JP6709943B2 - Conductive paste - Google Patents

Conductive paste Download PDF

Info

Publication number
JP6709943B2
JP6709943B2 JP2017238568A JP2017238568A JP6709943B2 JP 6709943 B2 JP6709943 B2 JP 6709943B2 JP 2017238568 A JP2017238568 A JP 2017238568A JP 2017238568 A JP2017238568 A JP 2017238568A JP 6709943 B2 JP6709943 B2 JP 6709943B2
Authority
JP
Japan
Prior art keywords
conductive paste
conductive
present
electrode
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017238568A
Other languages
Japanese (ja)
Other versions
JP2019106305A (en
Inventor
和郎 村松
和郎 村松
秀雄 田辺
秀雄 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2017238568A priority Critical patent/JP6709943B2/en
Priority to TW107139500A priority patent/TWI783077B/en
Priority to EP18888515.6A priority patent/EP3726538B1/en
Priority to CN201880080539.9A priority patent/CN111480206B/en
Priority to US16/768,842 priority patent/US20210163772A1/en
Priority to PCT/JP2018/041303 priority patent/WO2019116787A1/en
Publication of JP2019106305A publication Critical patent/JP2019106305A/en
Application granted granted Critical
Publication of JP6709943B2 publication Critical patent/JP6709943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、電気的特性に優れた導電性パターンを得ることのできる導電性ペーストに関する。具体的には、半導体装置及び電子部品等の電極、並びに回路パターンの形成に用いることができる熱硬化型導電性ペーストに関する。 TECHNICAL FIELD The present invention relates to a conductive paste with which a conductive pattern having excellent electrical characteristics can be obtained. Specifically, the invention relates to a thermosetting conductive paste that can be used for forming electrodes of semiconductor devices and electronic parts, and circuit patterns.

銀粒子を含有する導電性ペーストは、例えば半導体装置及び電子部品の電極、並びに回路パターンを形成するために用いられている。導電性ペーストによる電極及び回路パターンの形成は、スクリーン印刷法等によって所定のパターンの導電性ペーストを基板等の上に塗布した後、導電性ペーストを加熱し、所定のパターンの導電膜を得ることにより行うことができる。 The conductive paste containing silver particles is used, for example, to form electrodes of semiconductor devices and electronic parts, and circuit patterns. The formation of electrodes and circuit patterns using a conductive paste is performed by applying a conductive paste having a predetermined pattern onto a substrate or the like by screen printing and then heating the conductive paste to obtain a conductive film having a predetermined pattern. Can be done by.

導電性ペーストには、高温焼成型導電性ペースト及び熱硬化型導電性ペーストの2つのタイプがある。高温焼成型の導電性ペーストは、550〜900℃程度の高温で焼成することで導電膜を形成することのできるペーストである。高温焼成型の導電性ペーストの場合、焼成時に導電性ペーストに含まれる樹脂成分は焼失する。熱硬化型の導電性ペーストは、室温(約20℃)〜250℃程度の比較的低温で加熱することで導電膜を形成することのできるペーストである。熱硬化型の導電性ペーストの場合、樹脂成分が硬化して銀粒子同士を接着させることにより、導電膜を形成する。 There are two types of conductive pastes, a high-temperature baking type conductive paste and a thermosetting type conductive paste. The high temperature firing type conductive paste is a paste capable of forming a conductive film by firing at a high temperature of about 550 to 900°C. In the case of a high temperature firing type conductive paste, the resin component contained in the conductive paste is burned off during firing. The thermosetting conductive paste is a paste capable of forming a conductive film by heating at a relatively low temperature of about room temperature (about 20° C.) to 250° C. In the case of a thermosetting conductive paste, the resin component is cured and the silver particles are adhered to each other to form a conductive film.

特許文献1には、熱硬化型導電性ペースト(組成物)の例が記載されている。具体的には、特許文献1には、(A)銀粒子、(B)オキセタニル基含有ポリシルセスキオキサン、(C)フタル酸系グリシジルエステル型エポキシ樹脂、及び(D)カチオン重合開始剤を含有することを特徴とする熱硬化型導電性ペーストが記載されている。 Patent Document 1 describes an example of a thermosetting conductive paste (composition). Specifically, Patent Document 1 discloses (A) silver particles, (B) oxetanyl group-containing polysilsesquioxane, (C) phthalic acid-based glycidyl ester-type epoxy resin, and (D) cationic polymerization initiator. A thermosetting conductive paste characterized by containing is described.

特許文献2〜5には、各種の重合開始剤を含む組成物が記載されている。 Patent Documents 2 to 5 describe compositions containing various polymerization initiators.

特許文献2には、接着テープ組成物であって、前記接着テープ組成物の総重量に対して、アクリレートモノマー25重量%〜75重量%と、エポキシ樹脂20重量%〜70重量%と、ラジカル光開始剤0.001重量%〜3重量%と、フュームドシリカ0重量%〜10重量%と、カチオン性熱開始剤0.02〜5重量%と、を含む、接着テープ組成物が記載されている。 Patent Document 2 discloses an adhesive tape composition, which comprises 25% by weight to 75% by weight of an acrylate monomer, 20% by weight to 70% by weight of an epoxy resin, and a radical light based on the total weight of the adhesive tape composition. An adhesive tape composition is described which comprises 0.001% to 3% by weight of initiator, 0% to 10% by weight of fumed silica, and 0.02 to 5% by weight of a cationic thermal initiator. There is.

特許文献3には、所定の式で表されるポリシロキサンと、第4級アンモニウム塩である熱酸発生剤とを含有する膜形成性組成物が記載されている。 Patent Document 3 describes a film-forming composition containing a polysiloxane represented by a predetermined formula and a thermal acid generator that is a quaternary ammonium salt.

特許文献4には、所定の式で表される構造単位を有するポリマーと、プロピレングリコールモノメチルエーテルが50重量%を超えて含有する溶剤とを含む、レジスト下層膜形成組成物が記載されている。 Patent Document 4 describes a resist underlayer film forming composition containing a polymer having a structural unit represented by a predetermined formula and a solvent containing propylene glycol monomethyl ether in an amount of more than 50% by weight.

特許文献5には、所定の式で表される構造単位を有する共重合体、架橋性化合物、架橋触媒並びに溶剤を含む、レジスト下層膜形成組成物が記載されている。 Patent Document 5 describes a resist underlayer film forming composition containing a copolymer having a structural unit represented by a predetermined formula, a crosslinking compound, a crosslinking catalyst and a solvent.

特開2014−89818号公報JP, 2014-89818, A 特開2015−507680号公報JP, 2005-507680, A 特開2016−69624号公報JP, 2016-69624, A 国際公開第2014/109186号International Publication No. 2014/109186 国際公開第2015/098525号International Publication No. 2015/098525

熱硬化型導電性ペーストを用いて得られた導電膜は、高温焼成型導電性ペーストを用いて得られた導電膜よりも比抵抗(電気抵抗値)が高くなる傾向がある。例えば、熱硬化型導電性ペーストは、一般的にバインダーとしてエポキシ樹脂を使用しているが、良好な密着性と電気的特性(10μΩ・cm以下の比抵抗)を両立しようとすると、一般的には、250℃超の高温の加熱処理が必要となる。 The conductive film obtained by using the thermosetting conductive paste tends to have a higher specific resistance (electrical resistance value) than the conductive film obtained by using the high temperature baking type conductive paste. For example, a thermosetting conductive paste generally uses an epoxy resin as a binder, but when it is attempted to achieve both good adhesion and electrical characteristics (specific resistance of 10 μΩ·cm or less), it is generally used. Requires heat treatment at a high temperature of 250° C. or higher.

本発明は、低温(例えば250℃以下)で処理することが可能であり、比抵抗が低い導電膜を得ることのできる熱硬化型導電性ペーストを提供することを目的とする。 It is an object of the present invention to provide a thermosetting conductive paste that can be processed at a low temperature (for example, 250° C. or lower) and can obtain a conductive film having a low specific resistance.

上記課題を解決するため、本発明は以下の構成を有する。 In order to solve the above problems, the present invention has the following configurations.

(構成1)
本発明の構成1は、(A)導電性成分、(B)熱硬化性樹脂、(C)式(1)の構造の化合物及び(D)溶剤を含む、導電性ペーストである。
式(1)
(Structure 1)
Configuration 1 of the present invention is a conductive paste containing (A) a conductive component, (B) a thermosetting resin, (C) a compound having the structure of formula (1), and (D) a solvent.
Formula (1)

本発明の構成1によれば、低温(例えば250℃以下)で処理することが可能であり、比抵抗が低い導電膜を得ることのできる熱硬化型導電性ペーストを得ることができる。 According to the configuration 1 of the present invention, it is possible to obtain a thermosetting conductive paste that can be processed at a low temperature (for example, 250° C. or lower) and that can obtain a conductive film having a low specific resistance.

(構成2)
本発明の構成2は、(A)導電性成分が、Ag及びCuから選択される少なくとも1種である、構成1の導電性ペーストである。
(Structure 2)
Structure 2 of the present invention is the conductive paste of structure 1, wherein the conductive component (A) is at least one selected from Ag and Cu.

本発明の構成2によれば、比抵抗が低い金属を用いることができるので、より低い比抵抗の導電膜を得ることができる。 According to the configuration 2 of the present invention, since a metal having a low specific resistance can be used, a conductive film having a lower specific resistance can be obtained.

(構成3)
本発明の構成3は、(A)導電性成分が、球状及び/又はフレーク状の粒子である、構成1又は2の導電性ペーストである。
(Structure 3)
Structure 3 of the present invention is the conductive paste according to Structure 1 or 2, wherein (A) the conductive component is spherical and/or flake-shaped particles.

本発明の構成3によれば、導電性成分が、球状及び/又はフレーク状の粒子であることにより、より優れた粒子間の導通を得ることができる。 According to the configuration 3 of the present invention, since the conductive component is spherical and/or flake-shaped particles, more excellent conduction between particles can be obtained.

(構成4)
本発明の構成4は、(B)熱硬化性樹脂が、エポキシ樹脂又はアクリル樹脂を含む、構成1から3のいずれかの導電性ペーストである。
(Structure 4)
Constitution 4 of the present invention is the electroconductive paste according to any one of constitutions 1 to 3, wherein (B) the thermosetting resin contains an epoxy resin or an acrylic resin.

本発明の構成4によれば、熱硬化性樹脂の熱硬化を確実にできる。 According to the configuration 4 of the present invention, the thermosetting of the thermosetting resin can be ensured.

(構成5)
本発明の構成5は、(C)式(1)の構造の化合物を、(A)導電性成分100重量部に対して0.1重量部〜2.0重量部含む、構成1から4のいずれかの導電性ペーストである。
(Structure 5)
Constitution 5 of the present invention includes the constitutional compound (C) of the structure (1) in an amount of 0.1 to 2.0 parts by weight per 100 parts by weight of the conductive component (A). One of the conductive pastes.

