JP6698273B2 - ポリカーボネート樹脂組成物および成形品 - Google Patents

ポリカーボネート樹脂組成物および成形品 Download PDF

Info

Publication number
JP6698273B2
JP6698273B2 JP2014254461A JP2014254461A JP6698273B2 JP 6698273 B2 JP6698273 B2 JP 6698273B2 JP 2014254461 A JP2014254461 A JP 2014254461A JP 2014254461 A JP2014254461 A JP 2014254461A JP 6698273 B2 JP6698273 B2 JP 6698273B2
Authority
JP
Japan
Prior art keywords
polycarbonate resin
resin composition
weight
compound
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014254461A
Other languages
English (en)
Other versions
JP2016113563A (ja
Inventor
佐々木 一雄
一雄 佐々木
田中 智彦
智彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2014254461A priority Critical patent/JP6698273B2/ja
Publication of JP2016113563A publication Critical patent/JP2016113563A/ja
Application granted granted Critical
Publication of JP6698273B2 publication Critical patent/JP6698273B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

本発明は、色相、屋外曝露での色差が改良されたポリカーボネート樹脂組成物および成形品に関する。
ポリカーボネートは一般的に石油資源から誘導される原料を用いて製造される。しかしながら、近年、石油資源の枯渇が危惧されており、植物等のバイオマス資源から得られる原料を用いたポリカーボネートの提供が求められている。また、二酸化炭素排出量の増加、蓄積による地球温暖化が気候変動等をもたらすことが危惧されていることからも、使用後の廃棄処分をしてもカーボンニュートラルな、植物由来モノマーを原料としたポリカーボネート樹脂の開発が求められている。また、このようなポリカーボネート樹脂の様々な用途への応用を志向し、様々な添加剤、充填剤等を組み合わせて用いたポリカーボネート樹脂組成物の検討がなされている。
一方、従来からポリカーボネート樹脂を含むエンジニアリングプラスチックの分野において、光反射部材用途に酸化チタンの配合がなされている。特許文献1においては、芳香族ポリカーボネート樹脂に酸化チタン及び蛍光増白剤を配合したポリカーボネート樹脂組成物が記載されている。
イソソルビドとジフェニルカーボネートとのエステル交換により得られたポリカーボネートにおいても光反射部材用途を志向したものとして、特許文献2および3において酸化チタンを添加したポリカーボネート樹脂組成物が提案されている。
特開2008−195818号公報 特開2009−191227号公報 特開2012−214796号公報
しかしながら、本発明者の検討によれば、特許文献1においては蛍光増白剤を配合することでポリカーボネート樹脂組成物の耐光性が改善されることが記載されているものの、色相、屋外曝露での色差については改良することが求められていた。また、特許文献2および3においても、耐光性などの各種物性は改良されているものの、熱により着色成分が太陽光暴露で脱色するため、色相、屋外曝露での色差については改良の余地があった。
本発明の目的は、色相、屋外曝露での色差が改良されたポリカーボネート樹脂組成物及びその成形品を提供することにある。
本発明者は、上記課題を解決するべく、鋭意検討を重ねた結果、特定構造のポリカーボネート樹脂、酸化チタン、及びリン酸エステル金属塩を含有するポリカーボネート樹脂が、色相、屋外曝露での色差が改良されることを見出し、本発明に到達した。即ち、本発明の要旨は下記のとおりである。
[1]環状エーテル構造を有するジヒドロキシ化合物(α)に由来する構造単位(a)を含むポリカーボネート樹脂100質量部に対して、酸化チタンを0.01重量部以上30重量部以下含み、かつ、リン酸エステル金属塩を0.01重量部以上1重量部以下含むポ
リカーボネート樹脂組成物。
[2]樹脂組成物中のポリカーボネート樹脂がエステル交換反応触媒として、リチウム化合物及び長周期型周期表第2族の金属化合物からなる群より選ばれる少なくとも1種の金属化合物を用いて製造されたものである[1]に記載のポリカーボネート樹脂組成物。
