JP6699736B2 - 電池、蓄電装置および電動車両 - Google Patents

電池、蓄電装置および電動車両 Download PDF

Info

Publication number
JP6699736B2
JP6699736B2 JP2018536939A JP2018536939A JP6699736B2 JP 6699736 B2 JP6699736 B2 JP 6699736B2 JP 2018536939 A JP2018536939 A JP 2018536939A JP 2018536939 A JP2018536939 A JP 2018536939A JP 6699736 B2 JP6699736 B2 JP 6699736B2
Authority
JP
Japan
Prior art keywords
protrusions
battery
protrusion
battery according
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018536939A
Other languages
English (en)
Other versions
JPWO2018042777A1 (ja
Inventor
鈴木 和彦
和彦 鈴木
範昭 國分
範昭 國分
袖山 国雄
国雄 袖山
森 敬郎
敬郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2018042777A1 publication Critical patent/JPWO2018042777A1/ja
Application granted granted Critical
Publication of JP6699736B2 publication Critical patent/JP6699736B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本開示は、電池、蓄電装置および電動車両に関する。
二次電池は、乾電池(一次電池)とは異なって繰り返しの充放電が可能である。また、二次電池は大容量化が可能であることから、携帯電子機器、ハイブリット自動車、電動工具等、近年、その適用範囲が拡大している。このような二次電池のうち、リチウムイオン二次電池は動作電圧が高く、単位質量当たりのエネルギー密度が高いため、広く用いられている。リチウムイオン二次電池は外装材の形状により缶状とパウチ状とに区分され、缶状は電池缶の形状により円筒状と角状とに区分される。リチウムイオン二次電池には、電池内部の圧力が所定以上になると動作する安全機構が設けられることが一般的である。例えば、下記特許文献1には、円筒状のリチウムイオン二次電池に設けられる安全機構が記載されている。
特開2009−252409号公報
安全機構は通常、複数の部品により構成される。複数の部品間の組合せにばらつきが生じると、安全機構の構成や動作にばらつきが生じるおそれがある。
したがって、本開示は、安全機構の構成や動作に極力ばらつきが生じないようにした電池、蓄電装置および電動車両を提供することを目的の一つとする。
上述の課題を解決するために、本開示は、例えば、
円形状の底部と、底部の周縁から上方に植立する第1壁部と、第1壁部の先端から外側に向かって延在する第1鍔部とを有し、安全弁の変形に伴う当該安全弁とリード部との遮断時に当該リード部に対する抑えとなり、第1壁部を上面視したときの第1円周上に沿って略等間隔に形成される複数の第1突部を有する抑え部と、
リング状の底部と、底部の外側周縁から上方に植立する第2壁部と、第2壁部の先端から外側に向かって延在する第2鍔部とを有し、安全弁と抑え部とを絶縁し、第2壁部を上面視したときの第2円周上に沿って略等間隔に形成される複数の第2突部を有する絶縁ホルダと
を有し、
安全弁と抑え部とが絶縁ホルダを介して嵌合され、
第1円周および第2円周に対する直径上に配置される第1突部および第2突部の数が3以下である
電池である。
本開示は、この電池を有する蓄電装置でもよい。
本開示は、この電池を有する電動車両でもよい。
本開示の少なくとも一の実施形態によれば、安全機構の構成や動作に極力ばらつきが生じないようにすることができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。また、例示された効果により本開示の内容が限定して解釈されるものではない。
図1は、本開示の一実施形態に係る電池の構成例を示す図である。 図2は、本開示の一実施形態に係る電池の一部を拡大した拡大図である。 図3は、本開示の一実施形態に係る電池の構成例を説明するための図である。 図4A乃至図4Cは、本開示の一実施形態に係る安全機構を構成する部品を説明するための図である。 図5は、第1円周、第2円周等を説明するための図である。 図6は、比較例に対応する第1突部および第2突部の位置関係を説明するための図である。 図7A乃至図7Dは、実施例に対応する第1突部および第2突部の位置関係を説明するための図である。 図8A乃至図8Dは、実施例に対応する第1突部および第2突部の位置関係を説明するための図である。 図9は、応用例を説明するための図である。 図10は、応用例を説明するための図である。
以下、本開示の実施形態等について図面を参照しながら説明する。なお、説明は以下の順序で行う。
<1.一実施形態>
<2.応用例>
<3.変形例>
以下に説明する実施形態等は本開示の好適な具体例であり、本開示の内容がこれらの実施形態等に限定されるものではない。
<1.一実施形態>
[電池の構成例]
以下、本開示の一実施形態に係る二次電池(非水電解質二次電池)の構成例について説明する。図1は、非水電解質二次電池の構成例を説明するための全体図であり、図2は、図1の一部(正極側付近)を拡大して示した拡大図である。非水電解質二次電池は、例えば、負極の容量が、電極反応物質であるリチウム(Li)の吸蔵および放出による容量成分により表されるいわゆるリチウムイオン二次電池である。非水電解質二次電池は、例えば、いわゆる円筒型といわれるものであり、ほぼ中空円柱状の電池缶11の内部に、一対の帯状の正極21と帯状の負極22とがセパレータ23を介して積層し巻回された巻回電極体20を有している。
電池缶11は、ニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、一端部が閉鎖され他端部が開放されている。電池缶11の内部には、液状の電解質としての電解液が注入され、正極21、負極22およびセパレータ23に含浸されている。また、巻回電極体20を挟むように巻回周面に対して垂直に一対の絶縁板12、13がそれぞれ配置されている。
電池缶11の材料として、ニッケル(Ni)、ステンレス(SUS)、アルミニウム(Al)、チタン(Ti)等が使用されてもよい。この電池缶11には、非水電解質電池の充放電に伴う電気化学的な非水電解液による腐食を防止するために、例えばニッケル等のメッキが施されていてもよい。電池缶11の開放端部には、電池蓋14と、この電池蓋14の内側に設けられた安全機構15および熱感抵抗素子(PTC素子:Positive Temperature Coefficient)16が、絶縁封口のためのガスケット17を介してかしめられることにより取り付けられている。これにより電池缶11の内部が密閉されている。なお、図1、図2では熱感抵抗素子16を備えない電池の例が示されている。
電池蓋14は、例えば電池缶11と同様の材料により構成されており、電池内部で発生したガスを排出するための開口部が設けられている。安全機構15は、安全弁としてのディスク板15Aと、絶縁ホルダとしてのディスクホルダ15Bと、抑え部としての遮断ディスク15Cとが順に重ねられている。ディスク板15Aの突出部18は、遮断ディスク15Cの中心部に設けられた孔部19を覆うように配置されたサブディスク25Bを介して、巻回電極体20から導出された正極リード25Aと接続されている。サブディスク25Bを介してディスク板15Aと正極リード25Aとが接続されることにより、ディスク板15Aの反転時に正極リード25Aが孔部19から引き込まれることを防止する。
ディスクホルダ15Bは絶縁性材料からなり、ディスク板15Aと遮断ディスク15Cとを絶縁するものである。
安全機構15は、電池内部短絡あるいは電池外部からの加熱等により非水電解質電池の内圧が一定以上となった場合に、ディスク板15Aが反転して変形し、突出部18と電池蓋14と巻回電極体20との電気的接続を切断するものである。すなわち、ディスク板15Aが反転した際には、遮断ディスク15Cによりサブディスク25Bが抑えられてディスク板15Aとサブディスク25Bとの接続が解除され遮断される。
また、電池内部でさらにガスが発生し、電池内圧がさらに上昇した場合には、ディスク板15Aの一部が裂壊してガスを電池蓋14側に排出可能としている。
また、遮断ディスク15Cの孔部19の周囲には例えば複数のガス抜き孔(図示は省略している)が設けられており、巻回電極体20からガスが発生した場合にはガスを効果的に電池蓋14側に排出可能な構成としている。
熱感抵抗素子16は、温度が上昇した際に抵抗値が増大し、電池蓋14と巻回電極体20との電気的接続を切断することによって電流を遮断し、過大電流による異常な発熱を防止する。この熱感抵抗素子16を介して、安全機構15が電池蓋14に電気的に接続されている。特に大電流放電に対応した電池においては熱感抵抗素子16を備えない場合がある。その場合には安全機構15が電池蓋14に直に電気的に接続されている。ガスケット17は、例えば絶縁材料により構成されており、表面にはアスファルトが塗布されている。
非水電解質電池内に収容される巻回電極体20は、センターピン24を中心に巻回されている。巻回電極体20は、正極21および負極22がセパレータ23を介して順に積層され、長手方向に巻回されてなる。正極21には正極リード25Aが接続されており、負極22には負極リード26が接続されている。正極リード25Aは、上述したように、サブディスク25Bに溶接されて電池蓋14と電気的に接続されており、負極リード26は電池缶11に溶接されて電気的に接続されている。
なお、上述した電池の構成例では、正極リード25Aおよびサブディスク25Bによりリード部が構成されているが、サブディスク25Bがなくてもよく、正極リード25Aがディスク板15Aに直接接続されていてもよい。
次に、図3を参照しながら、非水電解質二次電池を構成する正極21、負極22、セパレータ23、および電解液について順次説明する。
(正極)