本発明の構成5によれば、式(1)の構造の化合物を所定の割合にすることにより、比抵抗が低い導電膜を得ることを、より確実にできる。 According to the configuration 5 of the present invention, it is possible to more reliably obtain the conductive film having a low specific resistance by setting the compound having the structure of the formula (1) in a predetermined ratio.

(構成6)
本発明の構成6は、(D)溶剤が、エチルグリコールモノフェニルエーテル又はブチルカルビトールアセテートを含む、構成1から5のいずれかの導電性ペーストである。
(Structure 6)
Constitution 6 of the present invention is the conductive paste according to any one of constitutions 1 to 5, wherein the solvent (D) contains ethyl glycol monophenyl ether or butyl carbitol acetate.

本発明の構成6によれば、所定の溶剤を用いることにより、導電性ペーストの粘度を適切に調節することができる。 According to the configuration 6 of the present invention, the viscosity of the conductive paste can be appropriately adjusted by using the predetermined solvent.

(構成7)
本発明の構成7は、(E)フェノキシ樹脂をさらに含む、構成1から6のいずれかの導電性ペーストである。
(Structure 7)
Structure 7 of the present invention is the conductive paste according to any one of Structures 1 to 6, further including (E) a phenoxy resin.

本発明の構成7によれば、導電性ペーストがさらにフェノキシ樹脂を含むことにより、電極抵抗がさらに低い導電膜を得ることができる。 According to the configuration 7 of the present invention, since the conductive paste further contains a phenoxy resin, it is possible to obtain a conductive film having a lower electrode resistance.

(構成8)
本発明の構成8は、(F)カップリング剤をさらに含む、構成1から7のいずれかの導電性ペーストである。
(Structure 8)
Structure 8 of the present invention is the conductive paste according to any one of Structures 1 to 7, further including (F) a coupling agent.

本発明の構成8によれば、導電性ペーストがさらにカップリング剤を含むことにより、導電性成分等の無機成分と、熱硬化性樹脂との接着性をより良好なものにすることができる。 According to the configuration 8 of the present invention, since the conductive paste further contains the coupling agent, the adhesiveness between the inorganic component such as the conductive component and the thermosetting resin can be improved.

(構成9)
本発明の構成9は、構成1から8のいずれかの導電性ペーストを用いた太陽電池電極形成用の導電性ペーストである。
(Configuration 9)
Structure 9 of the present invention is a conductive paste for forming a solar cell electrode, which uses the conductive paste according to any one of Structures 1 to 8.

本発明の導電性ペーストは、太陽電池電極形成用の導電性ペーストとして、好ましく用いることができる。本発明の導電性ペーストは、特に、アモルファスシリコン系等の薄膜材料を用いた太陽電池、例えば、アモルファスシリコン太陽電池、ヘテロ接合型太陽電池及び化合物半導体太陽電池(CIS太陽電池、CIGS太陽電池及びCdTe太陽電池等)の電極形成用の導電性ペーストとして、好ましく用いることができる。 The conductive paste of the present invention can be preferably used as a conductive paste for forming solar cell electrodes. The conductive paste of the present invention is particularly applicable to solar cells using amorphous silicon-based thin film materials such as amorphous silicon solar cells, heterojunction solar cells and compound semiconductor solar cells (CIS solar cells, CIGS solar cells and CdTe solar cells). It can be preferably used as a conductive paste for forming electrodes of solar cells and the like.

(構成10)
本発明の構成10は、電極形成時の処理温度が250℃以下である構成9の太陽電池電極形成用の導電性ペーストである。
(Configuration 10)
Structure 10 of the present invention is a conductive paste for forming a solar cell electrode, which has a processing temperature of 250° C. or lower during electrode formation.

本発明の導電性ペーストの処理温度は250℃以下なので、太陽電池を構成する材料に悪影響を及ぼさずに電極を形成することができる。 Since the treatment temperature of the conductive paste of the present invention is 250° C. or lower, the electrode can be formed without adversely affecting the material constituting the solar cell.

(構成11)
本発明の構成11は、透明電極の表面に電極を形成するための、構成1から8のいずれかの導電性ペーストである。
(Configuration 11)
Structure 11 of the present invention is the conductive paste according to any one of Structures 1 to 8 for forming an electrode on the surface of a transparent electrode.

本発明の導電性ペーストは、透明電極に悪影響を及ぼさずに、比較的低い接触抵抗で透明電極の表面に電極を形成することができる。 The conductive paste of the present invention can form an electrode on the surface of a transparent electrode with a relatively low contact resistance without adversely affecting the transparent electrode.

本発明によれば、低温(例えば250℃以下)で処理することが可能であり、比抵抗が低い導電膜を得ることのできる熱硬化型導電性ペーストを提供することができる。 According to the present invention, it is possible to provide a thermosetting conductive paste that can be processed at a low temperature (for example, 250°C or lower) and that can obtain a conductive film having a low specific resistance.

導電性ペーストを用いて形成した電極を有する太陽電池の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the solar cell which has an electrode formed using the conductive paste. 導電性ペーストを用いて形成した電極のための比抵抗測定用パターンを示す平面模式図である。It is a schematic plan view showing a specific resistance measurement pattern for an electrode formed using a conductive paste. 電極と、結晶系シリコン基板との間の接触抵抗の測定に用いた接触抵抗測定用パターンを示す平面模式図である。FIG. 3 is a schematic plan view showing a contact resistance measurement pattern used for measuring contact resistance between an electrode and a crystalline silicon substrate. 実施例3の導電膜の断面状態を、電子顕微鏡(SEM)を用いて観察したSEM写真である。5 is a SEM photograph of a cross-sectional state of the conductive film of Example 3 observed with an electron microscope (SEM). 比較例1の導電膜の断面状態を、電子顕微鏡(SEM)を用いて観察したSEM写真である。5 is a SEM photograph of a cross-sectional state of the conductive film of Comparative Example 1 observed with an electron microscope (SEM).

以下、本発明の実施形態について、図面を参照しながら具体的に説明する。なお、以下の実施形態は、本発明を具体化する際の形態であって、本発明をその範囲内に限定するものではない。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. The following embodiment is a mode for embodying the present invention, and does not limit the present invention within the scope thereof.

本発明の熱硬化型導電性ペースト(単に、「導電性ペースト」という場合がある。)は、所定の成分を含むことにより、低温(例えば250℃以下)で熱硬化させて電極を形成することが可能である。また、本発明の導電性ペーストを用いることにより、比抵抗が低い導電膜(電極)を得ることができる。 The thermosetting conductive paste of the present invention (which may be simply referred to as “conductive paste”) contains a predetermined component, and thus is thermally cured at a low temperature (for example, 250° C. or lower) to form an electrode. Is possible. Moreover, by using the conductive paste of the present invention, a conductive film (electrode) having a low specific resistance can be obtained.

本明細書において、「導電膜」とは、導電性ペーストを所定の基板等の表面に、所定の形状のパターンとなるように印刷等をし、硬化させた薄膜状のパターンのことをいう。所定の形状のパターンとしては、任意の形状、例えば、線状、ドット状及び平面状の形状のパターンを含む。 In the present specification, the “conductive film” refers to a thin film pattern in which a conductive paste is printed on the surface of a predetermined substrate or the like so as to form a pattern of a predetermined shape and cured. The pattern of a predetermined shape includes an arbitrary shape, for example, a linear, dot-shaped, or flat-shaped pattern.

本発明の導電性ペーストは、半導体装置及び電子部品等の電極、並びに回路パターンとしての導電膜を形成するために用いることができる。本発明の導電性ペーストは、半導体、酸化物及びセラミック等の無機材料の表面だけでなく、PET(ポリエチレンテレフタレート)及びPEN(ポリエチレンナフタレート)等の耐熱性の低い基板に、電極及び/又は回路パターンを形成するために用いることができる。 The conductive paste of the present invention can be used for forming electrodes such as semiconductor devices and electronic parts, and conductive films as circuit patterns. INDUSTRIAL APPLICABILITY The conductive paste of the present invention is applied not only to the surface of inorganic materials such as semiconductors, oxides and ceramics, but also to electrodes and/or circuits on substrates with low heat resistance such as PET (polyethylene terephthalate) and PEN (polyethylene naphthalate). It can be used to form a pattern.

本明細書において、「半導体装置」とは、半導体チップを用いた装置、例えば、トランジスタ及び集積回路等の半導体装置、液晶ディスプレイ(LCD)及びプラズマディスプレイパネル(PDP)等のフラットパネルディスプレイ、並びに太陽電池等の半導体を用いた装置のことを意味する。半導体装置は、半導体内の電子及びホールの性質を利用した装置であり、半導体への直接的又は間接的な電気的接続のための電極を有する。 In the present specification, the “semiconductor device” means a device using a semiconductor chip, for example, a semiconductor device such as a transistor and an integrated circuit, a flat panel display such as a liquid crystal display (LCD) and a plasma display panel (PDP), and a sun. It means a device using a semiconductor such as a battery. A semiconductor device is a device that utilizes the properties of electrons and holes in the semiconductor and has electrodes for direct or indirect electrical connection to the semiconductor.

半導体装置の電極が、光の透過を必要とする場合がある。そのような電極の材料として、透明導電膜が用いられる。透明導電膜を材料とする電極のことを、透明電極という。透明電極は、液晶ディスプレイ(LCD)及びプラズマディスプレイパネル(PDP)等のフラットパネルディスプレイ、並びに各種の太陽電池等の半導体装置に用いられている。太陽電池としては、アモルファスシリコン太陽電池及び化合物半導体太陽電池(CIS太陽電池、CIGS太陽電池及びCdTe太陽電池等)等の薄膜太陽電池、ヘテロ接合型太陽電池、並びに結晶系シリコン太陽電池等を挙げることができる。透明電極は、例えばフラットパネルディスプレイ、薄膜太陽電池及びヘテロ接合型太陽電池等の電極形成に用いられている。 The electrodes of the semiconductor device may need to transmit light. A transparent conductive film is used as a material for such an electrode. An electrode made of a transparent conductive film is called a transparent electrode. Transparent electrodes are used in flat panel displays such as liquid crystal displays (LCD) and plasma display panels (PDP), and semiconductor devices such as various solar cells. Examples of solar cells include amorphous silicon solar cells and thin film solar cells such as compound semiconductor solar cells (CIS solar cells, CIGS solar cells, CdTe solar cells, etc.), heterojunction solar cells, crystalline silicon solar cells, and the like. You can The transparent electrode is used for forming electrodes such as flat panel displays, thin film solar cells and heterojunction solar cells.