[3]リン酸エステル金属塩が、第12族金属元素の塩である[1]または[2]に記載のポリカーボネート樹脂組成物。
[4]酸化防止剤を含有する[1]〜[3]のいずれか1項に記載のポリカーボネート樹脂組成物。
[5]光安定剤を含有する[1]〜[4]のいずれか1項に記載のポリカーボネート樹脂組成物。
[6]離型剤を含有する[1]〜[5]のいずれか1項に記載のポリカーボネート樹脂組成物。
[7]前記環状エーテル構造を有するジヒドロキシ化合物(α)が、下記式(1)で表される構造を有するジヒドロキシ化合物である[1]〜[6]のいずれか1項に記載のポリカーボネート樹脂組成物。
Figure 0006698273
[8]ポリカーボネート樹脂が、脂肪族炭化水素のジヒドロキシ化合物に由来する構造単位を含む[1]〜[7]のいずれか1項に記載のポリカーボネート樹脂組成物。
[9][1]〜[8]のいずれか1項に記載のポリカーボネート樹脂組成物を成形して得られるポリカーボネート樹脂成形品。
[10]前記ポリカーボネート樹脂成形品が、射出成形法により成形して得られる[9]に記載のポリカーボネート樹脂成形品。
本発明によれば、色相、屋外曝露での色差が改良されたポリカーボネート樹脂組成物及びその成形品を提供することができる。
以下、本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されるものではない。尚、本発明において、「〜」とはその前後の数値又は物理量を含む表現として用いるものとする。また、本発明において「置換基」という表現を用いる場合、特に明記しない限りは当該置換基の種類は限定されるものではなく、分子量200までのものを意味するものとする。
〔ポリカーボネート樹脂組成物〕
本発明のポリカーボネート樹脂組成物は、環状エーテル構造を有するジヒドロキシ化合物(α)に由来する構造単位(a)を含むポリカーボネート樹脂100質量部に対して、酸化チタンを0.01重量部以上30重量部以下含み、かつ、リン酸エステル金属塩を0.01重量部以上1重量部以下含むポリカーボネート樹脂組成物である。
前記ポリカーボネート樹脂組成物は色相、屋外曝露での色差が改良されたポリカーボネートである。これはポリカーボネート樹脂組成物中の着色成分が熱により、脱色してしまうため、屋外曝露などを行うと、太陽光の熱で、樹脂組成物が脱色してしまうという問題があった。これに対し、本発明のポリカーボネート樹脂組成物は、リン酸エステル金属塩を含有することにより、リン酸エステル金属塩が太陽光の熱による着色剤の脱色の問題を解決し、色相、屋外曝露での色差が改良されたポリカーボネート樹脂組成物及びその成形品を提供することができるようになった。
本発明のポリカーボネート樹脂組成物に用いられる成分について以下に詳述する。
[ポリカーボネート樹脂]
本発明のポリカーボネート樹脂組成物に用いるポリカーボネート樹脂は、環状エーテル構造を有するジヒドロキシ化合物に由来する構造単位(以下、「構造単位(a)」と称することがある。)を含むポリカーボネート樹脂である。このようなポリカーボネート樹脂は、環状エーテル構造を有するジヒドロキシ化合物(以下、「ジヒドロキシ化合物(α)」と称することがある。)と炭酸ジエステルとを原料として、エステル交換反応により重縮合させて得られる。
本発明に用いるポリカーボネート樹脂は、ポリカーボネート樹脂組成物の耐衝撃性を向上させる観点から145℃未満であり、135℃未満であることが好ましく、125℃未満であることがより好ましい。また、耐熱性を高める観点から、ガラス転移温度Tgが70℃以上であることが好ましく、90℃以上であることがより好ましく、100℃以上であることが更に好ましい。なお、ポリカーボネート樹脂のガラス転移温度Tgは、前記環状エーテル構造を有するジヒドロキシ化合物に由来する構造単位に加えて後述する構造単位(b)を適宜選択して導入することなどにより制御することができる。
本発明において、ガラス転移温度は下記の方法により測定される値である。まず、示差走査熱量計(エスアイアイ・ナノテクノロジー社製の「DSC220」)を用いて、ポリカーボネート樹脂約10mgを10℃/minの昇温速度で加熱してDSC曲線を測定する。次いで、JIS−K7121(1987年)に準拠して、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分における曲線の勾配が最大になるような点で引いた接線との交点の温度である補外ガラス転移開始温度を求め、これをガラス転移温度Tgとする。
<原料>
(ジヒドロキシ化合物)
環状エーテル構造を有するジヒドロキシ化合物(ジヒドロキシ化合物(α))としては、具体的には、下記式(1)、(2)及び(3)で表される分子内に環状エーテル構造を有する化合物が挙げられる。
Figure 0006698273
