and a conductive diamond layer 12 formed on the surface thereof. On the other hand, in the first conductive diamond electrode 3B shown in FIG. 6(a), the width W1 of the gap is wide, in other words, the width of the electrode member 3c is small, so that the first conductive diamond electrode 3B is required to function as the anode of the electrolytic cell. Two first conductive diamond electrodes 3B are used in combination. FIG. 7: is a top view which shows typically the electroconductive diamond electrode 6 comprised by combining the two 1st electroconductive diamond electrodes 3B and 3B (1st electrode and 2nd electrode). It is speculated that the conductive diamond electrode 6 composed of the combination has substantially the same performance as the second conductive diamond electrode 4B.

<電解セル>
図8は、電解セルの一実施形態を模式的に示す分解斜視図である。ここでは、第一の導電性ダイヤモンド電極3Aを陽極として採用した態様を例に説明する。図8に示す電解セル50は、陽極としての第一の導電性ダイヤモンド電極3A(以下、単に「陽極3A」という。)と、陰極20と、陽極3Aと陰極20との間に配置されたイオン交換膜30とを備える。電解セル50は分離式と称されるタイプである。すなわち、イオン交換膜30が気密性を有しており、陽極3Aで発生する酸素及びオゾンと、陰極20で発生する水素は混合しない。以下、電解セルの具体的に構成について説明する。
<Electrolysis cell>
FIG. 8 is an exploded perspective view schematically showing an embodiment of the electrolysis cell. Here, a mode in which the first conductive diamond electrode 3A is adopted as an anode will be described as an example. The electrolytic cell 50 shown in FIG. 8 has a first conductive diamond electrode 3A as an anode (hereinafter, simply referred to as “anode 3A”), a cathode 20, and ions arranged between the anode 3A and the cathode 20. And an exchange membrane 30. The electrolysis cell 50 is of a type called a separation type. That is, the ion exchange membrane 30 is airtight, and oxygen and ozone generated in the anode 3A and hydrogen generated in the cathode 20 are not mixed. The specific configuration of the electrolysis cell will be described below.

電解セル50のケースは、ホルダ51と蓋52とによって構成されている。図8に示すように、ホルダ51は陽極3Aを収容する凹部51aを有する。他方、蓋52は、その内側にパッキン53を収容できるように構成されている。これらの構成により、ホルダ51に蓋52を装着すると、ケース内において、陽極3Aとイオン交換膜30と陰極20の積層体に対して厚さ方向に押圧力が加えられた状態となる(図9参照)。 The case of the electrolysis cell 50 includes a holder 51 and a lid 52. As shown in FIG. 8, the holder 51 has a recess 51a for accommodating the anode 3A. On the other hand, the lid 52 is configured so that the packing 53 can be accommodated therein. With such a configuration, when the lid 52 is attached to the holder 51, a pressing force is applied to the stacked body of the anode 3A, the ion exchange membrane 30, and the cathode 20 in the thickness direction in the case (FIG. 9). reference).

図9に示すように、ホルダ51の下部には原料水RWを取り入れる取水口51b及びオゾン水OWを排出する排出口51cが形成されている。排出口51cにはオゾン水ガイドチューブ74aが接続される。蓋52の中央部には貫通孔52aが形成されている。パッキン53の中央部にも貫通孔53aが形成されている。これらの貫通孔52a,53aは、陰極20で生じた水素を排出するためのものである。蓋52の貫通孔52aに水素ガイドチューブ74bを接続してもよい。なお、パッキン53の周縁部には複数の溝53bが設けられている。これらの溝53bを通じて原料水RWが陰極20側に供給される。 As shown in FIG. 9, a water intake port 51b for taking in the raw water RW and a discharge port 51c for discharging the ozone water OW are formed in the lower part of the holder 51. An ozone water guide tube 74a is connected to the discharge port 51c. A through hole 52a is formed in the center of the lid 52. A through hole 53a is also formed in the center of the packing 53. These through holes 52a and 53a are for discharging hydrogen generated in the cathode 20. The hydrogen guide tube 74b may be connected to the through hole 52a of the lid 52. A plurality of grooves 53b are provided on the peripheral edge of the packing 53. The raw material water RW is supplied to the cathode 20 side through these grooves 53b.