透明電極の材料である透明導電膜としては、酸化物導電膜を用いることができる。酸化物導電膜として、酸化インジウムスズ(「ITO(Indium Tin Oxide)」ともいう。)薄膜、酸化スズ薄膜、及びZnO系薄膜等を挙げることができる。現在、ITO薄膜は、フラットパネルディスプレイ、並びに各種の太陽電池等に多く用いられている。半導体装置への光の入射、又は半導体装置からの光の出射を妨げないように、透明電極に対して電気的接続をするために、格子(grid)状の電極(単に「電極」という場合がある。)が形成される。本発明の導電性ペーストは、透明電極の表面への、格子状の電極の形成のために用いることができる。 An oxide conductive film can be used as the transparent conductive film that is the material of the transparent electrode. Examples of the oxide conductive film include an indium tin oxide (also referred to as “ITO (Indium Tin Oxide)”) thin film, a tin oxide thin film, and a ZnO-based thin film. Currently, ITO thin films are widely used in flat panel displays, various solar cells, and the like. In order to make electrical connection to the transparent electrode so as not to interfere with the incidence of light on the semiconductor device or the emission of light from the semiconductor device, a grid-shaped electrode (sometimes referred to simply as “electrode”) Is formed). The conductive paste of the present invention can be used for forming a grid-shaped electrode on the surface of a transparent electrode.

半導体装置の半導体の材料の種類、電子部品の材料の種類、並びに半導体装置及び電子部品等を構成する半導体以外の材料の種類によっては、電極形成の工程において、高温、例えば250℃を超える温度での処理をした場合、半導体チップ及び/又はそれ以外の材料が劣化することがある。本発明の導電性ペーストを用いることにより、低温(例えば250℃以下)で比抵抗が低い電極を形成することができる。本発明の熱硬化型導電性ペーストを用いることにより、半導体装置が高温により劣化することなく、所定の低抵抗の電極を形成することができる。 Depending on the type of semiconductor material of the semiconductor device, the type of material of the electronic component, and the type of material other than the semiconductor constituting the semiconductor device, the electronic component, etc., at a high temperature, for example, a temperature higher than 250° C., in the step of forming the electrode. When the above process is performed, the semiconductor chip and/or other materials may deteriorate. By using the conductive paste of the present invention, an electrode having a low specific resistance can be formed at a low temperature (for example, 250° C. or lower). By using the thermosetting conductive paste of the present invention, a predetermined low resistance electrode can be formed without deterioration of the semiconductor device due to high temperature.

本発明の導電性ペーストを用いて、透明導電膜へ電極を形成した場合、低い接触抵抗を得ることができる。特に、ITO薄膜へ電極を形成した場合、低い接触抵抗(例えば7mΩ・cm以下の接触抵抗)を比較的容易に得ることができる。したがって、本発明の導電性ペーストは、透明導電膜、特にITO薄膜へ電極を形成するために好適に用いることができる。 When an electrode is formed on a transparent conductive film using the conductive paste of the present invention, low contact resistance can be obtained. In particular, when an electrode is formed on the ITO thin film, a low contact resistance (for example, a contact resistance of 7 mΩ·cm 2 or less) can be obtained relatively easily. Therefore, the conductive paste of the present invention can be suitably used for forming an electrode on a transparent conductive film, particularly an ITO thin film.

本発明の導電性ペーストは、太陽電池の透明導電膜の表面に電極を形成するために、好ましく用いることができる。太陽電池の種類によっては、高温の加熱工程により悪影響を受ける材料を用いる場合がある。本発明の熱硬化型導電性ペーストは、特に、このような耐熱性の低い太陽電池の透明導電膜の表面に電極を形成するために、好ましく用いることができる。高温の加熱工程により悪影響を受ける材料としては、アモルファスシリコンを挙げることができる。アモルファスシリコンを材料として用いる太陽電池としては、アモルファスシリコン太陽電池、並びにアモルファスシリコン及び結晶シリコンを用いたヘテロ接合型太陽電池(以下、単に「ヘテロ接合型太陽電池」という。)を挙げることができる。本発明の熱硬化型導電性ペーストは、アモルファスシリコン太陽電池及びヘテロ接合型太陽電池の透明導電膜の表面に電極を形成するために、好ましく用いることができる。 The conductive paste of the present invention can be preferably used for forming an electrode on the surface of a transparent conductive film of a solar cell. Depending on the type of solar cell, a material that is adversely affected by the high temperature heating process may be used. The thermosetting conductive paste of the present invention can be preferably used especially for forming an electrode on the surface of the transparent conductive film of such a solar cell having low heat resistance. Amorphous silicon can be cited as a material that is adversely affected by the high temperature heating process. Examples of the solar cell using amorphous silicon as a material include an amorphous silicon solar cell and a heterojunction solar cell using amorphous silicon and crystalline silicon (hereinafter, simply referred to as “heterojunction solar cell”). The thermosetting conductive paste of the present invention can be preferably used for forming electrodes on the surfaces of transparent conductive films of amorphous silicon solar cells and heterojunction solar cells.

図1を参照して、本発明の熱硬化型導電性ペーストの好ましい用途であるヘテロ接合型太陽電池について、説明する。 A heterojunction solar cell, which is a preferred application of the thermosetting conductive paste of the present invention, will be described with reference to FIG.

図1に、ヘテロ接合型太陽電池の一例の断面模式図を示す。図1に示すヘテロ接合型太陽電池は、n型の結晶系シリコン基板10(例えば、単結晶シリコン基板又は多結晶シリコン基板)の光入射側表面に、真性アモルファスシリコンからなるi型アモルファスシリコン層12(膜厚約10nm)及びp型アモルファスシリコンからなるp型アモルファスシリコン層14a(膜厚約10nm)がこの順に積層されている。p型アモルファスシリコン層14aの上には透明導電膜、例えば酸化インジウムスズ(ITO)からなる透明導電膜16(膜厚約70nm)が配置される。透明導電膜16の表面には、スリット状の光入射側表面を得るために、格子(grid)状の光入射側電極18aが形成される。 FIG. 1 shows a schematic sectional view of an example of a heterojunction solar cell. The heterojunction solar cell shown in FIG. 1 has an i-type amorphous silicon layer 12 made of intrinsic amorphous silicon on the light incident side surface of an n-type crystalline silicon substrate 10 (for example, a single crystal silicon substrate or a polycrystalline silicon substrate). (A film thickness of about 10 nm) and a p-type amorphous silicon layer 14a (a film thickness of about 10 nm) made of p-type amorphous silicon are laminated in this order. A transparent conductive film, for example, a transparent conductive film 16 (film thickness of about 70 nm) made of indium tin oxide (ITO) is arranged on the p-type amorphous silicon layer 14a. On the surface of the transparent conductive film 16, a grid-shaped light incident side electrode 18a is formed in order to obtain a slit-shaped light incident side surface.

また、図1に示すように、結晶系シリコン基板10の裏面には、真性アモルファスシリコンからなるi型アモルファスシリコン層12(膜厚約10nm)及び高濃度にドープされたn型アモルファスシリコンからなるn型アモルファスシリコン層14b(膜厚約10nm)がこの順に積層されている。n型アモルファスシリコン層14bの上には、光入射側表面と同様に、透明導電膜16及び格子状の裏面電極18bが形成される。 Further, as shown in FIG. 1, on the back surface of the crystalline silicon substrate 10, an i-type amorphous silicon layer 12 (film thickness of about 10 nm) made of intrinsic amorphous silicon and an n-type amorphous silicon made of highly doped n-type amorphous silicon are provided. A type amorphous silicon layer 14b (film thickness of about 10 nm) is laminated in this order. On the n-type amorphous silicon layer 14b, the transparent conductive film 16 and the grid-shaped back surface electrode 18b are formed similarly to the light incident side surface.

図1に示すヘテロ接合型太陽電池の場合、結晶系シリコン基板以外の各層の形成を、プラズマCVD法、スパッタリング法、蒸着法、又はスクリーン印刷法等の方法を用いて全て約200℃以下の温度で行うことができる。また、アモルファスシリコンは、高温の加熱工程により悪影響を受けるため、透明導電膜16の表面に光入射側電極18a及び裏面電極18bを形成する際の温度は、低温であることが好ましい。本発明の熱硬化型導電性ペーストを用いるならば、低温(例えば250℃以下)で、比抵抗が低い光入射側電極18a及び裏面電極18bを形成することができる。 In the case of the heterojunction solar cell shown in FIG. 1, formation of each layer other than the crystalline silicon substrate is performed at a temperature of about 200° C. or less by using a method such as a plasma CVD method, a sputtering method, an evaporation method, or a screen printing method. Can be done at. Further, since the amorphous silicon is adversely affected by the high temperature heating step, it is preferable that the temperature at which the light incident side electrode 18a and the back surface electrode 18b are formed on the surface of the transparent conductive film 16 is low. If the thermosetting conductive paste of the present invention is used, the light incident side electrode 18a and the back surface electrode 18b having a low specific resistance can be formed at a low temperature (for example, 250° C. or lower).

次に、本発明の熱硬化型導電性ペーストについて説明する。 Next, the thermosetting conductive paste of the present invention will be described.

本発明は、(A)導電性成分、(B)熱硬化性樹脂、(C)式(1)の構造の化合物及び(D)溶剤を含む、導電性ペーストである。
式(1)
The present invention is a conductive paste containing (A) a conductive component, (B) a thermosetting resin, (C) a compound of the structure of formula (1), and (D) a solvent.
Formula (1)

本発明によれば、低温(例えば250℃以下)で処理することが可能であり、比抵抗が低い導電膜を得ることのできる熱硬化型導電性ペーストを得ることができる。 According to the present invention, it is possible to obtain a thermosetting conductive paste that can be processed at a low temperature (for example, 250° C. or lower) and that can obtain a conductive film having a low specific resistance.

<(A)導電性成分>
本発明の導電性ペーストは、(A)導電性成分を含む。
<(A) Conductive component>
The conductive paste of the present invention contains (A) a conductive component.

導電性成分とは、銀、銅、ニッケル、アルミニウム、亜鉛及び/又はスズ等の導電性成分を含む導電性粒子である。導電性粒子の形状は、例えば、球状、フレーク状、又は針状等の形状であることができる。異なる形状の導電性粒子を混合して用いることができる。 The conductive component is a conductive particle containing a conductive component such as silver, copper, nickel, aluminum, zinc and/or tin. The shape of the conductive particles can be, for example, a spherical shape, a flake shape, or a needle shape. The conductive particles having different shapes can be mixed and used.

導電性粒子の製造方法は、特に限定されず、例えば、還元法、粉砕法、電解法、アトマイズ法、熱処理法、又はそれらの組み合わせによって製造することができる。フレーク状の導電性粒子は、例えば球状の導電性粒子をボールミル等によって押し潰すことによって製造することができる。 The method for producing the conductive particles is not particularly limited, and can be produced by, for example, a reduction method, a pulverization method, an electrolysis method, an atomization method, a heat treatment method, or a combination thereof. The flaky conductive particles can be produced, for example, by crushing spherical conductive particles with a ball mill or the like.

本発明の導電性ペーストは、(A)導電性成分が、球状及び/又はフレーク状の粒子であることが好ましい。 In the conductive paste of the present invention, the conductive component (A) is preferably spherical and/or flake particles.