以上の中でも、入手のし易さ、ハンドリングのしやすさ、重合時の反応性の高さ、得られるポリカーボネート樹脂及びそれを用いたポリカーボネート樹脂組成物の色相をより良好なものにする等の観点から、ジエチレングリコール、トリエチレングリコール等のオキシアルキレングリコール類が好ましい。分子内に環状構造を有するジヒドロキシ化合物の中でも分子内にエーテル結合が複数あるものが好ましい。また、分子内に環状エーテル構造を有するジヒドロキシ化合物は、環状構造が単環であっても多環であってもよいが、環状エーテル構造を複数有するものが好ましく、更には環状エーテル構造を2つ有するものが好ましく、特にはそれら2つの環状エーテル構造が同一構造のものであることが好ましい。また、耐熱性の観点からは、分子内に環状エーテル構造を有するジヒドロキシ化合物の中でも、前記式(1)で表されるジヒドロキシ化合物に代表される無水糖アルコールが好ましい。
前記式(1)で表されるジヒドロキシ化合物としては、立体異性体の関係にある、イソソルビド、イソマンニド、イソイデットが挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。
これらのジヒドロキシ化合物(α)のうち、芳香環構造を有しないジヒドロキシ化合物を用いることがポリカーボネート樹脂の耐光性の観点から好ましく、中でも植物由来の資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られるイソソルビドが、入手及び製造のし易さ、耐光性、光学特性、成形性、耐熱性、カーボンニュートラルの面から最も好ましい。
ポリカーボネート樹脂中における全ジヒドロキシ化合物に由来する構造単位に対する環状エーテル構造を有するジヒドロキシ化合物に由来する構造単位(a)の割合は、10mol%以上であることが好ましく、20mol%以上であることがより好ましく、30mol%以上であることが更に好ましい。ジヒドロキシ化合物(α)に由来する構造単位を上記下限値以上とすることにより、ポリカーボネート樹脂の色調、耐光性等が優れたもの
となる傾向にある。一方、全ジヒドロキシ化合物に由来する構造単位に対する構造単位(a)の割合の上限は100mol%であるが、次に説明する構造単位(b)やその他の構造単位を導入することにより種々の物性改善の効果を得ることができる。このため、適宜、所望の物性に合わせて構造単位(a)の割合の上限を決定すればよい。
本発明に用いるポリカーボネート樹脂には、前記構造単位(a)に加え、脂肪族炭化水素のジヒドロキシ化合物(以下、「ジヒドロキシ化合物(β)」と称することがある。)に由来する構造単位(b)との両方を含むことが好ましい。本発明に用いるポリカーボネート樹脂が構造単位(b)を有するとガラス転移温度が低くなる傾向にあり、その結果として耐衝撃性の高いポリカーボネート樹脂を得やすくなる。この観点から、本発明に用いるポリカーボネート樹脂中の構造単位(b)の割合は、構造単位(a)と構造単位(b)との合計に対し、10mol%以上であることが好ましく、20mol%以上であることがより好ましく、30mol%以上であることが更に好ましく、40mol%より多いことが特に好ましい。一方、色相や耐光性の観点から、構造単位(b)の割合は、構造単位(a)と構造単位(b)との合計に対し、90mol%以下、より好ましくは80mol%以下、更に好ましくは70mol%以下である。
脂肪族炭化水素のジヒドロキシ化合物(ジヒドロキシ化合物(β))は、直鎖脂肪族炭化水素のジヒドロキシ化合物、直鎖分岐脂肪族炭化水素のジヒドロキシ化合物、脂環式炭化水素のジヒドロキシ化合物等が挙げられ、これらの中でも脂環式炭化水素のジヒドロキシ化合物が好ましい。
直鎖脂肪族炭化水素のジヒドロキシ化合物としては、エチレングリコール、1,3−プロパンジオール、1,2−プロパンジオール、1,4−ブタンジオール、1,3−ブタンジオール、1,2−ブタンジオール、1,5−ヘプタンジオール、1,6−ヘキサンジオール、1,10−デカンジオール、1,12−ドデカンジオール等が挙げられる。直鎖分岐脂肪族炭化水素のジヒドロキシ化合物としては、ネオペンチルグリコール、ヘキシレングリコール等が挙げられる。
脂環式炭化水素のジヒドロキシ化合物は環状構造の炭化水素骨格と2つのヒドロキシ基を有する化合物であり、ヒドロキシ基は、環状構造に直接結合していてもよいし、置換基を介して環状構造に結合していてもよく、い。また、環状構造は単環であっても多環であってもよい。脂環式炭化水素のジヒドロキシ化合物として具体的には、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、2−メチル−1,4−シクロヘキサンジオール等のシクロヘキサンジオール類、4−シクロヘキセン−1,2−ジオール等のシクロへキセンジオール類、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール等のシクロへキサンジメタノール類、4−シクロヘキセン−1,2−ジオール等のシクロヘキセンジメタノール類、2,3−ノルボルナンジメタノール、2,5−ノルボルナンジメタノール等のノルボルナンジメタノール類、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、1,3−アダマンタンジオール、2,2−アダマンタンジオール等が挙げられる。これらのうち、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール等のシクロヘキサンジメタノール類が好ましい。シクロヘキサンジメタノール類の中でも1,4−シクロヘキサンジメタノールが特に好ましい。