正極21は、例えば、正極集電体21Aの両面に正極活物質層21Bが設けられた構造を有している。なお、図示はしないが、正極集電体21Aの片面のみに正極活物質層21Bを設けるようにしてもよい。正極集電体21Aは、例えば、アルミニウム箔、ニッケル箔あるいはステンレス箔などの金属箔により構成されている。正極活物質層21Bは、例えば、電極反応物質であるリチウムを吸蔵および放出することが可能な正極活物質を含んでいる。正極活物質層21Bは、必要に応じて添加剤をさらに含んでいてもよい。添加剤としては、例えば、導電剤および結着剤のうちの少なくとも1種を用いることができる。
リチウムを吸蔵および放出することが可能な正極材料としては、例えば、リチウム酸化物、リチウムリン酸化物、リチウム硫化物あるいはリチウムを含む層間化合物などのリチウム含有化合物が適当であり、これらの2種以上を混合して用いてもよい。エネルギー密度を高くするには、リチウムと遷移金属元素と酸素(O)とを含むリチウム含有化合物が好ましい。このようなリチウム含有化合物としては、例えば、式(A)に示した層状岩塩型の構造を有するリチウム複合酸化物、式(B)に示したオリビン型の構造を有するリチウム複合リン酸塩などが挙げられる。リチウム含有化合物としては、遷移金属元素として、コバルト(Co)、ニッケル、マンガン(Mn)および鉄からなる群のうちの少なくとも1種を含むものであればより好ましい。このようなリチウム含有化合物としては、例えば、式(C)、式(D)もしくは式(E)に示した層状岩塩型の構造を有するリチウム複合酸化物、式(F)に示したスピネル型の構造を有するリチウム複合酸化物、または式(G)に示したオリビン型の構造を有するリチウム複合リン酸塩などが挙げられ、具体的には、LiNi0.50Co0.20Mn0.302、LiaCoO2(a≒1)、LibNiO2(b≒1)、Lic1Nic2Co1-c22(c1≒1,0<c2<1)、LidMn24(d≒1)あるいはLieFePO4(e≒1)などがある。
LipNi(1-q-r)MnqM1r(2-y)z ・・・(A)
(但し、式(A)中、M1は、ニッケル、マンガンを除く2族〜15族から選ばれる元素のうち少なくとも一種を示す。Xは、酸素以外の16族元素および17族元素のうち少なくとも1種を示す。p、q、y、zは、0≦p≦1.5、0≦q≦1.0、0≦r≦1.0、−0.10≦y≦0.20、0≦z≦0.2の範囲内の値である。)
LiaM2bPO4 ・・・(B)
(但し、式(B)中、M2は、2族〜15族から選ばれる元素のうち少なくとも一種を示す。a、bは、0≦a≦2.0、0.5≦b≦2.0の範囲内の値である。)
LifMn(1-g-h)NigM3h(2-j)k ・・・(C)
(但し、式(C)中、M3は、コバルト、マグネシウム(Mg)、アルミニウム、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)からなる群のうちの少なくとも1種を表す。f、g、h、jおよびkは、0.8≦f≦1.2、0<g<0.5、0≦h≦0.5、g+h<1、−0.1≦j≦0.2、0≦k≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、fの値は完全放電状態における値を表している。)
LimNi(1-n)M4n(2-p)q ・・・(D)
(但し、式(D)中、M4は、コバルト、マンガン、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種を表す。m、n、pおよびqは、0.8≦m≦1.2、0.005≦n≦0.5、−0.1≦p≦0.2、0≦q≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、mの値は完全放電状態における値を表している。)
LirCo(1-s)M5s(2-t)u ・・・(E)
(但し、式(E)中、M5は、ニッケル、マンガン、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種を表す。r、s、tおよびuは、0.8≦r≦1.2、0≦s<0.5、−0.1≦t≦0.2、0≦u≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、rの値は完全放電状態における値を表している。)
LivMn2-wM6wxy ・・・(F)
(但し、式(F)中、M6は、コバルト、ニッケル、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種を表す。v、w、xおよびyは、0.9≦v≦1.1、0≦w≦0.6、3.7≦x≦4.1、0≦y≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、vの値は完全放電状態における値を表している。)
LizM7PO4 ・・・(G)
(但し、式(G)中、M7は、コバルト、マンガン、鉄、ニッケル、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、ニオブ(Nb)、銅、亜鉛、モリブデン、カルシウム、ストロンチウム、タングステンおよびジルコニウムからなる群のうちの少なくとも1種を表す。zは、0.9≦z≦1.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、zの値は完全放電状態における値を表している。)
リチウムを吸蔵および放出することが可能な正極材料としては、これらの他にも、MnO2、V25、V613、NiS、MOSなどのリチウムを含まない無機化合物も挙げられる。
リチウムを吸蔵および放出することが可能な正極材料は、上記以外のものであってもよい。また、上記で例示した正極材料は、任意の組み合わせで2種以上混合されてもよい。
結着材としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、スチレンブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)などの樹脂材料、ならびにこれら樹脂材料を主体とする共重合体などから選択される少なくとも1種が用いられる。
導電剤としては、例えば、黒鉛、カーボンブラックあるいはケッチェンブラックなどの炭素材料が挙げられ、それらのうちの1種または2種以上が混合して用いられる。また、炭素材料の他にも、導電性を有する材料であれば金属材料あるいは導電性高分子材料などを用いるようにしてもよい。
(負極)
負極22は、例えば、負極集電体22Aの両面に負極活物質層22Bが設けられた構造を有している。なお、図示はしないが、負極集電体22Aの片面のみに負極活物質層22Bを設けるようにしてもよい。負極集電体22Aは、例えば、銅箔、ニッケル箔あるいはステンレス箔などの金属箔により構成されている。
負極活物質層22Bは、リチウムを吸蔵および放出することが可能な1種または2種以上の負極活物質を含んでいる。負極活物質層22Bは、必要に応じて結着剤や導電剤などの添加剤をさらに含んでいてもよい。
なお、この非水電解質電池では、負極22または負極活物質の電気化学当量が、正極21の電気化学当量よりも大きくなっており、理論上、充電の途中において負極22にリチウム金属が析出しないようになっていることが好ましい。
負極活物質としては、例えば、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維あるいは活性炭などの炭素材料が挙げられる。このうち、コークス類には、ピッチコークス、ニードルコークスあるいは石油コークスなどがある。有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂などの高分子材料を適当な温度で焼成して炭素化したものをいい、一部には難黒鉛化性炭素または易黒鉛化性炭素に分類されるものもある。これら炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好なサイクル特性を得ることができるので好ましい。特に黒鉛は、電気化学当量が大きく、高いエネルギー密度を得ることができ好ましい。また、難黒鉛化性炭素は、優れたサイクル特性が得られるので好ましい。更にまた、充放電電位が低いもの、具体的には充放電電位がリチウム金属に近いものが、電池の高エネルギー密度化を容易に実現することができるので好ましい。
また、高容量化が可能な他の負極活物質としては、金属元素および半金属元素のうちの少なくとも1種を構成元素(例えば、合金、化合物または混合物)として含む材料も挙げられる。このような材料を用いれば、高いエネルギー密度を得ることができるからである。特に、炭素材料と共に用いるようにすれば、高エネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるのでより好ましい。なお、本開示において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体、共晶(共融混合物)、金属間化合物あるいはそれらのうちの2種以上が共存するものがある。
このような負極活物質としては、例えば、リチウムと合金を形成することが可能な金属元素または半金属元素が挙げられる。具体的には、マグネシウム、ホウ素、アルミニウム、チタン、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛、ハフニウム(Hf)、ジルコニウム、イットリウム(Y)、パラジウム(Pd)あるいは白金(Pt)が挙げられる。これらは結晶質のものでもアモルファスのものでもよい。
負極活物質としては、短周期型周期表における4B族の金属元素あるいは半金属元素を構成元素として含むものが好ましく、より好ましいのはケイ素およびスズの少なくとも一方を構成元素として含むものである。ケイ素およびスズは、リチウムを吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができるからである。このような負極活物質としては、例えば、ケイ素の単体、合金または化合物や、スズの単体、合金または化合物や、それらの1種または2種以上の相を少なくとも一部に有する材料が挙げられる。
ケイ素の合金としては、例えば、ケイ素以外の第2の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン(Sb)およびクロムからなる群のうちの少なくとも1種を含むものが挙げられる。スズの合金としては、例えば、スズ以外の第2の構成元素として、ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムからなる群のうちの少なくとも1種を含むものが挙げられる。
スズの化合物あるいはケイ素の化合物としては、例えば、酸素あるいは炭素を含むものが挙げられ、スズまたはケイ素に加えて、上述した第2の構成元素を含んでいてもよい。