導電膜の比抵抗を低下させる観点からは、フレーク状の導電性粒子を用いることが好ましい。しかし、フレーク状の導電性粒子のみを用いた場合、導電性ペーストの粘度が高くなり、取り扱い性が悪化する(チクソ性が高くなる)。したがって、本発明の導電性ペーストに含まれる導電性粒子としては、フレーク状の導電性粒子と、球状の導電性粒子とを混合したものを使用することが好ましい。フレーク状の導電性粒子と球状の導電性粒子との好ましい混合比率(重量比)は、フレーク状の導電性粒子が1に対して、球状の導電性粒子が0.25〜4である。より好ましくは、フレーク状の導電性粒子が1に対して、球状の導電性粒子が0.67〜1.5である。フレーク状の導電性粒子と球状の導電性粒子との最も好ましい混合比率は、1:1である。 From the viewpoint of reducing the specific resistance of the conductive film, it is preferable to use flaky conductive particles. However, when only the flaky conductive particles are used, the viscosity of the conductive paste becomes high and the handleability deteriorates (the thixotropy becomes high). Therefore, it is preferable to use, as the conductive particles contained in the conductive paste of the present invention, a mixture of flaky conductive particles and spherical conductive particles. The preferable mixing ratio (weight ratio) of the flaky conductive particles and the spherical conductive particles is 1 to 1 for the flaky conductive particles and 0.25 to 4 for the spherical conductive particles. More preferably, the number of flaky conductive particles is 1 and the ratio of spherical conductive particles is 0.67 to 1.5. The most preferable mixing ratio of the flaky conductive particles and the spherical conductive particles is 1:1.

導電性粒子の好ましい平均粒子径は、0.1μm〜15μmであり、より好ましくは、0.5μm〜10μmであり、最も好ましくは、0.5μm〜5μmである。本明細書において平均粒子径は、レーザー回折散乱式粒度分布測定による、個数基準に基づく平均粒子径(全粒子の積算値50%の平均粒子径:D50)をいう。導電性粒子の平均粒子径が上記の範囲にある場合、導電性ペーストを加熱して得られる電極及び回路パターンの表面の状態が良好になる。また、導電性ペーストを加熱して得られる電極及び回路パターンの電気的特性が向上する。 The average particle diameter of the conductive particles is preferably 0.1 μm to 15 μm, more preferably 0.5 μm to 10 μm, and most preferably 0.5 μm to 5 μm. In the present specification, the average particle diameter refers to the average particle diameter based on the number standard (average particle diameter of 50% integrated value of all particles: D50) measured by laser diffraction/scattering particle size distribution. When the average particle diameter of the conductive particles is within the above range, the surface condition of the electrodes and circuit patterns obtained by heating the conductive paste becomes good. Also, the electrical characteristics of the electrodes and circuit patterns obtained by heating the conductive paste are improved.

本発明の導電性ペーストに含まれる(A)導電性成分の含有量は、導電性ペースト全体に対して好ましくは75〜98重量%であり、より好ましくは80〜97重量%、さらに好ましくは85〜95重量%である。 The content of the (A) conductive component contained in the conductive paste of the present invention is preferably 75 to 98% by weight, more preferably 80 to 97% by weight, and further preferably 85, based on the entire conductive paste. ~95% by weight.

本発明の導電性ペーストに含まれる(A)導電性成分としては、(A)導電性成分が、銀(Ag)及び銅(Cu)から選択される少なくとも1種であることが好ましい。(A)導電性成分として、銀粒子及び/又は銅粒子を用いることができる。また、(A)導電性成分として、単独で、又は銀粒子及び/又は銅粒子と共に、銀及び銅の合金粒子を用いることができる。比抵抗が低い金属である銀及び/又は銅を用いることにより、比抵抗が低い導電膜を得ることができる。 As the conductive component (A) contained in the conductive paste of the present invention, the conductive component (A) is preferably at least one selected from silver (Ag) and copper (Cu). As the conductive component (A), silver particles and/or copper particles can be used. As the conductive component (A), silver or copper alloy particles can be used alone or together with silver particles and/or copper particles. By using silver and/or copper, which are metals having low specific resistance, a conductive film having low specific resistance can be obtained.

銀粒子は、導電率が高く、多くの半導体装置、例えば太陽電池用の電極として、従来から用いられており、信頼性が高い。本発明の導電性ペーストの場合、導電性成分として、銀粒子を用いることにより、信頼性が高く、高性能の半導体装置、例えば太陽電池を製造することができる。そのため、銀粒子を、導電性成分の主要成分として用いることが好ましい。 Silver particles have high electrical conductivity, have been conventionally used as electrodes for many semiconductor devices, for example, solar cells, and have high reliability. In the case of the conductive paste of the present invention, by using silver particles as the conductive component, a highly reliable and high performance semiconductor device, for example, a solar cell can be manufactured. Therefore, it is preferable to use silver particles as the main component of the conductive component.

銅粒子は、比較的低価格であり、高い導電率を有するため、電極材料として好ましい。導電性成分として銅粒子を用いることにより、導電性ペーストのコストを低くすることができる。 Copper particles are preferable as an electrode material because they are relatively inexpensive and have high conductivity. By using copper particles as the conductive component, the cost of the conductive paste can be reduced.

本発明の導電性ペーストには、その用途の性能が損なわれない範囲で、銀粒子及び/若しくは銅粒子以外の他の金属粒子、又は銀粒子及び/若しくは銅粒子との合金粒子を含むことができる。低い電気抵抗及び高い信頼性を得る点から、導電性成分は銀粒子を導電性成分全体に対して80重量%以上含むことが好ましく、90重量%以上含むことがより好ましく、導電性成分は銀粒子のみからなることがさらに好ましい。 The conductive paste of the present invention may contain metal particles other than silver particles and/or copper particles, or alloy particles with silver particles and/or copper particles, as long as the performance of the application is not impaired. it can. From the viewpoint of obtaining low electrical resistance and high reliability, the conductive component preferably contains silver particles in an amount of 80% by weight or more, more preferably 90% by weight or more, and the conductive component is silver. More preferably, it consists of particles only.

なお、「導電性成分は銀粒子のみからなる」とは、不可避的に存在する不純物を除き、実質的に導電性成分の全部が銀粒子であることを意味する。すなわち、導電性成分が銀粒子のみからなる場合には、導電性成分は、銀粒子以外に、不可避的に存在する不純物を含有することができる。銀粒子以外の他の成分についても同様である。 The phrase "the conductive component consists of silver particles only" means that substantially all of the conductive component is silver particles, except for impurities that are inevitably present. That is, when the conductive component consists only of silver particles, the conductive component can contain impurities inevitably present in addition to the silver particles. The same applies to components other than silver particles.

<(B)熱硬化性樹脂>
本発明の導電性ペーストは、(B)熱硬化性樹脂を含む。
<(B) Thermosetting resin>
The conductive paste of the present invention contains (B) a thermosetting resin.

熱硬化性樹脂の例として、尿素樹脂、メラミン樹脂、グアナミン樹脂のようなアミノ樹脂;高分子量のビスフェノールA型エポキシ樹脂、p−グリシジルオキシフェニルジメチルトリスビスフェノールAジグリシジルエーテルのような分岐状多官能ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ジグリシジルビフェニルのようなビフェニル型エポキシ樹脂、ノボラック型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、トリス(ヒドロキシルフェニル)メタン型エポキシ樹脂、ビニル(3,4−シクロヘキセン)ジオキシド、3,4−エポキシシクロヘキシルカルボン酸(3,4−エポキシシクロヘキシル)メチル、アジピン酸ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)、2−(3,4−エポキシシクロヘキシル)5,1−スピロ(3,4−エポキシシクロヘキシル)−m−ジオキサンのような脂環式エポキシ樹脂、ヘキサヒドロフタル酸ジグリシジル、3−メチルヘキサヒドロフタル酸ジグリシジル、ヘキサヒドロテレフタル酸ジグリシジルのようなグリシジルエステル型エポキシ樹脂、ジグリシジルアニリン、ジグリシジルトルイジン、トリグリシジル−p−アミノフェノール、テトラグリシジル−m−キシリレンジアミン、テトラグリシジルビス(アミノメチル)シクロヘキサンのようなグリシジルアミン型エポキシ樹脂、1,3−ジグリシジル−5−メチル−5−エチルヒダントインのようなヒダントイン型エポキシ樹脂、1,3−ビス(3−グリシドキシプロピル)−1,1,3,3−テトラメチルジシロキサンのようなシリコーン骨格をもつエポキシ樹脂;オキセタン樹脂;レゾール型フェノール樹脂、アルキルレゾール型フェノール樹脂、ノボラック型フェノール樹脂、アルキルノボラック型フェノール樹脂、アラルキルノボラック型フェノール樹脂、アリルフェノールのようなフェノール樹脂;シリコーンエポキシ、シリコーンポリエステルのようなシリコーン変性樹脂;ビスマレイミド、ポリイミド樹脂等を挙げることができる。 Examples of thermosetting resins include amino resins such as urea resins, melamine resins and guanamine resins; high molecular weight bisphenol A type epoxy resins, branched polyfunctional compounds such as p-glycidyloxyphenyl dimethyl tris bisphenol A diglycidyl ether. Bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin such as diglycidyl biphenyl, novolac type epoxy resin, tetrabromobisphenol A type epoxy resin, tris(hydroxylphenyl)methane type epoxy resin, vinyl (3, 4-cyclohexene) dioxide, 3,4-epoxycyclohexylcarboxylic acid (3,4-epoxycyclohexyl)methyl, adipate bis(3,4-epoxy-6-methylcyclohexylmethyl), 2-(3,4-epoxycyclohexyl) A) cycloaliphatic epoxy resins such as 5,1-spiro(3,4-epoxycyclohexyl)-m-dioxane, diglycidyl hexahydrophthalate, diglycidyl 3-methylhexahydrophthalate, diglycidyl hexahydroterephthalate. Glycidyl ester type epoxy resin, diglycidyl aniline, diglycidyl toluidine, triglycidyl-p-aminophenol, tetraglycidyl-m-xylylenediamine, glycidylamine type epoxy resin such as tetraglycidyl bis(aminomethyl)cyclohexane, 1, Hydantoin type epoxy resin such as 3-diglycidyl-5-methyl-5-ethylhydantoin, silicone such as 1,3-bis(3-glycidoxypropyl)-1,1,3,3-tetramethyldisiloxane Epoxy resin having a skeleton; Oxetane resin; Resol type phenol resin, alkylresole type phenol resin, novolac type phenol resin, alkyl novolac type phenol resin, aralkyl novolak type phenol resin, phenol resin such as allylphenol; silicone epoxy, silicone polyester Examples of such silicone-modified resins include bismaleimide and polyimide resins.

本発明の導電性ペーストは、(B)熱硬化性樹脂が、エポキシ樹脂又はアクリル樹脂を含むことが好ましい。また、本発明の導電性ペーストは、(B)熱硬化性樹脂が、エポキシ樹脂、アクリル樹脂又はそれらの混合物のみからなることが好ましい。これらの熱硬化性樹脂を用いることにより、比較的低温での熱硬化を確実にできる。 In the conductive paste of the present invention, the thermosetting resin (B) preferably contains an epoxy resin or an acrylic resin. Further, in the conductive paste of the present invention, it is preferable that the thermosetting resin (B) is composed only of an epoxy resin, an acrylic resin or a mixture thereof. By using these thermosetting resins, thermosetting at a relatively low temperature can be ensured.