本発明に用いるポリカーボネート樹脂には、ジヒドロキシ化合物(α)及びジヒドロキシ化合物(β)以外のジヒドロキシ化合物(以下、「その他のジヒドロキシ化合物」と称することがある。)に由来する構造単位を含んでいてもよい。その他のジヒドロキシ化合物としてより具体的には、2,2−ビス(4−ヒドロキシフェニル)プロパン[=ビスフェノールA]、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、
2,2−ビス(4−ヒドロキシ−3,5−ジエチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−(3,5−ジフェニル)フェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、2,4’−ジヒドロキシ−ジフェニルメタン、ビス(4−ヒドロキシフェニル)メタン、ビス(4−ヒドロキシ−5−ニトロフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、3,3−ビス(4−ヒドロキシフェニル)ペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)スルホン、2,4’−ジヒドロキシジフェニルスルホン、ビス(4−ヒドロキシフェニル)スルフィド、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジクロロジフェニルエーテル、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−2−メチルフェニル)フルオレン等の芳香族ビスフェノール類が挙げられる。
その他のジヒドロキシ化合物に由来する構造単位を含む場合、その他のジヒドロキシ化合物に由来する構造単位の、ジヒドロキシ化合物に由来する全構造単位に対する量は、ジヒドロキシ化合物に由来する全構造単位に対して、好ましくは20mol%以下、より好ましくは15mol%以下、更に好ましくは10mol%以下、特に好ましくは5mol%以下である。ただし、その他のジヒドロキシ化合物として、芳香族環を有するものについては、耐光性の観点からはポリカーボネート樹脂の分子構造内に芳香環構造を有しないことが好ましい。
本発明に用いるジヒドロキシ化合物は、還元剤、抗酸化剤、脱酸素剤、光安定剤、制酸剤、pH安定剤、熱安定剤等の安定剤を含んでいてもよく、特に酸性下では本発明に用いるジヒドロキシ化合物が変質しやすいことから、塩基性安定剤を含むことが好ましい。塩基性安定剤としては、長周期型周期表(Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005)における1族又は2族の金属の水酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硼酸塩、脂肪酸塩や、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド、ブチルトリフェニルアンモニウムヒドロキシド等の塩基性アンモニウム化合物、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾール、アミノキノリン等のアミン系化合物が挙げられる。これらの中でも、その効果と後述する蒸留除去のしやすさから、ナトリウム又はカリウムのリン酸塩、亜リン酸塩が好ましく、その中でもリン酸水素二ナトリウム、亜リン酸水素二ナトリウムが好ましい。
これら塩基性安定剤の本発明に用いるジヒドロキシ化合物中の含有量に特に制限はないが、少なすぎると本発明に用いるジヒドロキシ化合物の変質を防止する効果が得られない可能性があり、多すぎると本発明に用いるジヒドロキシ化合物の変性を招く場合があるので、通常、本発明に用いるジヒドロキシ化合物に対して、0.0001重量%〜1重量%、好ましくは0.001重量%〜0.1重量%である。
また、これら塩基性安定剤を含有した本発明に用いるジヒドロキシ化合物をポリカーボ
ネート樹脂の製造原料として用いると、塩基性安定剤自体が重合触媒となり、重合速度や品質の制御が困難になるだけでなく、初期色相の悪化を招き、結果的に成形品の耐光性を悪化させることがあるため、ポリカーボネート樹脂の製造原料として使用する前に塩基性安定剤をイオン交換樹脂や蒸留等で除去することが好ましい。