中でも、Sn系の負極活物質としては、コバルトと、スズと、炭素とを構成元素として含み、炭素の含有量が9.9質量%以上29.7質量%以下であり、かつスズとコバルトとの合計に対するコバルトの割合が30質量%以上70質量%以下であるSnCoC含有材料が好ましい。このような組成範囲において高いエネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるからである。
このSnCoC含有材料は、必要に応じて更に他の構成元素を含んでいてもよい。他の構成元素としては、例えば、ケイ素、鉄、ニッケル、クロム、インジウム、ニオブ、ゲルマニウム、チタン、モリブデン、アルミニウム、リン(P)、ガリウムまたはビスマスが好ましく、2種以上を含んでいてもよい。容量またはサイクル特性を更に向上させることができるからである。
なお、このSnCoC含有材料は、スズと、コバルトと、炭素とを含む相を有しており、この相は結晶性の低いまたは非晶質な構造を有していることが好ましい。また、このSnCoC含有材料では、構成元素である炭素の少なくとも一部が、他の構成元素である金属元素または半金属元素と結合していることが好ましい。サイクル特性の低下はスズなどが凝集あるいは結晶化することによるものであると考えられるが、炭素が他の元素と結合することにより、そのような凝集あるいは結晶化を抑制することができるからである。
元素の結合状態を調べる測定方法としては、例えばX線光電子分光法(XPS)が挙げられる。XPSでは、炭素の1s軌道(C1s)のピークは、グラファイトであれば、金原子の4f軌道(Au4f)のピークが84.0eVに得られるようにエネルギー較正された装置において、284.5eVに現れる。また、表面汚染炭素であれば、284.8eVに現れる。これに対して、炭素元素の電荷密度が高くなる場合、例えば炭素が金属元素または半金属元素と結合している場合には、C1sのピークは、284.5eVよりも低い領域に現れる。すなわち、SnCoC含有材料について得られるC1sの合成波のピークが284.5eVよりも低い領域に現れる場合には、SnCoC含有材料に含まれる炭素の少なくとも一部が他の構成元素である金属元素または半金属元素と結合している。
なお、XPS測定では、スペクトルのエネルギー軸の補正に、例えばC1sのピークを用いる。通常、表面には表面汚染炭素が存在しているので、表面汚染炭素のC1sのピークを284.8eVとし、これをエネルギー基準とする。XPS測定では、C1sのピークの波形は、表面汚染炭素のピークとSnCoC含有材料中の炭素のピークとを含んだ形として得られるので、例えば市販のソフトウエアを用いて解析することにより、表面汚染炭素のピークと、SnCoC含有材料中の炭素のピークとを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。
その他の負極活物質としては、例えば、リチウムを吸蔵および放出することが可能な金属酸化物または高分子化合物なども挙げられる。金属酸化物としては、例えば、チタン酸リチウム(Li4Ti512)などのチタンとリチウムとを含むリチウムチタン酸化物、酸化鉄、酸化ルテニウムまたは酸化モリブデンなどが挙げられる。高分子化合物としては、例えば、ポリアセチレン、ポリアニリンまたはポリピロールなどが挙げられる。
結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアクリロニトリル、スチレンブタジエンゴムおよびカルボキシメチルセルロースなどの樹脂材料、ならびにこれら樹脂材料を主体とする共重合体などから選択される少なくとも1種が用いられる。導電剤としては、正極活物質層21Bと同様の炭素材料などを用いることができる。
(セパレータ)
セパレータ23は、正極21と負極22とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータ23は、例えば、ポリテトラフルオロエチレン、ポリプロピレンあるいはポリエチレンなどの樹脂製の多孔質膜によって構成されており、これらの2種以上の多孔質膜を積層した構造とされていてもよい。中でも、ポリオレフィン製の多孔質膜は短絡防止効果に優れ、かつシャットダウン効果による電池の安全性向上を図ることができるので好ましい。特にポリエチレンは、100℃以上160℃以下の範囲内においてシャットダウン効果を得ることができ、かつ電気化学的安定性にも優れているので、セパレータ23を構成する材料として好ましい。他にも、化学的安定性を備えた樹脂を、ポリエチレンあるいはポリプロピレンと共重合またはブレンド化した材料を用いることができる。あるいは、多孔質膜は、ポリプロピレン層と、ポリエチレン層と、ポリプロピレン層とを順次に積層した3層以上の構造を有していてもよい。
また、セパレータ23は、基材である多孔質膜の片面または両面に樹脂層が設けられていてもよい。樹脂層は、無機物が担持された多孔性のマトリックス樹脂層である。これにより、耐酸化性を得ることができ、セパレータ23の劣化を抑制できる。マトリックス樹脂としては、例えば、ポリフッ化ビニリデン、ヘキサフルオロプロピレン(HFP)、ポリテトラフルオロエチレンなどを用いることができ、また、これらの共重合体を用いることも可能である。
無機物としては、金属、半導体、またはこれらの酸化物、窒化物を挙げることができる。例えば、金属としては、アルミニウム、チタンなど、半導体としては、ケイ素、ホウ素などを挙げることができる。また、無機物としては、実質的に導電性がなく、熱容量の大きいものが好ましい。熱容量が大きいと、電流発熱時のヒートシンクとして有用であり、電池の熱暴走をより抑制することが可能になるからである。このような無機物としては、アルミナ(Al23)、ベーマイト(アルミナの一水和物)、タルク、窒化ホウ素(BN)、窒化アルミニウム(AlN)、二酸化チタン(TiO2)、酸化ケイ素(SiOx)などの酸化物または窒化物が挙げられる。
無機物の粒径としては、1nm〜10μmの範囲内が好ましい。1nmより小さいと、入手が困難であり、また入手できたとしてもコスト的に見合わない。10μmより大きいと電極間距離が大きくなり、限られたスペースで活物質充填量が十分得られず電池容量が低くなるからである。
樹脂層の形成方法としては、例えば、マトリックス樹脂、溶媒および無機物からなるスラリーを基材(多孔質膜)上に塗布し、マトリックス樹脂の貧溶媒且つ上記溶媒の親溶媒浴中を通過させて相分離させ、その後、乾燥させることで形成できる。
また、セパレータ23の突き刺し強度としては、100gf〜1000gfの範囲内であることが好ましい。さらに好ましくは、100gf〜480gfである。突き刺し強度が低いとショートが発生することがあり、高いとイオン伝導性が低下してしまうからである。
また、セパレータ23の透気度としては、30sec/100cc〜1000sec/100ccの範囲内であることが好ましい。さらに好ましくは、30sec/100cc〜680sec/100ccである。透気度が低いとショートが発生することがあり、高いとイオン伝導性が低下してしまうからである。
なお、上述した無機物は、基材としての多孔質膜に含有されていてもよい。
(電解液)
セパレータ23には、液状の電解質である電解液が含浸されている。電解液は、溶媒と、この溶媒に溶解された電解質塩とを含んでいる。電解液が、電池特性を向上するために、公知の添加剤を含んでいてもよい。
溶媒としては、炭酸エチレンあるいは炭酸プロピレンなどの環状の炭酸エステルを用いることができ、炭酸エチレンおよび炭酸プロピレンのうちの一方、特に両方を混合して用いることが好ましい。サイクル特性を向上させることができるからである。
溶媒としては、また、これらの環状の炭酸エステルに加えて、炭酸ジエチル、炭酸ジメチル、炭酸エチルメチルあるいは炭酸メチルプロピルなどの鎖状の炭酸エステルを混合して用いることが好ましい。高いイオン伝導性を得ることができるからである。
溶媒としては、さらにまた、2,4−ジフルオロアニソールあるいは炭酸ビニレンを含むこと好ましい。2,4−ジフルオロアニソールは放電容量を向上させることができ、また、炭酸ビニレンはサイクル特性を向上させることができるからである。よって、これらを混合して用いれば、放電容量およびサイクル特性を向上させることができるので好ましい。
これらの他にも、溶媒としては、炭酸ブチレン、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、酢酸メチル、プロピオン酸メチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピロニトリル、N,N−ジメチルフォルムアミド、N−メチルピロリジノン、N−メチルオキサゾリジノン、N,N−ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、ジメチルスルフォキシドあるいはリン酸トリメチルなどが挙げられる。
なお、これらの非水溶媒の少なくとも一部の水素をフッ素で置換した化合物は、組み合わせる電極の種類によっては、電極反応の可逆性を向上させることができる場合があるので、好ましい場合もある。
電解質塩としては、例えばリチウム塩が挙げられ、1種を単独で用いてもよく、2種以上を混合して用いてもよい。リチウム塩としては、LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C654、LiCH3SO3、LiCF3SO3、LiN(SO2CF32、LiC(SO2CF33、LiAlCl4、LiSiF6、LiCl、ジフルオロ[オキソラト−O,O']ホウ酸リチウム、リチウムビスオキサレートボレート、あるいはLiBrなどが挙げられる。中でも、LiPF6は高いイオン伝導性を得ることができるとともに、サイクル特性を向上させることができるので好ましい。
[電池電圧]
この非水電解質電池は、完全充電時における開回路電圧(すなわち電池電圧)が、例えば、例えば2.80V以上6.00V以下または3.60V以上6.00V以下、好ましくは4.25V以上6.00V以下または4.20V以上4.50V以下、さらに好ましくは4.30V以上4.55V以下の範囲内になるように設計されていてもよい。完全充電時における開回路電圧が、例えば正極活物質として層状岩塩型リチウム複合酸化物などを用いた電池において4.25V以上とされる場合は、4.20Vの電池と比較して、同じ正極活物質であっても単位質量当たりのリチウムの放出量が多くなるので、それに応じて正極活物質と負極活物質との量が調整され、高いエネルギー密度が得られるようになっている。
[電池の動作]
上述の構成を有する非水電解質二次電池では、充電を行うと、例えば、正極活物質層21Bからリチウムイオンが放出され、電解液を介して負極活物質層22Bに吸蔵される。また、放電を行うと、例えば、負極活物質層22Bからリチウムイオンが放出され、電解液を介して正極活物質層21Bに吸蔵される。