<(C)式(1)の構造の化合物>
本発明の導電性ペーストは、(C)式(1)の構造の化合物を含む。
<(C) Compound of Structure (1)>
The conductive paste of the present invention contains (C) a compound having the structure of formula (1).

(C)式(1)の構造の化合物は、本発明の導電性ペーストにおいて、カチオン重合開始剤としての機能を有する。本発明の発明者らは、カチオン重合開始剤として(C)式(1)の構造の化合物を含む導電性ペーストを用いて導電膜を形成した場合、低い比抵抗の導電膜を得ることができることを見出した。図4に示すように、本発明の導電性ペーストを用いて形成した導電膜では、銀粒子の融着が進んでいることが見て取れる。本発明の導電性ペーストを用いた場合、銀粒子の融着が進むため、低い比抵抗を得ることができるものと推測できる。ただし、本発明は、この推測に拘束されるものではない。 The compound (C) having the structure of formula (1) has a function as a cationic polymerization initiator in the conductive paste of the present invention. The inventors of the present invention can obtain a conductive film having a low specific resistance when the conductive film is formed using a conductive paste containing a compound having a structure of (C) formula (1) as a cationic polymerization initiator. Found. As shown in FIG. 4, in the conductive film formed using the conductive paste of the present invention, it can be seen that the fusion of silver particles is progressing. When the conductive paste of the present invention is used, it is presumed that low specific resistance can be obtained because the fusion of silver particles proceeds. However, the present invention is not bound by this assumption.

本発明の導電性ペーストは、(C)式(1)の構造の化合物が、(A)導電性成分100重量部に対して0.1重量部〜2.0重量部含むことが好ましくは0.15〜1.7重量部含むことがより好ましく、0.21〜1.68重量部含むことがさらに好ましい。式(1)の構造の化合物を所定の割合にすることにより、比抵抗が低い導電膜を得ることを、より確実にできる。 In the conductive paste of the present invention, it is preferable that the compound of the structure of formula (1) (C) is contained in an amount of 0.1 to 2.0 parts by weight based on 100 parts by weight of the conductive component (A). It is more preferable to contain 0.15 to 1.7 parts by weight, and it is further preferable to contain 0.21 to 1.68 parts by weight. By setting the compound having the structure of formula (1) in a predetermined ratio, it is possible to more reliably obtain a conductive film having a low specific resistance.

(C)式(1)の構造の化合物は、所定の温度になるまで硬化反応が開始しない。そのため、本発明の導電性ペーストは、保管安定性が良好である。すなわち、本発明の導電性ペーストは、経時安定性に優れており、常温保管が可能である。 (C) The compound having the structure of the formula (1) does not start the curing reaction until a predetermined temperature is reached. Therefore, the conductive paste of the present invention has good storage stability. That is, the conductive paste of the present invention has excellent stability over time and can be stored at room temperature.

本発明の熱硬化型導電性ペーストは、カチオン重合開始剤として、本発明の熱硬化型導電性ペーストの効果を妨げない範囲で、上述の(C)式(1)の構造の化合物以外のカチオン重合開始剤を含むことができる。そのようなカチオン重合開始剤としては、p−トルエンスルホン酸塩、六フッ化アンチモン酸塩、六フッ化リン酸塩、トリフルオロメタンスルホン酸塩、及びパーフルオロブタンスルホン酸塩などを挙げることができる。本発明の熱硬化型導電性ペーストは、(C)式(1)の構造の化合物が含まれることにより、所定の効果を奏することから、本発明の熱硬化型導電性ペーストは、カチオン重合開始剤として(C)式(1)の構造の化合物のみを含むことが好ましい。 The thermosetting conductive paste of the present invention, as a cationic polymerization initiator, is a cation other than the compound having the structure of the above (C) formula (1) as long as the effect of the thermosetting conductive paste of the present invention is not impaired. A polymerization initiator can be included. Examples of such cationic polymerization initiators include p-toluene sulfonate, hexafluoroantimonate, hexafluorophosphate, trifluoromethane sulfonate, and perfluorobutane sulfonate. .. The thermosetting conductive paste of the present invention exhibits a predetermined effect by containing the compound having the structure of (C) formula (1), and therefore, the thermosetting conductive paste of the present invention initiates cationic polymerization. It is preferable that only the compound having the structure of formula (1) (C) is contained as the agent.

<(D)溶剤>
本発明の導電性ペーストは、(D)溶剤を含む。(D)溶剤の添加により、導電性ペーストの粘度を調整することができる。
<(D) Solvent>
The conductive paste of the present invention contains (D) a solvent. (D) By adding a solvent, the viscosity of the conductive paste can be adjusted.

本発明の導電性ペーストに含まれる溶剤の例として、トルエン、キシレン、メシチレン、テトラリン等の芳香族炭化水素;テトラヒドロフラン等のエーテル類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロン等のケトン類;2−ピロリドン、1−メチル−2−ピロリドン等のラクタム類;エチルグリコールモノフェニルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル(ブチルカルビトール)、及び、これらに対応するプロピレングリコール誘導体等のエーテルアルコール類;それらに対応する酢酸エステル等のエステル類(例えば、ブチルカルビトールアセテート);マロン酸、コハク酸等のジカルボン酸のメチルエステルあるいはエチルエステル等のジエステル類を挙げることができる。これらの中では、エチルグリコールモノフェニルエーテル及びブチルカルビトールアセテートから選択される少なくとも一つを好ましく用いることができる。 Examples of the solvent contained in the conductive paste of the present invention include aromatic hydrocarbons such as toluene, xylene, mesitylene, and tetralin; ethers such as tetrahydrofuran; ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and isophorone; Lactams such as pyrrolidone and 1-methyl-2-pyrrolidone; ethyl glycol monophenyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether (butyl Carbitol) and corresponding ether alcohols such as propylene glycol derivatives; corresponding esters such as acetic acid esters (eg, butyl carbitol acetate); methyl esters of dicarboxylic acids such as malonic acid and succinic acid Alternatively, diesters such as ethyl ester can be mentioned. Among these, at least one selected from ethyl glycol monophenyl ether and butyl carbitol acetate can be preferably used.

本発明の導電性ペーストをスクリーン印刷によって透明導電膜等の表面に塗布する場合、導電性ペーストの常温における見かけ粘度は、100〜1000Pa・sであることが好ましく、200〜800Pa・sであることがより好ましく、300〜600Pa・sであることがさらに好ましい。なお、粘度は、ブルックフィールド粘度計:HBD型(ブルックフィールド社製)を用いて、回転速度5rpm、温度25℃で測定した値を用いることができる。導電性ペースト中の(D)溶剤の配合量を調整することにより、導電性ペーストの粘度を所定の範囲にすることができる。 When the conductive paste of the present invention is applied to the surface of a transparent conductive film or the like by screen printing, the apparent viscosity of the conductive paste at room temperature is preferably 100 to 1000 Pa·s, and 200 to 800 Pa·s. Is more preferable, and 300 to 600 Pa·s is even more preferable. The viscosity may be a value measured using a Brookfield viscometer: HBD type (manufactured by Brookfield) at a rotation speed of 5 rpm and a temperature of 25°C. By adjusting the compounding amount of the (D) solvent in the conductive paste, the viscosity of the conductive paste can be set within a predetermined range.

本発明の導電性ペーストは、(D)溶剤が、エチルグリコールモノフェニルエーテル又はブチルカルビトールアセテートを含むことが好ましい。所定の溶剤を用いることにより、導電性ペーストの粘度をさらに適切に調整することができ、印刷される導電膜の印刷特性を向上することができる。具体的には、導電膜のパターンが細線形状である場合には、線幅を細く一定にすることができ、膜厚を一定にすることができ、高いアスペクト比の形状とすることができる。 In the conductive paste of the present invention, the solvent (D) preferably contains ethyl glycol monophenyl ether or butyl carbitol acetate. By using a predetermined solvent, the viscosity of the conductive paste can be adjusted more appropriately, and the printing characteristics of the conductive film to be printed can be improved. Specifically, when the pattern of the conductive film has a thin line shape, the line width can be made thin and constant, the film thickness can be made constant, and the shape having a high aspect ratio can be obtained.

<その他の成分>
本発明の導電性ペーストは、上述の(A)、(B)、(C)及び(D)成分以外に、下記の成分を含むことができる。
<Other ingredients>
The conductive paste of the present invention may contain the following components in addition to the components (A), (B), (C) and (D) described above.

本発明の導電性ペーストは、熱可塑性樹脂を含むことができる。熱可塑性樹脂の例として、ノボラック型フェノール樹脂、フェノキシ樹脂、ブチラール樹脂、セルロース樹脂、アクリル樹脂、メタクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、熱可塑性のキシレン樹脂、ヒドロキシスチレン系重合体、セルロース誘導体、及び、これらのうち2種以上の混合物が挙げられる。 The conductive paste of the present invention may include a thermoplastic resin. Examples of the thermoplastic resin include novolac type phenol resin, phenoxy resin, butyral resin, cellulose resin, acrylic resin, methacrylic resin, polyester resin, polyurethane resin, polyamide resin, thermoplastic xylene resin, hydroxystyrene polymer, and cellulose derivative. , And a mixture of two or more of these.

本発明の導電性ペーストは、熱可塑性樹脂として、(E)フェノキシ樹脂をさらに含むことが好ましい。導電性ペーストがさらにフェノキシ樹脂を含むことにより、電極抵抗がさらに低い導電膜を得ることができる。 The conductive paste of the present invention preferably further contains (E) a phenoxy resin as the thermoplastic resin. When the conductive paste further contains a phenoxy resin, a conductive film having a lower electrode resistance can be obtained.

本発明の導電性ペーストは、(F)カップリング剤をさらに含むことが好ましい。導電性ペーストがさらにカップリング剤を含むことにより、導電性成分等の無機成分と、熱硬化性樹脂との接着性をより良好なものにすることができる。 The conductive paste of the present invention preferably further contains (F) a coupling agent. When the conductive paste further contains a coupling agent, the adhesiveness between the inorganic component such as the conductive component and the thermosetting resin can be improved.

本発明の導電性ペーストは、さらに、無機顔料、有機顔料、レベリング剤、チキソトロピック剤、及び消泡剤からなる群から選ばれる少なくとも1種を含むことができる。 The conductive paste of the present invention may further contain at least one selected from the group consisting of an inorganic pigment, an organic pigment, a leveling agent, a thixotropic agent, and a defoaming agent.

本発明の導電性ペーストの製造方法は、特に限定されない。本発明の導電性ペーストは、各成分を、所定の配合で、ライカイ機、プロペラ撹拌機、ニーダー、三本ロールミル、及びポットミル等の混合機に投入し、混合することにより、製造することができる。 The method for producing the conductive paste of the present invention is not particularly limited. The conductive paste of the present invention can be produced by adding each component with a predetermined composition to a mixer such as a liquor machine, a propeller stirrer, a kneader, a three-roll mill, and a pot mill, and mixing them. ..