本発明に用いるジヒドロキシ化合物がイソソルビド等、環状エーテル構造を有する場合には、酸素によって徐々に酸化されやすいので、保管や、製造時には、水分が混入しないようにして酸素による分解を防ぐこと、また、脱酸素剤等を用いたり、窒素雰囲気下で取り扱うことが肝要である。イソソルビドが酸化されると、蟻酸等の分解物が発生する場合がある。例えば、これら分解物を含むイソソルビドをポリカーボネート樹脂の製造原料として使用すると、得られるポリカーボネート樹脂の着色を招く可能性があり、又、物性を著しく劣化させる可能性があるだけではなく、重合反応に影響を与え、高分子量の重合体が得られない場合もあり、好ましくない。
上記酸化分解物を含まない本発明に用いるジヒドロキシ化合物を得るために、また、前述の塩基性安定剤を除去するためには、蒸留精製を行うことが好ましい。この場合の蒸留とは単蒸留であっても、連続蒸留であってもよく、特に限定されない。蒸留の条件としてはアルゴンや窒素等の不活性ガス雰囲気において、減圧下で蒸留を実施することが好ましく、熱による変性を抑制するためには、250℃以下、好ましくは200℃以下、特には180℃以下の条件で行うことが好ましい。
このような蒸留精製で、本発明に用いるジヒドロキシ化合物中の蟻酸含有量を20重量ppm以下、好ましくは10重量ppm以下、特に好ましくは5重量ppm以下にすることにより、前記本発明に用いるジヒドロキシ化合物を含むジヒドロキシ化合物をポリカーボネート樹脂の製造原料として使用した際に、重合反応性を損なうことなく色相や熱安定性に優れたポリカーボネート樹脂の製造が可能となる。蟻酸含有量の測定はイオンクロマトグラフィーで行う。
(炭酸ジエステル)
本発明に用いるポリカーボネート樹脂は、上述した本発明に用いるジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルを原料として、エステル交換反応により重縮合させて得ることができる。用いられる炭酸ジエステルとしては、通常、下記式(4)で表されるものが挙げられる。これらの炭酸ジエステルは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
Figure 0006698273
上記式(4)において、A及びAは、それぞれ独立に、置換若しくは無置換の炭素数1〜炭素数18の脂肪族炭化水素基、又は、置換若しくは無置換の芳香族炭化水素基である。A及びAは、置換若しくは無置換の芳香族炭化水素基であることが好ましく、無置換の芳香族炭化水素基であることがより好ましい。
前記式(4)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネート、ジトリルカーボネート等の置換ジアリール、ジメチルカーボネート、ジエチルカーボネート、ジ−t−ブチルカーボネート等の置換ジアルキルが例示されるが、好ましくは置換ジアリールであり、置換ジアリールの中でもジフェニルカーボネートが好ましい。なお、炭酸ジエステルは、塩化物イオン等の不純物を含む場合があり、重合反応を阻害したり、得
られるポリカーボネート樹脂の色相を悪化させたりする場合があるため、必要に応じて、蒸留等により精製したものを使用することが好ましい。
<エステル交換反応触媒>
本発明に用いるポリカーボネート樹脂は、通常、上述のように本発明に用いるジヒドロキシ化合物を含むジヒドロキシ化合物と前記式(4)で表される炭酸ジエステルとをエステル交換反応させてポリカーボネート樹脂を製造する。より詳細には、エステル交換させ、副生するモノヒドロキシ化合物等を系外に除去することによって得られる。この場合、通常、エステル交換反応触媒存在下でエステル交換反応により重縮合を行う。
本発明に用いるポリカーボネート樹脂の製造時に使用し得るエステル交換反応触媒(以下、単に触媒、重合触媒と称することがある。)は、特に透明性や色相に影響を与え得る。
用いられる触媒としては、顕著な物性低下を招くものでなければ特に制限されないが、通常使用可能なものとして、長周期型周期表における1族又は2族(以下、単に「1族」、「2族」と表記する。)の金属化合物、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物等が挙げられる。これらの中でも1族金属化合物及び/又は2族金属化合物が好ましく、2族金属化合物が透明性、耐光性、色相の点から特に好ましく用いられる。
1族金属化合物及び/又は2族金属化合物と共に、補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、1族金属化合物及び/又は2族金属化合物のみを使用することが特に好ましい。また、1族金属化合物及び/又は2族金属化合物の形態としては通常、水酸化物、又は炭酸塩、カルボン酸塩、フェノール塩といった塩の形態で用いられるが、入手のし易さ、取扱いの容易さから、水酸化物、炭酸塩、酢酸塩が好ましく、色相と重合活性の観点からは酢酸塩が好ましい。