[電池の製造方法]
上述した2次電池は、例えば以下のように製造される。
まず、リチウムをドープおよび脱ドープ可能な正極材料と導電剤と結着剤とを混合して正極合剤を調製し、この正極合剤を混合溶媒に分散させて正極合剤スラリーとする。次に、正極合剤スラリーを正極集電体21Aに塗布して乾燥させた後圧縮成型して正極21を作製する。その後、正極集電体21Aに超音波溶接あるいはスポット溶接等により正極リード25Aを接続する。
また、リチウムをドープおよび脱ドープ可能な負極材料と結着剤とを混合して負極合剤を調製し、この負極合剤を混合溶媒に分散させて負極合剤スラリーとする。次に、負極合剤スラリーを負極集電体22Aに塗布して乾燥させた後圧縮成型して負極22を作製する。その後、負極集電体22Aに超音波溶接あるいはスポット溶接等により負極リード26を接続する。
そして、正極21と負極22とをセパレータ23を介して多数回巻回し、巻回電極体を作製する。その後、巻回電極体を一対の絶縁板12,13で挟み、電池缶11の内部に収納し、正極リード25Aをディスク板15Aの突出部18にサブディスク25Bを介して電気的に接続すると共に、負極リード26を電池缶11に電気的に接続する。
また、溶媒に電解質塩を溶解させて電解液を調製する。その後、電解液を電池缶11の内部に注入し、セパレータ23に含浸させる。続いて、電池缶11の開放部に安全機構15および電池蓋14を、ガスケット17を介してかしめることによって固定する。このようにしてリチウムイオン電池が完成する。なお、上述した説明では省略したが、実際には、電池蓋14に対して樹脂製のリングワッシャが装着され、そして、電池全体が樹脂チューブで被覆される。
[安全機構について]
次に、上述した安全機構15について、より詳細に説明する。図4A乃至図4Cは、安全機構15を構成する部品の半部の斜視図であり、図4Aはディスク板15Aの半部の斜視図であり、図4Bはディスクホルダ15Bの半部の斜視図であり、図4Cは遮断ディスク15Cの半部の斜視図である。
ディスク板15Aは、例えば全体として皿形状であり、円形状の底部31Aと、底部31Aの周縁からやや植立して外側に延在する鍔部31Bとを有している。底部31Aの略中央には下方に突出する突出部18が形成されている。
ディスクホルダ15Bは、リング状の底部32Aと、底部32Aの外側周縁から上方に植立する壁部32Bと、壁部32Bの先端から外側に向かって延在する鍔部32Cとを有している。
遮断ディスク15Cは、円形状の底部33Aと、底部33Aの周縁から上方に植立する壁部33Bと、壁部33Bの先端から外側に向かって延在する鍔部33Cとを有している。ディスク板15Aと遮断ディスク15Cとが、ディスクホルダ15Bを介して嵌合される。
[突部および突部の形成位置について]
上述したように、ディスクホルダ15Bを介してディスク板15Aと遮断ディスク15Cとが嵌合された状態が維持される。しかしながら、各部品には寸法のばらつきが存在し得るため、寸法のばらつきに起因して各部品が嵌合した状態が安定しないおそれがある。そこで、本実施形態におけるディスクホルダ15Bおよび遮断ディスク15Cには、突部が形成されている。例えば、遮断ディスク15Cの壁部33Bの内面側には、複数の第1突部41が形成されている。複数の第1突部41は、例えば、製造工程における便宜を考慮して略等間隔となるように形成されることが好ましい。また、例えば、ディスクホルダ15Bの壁部32Bの内面側には、複数の第2突部42が形成されている。複数の第2突部42は、例えば、製造工程における便宜を考慮して略等間隔となるように形成されることが好ましい。以下の説明では、複数の第1突部41が略等間隔となるように形成されているものとして説明する。同様に、複数の第2突部42が略等間隔となるように形成されているものとして説明する。
なお、突部とは、突起でもよいし、弾性変形可能な爪部でもよく、特定の形状等に限定されるものではない、本実施形態では、第1突部41が爪部であり、第2突部42が突起であるものとして説明する。
第1突部41および第2突部42を設けることにより、各部品が嵌合する際に各部品が面接触ではなく点接触することになり、組立における抵抗を小さくすることができる。このため、各部品の寸法のばらつきを吸収して安定した嵌合状態を保つことができる。しかしながら、一対の第1突部41および一対の第2突部42が一直線状に配列された場合には、嵌合時における余分な圧力を逃がすための圧力の緩衝帯(各部品の寸法のばらつきを吸収する逃げ)を確保することができない。このため、場合によっては嵌合不良が生じ、安全機構15の高さ寸法にばらつきが生じてしまうおそれがあった。この寸法のばらつきに起因して、安全機構15の動作にばらつきが生じてしまうおそれがあった。
この点について、図5を参照して説明する。遮断ディスク15Cおよびディスクホルダ15Bが嵌合した状態で上面視すると、壁部33Bおよび壁部32Bの箇所については互いに同心状の円周として捉えることができる。例えば、壁部33Bの箇所については、第1円周CL1として捉えることができ、壁部32Bの箇所については、第2円周CL2として捉えることができる。なお、円周とは必ずしも厳密な円である必要はなく、多少のゆがみがあってもよいし、第1円周CL1の中心と第2円周CL2の中心とが多少ずれていてもよい。また、説明の便宜を考慮して、図5(図6〜図8についても同じ)では、第1円周CL1および第2円周CL2を離して図示しているが、実際には当該円周同士は近接している。
壁部33Bに形成された第1突部41が、第1円周CL1上に沿って略等間隔に位置する。第1円周上とは、例えば、第1突部41の少なくとも一部が第1円周CL1に接していることを意味する。また、壁部32Bに形成された第2突部42が、第2円周CL2上に沿って略等間隔に位置する。第2円周上とは、例えば、第2突部42の少なくとも一部が第2円周CL2に接していることを意味する。図5に示す例では、第1突部41が4個形成されており、それぞれの第1突部が矩形のマークにより示されている。また、第2突部42が4個形成されており、それぞれの第2突部が円のマークにより示されている。
ここで、円の中心を通り、第1円周CL1および第2円周CL2を含む対角線を規定する。図5では、2つの対角線DL1、DL2が示されている。図5に示すように、例えば、対角線DL1上に4個の突部(2個の第1突部41と2個の第2突部42)が位置する場合には、上述したような圧力の緩衝帯を確保することができない。このため、安全機構の15の組立時に嵌合不良が生じ、例えば安全機構15の高さ(総高)が規格値より大きくなってしまうおそれがある。
このため、第1円周CL1上および第2円周CL2上を含む対角線上に位置する(存在する)第1突部41および第2突部42の数が3個以下(この場合は0を含んでもよい)であることが好ましい。最大数が3個であれば、圧力の緩衝帯を確保することができる。
より具体的には、少なくとも1個の第1突部41または少なくとも1個の第2突部42を通る対角線上において、当該対角線上に位置する第1突部41および第2突部42の数が3個以下であることが好ましい。この場合でも、対角線上に位置する第1突部41および第2突部42の合計数が最大でも3個以下となるため、圧力の緩衝帯を確保することができる。
また、対角線の一方側に第1突部41および第2突部42が位置し、当該対角線の他方側に第1突部41および第2突部42が存在しないようにしてもよい。
また、対角線の一方側に第1突部41および第2突部42が位置し、対角線の他方側に第1突部41または第2突部42が位置する構成でもよい。
また、第1突部41の数および第2突部42の数の少なくとも一方が奇数個であってもよい。さらに、第1突部41の数および第2突部42の数の両方が奇数個であってもよい。例えば、第1突部41が第1円周CL1上に沿って略等間隔に位置し、第2突部42が第2円周CL2上に沿って略等間隔に位置する場合に、ある対角線上の一方側に、当該対角線上に沿って第1突部41および第2突部42が位置しているとする。
第1突部41の数と第2突部42の数とがともに偶数であると最大公約数として2があるので180度毎、すなわち、上述した対角線上における反対側にも第1突部41および第2突部42が位置し、当該対角線上に位置する第1突部41、第2突部42の数が4個になる。このため、圧力の緩衝帯を確保できなくなってしまう。したがって、第1突部41の数および第2突部42の数の少なくとも一方が奇数個であることが好ましい。
以上説明した一実施形態によれば、電池の構成における圧力の緩衝帯を確保できる。したがって、安全機構15の各部品を嵌合させた際に嵌合不良が生じることを防止できるので、安全機構15の寸法にばらつきが生じてしまうことを防止できる。また、安全機構15の各部品を高さ方向の寸法が所定値以内となるように確実に嵌合できるので、安全機構15が安定して動作することでき、安全動作にばらつきが生じてしまうことを防止できる。
次に、本開示の実施例について説明するが、本開示は、下記の実施例に限定されるものではない。
本実施例では、18650型(直径18mm、高さ65mm)の円筒型のリチウムイオン二次電池を使用した。
本実施例では、ディスクホルダ15Bの内側(壁部32Bの内側)に嵌合されるディスク板15Aの径(例えば、底部31Aの径)を規格値より+5%に設定し、不利な条件(嵌合しづらい条件)で実験した。また、本実施例では、ディスクホルダ15Bが嵌合される遮断ディスク15Cの径(例えば、底部33Aの径)を規格値より−5%に設定し、不利な条件(嵌合しづらい条件)で実験した。
複数の第1突部41は、壁部33Bの内面側に略等間隔となるように形成した。複数の第2突部42は、壁部32Bの内面側に略等間隔となるように形成した。比較例および各実施例におけるサンプル数は50個とした。
遮断ディスク15Cの第1突部41の数とディスクホルダ15Bの第2突部42の数とを変化させた場合において、下記の評価項目に関して工程能力指数(本実施例では、後述するCpk値(工程能力値とも称される)を使用して評価した。
[評価項目]
・安全機構15の高さ(総高)
・安全機構15の遮断圧力(ディスク板15Aの突出部18とサブディスク25Bとが遮断される際の圧力)
[工程能力について]
ここで、工程能力について補足して説明する。工程能力とは、工程の品質に関する能力のことで、工程の品質達成能力ともいわれ、安定状態にある工程において、どの程度のばらつきで品質を実現し得るかの能力を示すものである。品質基準を満たした製品を生産できる能力のことを工程能力という。工程能力を評価するための数値が工程能力指数である。
工程能力指数としては、Cp値あるいはCpk値(Process Capability Index)が用いられる。Cp値は、下記の式(1)により得られる。