本発明の導電性ペーストは、スクリーン印刷法等の公知の方法によって透明電極等の表面に塗布することができる。導電性ペーストを透明電極等の表面に塗布した後、導電性ペーストを所定の温度に加熱して硬化することにより、導電膜を形成することができる。 The conductive paste of the present invention can be applied to the surface of a transparent electrode or the like by a known method such as a screen printing method. The conductive film can be formed by applying the conductive paste to the surface of the transparent electrode or the like and then heating the conductive paste to a predetermined temperature to cure it.

導電性ペーストの熱硬化のための加熱温度は、電極形成時の処理温度が250℃以下であることが好ましく、200℃以下であることがより好ましい。具体的には、導電性ペーストの熱硬化のための加熱温度は、好ましくは60〜250℃であり、より好ましくは60〜200℃、さらに好ましくは100〜200℃である。 The heating temperature for thermosetting the conductive paste is preferably 250° C. or lower, more preferably 200° C. or lower, when the electrode is formed. Specifically, the heating temperature for thermosetting the conductive paste is preferably 60 to 250°C, more preferably 60 to 200°C, and further preferably 100 to 200°C.

透明電極等の表面に塗布する導電性ペーストの厚みは、好ましくは10〜100μmであり、より好ましくは15〜80μmであり、さらに好ましくは20〜50μmである。 The thickness of the conductive paste applied to the surface of the transparent electrode or the like is preferably 10 to 100 μm, more preferably 15 to 80 μm, and further preferably 20 to 50 μm.

本発明の導電性ペーストを加熱して得られた導電膜は、基板に対する密着強度が高い、比抵抗が低い(導電性が高い)、及び接触抵抗が低いという特徴を有している。そのため、本発明の熱硬化型導電性ペーストを用いることにより、半導体装置等が高温により劣化することなく、半導体装置等に対して良好な電極を形成することができる。 The conductive film obtained by heating the conductive paste of the present invention is characterized by high adhesion strength to the substrate, low specific resistance (high conductivity), and low contact resistance. Therefore, by using the thermosetting conductive paste of the present invention, a good electrode can be formed on a semiconductor device or the like without deterioration of the semiconductor device or the like due to high temperature.

本発明の導電性ペーストは、半導体装置、電子部品の電極及び回路パターン等の形成に用いることができる。本発明の導電性ペーストは、半導体基板及びセラミック基板等だけでなく、PET(ポリエチレンテレフタレート)及びPEN(ポリエチレンナフタレート)等の耐熱性の低い基板へ回路パターンや電極を形成するために用いることができる。 The conductive paste of the present invention can be used for forming semiconductor devices, electrodes of electronic parts, circuit patterns and the like. INDUSTRIAL APPLICABILITY The conductive paste of the present invention can be used for forming circuit patterns and electrodes not only on semiconductor substrates and ceramic substrates, but also on substrates with low heat resistance such as PET (polyethylene terephthalate) and PEN (polyethylene naphthalate). it can.

本発明の熱硬化型導電性ペーストを用いて、ITO薄膜等の透明導電膜の表面へ電極を形成した場合、低い接触抵抗を得ることができる。特に、ITO薄膜へ電極を形成した場合、低い接触抵抗(例えば7mΩ・cm以下の接触抵抗)を比較的容易に得ることができる。したがって、本発明の熱硬化型導電性ペーストは、透明導電膜、特にITO薄膜を材料とする透明電極の表面に電極を形成するために好適に用いることができる。 When an electrode is formed on the surface of a transparent conductive film such as an ITO thin film using the thermosetting conductive paste of the present invention, low contact resistance can be obtained. In particular, when an electrode is formed on the ITO thin film, a low contact resistance (for example, a contact resistance of 7 mΩ·cm 2 or less) can be obtained relatively easily. Therefore, the thermosetting conductive paste of the present invention can be suitably used for forming an electrode on the surface of a transparent conductive film, particularly a transparent electrode made of an ITO thin film.

本発明の導電性ペーストは、太陽電池電極形成用の導電性ペーストとして好ましく用いることができる。本発明の導電性ペーストは、特に、アモルファスシリコン系等の薄膜材料を用いた太陽電池、例えば、アモルファスシリコン太陽電池、ヘテロ接合型太陽電池及び化合物半導体太陽電池(CIS太陽電池、CIGS太陽電池及びCdTe太陽電池等)の電極形成用の導電性ペーストとして、好ましく用いることができる。アモルファスシリコン系等の薄膜材料は高温に弱い。本発明の導電性ペーストを用いることにより、比較的低温での電極形成を行うことができる。本発明の導電性ペーストは、図1に示すような、比較的変換効率の高いヘテロ接合型太陽電池の電極形成のために、特に好ましく用いることができる。 The conductive paste of the present invention can be preferably used as a conductive paste for forming solar cell electrodes. The conductive paste of the present invention is particularly applicable to solar cells using amorphous silicon-based thin film materials such as amorphous silicon solar cells, heterojunction solar cells and compound semiconductor solar cells (CIS solar cells, CIGS solar cells and CdTe solar cells). It can be preferably used as a conductive paste for forming electrodes of solar cells and the like. Thin film materials such as amorphous silicon are vulnerable to high temperatures. By using the conductive paste of the present invention, electrodes can be formed at a relatively low temperature. The conductive paste of the present invention can be particularly preferably used for forming electrodes of a heterojunction solar cell having a relatively high conversion efficiency as shown in FIG.

本発明の太陽電池電極形成用の導電性ペーストは、電極形成時の処理温度が250℃以下であることが好ましく、200℃以下であることがより好ましい。このような温度で電極形成を行うことにより、高温に弱い薄膜材料に対する悪影響を抑制することができる。 The treatment temperature of the conductive paste for forming a solar cell electrode of the present invention at the time of forming an electrode is preferably 250° C. or lower, and more preferably 200° C. or lower. By performing the electrode formation at such a temperature, it is possible to suppress the adverse effect on the thin film material which is sensitive to high temperature.

以下、本発明の実施例及び比較例について説明する。 Hereinafter, examples and comparative examples of the present invention will be described.

[導電性ペーストの調整]
導電性ペーストの原料として、表4に示す材料を準備した。表1〜3に、実施例1〜17及び比較例1〜4の材料の配合を示す。表1〜3に示される配合割合は、導電性成分100重量部に対する重量部である。
[Adjustment of conductive paste]
The materials shown in Table 4 were prepared as raw materials for the conductive paste. Tables 1 to 3 show the formulations of the materials of Examples 1 to 17 and Comparative Examples 1 to 4. The compounding ratios shown in Tables 1 to 3 are parts by weight with respect to 100 parts by weight of the conductive component.

(A)導電性成分
導電性成分として、表4に示す銀粒子A及びBの2種類を、表1〜3に示す配合で用いた。
銀粒子A:粒子形状はフレーク状で、平均粒子径は3μmである。
銀粒子B:粒子形状は球状で、平均粒子径は1μmである。
(A) Conductive Component As the conductive component, two types of silver particles A and B shown in Table 4 were used in the formulations shown in Tables 1 to 3.
Silver particle A: The particle shape is flake, and the average particle diameter is 3 μm.
Silver particle B: The particle shape is spherical, and the average particle diameter is 1 μm.

(B)熱硬化性樹脂
熱硬化性樹脂として、表4に示すエポキシ樹脂A、B及びCの3種類を、表1〜3に示す配合で用いた。
エポキシ樹脂A:脂環式エポキシ樹脂
エポキシ樹脂B:ビスAエポキシ樹脂
エポキシ樹脂C:多官能エポキシ樹脂
(B) Thermosetting Resin As the thermosetting resin, three kinds of epoxy resins A, B and C shown in Table 4 were used in the formulations shown in Tables 1 to 3.
Epoxy resin A: Alicyclic epoxy resin Epoxy resin B: Bis A epoxy resin Epoxy resin C: Polyfunctional epoxy resin

(C)カチオン重合開始剤
カチオン重合開始剤として、表4に示すカチオン重合開始剤A〜Dの5種類を、表1〜3の配合で用いた。
カチオン重合開始剤A:式(1)の構造の化合物であり、表4に重合開始剤Aとして示すカチオン重合開始剤。
カチオン重合開始剤B:式(1)以外の構造の化合物であり、表4に重合開始剤Bとして示すカチオン重合開始剤。
カチオン重合開始剤C:式(1)以外の構造の化合物であり、表4に重合開始剤Cとして示すカチオン重合開始剤。
カチオン重合開始剤D:式(1)以外の構造の化合物であり、表4に重合開始剤Dとして示すカチオン重合開始剤。
カチオン重合開始剤E:式(1)以外の構造の化合物であり、表4に重合開始剤Eとして示すカチオン重合開始剤。
(C) Cationic Polymerization Initiator As cationic polymerization initiators, 5 types of cationic polymerization initiators A to D shown in Table 4 were used in the formulations of Tables 1 to 3.
Cationic polymerization initiator A: a cationic polymerization initiator which is a compound having the structure of formula (1) and is shown as polymerization initiator A in Table 4.
Cationic polymerization initiator B: a cationic polymerization initiator which is a compound having a structure other than the formula (1) and is shown as a polymerization initiator B in Table 4.
Cationic polymerization initiator C: a cationic polymerization initiator which is a compound having a structure other than the formula (1) and is shown as a polymerization initiator C in Table 4.
Cationic polymerization initiator D: a cationic polymerization initiator which is a compound having a structure other than the formula (1) and is shown as a polymerization initiator D in Table 4.
Cationic polymerization initiator E: a cationic polymerization initiator which is a compound having a structure other than the formula (1) and is shown as a polymerization initiator E in Table 4.

(D)溶剤
溶剤として、表4に示す溶剤A及びBの2種類を、表1〜3に示す配合で用いた。
(D) Solvent As the solvent, two kinds of solvents A and B shown in Table 4 were used in the formulations shown in Tables 1 to 3.

(E)フェノキシ樹脂
表4に示すフェノキシ樹脂を、表1〜3に示す配合で用いた。
(E) Phenoxy resin The phenoxy resins shown in Table 4 were used in the formulations shown in Tables 1 to 3.

(F)カップリング剤
表4に示すカップリング剤を、表1〜3に示す配合で用いた。
(F) Coupling Agent The coupling agents shown in Table 4 were used in the formulations shown in Tables 1 to 3.

上記(A)〜(F)の各成分を表1〜3に示す重量比で混合して、実施例1〜17及び比較例1〜4の導電性ペーストを調製した。 The components (A) to (F) were mixed in the weight ratios shown in Tables 1 to 3 to prepare conductive pastes of Examples 1 to 17 and Comparative examples 1 to 4.