1族金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、フェニル化ホウ素ナトリウム、フェニル化ホウ素カリウム、フェニル化ホウ素リチウム、フェニル化ホウ素セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素二ナトリウム、リン酸水素二カリウム、リン酸水素二リチウム、リン酸水素二セシウム、フェニルリン酸二ナトリウム、フェニルリン酸二カリウム、フェニルリン酸二リチウム、フェニルリン酸二セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの二ナトリウム塩、二カリウム塩、二リチウム塩、二セシウム塩等が挙げられ、中でもリチウム化合物が好ましい。
2族金属化合物としては、例えば、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸ストロンチウム等が挙げられ、これらの中でもマグネシウム化合物、カルシウム化合物、バリウム化合物が好ましく、重合活性と得られるポリカーボネート樹脂の色相の観点から、マグネシウム化合物及び/又はカルシウム化合物が更に好ましく、最も
好ましくはカルシウム化合物である。
塩基性ホウ素化合物としては、例えば、テトラメチルホウ素、テトラエチルホウ素、テトラプロピルホウ素、テトラブチルホウ素、トリメチルエチルホウ素、トリメチルベンジルホウ素、トリメチルフェニルホウ素、トリエチルメチルホウ素、トリエチルベンジルホウ素、トリエチルフェニルホウ素、トリブチルベンジルホウ素、トリブチルフェニルホウ素、テトラフェニルホウ素、ベンジルトリフェニルホウ素、メチルトリフェニルホウ素、ブチルトリフェニルホウ素等のナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、バリウム塩、マグネシウム塩、あるいはストロンチウム塩等が挙げられる。
塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ−n−プロピルホスフィン、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィン、あるいは四級ホスホニウム塩等が挙げられる。
塩基性アンモニウム化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド、ブチルトリフェニルアンモニウムヒドロキシド等が挙げられる。
アミン系化合物としては、例えば、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾール、アミノキノリン等が挙げられる。
以上で挙げた中でも特に、リチウム化合物及び長周期型周期表第2族の金属化合物からなる群より選ばれる少なくとも1種の金属化合物を触媒として用いることが、ポリカーボネート樹脂の透明性、色相、耐光性等の種々の物性を優れたものとするために好ましい。更に、本発明に用いられるポリカーボネート樹脂の透明性、色相、耐光性を特に優れたものとするために、マグネシウム化合物及びカルシウム化合物からなる群より選ばれる少なくとも1種の金属化合物を触媒として用いることが好ましい。
上記重合触媒の使用量は、好ましくは、重合に使用した全ジヒドロキシ化合物1mol当たり0.1μmol〜300μmol、更に好ましくは0.5μmol〜100μmolであり、中でもリチウム及び長周期型周期表における2族からなる群より選ばれた少なくとも1種の金属を含む化合物を用いる場合、特にはマグネシウム化合物及び/又はカルシウム化合物を用いる場合は、金属量として、前記全ジヒドロキシ化合物1mol当たり、好ましくは、0.1μmol以上、更に好ましくは0.5μmol以上、特に好ましくは0.7μmol以上とする。また上限としては、好ましくは20μmol、更に好ましくは10μmol、特に好ましくは3μmol、最も好ましくは1.5μmolである。
触媒量が少なすぎると、重合速度が遅くなるため結果的に所望の分子量のポリカーボネート樹脂を得ようとすると、重合温度を高くせざるを得なくなり、得られたポリカーボネート樹脂の色相や耐光性が悪化したり、未反応の原料が重合途中で揮発して本発明に用いるジヒドロキシ化合物を含むジヒドロキシ化合物と前記式(4)で表される炭酸ジエステ
ルのmol比率が崩れ、所望の分子量に到達しない可能性がある。一方、重合触媒の使用量が多すぎると、得られるポリカーボネート樹脂の色相の悪化を招き、ポリカーボネート樹脂の耐光性が悪化する可能性がある。
更に、前記式(4)で表される炭酸ジエステルとして、ジフェニルカーボネート、ジトリルカーボネート等の置換ジフェニルカーボネートを用い、本発明に用いるポリカーボネート樹脂を製造する場合は、フェノール、置換フェノールが副生し、ポリカーボネート樹脂中に残存することは避けられないが、フェノール、置換フェノールも芳香環を有することから紫外線を吸収し、耐光性の悪化要因になる場合があるだけでなく、成形時の臭気の原因となる場合がある。ポリカーボネート樹脂中には、通常のバッチ反応後は1000重量ppm以上の副生フェノール等の芳香環を有する、芳香族モノヒドロキシ化合物が含まれているが、耐光性や臭気低減の観点からは、脱揮性能に優れた横型反応器や真空ベント付の押出機を用いて、好ましくは700重量ppm以下、更に好ましくは500重量ppm以下、特には300重量ppm以下にすることが好ましい。ただし、工業的に完全に除去することは困難であり、芳香族モノヒドロキシ化合物の含有量の下限は通常1重量ppmである。なお、これら芳香族モノヒドロキシ化合物は、用いる原料により、当然置換基を有していてもよく、例えば、炭素数が5以下であるアルキル基等を有していてもよい。