陰極20は、発生する水素に対して脆化しない材料からなる。かかる材料として、白金族金属、ニッケル、ステンレス、チタン、ジルコニウム、金、銀、カーボン又はダイヤモンド等が挙げられる。陰極20の形状は、板状であってよく、複数の孔を有する板状であってもよく、メッシュ状であってもよい。特に、陰極20が複数の孔を有する板状又はメッシュ状であると、原料水RWとの接触面積を増やすことができ、電解の効率が向上する。陰極20は電極線20aを介して電源に接続される。なお、陽極3Aは、電極線25aを介して電源に接続される。 The cathode 20 is made of a material that does not become brittle against generated hydrogen. Examples of such materials include platinum group metals, nickel, stainless steel, titanium, zirconium, gold, silver, carbon and diamond. The cathode 20 may have a plate shape, a plate shape having a plurality of holes, or a mesh shape. In particular, when the cathode 20 has a plate shape or a mesh shape having a plurality of holes, the contact area with the raw water RW can be increased, and the efficiency of electrolysis is improved. The cathode 20 is connected to the power supply via the electrode wire 20a. The anode 3A is connected to the power supply via the electrode wire 25a.

イオン交換膜30は、プロトン導電性を有する膜である。イオン交換膜30として、フッ素樹脂系膜、炭化水素樹脂系膜などが挙げられる。これらのうち、オゾン及び過酸化物に対する耐性の点から、フッ素樹脂系膜が好ましい。フッ素樹脂系膜の好適例として、ナフィオン(登録商標)の膜が挙げられる。ナフィオン(登録商標)は、スルホ化されたテトラフルオロエチレンを基にしたフッ素樹脂の共重合体であり、イオン伝導性を持つポリマーである。ナフィオンのプロトン伝導性はスルホ基で修飾されたテトラフルオロエチレンにペルフルオロビニルを組み込むことによるものであり、陰イオン及び電子は膜内を移動せず、プロトン(H)だけが膜内を移動する。イオン交換膜30の厚さは、例えば、0.1〜1mmである。 The ion exchange membrane 30 is a membrane having proton conductivity. Examples of the ion exchange membrane 30 include a fluororesin-based membrane and a hydrocarbon resin-based membrane. Of these, a fluororesin-based film is preferable from the viewpoint of resistance to ozone and peroxide. A preferable example of the fluororesin film is a Nafion (registered trademark) film. Nafion (registered trademark) is a copolymer of fluororesin based on sulfonated tetrafluoroethylene, and is a polymer having ion conductivity. The proton conductivity of Nafion is due to the incorporation of perfluorovinyl into tetrafluoroethylene modified with sulfo groups, anions and electrons do not move in the membrane, only protons (H + ) move in the membrane. .. The thickness of the ion exchange membrane 30 is, for example, 0.1 to 1 mm.

電解セル50によれば、陽極3Aが複雑な形状(櫛状)であるため、陽極3Aに対して原料水RWとイオン交換膜30の両方が接する領域(三相面)を十分に確保することができる。これにより、電解セル50によれば、高濃度のオゾン水を生成することができる。 According to the electrolysis cell 50, since the anode 3A has a complicated shape (comb shape), a sufficient region (three-phase surface) in which both the raw material water RW and the ion exchange membrane 30 are in contact with the anode 3A should be secured. You can Thereby, according to the electrolysis cell 50, high-concentration ozone water can be generated.

<オゾン水生成装置>
オゾン水生成装置の一例として、オゾン水スプレーについて説明する。図10に示すオゾン水スプレー100は、電解セル50と、電解セル50及び原料水RWを収容する容器60と、スプレーヘッド70と、オゾン水ガイドチューブ74aと、水素ガイドチューブ74bと、電解セル50に電気を供給する電源80と、制御部90とを備える。
<Ozone water generator>
An ozone water spray will be described as an example of the ozone water generator. The ozone water spray 100 shown in FIG. 10 includes an electrolysis cell 50, a container 60 for containing the electrolysis cell 50 and the raw water RW, a spray head 70, an ozone water guide tube 74a, a hydrogen guide tube 74b, and an electrolysis cell 50. A power source 80 for supplying electricity to the control unit 90 and a control unit 90 are provided.