Cp=(規格の上限−規格の下限)/6σ(但し、σは標準偏差である) ・・(1)
Cpk値は、検査時のばらつきデータを正規分布グラフにした場合、分布が平均値より外れている場合に平均値を考慮した数値データとして求められる。Cpk値は、下記の式(2)により得られる。
Cpk=(1−k)*Cp(但し、kはかたより度である) ・・(2)
Cp、Cpkを数値データとして求めることにより、規格に対する工程指数を確認することができる。
工程能力指数の値に応じて、一般に以下の判断が行われる。なお、以下の例ではCp値を例にして説明するが、Cpk値でも同じである。
Cp≧1.67・・・工程能力は十分すぎる。
1.67>Cp≧1.33・・・工程能力は十分である。
1.33>Cp・・・工程能力は十分とは言えないもしくは不足している。
そこで、本実施例でもこれにならい、それぞれ規格値に対し、工程能力が1.33未満のものに「×」、1.33〜1.67未満のものに「○」、1.67を満足するもの(1.67以上のもの)に「◎」を付すこととした。
下記の表1に結果を示す。
Figure 0006699736
表1における比較例1および実施例1〜8に対応する第1突部41および第2突部42の位置関係が、図6、図7A〜図7Dおよび図8A〜図8Dにそれぞれ示されている。
比較例1は、第1突部41の数および第2突部42の数がともに偶数個の例であり、具体的には、第1突部41の数が6個であり、第2突部42の数が16個の例である。図6に示すように、この例では、所定の対角線DL3の一方側(参照符号AAが付されている箇所)に当該対角線DL3上に沿って第1突部41および第2突部42が位置する場合に、対角線DL3の他方側(参照符号BBが付されている箇所)にも第1突部41および第2突部42が位置する。すなわち、対角線DL3上に位置する第1突部41および第2突部42の数が4個となり圧力の緩衝帯を確保できない。比較例1における工程能力指数が総高および遮断圧力ともに「×」になることが確認された。
なお、この例でも対角線DL3の一方側に第1突部41および第2突部42を位置しないようにすれば、対角線DL3上の第1突部41および第2突部42の数が4個になってしまうことを回避し得る。しかしながら、第1突部41および第2突部42は、その大きさが極めて小さいものもあるので、このような場合には、第1突部41および第2突部42の位置を目視で確認して安全機構15を組み立てることは実際上、困難であり現実的ではない。
実施例1は、第1突部41の数が偶数個、第2突部42の数が奇数個の例であり、具体的には、第1突部41の数が6個であり、第2突部の数が15個の例である。図7Aに示すように、この例では、所定の対角線DL1aの一方側に当該対角線DL1a上に沿って第1突部41および第2突部42が位置する場合に、対角線DL1aの他方側には第1突部41のみが位置する。他の対角線DL1b、DL1cについても同様である。すなわち、対角線DL1a上に位置する第1突部41および第2突部42の数が最も多い場合でも3個となり圧力の緩衝帯を確保できる。実施例1における工程能力指数が総高に関しては「○」となり、遮断圧力に関しては「◎」になることが確認された。
実施例2は、第1突部41の数が偶数個、第2突部42の数が奇数個の例であり、具体的には、第1突部41の数が6個であり、第2突部の数が13個の例である。図7Bに示すように、この例では、所定の対角線DL2aの一方側に当該対角線DL2a上に沿って第1突部41および第2突部42が位置する場合に、対角線DL2aの他方側には第1突部41のみが位置する。すなわち、対角線DL2a上に位置する第1突部41および第2突部42の数が最も多い場合でも3個となり圧力の緩衝帯を確保できる。さらに、第1突部41および第2突部42の数が3個となる対角線は対角線DL2aのみである。実施例2における工程能力指数が総高、遮断圧力ともに「◎」となることが確認された。
実施例3は、第1突部41の数が偶数個、第2突部42の数が奇数個の例であり、具体的には、第1突部41の数が6個であり、第2突部の数が11個の例である。図7Cに示すように、この例では、所定の対角線DL3aの一方側に当該対角線DL3a上に沿って第1突部41および第2突部42が位置する場合に、対角線DL3aの他方側には第1突部41のみが位置する。すなわち、対角線DL3a上の第1突部41および第2突部42の数が最も多い場合でも3個となり圧力の緩衝帯を確保できる。さらに、第1突部41および第2突部42の数が3個となる対角線は対角線DL3aのみである。実施例3における工程能力指数が総高、遮断圧力ともに「◎」となることが確認された。
実施例4は、第1突部41の数が偶数個、第2突部42の数が奇数個の例であり、具体的には、第1突部41の数が6個であり、第2突部の数が9個の例である。図7Dに示すように、この例では、各突部の最大公約数である3に対応する120度毎に、第1突部41および第2突部42が対角線(DL4a、DL4b、DL4c)の一方側に位置する箇所が存在するものの、当該対角線の他方側には第1突部41のみが位置する。すなわち、対角線DL4a、4b、4cのそれぞれの対角線上に位置する第1突部41および第2突部42の数が最も多い場合でも3個となり圧力の緩衝帯を確保できる。実施例4における工程能力指数が総高、遮断圧力ともに「○」となることが確認された。
実施例5は、第1突部41の数が偶数個、第2突部42の数が奇数個の例であり、具体的には、第1突部41の数が6個であり、第2突部42の数が7個の例である。図8Aに示すように、この例では、所定の対角線DL5aの一方側に当該対角線DL5a上に沿って第1突部41および第2突部42が位置する場合に、対角線DL5aの他方側には第1突部41のみが位置する。すなわち、対角線DL5a上の第1突部41および第2突部42の数が最も多い場合でも3個となり圧力の緩衝帯を確保できる。実施例5における工程能力指数が総高、遮断圧力ともに「○」となることが確認された。
実施例6は、第1突部41の数が奇数個、第2突部42の数が偶数個の例であり、具体的には、第1突部41の数が5個であり、第2突部の数が16個の例である。図8Bに示すように、この例では、所定の対角線DL6aの一方側に当該対角線DL6a上に沿って第1突部41および第2突部42が位置する場合に、対角線DL6aの他方側には第2突部42のみが位置する。すなわち、対角線DL6a上の第1突部41および第2突部42の数が最も多い場合でも3個となり圧力の緩衝帯を確保できる。さらに、第1突部41および第2突部42の数が3個となる対角線は対角線DL6aのみである。実施例6における工程能力指数が総高、遮断圧力ともに「◎」となることが確認された。
実施例7は、第1突部41の数が奇数個、第2突部42の数が偶数個の例であり、具体的には、第1突部41の数が3個であり、第2突部の数が16個の例である。図8Cに示すように、この例では、所定の対角線DL7aの一方側に当該対角線DL7a上に沿って第1突部41および第2突部42が位置する場合に、対角線DL7aの他方側には第2突部42のみが位置する。すなわち、対角線DL7a上に位置する第1突部41および第2突部42の数が最も多い場合でも3個となり圧力の緩衝帯を確保できる。さらに、第1突部41および第2突部42の数が3個となる対角線は対角線DL7aのみである。実施例7における工程能力指数が総高、遮断圧力ともに「◎」となることが確認された。
実施例8は、第1突部41の数および第2突部42の数がともに奇数個の例であり、具体的には、第1突部41の数が5個であり、第2突部の数が13個の例である。図8Dに示すように、この例では、所定の対角線DL8aの一方側に当該対角線DL8a上に沿って第1突部41および第2突部42が位置する場合に、対角線DL8aの他方側には第1突部41および第2突部42が存在しない。すなわち、対角線上における第1突部41および第2突部42の数が最も多い場合でも2個となり、より効果的に余分な圧力を逃がすことができる。さらに、第1突部41および第2突部42の数が2個となる対角線は対角線DL8aのみである。実施例8における工程能力指数が総高、遮断圧力ともに「◎」となることが確認された。
以上から、比較例1に対して、実施例1〜8は安全機構15の総高、遮断圧力のばらつきが抑制され、本開示の優位性を確認することができた。また、第2突部42の個数は、11個以上が好ましいことが確認された。これは、第2突部42の個数が所定個数(例えば10個以下)になることで、拘束力が低下する傾向になり総高、遮断圧力のばらつきとしてはやや大きくなるため考えられる。
<2.応用例>
次に、本開示の応用例について説明する。
「応用例としての車両における蓄電システム」
本開示を車両用の蓄電システムに適用した例について、図9を参照して説明する。図9に、本開示が適用されるシリーズハイブリッドシステムを採用するハイブリッド車両の構成の一例を概略的に示す。シリーズハイブリッドシステムはエンジンで動かす発電機で発電された電力、あるいはそれをバッテリーに一旦貯めておいた電力を用いて、電力駆動力変換装置で走行する車である。
このハイブリッド車両7200には、エンジン7201、発電機7202、電力駆動力変換装置7203、駆動輪7204a、駆動輪7204b、車輪7205a、車輪7205b、バッテリー7208、車両制御装置7209、各種センサ7210、充電口7211が搭載されている。バッテリー7208に対して、上述した本開示の一実施形態に係る電池が適用される。
ハイブリッド車両7200は、電力駆動力変換装置7203を動力源として走行する。電力駆動力変換装置7203の一例は、モーターである。バッテリー7208の電力によって電力駆動力変換装置7203が作動し、この電力駆動力変換装置7203の回転力が駆動輪7204a、7204bに伝達される。なお、必要な個所に直流−交流(DC−AC)あるいは逆変換(AC−DC変換)を用いることによって、電力駆動力変換装置7203が交流モーターでも直流モーターでも適用可能である。各種センサ7210は、車両制御装置7209を介してエンジン回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御したりする。各種センサ7210には、速度センサ、加速度センサ、エンジン回転数センサなどが含まれる。
エンジン7201の回転力は発電機7202に伝えられ、その回転力によって発電機7202により生成された電力をバッテリー7208に蓄積することが可能である。
図示しない制動機構によりハイブリッド車両が減速すると、その減速時の抵抗力が電力駆動力変換装置7203に回転力として加わり、この回転力によって電力駆動力変換装置7203により生成された回生電力がバッテリー7208に蓄積される。