また、1族金属、中でもナトリウム、カリウム、セシウムは、特にはリチウム、ナトリウム、カリウム、セシウムは、使用する触媒からのみではなく、原料や反応装置から混入する場合があるが、これらの金属がポリカーボネート樹脂中に多く含まれると色相に悪影響を及ぼす可能性があるため、ポリカーボネート樹脂中のこれらの化合物の合計量は、少ない方が好ましく、金属量として、通常1重量ppm以下、好ましくは0.8重量ppm以下、より好ましくは0.7重量ppm以下である。
ポリカーボネート樹脂中の金属量は、従来公知の種々の方法により測定可能であるが、湿式灰化等の方法でポリカーボネート樹脂中の金属を回収した後、原子発光、原子吸光、Inductively Coupled Plasma(ICP)等の方法を使用して測定することが出来る。
<ポリカーボネート樹脂の製造方法>
本発明に用いるポリカーボネート樹脂は、本発明に用いるジヒドロキシ化合物を含むジヒドロキシ化合物と前記式(5)の炭酸ジエステルとをエステル交換反応により重縮合させることによって得られるが、原料であるジヒドロキシ化合物と炭酸ジエステルは、エステル交換反応前に均一に混合することが好ましい。
混合の温度は通常80℃以上、好ましくは90℃以上であり、その上限は通常250℃以下、好ましくは200℃以下、更に好ましくは150℃以下である。中でも95℃以上120℃以下が好適である。混合の温度が低すぎると溶解速度が遅かったり、溶解度が不足する可能性があり、しばしば固化等の不具合を招く。混合の温度が高すぎるとジヒドロキシ化合物の熱劣化を招く場合があり、結果的に得られるポリカーボネート樹脂の色相が悪化し、耐光性に悪影響を及ぼす可能性がある。
本発明に用いるポリカーボネート樹脂の原料である本発明に用いるジヒドロキシ化合物を含むジヒドロキシ化合物と前記式(4)で表される炭酸ジエステルとを混合する操作は、酸素濃度10体積%以下、更には0.0001体積%〜10体積%、中でも0.0001体積%〜5体積%、特には0.0001体積%〜1体積%の雰囲気下で行うことが、色相悪化防止の観点から好ましい。
本発明に用いるポリカーボネート樹脂を得るためには、前記式(4)で表される炭酸ジエステルは、反応に用いる本発明に用いるジヒドロキシ化合物を含むジヒドロキシ化合物に対して、0.90〜1.20のmol比率で用いることが好ましく、さらに好ましくは
、0.95〜1.10のmol比率である。このmol比率が小さくなると、製造されたポリカーボネート樹脂の末端水酸基が増加して、ポリマーの熱安定性が悪化し、成形時に着色を招いたり、エステル交換反応の速度が低下したり、所望する高分子量体が得られない可能性がある。一方、このmol比率が大きくなると、エステル交換反応の速度が低下する場合がある。エステル交換反応速度の低下は、重合反応時の熱履歴を増大させ、結果的に得られたポリカーボネート樹脂の色相や耐光性を悪化させる可能性がある。更には、本発明に用いるジヒドロキシ化合物を含むジヒドロキシ化合物に対して、前記式(4)で表される炭酸ジエステルのmol比率が増大すると、得られるポリカーボネート樹脂中の残存炭酸ジエステル量が増加し、これらが紫外線を吸収してポリカーボネート樹脂の耐光性を悪化させる場合がある。
本発明に用いるポリカーボネート樹脂に残存する炭酸ジエステルの濃度は、好ましくは200重量ppm以下、更に好ましくは100重量ppm以下、特に好ましくは60重量ppm以下、中でも30重量ppm以下が好適である。現実的にポリカーボネート樹脂は未反応の炭酸ジエステルを含むことがあり、濃度の下限値は通常1重量ppmである。
本発明において、ジヒドロキシ化合物と炭酸ジエステルとを重縮合させる方法は、上述の触媒存在下、通常、複数の反応器を用いて多段階で実施される。反応の形式は、バッチ式、連続式、あるいはバッチ式と連続式の組み合わせのいずれの方法でもよい。
重合初期においては、相対的に低温、低真空でプレポリマーを得、重合後期においては相対的に高温、高真空で所定の値まで分子量を上昇させることが好ましいが、各分子量段階でのジャケット温度と内温、反応系内の圧力を適切に選択することが色相や耐光性の観点から重要である。例えば、重合反応が所定の値に到達する前に温度、圧力のどちらか一方でも早く変化させすぎると、未反応のモノマーが留出し、ジヒドロキシ化合物と炭酸ジエステルのmol比を狂わせ、重合速度の低下を招くことがある。