容器60は、原料水RWを収容する容器本体61と、容器本体61にスプレーヘッド70を取り付けるための取付部62と、容器本体61及び取付部62を包み込むジャケット65とを備える。容器本体61は、原料水RW及び必要に応じて使用する添加剤等を注入するための給水口66を備える。通常、給水口66はキャップ66aによって閉ざされている。ジャケット65の下部に電源80及び制御部90が収容されている。 The container 60 includes a container body 61 that stores the raw water RW, an attachment portion 62 for attaching the spray head 70 to the container body 61, and a jacket 65 that encloses the container body 61 and the attachment portion 62. The container body 61 is provided with a water supply port 66 for injecting the raw water RW and additives used as necessary. Normally, the water supply port 66 is closed by a cap 66a. A power supply 80 and a control unit 90 are housed under the jacket 65.

スプレーヘッド70は、ヘッド本体71と、ヘッド本体71の前方下側に設けられたトリガ72と、ヘッド本体71の前方中央に設けられたノズル73とを備える。トリガ72は、容器本体61内の原料水RWを吸引して電解セル50に供給するポンプの役割を果たす。トリガ72が操作されると、制御部90によって電源80がオンの状態となる。これにより、電解セル50においてオゾンが発生し、オゾン水OWがオゾン水ガイドチューブ74aを通じてノズル73に至り、ノズル73から噴射される。なお、電解セル50で生じた水素Hは、水素ガイドチューブ74bを通じてオゾン水スプレー100の外へと排出される。 The spray head 70 includes a head main body 71, a trigger 72 provided on the lower front side of the head main body 71, and a nozzle 73 provided at the front center of the head main body 71. The trigger 72 plays a role of a pump that sucks the raw water RW in the container body 61 and supplies the raw water RW to the electrolysis cell 50. When the trigger 72 is operated, the power supply 80 is turned on by the control unit 90. As a result, ozone is generated in the electrolysis cell 50, and the ozone water OW reaches the nozzle 73 through the ozone water guide tube 74a and is ejected from the nozzle 73. The hydrogen H 2 generated in the electrolysis cell 50 is discharged to the outside of the ozone water spray 100 through the hydrogen guide tube 74b.

1A,1B…第一の櫛状部、1b,2b…金属部材、1c,2c…電解部、1d,2d…フレーム部、2A,2B…第二の櫛状部、3A,3B…第一の導電性ダイヤモンド電極、4A,4B…第二の導電性ダイヤモンド電極、5A,5B…組合せ、3c,4c…電極部材、6…導電性ダイヤモンド電極、10A…母材、12…導電性ダイヤモンド層、20…陰極、30…イオン交換膜、50…電解セル、51…ホルダ、51a…凹部、51b…取水口、51c…排出口、52…蓋、52a…貫通孔、53…パッキン、53a…貫通孔、53b…溝、60…容器、70…スプレーヘッド(ポンプ)、71…ヘッド本体、72…トリガ、73…ノズル、74a…オゾン水ガイドチューブ、74b…水素ガイドチューブ、80…電源、90…制御部、100…オゾン水スプレー(オゾン水生成装置)、C1,C2…繋ぎ部、H1,H2…開口、L1,L2…切れ目、H…水素、OW…オゾン水、RW…原料水、W1…第一の櫛状部の隙間の幅、W2…第二の櫛状部の隙間の幅 1A, 1B... 1st comb-shaped part, 1b, 2b... Metal member, 1c, 2c... Electrolytic part, 1d, 2d... Frame part, 2A, 2B... 2nd comb-shaped part, 3A, 3B... 1st Conductive diamond electrode, 4A, 4B... Second conductive diamond electrode, 5A, 5B... Combination, 3c, 4c... Electrode member, 6... Conductive diamond electrode, 10A... Base material, 12... Conductive diamond layer, 20 ... Cathode, 30... Ion exchange membrane, 50... Electrolysis cell, 51... Holder, 51a... Recess, 51b... Water intake, 51c... Outlet, 52... Lid, 52a... Through hole, 53... Packing, 53a... Through hole, 53b... Groove, 60... Container, 70... Spray head (pump), 71... Head body, 72... Trigger, 73... Nozzle, 74a... Ozone water guide tube, 74b... Hydrogen guide tube, 80... Power supply, 90... Control section , 100 ... ozone water spray (ozone water generator), C1, C2 ... connecting portion, H1, H2 ... opening, L1, L2 ... cut, H 2 ... hydrogen, OW ... ozone water, RW ... raw water, W1 ... first Width of gap of one comb-shaped portion, W2... Width of gap of second comb-shaped portion