バッテリー7208は、ハイブリッド車両の外部の電源に接続されることで、その外部電源から充電口211を入力口として電力供給を受け、受けた電力を蓄積することも可能である。
図示しないが、二次電池に関する情報に基づいて車両制御に関する情報処理を行なう情報処理装置を備えていても良い。このような情報処理装置としては、例えば、電池の残量に関する情報に基づき、電池残量表示を行う情報処理装置などがある。
なお、以上は、エンジンで動かす発電機で発電された電力、或いはそれをバッテリーに一旦貯めておいた電力を用いて、モーターで走行するシリーズハイブリッド車を例として説明した。しかしながら、エンジンとモーターの出力がいずれも駆動源とし、エンジンのみで走行、モーターのみで走行、エンジンとモーター走行という3つの方式を適宜切り替えて使用するパラレルハイブリッド車に対しても本開示は有効に適用可能である。さらに、エンジンを用いず駆動モータのみによる駆動で走行する所謂、電動車両に対しても本開示は有効に適用可能である。
以上、本開示に係る技術が適用され得るハイブリッド車両7200の一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、バッテリー7208に好適に適用され得る。具体的には、一実施形態に係る電池をバッテリー7208に適用する。
「応用例としての住宅における蓄電システム」
本開示を住宅用の蓄電システムに適用した例について、図10を参照して説明する。例えば住宅9001用の蓄電システム9100においては、火力発電9002a、原子力発電9002b、水力発電9002c等の集中型電力系統9002から電力網9009、情報網9012、スマートメータ9007、パワーハブ9008等を介し、電力が蓄電装置9003に供給される。これと共に、家庭内発電装置9004等の独立電源から電力が蓄電装置9003に供給される。蓄電装置9003に供給された電力が蓄電される。蓄電装置9003を使用して、住宅9001で使用する電力が給電される。住宅9001に限らずビルに関しても同様の蓄電システムを使用できる。
住宅9001には、発電装置9004、電力消費装置9005、蓄電装置9003、各装置を制御する制御装置9010、スマートメータ9007、各種情報を取得するセンサ9011が設けられている。各装置は、電力網9009および情報網9012によって接続されている。発電装置9004として、太陽電池、燃料電池等が利用され、発電した電力が電力消費装置9005および/または蓄電装置9003に供給される。電力消費装置9005は、冷蔵庫9005a、空調装置9005b、テレビジョン受信機9005c、風呂9005d等である。さらに、電力消費装置9005には、電動車両9006が含まれる。電動車両9006は、電気自動車9006a、ハイブリッドカー9006b、電気バイク9006cである。
蓄電装置9003に対して、上述した本開示の一実施形態に係る電池が適用される。スマートメータ9007は、商用電力の使用量を測定し、測定された使用量を、電力会社に送信する機能を備えている。電力網9009は、直流給電、交流給電、非接触給電の何れか一つまたは複数を組み合わせても良い。
各種のセンサ9011は、例えば人感センサ、照度センサ、物体検知センサ、消費電力センサ、振動センサ、接触センサ、温度センサ、赤外線センサ等である。各種センサ9011により取得された情報は、制御装置9010に送信される。センサ9011からの情報によって、気象の状態、人の状態等が把握されて電力消費装置9005を自動的に制御してエネルギー消費を最小とすることができる。さらに、制御装置9010は、住宅9001に関する情報をインターネットを介して外部の電力会社等に送信することができる。
パワーハブ9008によって、電力線の分岐、直流交流変換等の処理がなされる。制御装置9010と接続される情報網9012の通信方式としては、UART(Universal Asynchronous Receiver-Transmitter:非同期シリアル通信用送受信回路)等の通信インターフェースを使う方法、Bluetooth(登録商標)、ZigBee、Wi−Fi等の無線通信規格によるセンサネットワークを利用する方法がある。Bluetooth(登録商標)方式は、マルチメディア通信に適用され、一対多接続の通信を行うことができる。ZigBeeは、IEEE(Institute of Electrical and Electronics Engineers) 802.15.4の物理層を使用するものである。IEEE802.15.4は、PAN(Personal Area Network) またはW(Wireless)PANと呼ばれる短距離無線ネットワーク規格の名称である。
制御装置9010は、外部のサーバ9013と接続されている。このサーバ9013は、住宅9001、電力会社、サービスプロバイダーの何れかによって管理されていても良い。サーバ9013が送受信する情報は、たとえば、消費電力情報、生活パターン情報、電力料金、天気情報、天災情報、電力取引に関する情報である。これらの情報は、家庭内の電力消費装置(たとえばテレビジョン受信機)から送受信しても良いが、家庭外の装置(たとえば、携帯電話機等)から送受信しても良い。これらの情報は、表示機能を持つ機器、たとえば、テレビジョン受信機、携帯電話機、PDA(Personal Digital Assistants)等に、表示されても良い。
各部を制御する制御装置9010は、CPU(Central Processing Unit )、RAM(Random Access Memory)、ROM(Read Only Memory)等で構成され、この例では、蓄電装置9003に格納されている。制御装置9010は、蓄電装置9003、家庭内発電装置9004、電力消費装置9005、各種センサ9011、サーバ9013と情報網9012により接続され、例えば、商用電力の使用量と、発電量とを調整する機能を有している。なお、その他にも、電力市場で電力取引を行う機能等を備えていても良い。
以上のように、電力が火力9002a、原子力9002b、水力9002c等の集中型電力系統9002のみならず、家庭内発電装置9004(太陽光発電、風力発電)の発電電力を蓄電装置9003に蓄えることができる。したがって、家庭内発電装置9004の発電電力が変動しても、外部に送出する電力量を一定にしたり、または、必要なだけ放電するといった制御を行うことができる。例えば、太陽光発電で得られた電力を蓄電装置9003に蓄えると共に、夜間は料金が安い深夜電力を蓄電装置9003に蓄え、昼間の料金が高い時間帯に蓄電装置9003によって蓄電した電力を放電して利用するといった使い方もできる。
なお、この例では、制御装置9010が蓄電装置9003内に格納される例を説明したが、スマートメータ9007内に格納されても良いし、単独で構成されていても良い。さらに、蓄電システム9100は、集合住宅における複数の家庭を対象として用いられてもよいし、複数の戸建て住宅を対象として用いられてもよい。
以上、本開示に係る技術が適用され得る蓄電システム9100の一例について説明した。本開示に係る技術は、以上説明した構成のうち、蓄電装置9003に好適に適用され得る。具体的には、一実施形態に係る電池を蓄電装置9003に適用することができる。
「その他の応用例」
本開示は、大型の電動車両や航空機に限らず、電動バイク、電動自転車、電動三輪車、電動小型飛行体(ドローン等とも称される)等にも応用可能である。また、本開示は、二次電池が使用され得る電子機器(PC、スマートフォン、携帯電話、電動工具、おもちゃ等)にも応用可能であり、上述した電池装置から電力の供給を受ける電子機器として本開示を実現することも可能である。
<3.変形例>
なお、本開示は、以下のような構成も取ることができる。
(1)
電池内圧の上昇により変形を生じる安全弁と、
前記安全弁の変形に伴う当該安全弁とリード部との遮断時に当該リード部に対する抑えとなり、第1円周上に沿って形成される複数の第1突部を有する抑え部と、
前記安全弁と前記抑え部とを絶縁し、第2円周上に沿って形成される複数の第2突部を有する絶縁ホルダと
を有し、
前記第1円周および前記第2円周を含む対角線上に配置される前記第1突部および前記第2突部の数が3以下である
電池。
(2)
少なくとも1個の前記第1突部または少なくとも1個の前記第2突部を通る対角線上において、当該対角線上に配置される前記第1突部および前記第2突部の数が3以下である
(1)に記載の電池。
(3)
前記対角線の一方側に前記第1突部および前記第2突部が位置し、前記対角線の他方側に前記第1突部および前記第2突部が存在しない
(2)に記載の電池。
(4)
前記対角線の一方側に前記第1突部および前記第2突部が位置し、前記対角線の他方側に前記第1突部または前記第2突部が位置する
(2)に記載の電池。
(5)
前記第1突部の数および前記第2突部の数の少なくとも一方が奇数個である
(1)乃至(4)のいずれかに記載の電池。
(6)
前記第1突部の数および前記第2突部の数がそれぞれ奇数個である
(5)に記載の電池。
(7)
前記第1突部が前記第1円周上に沿って略等間隔に位置する
(1)乃至(6)のいずれかに記載の電池。
(8)
前記第2突部が前記第2円周上に沿って略等間隔に位置する
(1)乃至(7)のいずれかに記載の電池。
(9)
前記リード部は、正極側から導出される正極リードを含む
(1)乃至(8)のいずれかに記載の電池。
(10)
前記リード部は、サブディスクを含み、
前記安全弁と前記正極リードとが前記サブディスクを介して接続される
(9)に記載の電池。
(11)
円筒形状のリチウムイオン二次電池である
(1)乃至(10)のいずれかに記載の電池。
(12)
(1)乃至(12)のいずれかに記載の電池を有する蓄電装置。
(13)
(1)乃至(12)のいずれかに記載の電池を有する電動車両。
本開示は、第1突部および第2突部のいずれかのみを有する電池にも適用することができる。例えば、ある対角線上における第1突部(第2突部でもよい)の数が1個以下とされる電池でもよい。
本開示は、リチウムイオン二次電池以外の二次電池や、一次電池に対しても適用することができる。また、角型の電池に対しても適用することができる。
以上、本開示の実施形態について具体的に説明したが、上述の各実施形態に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。例えば、上述の実施形態において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。
15・・・安全機構
15A・・・ディスク板
15B・・・ディスクホルダ
15C・・・遮断ディスク
25A・・・正極リード
25B・・・サブディスク
41・・・第1突部
42・・・第2突部
CL1・・・第1円周
CL2・・・第2円周