次に、上述の所定の調製割合の材料を、プラネタリーミキサーで混合し、さらに三本ロールミルで分散し、ペースト化することによって導電性ペーストを調製した。 Next, the above-mentioned materials having a predetermined preparation ratio were mixed by a planetary mixer, further dispersed by a three-roll mill, and made into a paste to prepare a conductive paste.

[比抵抗の測定]
実施例1〜17及び比較例1〜4の導電性ペーストを加熱して得られた導電膜の比抵抗(電気抵抗率)を測定した。
[Measurement of resistivity]
The specific resistance (electrical resistivity) of the conductive films obtained by heating the conductive pastes of Examples 1 to 17 and Comparative Examples 1 to 4 was measured.

実施例1〜17及び比較例1〜4の比抵抗は、以下の手順で測定した。すなわち、幅15mm、長さ15mm、厚さ200μmのアルミナ基板を準備した。この基板上に、325メッシュのステンレス製スクリーンを用いて、図2に示すような導電性ペーストからなるパターンを印刷した。 The specific resistances of Examples 1 to 17 and Comparative Examples 1 to 4 were measured by the following procedure. That is, an alumina substrate having a width of 15 mm, a length of 15 mm and a thickness of 200 μm was prepared. A pattern made of a conductive paste as shown in FIG. 2 was printed on this substrate using a 325 mesh stainless steel screen.

次に、基板上に塗布した実施例1〜17及び比較例1〜4の導電性ペーストからなるパターンを、200℃で30分間加熱して、比抵抗測定用試料を得た。 Next, the patterns made of the conductive pastes of Examples 1 to 17 and Comparative Examples 1 to 4 applied on the substrate were heated at 200° C. for 30 minutes to obtain a specific resistance measurement sample.

実施例1〜17及び比較例1〜4の導電性ペーストを加熱して得られた、比抵抗測定用試料の導電膜パターンの比抵抗を、東陽テクニカ社製マルチメーター2001型を用いて、4端子法で測定した。測定結果を表1〜3に示す。 The specific resistance of the conductive film pattern of the sample for measuring specific resistance, which was obtained by heating the conductive pastes of Examples 1 to 17 and Comparative Examples 1 to 4, was measured by using a multimeter 2001 type manufactured by Toyo Technica Co., Ltd. It was measured by the terminal method. The measurement results are shown in Tables 1 to 3.

なお、比抵抗測定用試料として、同じ条件のものを4個作製し、測定値は4個の平均値として求めた。 As a sample for measuring the specific resistance, four samples under the same conditions were prepared, and the measured value was obtained as an average value of the four samples.

表1〜3から明らかなように、本発明の実施例1〜17の導電性ペーストを用いて得られた導電膜の比抵抗(電気抵抗率)は、9.9μΩ・cm(実施例8)以下だった。一般的に、10μΩ・cm以下の比抵抗であれば、電極として好適に使用できるといえる。これに対して、比較例1〜4の導電性ペーストを用いて得られた導電膜の比抵抗(電気抵抗率)は、12.7μΩ・cm(比較例3)〜22.7μΩ・cm(比較例1)の範囲だった。したがって、本発明の実施例1〜17の導電性ペーストを用いて導電膜を形成することにより、より低い比抵抗を得ることができることが明らかとなった。 As is clear from Tables 1 to 3, the specific resistance (electrical resistivity) of the conductive films obtained by using the conductive pastes of Examples 1 to 17 of the present invention was 9.9 μΩ·cm (Example 8). Was below. In general, a specific resistance of 10 μΩ·cm or less can be said to be suitable for use as an electrode. On the other hand, the specific resistance (electrical resistivity) of the conductive films obtained using the conductive pastes of Comparative Examples 1 to 4 is 12.7 μΩ·cm (Comparative Example 3) to 22.7 μΩ·cm (Comparison). It was within the range of Example 1). Therefore, it became clear that a lower specific resistance can be obtained by forming a conductive film using the conductive pastes of Examples 1 to 17 of the present invention.

[接触抵抗の測定]
実施例1〜17及び比較例1〜4の導電性ペーストを用いて、透明導電膜を有する結晶系シリコン基板の表面に電極を形成し、接触抵抗を測定した。具体的には、実施例1〜17及び比較例1〜4の導電性ペーストを用いた接触抵抗測定用パターンを、結晶系シリコン基板の表面に形成された透明導電膜の上にスクリーン印刷し、加熱することにより、接触抵抗測定用電極を得た。
[Measurement of contact resistance]
Using the conductive pastes of Examples 1 to 17 and Comparative Examples 1 to 4, electrodes were formed on the surface of a crystalline silicon substrate having a transparent conductive film, and the contact resistance was measured. Specifically, a contact resistance measurement pattern using the conductive pastes of Examples 1 to 17 and Comparative Examples 1 to 4 is screen-printed on the transparent conductive film formed on the surface of the crystalline silicon substrate, An electrode for measuring contact resistance was obtained by heating.

基板として、n型結晶系シリコン基板(基板厚み200μm)を用いた。 An n-type crystalline silicon substrate (substrate thickness 200 μm) was used as the substrate.

次に、n型結晶系シリコン基板の表面に、透明導電膜を形成した。具体的には、酸化インジウム及び酸化スズを含むスパッタリングターゲットを用いて、スパッタリング法により、酸化インジウムスズ薄膜(ITO薄膜)を形成した。得られたITO薄膜のシート抵抗は、80Ω/squareだった。このようにして得られた接触抵抗測定用基板を、接触抵抗測定用電極の作製のために使用した。 Next, a transparent conductive film was formed on the surface of the n-type crystalline silicon substrate. Specifically, an indium tin oxide thin film (ITO thin film) was formed by a sputtering method using a sputtering target containing indium oxide and tin oxide. The sheet resistance of the obtained ITO thin film was 80 Ω/square. The contact resistance measuring substrate thus obtained was used for producing a contact resistance measuring electrode.

接触抵抗測定用基板への導電性ペーストの印刷は、スクリーン印刷法によって行った。上述の基板上に、膜厚が約30μmになるように接触抵抗測定用パターンを印刷し、その後、200℃で30分間加熱して、接触抵抗測定用試料を得た。図3に、接触抵抗測定のために用いた接触抵抗測定用パターンの平面模式図を示す。図3に示す接触抵抗測定用パターンは、幅0.1mm、長さ13.5mmの7つの長方形の電極パターンを、ピッチ間隔が2.05mmになるように配置したパターンである。 Printing of the conductive paste on the contact resistance measurement substrate was performed by a screen printing method. A contact resistance measurement pattern was printed on the above-mentioned substrate so that the film thickness was about 30 μm, and then heated at 200° C. for 30 minutes to obtain a contact resistance measurement sample. FIG. 3 shows a schematic plan view of a contact resistance measurement pattern used for contact resistance measurement. The contact resistance measurement pattern shown in FIG. 3 is a pattern in which seven rectangular electrode patterns having a width of 0.1 mm and a length of 13.5 mm are arranged with a pitch interval of 2.05 mm.

接触抵抗測定用試料として、同じ条件のものを3個作製し、測定値は3個の平均値として求めた。 As contact resistance measurement samples, three under the same conditions were prepared, and the measured value was obtained as an average value of the three.

接触抵抗は、図2に示す所定の長方形の電極パターン間の電気抵抗をGP Solar社製GP 4TEST Proを用い、TLM法(Transfer length Method)により求めた。接触抵抗が10mΩ・cm以下である場合には、透明導電膜上の電極として使用可能である。接触抵抗が7mΩ・cm以下である場合には透明導電膜上の電極として好ましく使用することができる。 The contact resistance was obtained by the TLM method (Transfer length Method) using GP 4TEST Pro manufactured by GP Solar Co., Ltd. as the electric resistance between the predetermined rectangular electrode patterns shown in FIG. When the contact resistance is 10 mΩ·cm 2 or less, it can be used as an electrode on the transparent conductive film. When the contact resistance is 7 mΩ·cm 2 or less, it can be preferably used as an electrode on the transparent conductive film.

表1〜3から明らかなように、実施例1〜17及び比較例1〜4の導電性ペーストを用いて得られた導電膜の透明導電膜(ITO薄膜)に対する接触抵抗は、6.4mΩ・cm(実施例14)以下だった。したがって、実施例1〜17の接触抵抗に関しては、透明導電膜上の電極として好ましく使用することができる数値範囲であるといえる。なお、比較例1〜4に関して、比抵抗は高い値であったが、接触抵抗は良好な値であるといえる。 As is clear from Tables 1 to 3, the contact resistance of the conductive films obtained using the conductive pastes of Examples 1 to 17 and Comparative Examples 1 to 4 to the transparent conductive film (ITO thin film) was 6.4 mΩ· It was below cm 2 (Example 14). Therefore, it can be said that the contact resistances of Examples 1 to 17 are within the numerical range that can be preferably used as the electrode on the transparent conductive film. In addition, regarding Comparative Examples 1 to 4, although the specific resistance was a high value, it can be said that the contact resistance is a good value.

[印刷特性の評価]
上述の接触抵抗測定用パターンの形状を測定することにより、印刷特性の評価を行った。接触抵抗測定用パターンの形状の測定は、レーザーテック社製コンフォーカル顕微鏡OPTELICS H1200及び表面粗さ形状測定機1500SD2を用いて行った。表1〜3に記号「○」として示すように、実施例1〜17及び比較例1〜4の導電性ペーストの透明導電膜(ITO薄膜)の表面への印刷特性は良好だった。
[Evaluation of printing characteristics]
The printing characteristics were evaluated by measuring the shape of the above-mentioned contact resistance measuring pattern. The shape of the pattern for measuring contact resistance was measured using a confocal microscope OPTELICS H1200 manufactured by Lasertec Co., Ltd. and a surface roughness shape measuring instrument 1500SD2. As indicated by the symbol “◯” in Tables 1 to 3, the printing characteristics of the conductive pastes of Examples 1 to 17 and Comparative Examples 1 to 4 on the surface of the transparent conductive film (ITO thin film) were good.

[電子顕微鏡を用いた導電膜の評価]
上述の比抵抗の測定によって得られた導電膜のうち、実施例3及び比較例1の導電膜の断面状態を、電子顕微鏡を用いて観察した。図4に示す実施例3の断面状態では、銀粒子の融着が進んでいることが見て取れる。これに対して、図5に示す比較例1の断面状態では、実施例3と比べて、銀粒子の融着が進んでいないことが見て取れる。本発明の導電性ペーストの場合、所定のカチオン重合開始剤を用いることにより、銀粒子の融着が進むため、低い比抵抗を得ることができるものと推測できる。ただし、本発明は、この推測に拘束されるものではない。
[Evaluation of conductive film using electron microscope]
Among the conductive films obtained by the measurement of the specific resistance described above, the cross-sectional states of the conductive films of Example 3 and Comparative Example 1 were observed using an electron microscope. In the sectional state of Example 3 shown in FIG. 4, it can be seen that the fusion of silver particles is progressing. On the other hand, in the cross-sectional state of Comparative Example 1 shown in FIG. 5, it can be seen that the fusion of silver particles has not progressed as compared with Example 3. In the case of the electroconductive paste of the present invention, it can be presumed that a low specific resistance can be obtained by using a predetermined cationic polymerization initiator because the fusion of silver particles proceeds. However, the present invention is not bound by this assumption.