Claims (7)

(a)第一の櫛状部と、前記第一の櫛状部に嵌り合う第二の櫛状部との組合せを複数有する板状の母材を準備する工程と、
(b)前記母材の少なくとも一方の面上に導電性ダイヤモンド層を形成する工程と、
(c)工程(b)後、前記母材を複数の前記組合せに分割するとともに、前記組合せを前記第一の櫛状部と前記第二の櫛状部とに分離する工程と、
を含む、導電性ダイヤモンド電極の製造方法。
(A) a step of preparing a plate-shaped base material having a plurality of combinations of a first comb-shaped portion and a second comb-shaped portion fitted to the first comb-shaped portion;
(B) forming a conductive diamond layer on at least one surface of the base material;
(C) after step (b), dividing the base material into a plurality of the combinations, and separating the combination into the first comb-shaped portion and the second comb-shaped portion;
A method for producing a conductive diamond electrode, comprising:
前記第一の櫛状部の隙間の幅が前記第二の櫛状部の隙間の幅と同じである、請求項1に記載の導電性ダイヤモンド電極の製造方法。 The method for manufacturing a conductive diamond electrode according to claim 1, wherein the width of the gap between the first comb-shaped portions is the same as the width of the gap between the second comb-shaped portions. 前記第一の櫛状部の隙間の幅が前記第二の櫛状部の隙間の幅よりも大きい、請求項1に記載の導電性ダイヤモンド電極の製造方法。 The method for manufacturing a conductive diamond electrode according to claim 1, wherein the width of the gap between the first comb-shaped portions is larger than the width of the gap between the second comb-shaped portions. 工程(c)を経て得られた二つの前記第一の櫛状部が互いに嵌り合うように組み合わせて一つの導電性ダイヤモンド電極を得る工程を更に含む、請求項3に記載の導電性ダイヤモンド電極の製造方法。 The conductive diamond electrode according to claim 3, further comprising a step of combining the two first comb-shaped portions obtained through the step (c) so as to fit each other to obtain one conductive diamond electrode. Production method. 互いに離間し且つ並行して延びている複数の金属部材からなる電解部と、当該複数の金属部材の一方の端部を繋げているフレーム部とを有する櫛状部と、当該櫛状部の少なくとも一方の表面上に形成された導電性ダイヤモンド層とを備える第一の電極と、
互いに離間し且つ並行して延びている複数の金属部材からなる電解部と、当該複数の金属部材の一方の端部を繋げているフレーム部とを有する櫛状部と、当該櫛状部の少なくとも一方の表面上に形成された導電性ダイヤモンド層とを備える第二の電極と、
を備え、
前記第一の電極の前記櫛状部と前記第二の電極の前記櫛状部とが互いに嵌り合うように構成された導電性ダイヤモンド電極
An electrolyte portion comprising a plurality of metal members extending spaced and parallel to each other, a comb and a frame portion that connect the one end of the plurality of metal members, at least of the comb a first electrode and a formed on one surface conductive diamond layer,
At least one of the comb-shaped portions, which includes an electrolysis portion formed of a plurality of metal members that are spaced apart from each other and extend in parallel, and a frame portion that connects one end portions of the plurality of metal members. A second electrode comprising a conductive diamond layer formed on one surface,
Equipped with
A conductive diamond electrode configured such that the comb-shaped portion of the first electrode and the comb-shaped portion of the second electrode are fitted to each other .
原料水を電解してオゾン水を生成するための電解セルであって、
請求項に記載の導電性ダイヤモンド電極からなる陽極と、
陰極と、
前記陽極と前記陰極との間に配置されたイオン交換膜と、
を備える電解セル。
An electrolysis cell for electrolyzing raw water to generate ozone water,
An anode comprising the conductive diamond electrode according to claim 5 ,
The cathode,
An ion exchange membrane disposed between the anode and the cathode,
An electrolysis cell comprising.
請求項に記載の電解セルと、
前記電解セル及び原料水を収容する容器と、
前記電解セルに前記原料水を供給するポンプと、
前記電解セルに電気を供給する電源と、
を備えるオゾン水生成装置。
An electrolysis cell according to claim 6 ;
A container for containing the electrolytic cell and raw water,
A pump for supplying the raw material water to the electrolytic cell,
A power supply for supplying electricity to the electrolysis cell,
An ozone water generator provided with.
JP2019167655A 2019-09-13 2019-09-13 Electrolytic cell, ozone water generator including the same, conductive diamond electrode, and method for manufacturing the same Active JP6712420B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019167655A JP6712420B1 (en) 2019-09-13 2019-09-13 Electrolytic cell, ozone water generator including the same, conductive diamond electrode, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019167655A JP6712420B1 (en) 2019-09-13 2019-09-13 Electrolytic cell, ozone water generator including the same, conductive diamond electrode, and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP6712420B1 true JP6712420B1 (en) 2020-06-24
JP2021042457A JP2021042457A (en) 2021-03-18