Claims (11)

  1. 電池内圧の上昇により変形を生じる安全弁と、
    円形状の底部と、前記底部の周縁から上方に植立する第1壁部と、前記第1壁部の先端から外側に向かって延在する第1鍔部とを有し、前記安全弁の変形に伴う当該安全弁とリード部との遮断時に当該リード部に対する抑えとなり、前記第1壁部を上面視したときの第1円周上に沿って略等間隔に形成される複数の第1突部を有する抑え部と、
    リング状の底部と、前記底部の外側周縁から上方に植立する第2壁部と、前記第2壁部の先端から外側に向かって延在する第2鍔部とを有し、前記安全弁と前記抑え部とを絶縁し、前記第2壁部を上面視したときの第2円周上に沿って略等間隔に形成される複数の第2突部を有する絶縁ホルダと
    を有し、
    前記安全弁と前記抑え部とが前記絶縁ホルダを介して嵌合され、
    前記第1円周および前記第2円周に対する直径上に配置される前記第1突部および前記第2突部の数が3以下である
    電池。
  2. 少なくとも1個の前記第1突部または少なくとも1個の前記第2突部を通る直径上において、当該直径上に配置される前記第1突部および前記第2突部の数が3以下である
    請求項1に記載の電池。
  3. 前記直径の一方側に前記第1突部および前記第2突部が位置し、前記直径の他方側に前記第1突部および前記第2突部が存在しない
    請求項2に記載の電池。
  4. 前記直径の一方側に前記第1突部および前記第2突部が位置し、前記直径の他方側に前記第1突部または前記第2突部が位置する
    請求項2に記載の電池。
  5. 前記第1突部の数および前記第2突部の数の少なくとも一方が奇数個である
    請求項1に記載の電池。
  6. 前記第1突部の数および前記第2突部の数がそれぞれ奇数個である
    請求項5に記載の電池。
  7. 前記リード部は、正極側から導出される正極リードを含む
    請求項1に記載の電池。
  8. 前記リード部は、サブディスクを含み、
    前記安全弁と前記正極リードとが前記サブディスクを介して接続される
    請求項に記載の電池。
  9. 円筒形状のリチウムイオン二次電池である
    請求項1に記載の電池。
  10. 請求項1に記載の電池を有する蓄電装置。
  11. 請求項1に記載の電池を有する電動車両。
JP2018536939A 2016-08-30 2017-05-24 電池、蓄電装置および電動車両 Active JP6699736B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016168142 2016-08-30
JP2016168142 2016-08-30
PCT/JP2017/019335 WO2018042777A1 (ja) 2016-08-30 2017-05-24 電池、蓄電装置および電動車両