10 結晶系シリコン基板
12 i型アモルファスシリコン層
14a p型アモルファスシリコン層
14b n型アモルファスシリコン層
16 透明導電膜
18a 光入射側電極
18b 裏面電極
10 crystalline silicon substrate 12 i-type amorphous silicon layer 14a p-type amorphous silicon layer 14b n-type amorphous silicon layer 16 transparent conductive film 18a light incident side electrode 18b backside electrode

Claims (11)

(A)導電性成分、(B)熱硬化性樹脂、(C)式(1)の構造の化合物及び(D)溶剤を含む、導電性ペースト。
式(1)
A conductive paste containing (A) a conductive component, (B) a thermosetting resin, (C) a compound having the structure of formula (1), and (D) a solvent.
Formula (1)
(A)導電性成分が、銀及び銅から選択される少なくとも1種である、請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the conductive component (A) is at least one selected from silver and copper. (A)導電性成分が、球状及び/又はフレーク状の粒子である、請求項1又は2に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the conductive component (A) is spherical and/or flake-shaped particles. (B)熱硬化性樹脂が、エポキシ樹脂又はアクリル樹脂を含む、請求項1から3のいずれか1項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 3, wherein the thermosetting resin (B) contains an epoxy resin or an acrylic resin. (C)式(1)の構造の化合物を、(A)導電性成分100重量部に対して0.1重量部〜2.0重量部含む、請求項1から4のいずれか1項に記載の導電性ペースト。 The compound of the structure of (C) Formula (1) is contained in 0.1 to 2.0 parts by weight with respect to 100 parts by weight of the conductive component (A). Conductive paste. (D)溶剤が、エチルグリコールモノフェニルエーテル又はブチルカルビトールアセテートを含む、請求項1から5のいずれか1項に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the solvent (D) contains ethyl glycol monophenyl ether or butyl carbitol acetate. (E)フェノキシ樹脂をさらに含む、請求項1から6のいずれか1項に記載の導電性ペースト。 The conductive paste according to claim 1, further comprising (E) a phenoxy resin. (F)カップリング剤をさらに含む、請求項1から7のいずれか1項に記載の導電性ペースト。 The conductive paste according to claim 1, further comprising (F) a coupling agent. 請求項1から8のいずれか1項に記載の導電性ペーストを用いた太陽電池電極形成用の導電性ペースト。 A conductive paste for forming a solar cell electrode, which uses the conductive paste according to claim 1. 電極形成時の処理温度が250℃以下である請求項9に記載の太陽電池電極形成用の導電性ペースト。 The conductive paste for forming a solar cell electrode according to claim 9, wherein the treatment temperature at the time of forming the electrode is 250° C. or lower. 透明電極の表面に電極を形成するための、請求項1から8のいずれか1項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 8, for forming an electrode on the surface of a transparent electrode.
JP2017238568A 2017-12-13 2017-12-13 Conductive paste Active JP6709943B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017238568A JP6709943B2 (en) 2017-12-13 2017-12-13 Conductive paste
TW107139500A TWI783077B (en) 2017-12-13 2018-11-07 Conductive paste
EP18888515.6A EP3726538B1 (en) 2017-12-13 2018-11-07 Conductive paste
CN201880080539.9A CN111480206B (en) 2017-12-13 2018-11-07 Conductive paste
US16/768,842 US20210163772A1 (en) 2017-12-13 2018-11-07 Conductive paste
PCT/JP2018/041303 WO2019116787A1 (en) 2017-12-13 2018-11-07 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017238568A JP6709943B2 (en) 2017-12-13 2017-12-13 Conductive paste

Publications (2)

Publication Number Publication Date
JP2019106305A JP2019106305A (en) 2019-06-27
JP6709943B2 true JP6709943B2 (en) 2020-06-17

Family

ID=66820130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017238568A Active JP6709943B2 (en) 2017-12-13 2017-12-13 Conductive paste

Country Status (6)

Country Link
US (1) US20210163772A1 (en)
EP (1) EP3726538B1 (en)
JP (1) JP6709943B2 (en)
CN (1) CN111480206B (en)
TW (1) TWI783077B (en)
WO (1) WO2019116787A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264662B2 (en) * 2019-02-13 2023-04-25 シーカ・ハマタイト株式会社 conductive composition
JP7190989B2 (en) * 2019-09-17 2022-12-16 富士フイルム株式会社 Conductive film, film sensor, touch panel, liquid crystal display device, method for producing conductive film, and composition
JP7462408B2 (en) * 2019-12-13 2024-04-05 デクセリアルズ株式会社 Adhesive composition, adhesive film, and connection structure
CN111769166B (en) * 2020-07-10 2022-02-08 浩物电子科技(苏州)有限公司 Electrode and preparation method thereof
KR20230050417A (en) 2020-09-10 2023-04-14 고오 가가쿠고교 가부시키가이샤 Conductive paste and conductive film
EP3893055B1 (en) * 2021-01-18 2022-12-14 Longserving Technology Co., Ltd Method of making a picoscopic scale/ nanoscopicscale circuit pattern
CN116525175A (en) * 2023-05-17 2023-08-01 浙江光达电子科技有限公司 Electrode slurry, preparation method, electrode plate and photovoltaic cell

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050171301A1 (en) * 2000-06-09 2005-08-04 Loctite Corporation Reworkable thermosetting resin compositions
US6750290B2 (en) * 2001-04-19 2004-06-15 Canon Kabushiki Kaisha Epoxy resin composition, method of improving surface of substrate, ink jet recording head and ink jet recording apparatus
JP4173015B2 (en) * 2003-01-17 2008-10-29 関西ペイント株式会社 Conductive resin
JP4197706B2 (en) * 2005-06-07 2008-12-17 ユニケミカル株式会社 Solid polymer electrolyte membrane obtained by copolymerizing phosphoric acid group-containing unsaturated monomer and unsaturated liquid oligomer, and fuel cell using the same
KR20100036195A (en) * 2008-09-29 2010-04-07 제이에스알 가부시끼가이샤 Composition for forming conductive film, laminate with the conductive film and method for preparing the same, touch pannel, and display device
KR20130020367A (en) * 2011-08-19 2013-02-27 동우 화인켐 주식회사 Silver paste composition and method for forming electrode using the same
CN102690611B (en) * 2011-12-27 2015-06-24 3M中国有限公司 Adhesive tape composition and adhesive tape prepared by same
JP5827203B2 (en) * 2012-09-27 2015-12-02 三ツ星ベルト株式会社 Conductive composition
JP6018476B2 (en) * 2012-10-29 2016-11-02 ナミックス株式会社 Thermosetting conductive paste
JP6274445B2 (en) 2013-01-09 2018-02-07 日産化学工業株式会社 Resist underlayer film forming composition
WO2014203897A1 (en) * 2013-06-19 2014-12-24 横浜ゴム株式会社 Electrically conductive composition and solar cell
KR101573372B1 (en) * 2013-12-17 2015-12-02 전자부품연구원 Low temperature cureable conductive paste composition and method thereof
US9678427B2 (en) 2013-12-27 2017-06-13 Nissan Chemical Industries, Ltd. Resist underlayer film-forming composition containing copolymer that has triazine ring and sulfur atom in main chain
JPWO2016021535A1 (en) * 2014-08-08 2017-05-18 横浜ゴム株式会社 Conductive composition, solar battery cell and solar battery module
JP6523780B2 (en) 2014-09-29 2019-06-05 東京応化工業株式会社 Film-forming composition and method for producing cured film using the same
WO2016088664A1 (en) * 2014-12-04 2016-06-09 積水化学工業株式会社 Electroconductive paste, connection structure, and method for manufacturing connection structure
WO2017033056A1 (en) * 2015-08-27 2017-03-02 Toray Industries, Inc. Epoxy resin compositions and fiber-reinforced composite materials prepared therefrom
JP2017066218A (en) * 2015-09-29 2017-04-06 東レ株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material
JP6657716B2 (en) * 2015-09-29 2020-03-04 日立化成株式会社 Liquid composition for sealing, sealing material, and electronic component device
WO2017130659A1 (en) * 2016-01-26 2017-08-03 東レ株式会社 Epoxy resin composition, prepreg and fiber reinforced composite material
CN105679394B (en) * 2016-01-27 2017-07-14 广州中国科学院先进技术研究所 UV conductive pastes and the method that nano silver wire flexible transparent conducting film is printed out by it
DE102016207548A1 (en) * 2016-05-02 2017-11-02 Tesa Se Curable adhesive and reactive adhesive tapes based thereon

Also Published As

Publication number Publication date
WO2019116787A1 (en) 2019-06-20
CN111480206B (en) 2021-12-28
EP3726538A4 (en) 2021-08-25
EP3726538B1 (en) 2023-12-27
TWI783077B (en) 2022-11-11
EP3726538C0 (en) 2023-12-27
EP3726538A1 (en) 2020-10-21
JP2019106305A (en) 2019-06-27
US20210163772A1 (en) 2021-06-03
TW202018735A (en) 2020-05-16
CN111480206A (en) 2020-07-31

Similar Documents

Publication Publication Date Title
JP6709943B2 (en) Conductive paste
JP5656380B2 (en) Conductive ink composition, solar cell using the composition, and method for producing solar cell module
CN111448670B (en) conductive paste
JP5713525B2 (en) Conductive ink composition, solar cell using the composition, and method for producing solar cell module
JP2009146578A (en) Solar cell and solar cell aluminum paste
JP6018476B2 (en) Thermosetting conductive paste
JP5960804B2 (en) Solderable polymer thick film conductive electrode composition for use in thin film photovoltaic cells and other applications
JP5277844B2 (en) Conductive ink composition and solar cell module formed using the composition
JP5353163B2 (en) Conductive ink composition and solar cell in which collector electrode is formed using the composition
JP2009146584A (en) Conductive paste composition
JP2012023095A (en) Conductive composition and solar cell
TWI708821B (en) Heat-curing conductive paste
JP5589668B2 (en) Reflective electrode layer for substrate type thin film solar cell and method for manufacturing the same
JP2014037491A (en) Paste containing inorganic particle and coating formed article
JP6084396B2 (en) Inorganic particle-containing paste for sintering and coating formed product
WO2023145668A1 (en) Conductive composition, conductive paste, cured product and solar cell
KR20130020367A (en) Silver paste composition and method for forming electrode using the same
JP5692295B2 (en) Method for forming solar cell collector electrode and solar cell module provided with the solar cell
KR20180032022A (en) Method of forming pattern for solar cell, electrode manufactured using the same and solar cell
KR20230162007A (en) Conductive paste, solar cell electrodes and solar cells
JP2013151591A (en) Inorganic particles-containing paste, and inorganic circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200430

R150 Certificate of patent or registration of utility model

Ref document number: 6709943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250