Family

ID=71103893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019167655A Active JP6712420B1 (en) 2019-09-13 2019-09-13 Electrolytic cell, ozone water generator including the same, conductive diamond electrode, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP6712420B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022037493A1 (en) * 2020-08-19 2022-02-24 爱可依科技(上海)有限公司 Electrode plate unit and ozone generator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256378A (en) * 2003-02-27 2004-09-16 National Institute Of Advanced Industrial & Technology Method and apparatus for manufacturing hydrogen and oxygen
JP2005144240A (en) * 2003-11-11 2005-06-09 Honda Motor Co Ltd Electrolytic cell and electrolytic water generator
JP5284716B2 (en) * 2008-07-31 2013-09-11 株式会社神戸製鋼所 Diamond electrode, method for producing the diamond electrode, and ozone generator
WO2018083788A1 (en) * 2016-11-04 2018-05-11 ソマール株式会社 Electrolysis cell and device for ejecting ozone water in which same is used
CN110651069B (en) * 2017-09-06 2023-04-18 关东电化工业株式会社 Electrode and method for manufacturing same, and method for manufacturing regenerative electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022037493A1 (en) * 2020-08-19 2022-02-24 爱可依科技(上海)有限公司 Electrode plate unit and ozone generator

Also Published As

Publication number Publication date
JP2021042457A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
US6852438B2 (en) Embossed current collector separator for electrochemical fuel cell
JP3260389B2 (en) Solar cell module for photoelectrolysis device and photoelectrolysis device
JP7125021B2 (en) MEMBRANE ELECTRODE ASSEMBLY, ELECTROCHEMICAL CELL, AND ELECTROCHEMICAL DEVICE
CN109119652B (en) Method for manufacturing separator for fuel cell
US10767270B2 (en) Electrode for an ozone generator
JP6712420B1 (en) Electrolytic cell, ozone water generator including the same, conductive diamond electrode, and method for manufacturing the same
JP2004221061A (en) Fuel cell and its manufacturing method
US20190081331A1 (en) Method for producing a flow plate for a fuel cell
JP2001283869A (en) Fuel cell
WO2021251826A1 (en) Proton exchange membrane-based electrolyser device and method for manufacturing such a device
CN101638794B (en) Metal diffusion layer and membrane electrode assembly containing same
JP2011246747A (en) Electrolysis electrode and electrolyzer
JP2006328527A (en) Apparatus for producing hydrogen
JPH0995791A (en) Solid polyelectrolyte water electrolyzer and its electrode structure
US8455151B2 (en) Fuel cell with electrolyte strengthening substrate having a penetration portion
KR20140133301A (en) The membrane electrdoe assembly for an electrochemical cell
JP7188625B1 (en) water electrolysis cell
JP2011246748A (en) Electrolysis electrode and electrolytic device
US11390957B2 (en) Electrode and electrochemical cell comprising the same
US20090145781A1 (en) Method of treating nanoparticles using a proton exchange membrane and liquid electrolyte cell
JP5069379B1 (en) Ozone water generator
JP2840753B2 (en) Ozone electrolytic production method
JP2007073347A (en) Fuel cell
JPH0633284A (en) Water electrolytic cell
WO2023233740A1 (en) Membrane electrode assembly, electrolysis cell, electrolysis device, and method for producing membrane electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191001

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191001

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200518

R150 Certificate of patent or registration of utility model

Ref document number: 6712420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250