Publications (2)

Publication Number Publication Date
JPWO2018042777A1 JPWO2018042777A1 (ja) 2018-12-20
JP6699736B2 true JP6699736B2 (ja) 2020-05-27

Family

ID=61300509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018536939A Active JP6699736B2 (ja) 2016-08-30 2017-05-24 電池、蓄電装置および電動車両

Country Status (4)

Country Link
US (1) US10897031B2 (ja)
JP (1) JP6699736B2 (ja)
CN (1) CN109417143B (ja)
WO (1) WO2018042777A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230148A1 (ja) * 2017-06-15 2018-12-20 株式会社村田製作所 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CN115136393A (zh) * 2020-10-27 2022-09-30 株式会社Lg新能源 具有在电池壳体的内表面上的导电层的硬币型二次电池
KR20220055972A (ko) * 2020-10-27 2022-05-04 주식회사 엘지에너지솔루션 부식방지층이 전지케이스의 내면에 형성되어 있는 이차전지
WO2023026976A1 (ja) * 2021-08-26 2023-03-02 株式会社村田製作所 円筒型電池

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2000873C (en) * 1988-10-21 1999-12-14 Shigeru Oishi Cell having current cutoff valve
JP2701375B2 (ja) * 1988-10-21 1998-01-21 ソニー株式会社 防爆型密閉電池
JP3074471B2 (ja) * 1997-03-17 2000-08-07 宝泉株式会社 電池の密閉構造
KR100300405B1 (ko) * 1998-09-10 2002-06-20 김순택 이차전지의캡어셈블리
JP4613391B2 (ja) * 2000-04-26 2011-01-19 ソニー株式会社 非水電解液二次電池及びその安全弁
CN100517803C (zh) * 2000-09-01 2009-07-22 日立马库塞鲁株式会社 碱性干电池
US6730430B2 (en) * 2001-07-09 2004-05-04 Nan Ya Plastics Corporation Explosion-proof safety structure for column shape lithium battery
JP4747859B2 (ja) 2006-01-27 2011-08-17 ソニー株式会社 電池
KR100882916B1 (ko) * 2007-08-27 2009-02-10 삼성에스디아이 주식회사 이차전지
KR100938062B1 (ko) * 2007-09-20 2010-01-21 삼성에스디아이 주식회사 이차 전지 및 그 제조방법
JP2009252409A (ja) 2008-04-02 2009-10-29 Komatsulite Mfg Co Ltd 電池蓋と一体化された安全装置
KR101094937B1 (ko) * 2009-02-16 2011-12-15 삼성에스디아이 주식회사 원통형 이차전지
CN101764200A (zh) * 2010-01-20 2010-06-30 张力 一种电池电容包装壳体
US10069118B2 (en) * 2012-12-19 2018-09-04 Sanyo Electric Co., Ltd. Cylindrical secondary battery and method for manufacturing same
KR101744092B1 (ko) * 2013-04-18 2017-06-20 삼성에스디아이 주식회사 미세전류 전달부재를 갖는 이차 전지
CN203812982U (zh) * 2014-04-16 2014-09-03 浙江兴海能源科技有限公司 一种有自我保护装置的高倍率锂离子电池
JP5915806B2 (ja) * 2015-08-05 2016-05-11 ソニー株式会社 二次電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
KR102601641B1 (ko) * 2016-01-20 2023-11-13 삼성에스디아이 주식회사 이차 전지용 캡 조립체 및 이를 포함하는 이차 전지
KR102606637B1 (ko) * 2016-04-22 2023-11-27 삼성에스디아이 주식회사 이차 전지

Also Published As

Publication number Publication date
JPWO2018042777A1 (ja) 2018-12-20
US20190109303A1 (en) 2019-04-11
WO2018042777A1 (ja) 2018-03-08
CN109417143B (zh) 2021-12-17
US10897031B2 (en) 2021-01-19
CN109417143A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
US10431809B2 (en) Battery
US10985409B2 (en) Battery, battery pack, electronic device, electrically driven vehicle, electric storage device, and electric power system
US9054364B2 (en) Battery, negative electrode for battery, battery pack, electronic apparatus, electric vehicle, electricity storage apparatus and electric power system
US11631901B2 (en) Battery, battery pack, electronic device, electric vehicle, electric storage device, and electric power system
JP6823925B2 (ja) 電池、電池パックおよび電子機器
US10897031B2 (en) Battery, electric storage device, electric vehicle
US10790490B2 (en) Battery, battery can, battery pack, electronic device, electric vehicle, electricity storage device, and electric power system
US11038193B2 (en) Battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP6809313B2 (ja) 正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP6729575B2 (ja) 電池、電池缶、電池パック、電子機器、電動車両、蓄電装置および電力システム
US20180241012A1 (en) Battery, battery pack, electronic device, electric vehicle, electric storage device and electric power system
JP6554978B2 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JPWO2019039363A1 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2015156307A (ja) 電池ならびに電池パック、電子機器、蓄電装置、電力システムおよび電動車両
JP6870743B2 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP6652201B2 (ja) 電池および電子機器
WO2019039436A1 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2018135061A1 (ja) 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP6760382B2 (ja) 負極活物質及びその製造方法並びに非水系二次電池
JPWO2018198967A1 (ja) 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R150 Certificate of patent or registration of utility model

Ref document number: 6699736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150