更には、留出するモノマーの量を抑制するために、重合反応器に還流冷却器を用いることは有効であり、特に未反応モノマー成分が多い重合初期の反応器でその効果は大きい。還流冷却器に導入される冷媒の温度は使用するモノマーに応じて適宜選択することができるが、通常、還流冷却器に導入される冷媒の温度は該還流冷却器の入口において45℃〜180℃であり、好ましくは、80℃〜150℃、特に好ましくは100℃〜130℃である。還流冷却器に導入される冷媒の温度が高すぎると還流量が減り、その効果が低下し、低すぎると、本来留去すべきモノヒドロキシ化合物の留去効率が低下する傾向にある。冷媒としては、温水、蒸気、熱媒オイル等が用いられ、蒸気、熱媒オイルが好ましい。
重合速度を適切に維持し、モノマーの留出を抑制しながら、最終的に得られるポリカーボネート樹脂の色相や熱安定性、耐光性等を損なわないようにするためには、前述の触媒の種類と量の選定が重要である。
本発明に用いるポリカーボネート樹脂は、触媒を用いて、複数の反応器を用いて多段階で重合させて製造することが好ましいが、重合を複数の反応器で実施する理由は、重合反応初期においては、反応液中に含まれるモノマーが多いために、必要な重合速度を維持しつつ、モノマーの揮散を抑制してやることが重要であり、重合反応後期においては、平衡を重合側にシフトさせるために、副生するモノヒドロキシ化合物を十分留去させることが重要になるためである。このように、異なった重合反応条件を設定するには、直列に配置された複数の重合反応器を用いることが、生産効率の観点から好ましい。
本発明の方法で使用される反応器は、上述の通り、少なくとも2つ以上であればよいが、生産効率等の観点からは、3つ以上、好ましくは3〜5つ、特に好ましくは、4つである。本発明において、反応器が2つ以上であれば、その反応器中で、更に条件の異なる反応段階を複数持たせる、連続的に温度・圧力を変えていく等してもよい。
本発明において、重合触媒は原料調製槽、原料貯槽に添加することもできるし、重合槽に直接添加することもできるが、供給の安定性、重合の制御の観点からは、重合槽に供給される前の原料ラインの途中に触媒供給ラインを設置し、好ましくは水溶液で供給する。
重合反応の温度は、低すぎると生産性の低下や製品への熱履歴の増大を招き、高すぎるとモノマーの揮散を招くだけでなく、ポリカーボネート樹脂の分解や着色を助長する可能性がある。
具体的には、第1段目の反応は、重合反応器の内温の最高温度として、140〜270℃、好ましくは180〜240℃、更に好ましくは200〜230℃、圧力は絶対圧力として、110kPa〜10kPa、好ましくは70kPa〜5kPa、更に好ましくは30kPa〜1kPa、反応時間は0.1〜10時間、好ましくは0.5〜3時間、発生するモノヒドロキシ化合物を反応系外へ留去しながら実施される。第2段目以降は、反応系の圧力を第1段目の圧力から徐々に下げ、引き続き発生するモノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力(絶対圧力)を200Pa以下にして、内温の最高温度210℃〜270℃、好ましくは220℃〜250℃で、通常0.1時間〜10時間、好ましくは、1時間〜6時間、特に好ましくは0.5時間〜3時間行う。
特にポリカーボネート樹脂の着色や熱劣化を抑制し、色相や耐光性の良好なポリカーボネート樹脂を得るには、全反応段階における内温の最高温度が250℃未満、特に225℃〜245℃であることが好ましい。また、重合反応後半の重合速度の低下を抑止し、熱履歴による劣化を最小限に抑えるためには、重合の最終段階でプラグフロー性と界面更新性に優れた横型反応器を使用することが好ましい。
所定の分子量のポリカーボネート樹脂を得るために、重合温度を高く、重合時間を長くし過ぎると、透明性や色相が悪くなる傾向にある。
副生したモノヒドロキシ化合物は、資源有効活用の観点から、必要に応じ精製を行っ
た後、炭酸ジフェニルやビスフェノールA等の原料として再利用することが好ましい。
本発明に用いるポリカーボネート樹脂は、上述の通り重縮合後、通常、冷却固化させ、回転式カッター等でペレット化される。ペレット化の方法は限定されるものではないが、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させてペレット化させる方法、最終重合反応器から溶融状態で一軸又は二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法、又は、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させて一旦ペレット化させた後に、再度一軸又は二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法等が挙げられる。
その際、押出機中で、残存モノマーの減圧脱揮や、通常知られている、熱安定剤、中和剤、紫外線吸収剤、離型剤、着色剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤、難燃剤等を添加、混練することも出来る。押出機中の、溶融混練温度は、ポリカーボネート樹脂のガラス転移温度や分子量に依存するが、通常150℃〜300℃、好ましくは200℃〜270℃、更に好ましくは230℃〜260℃である。溶融混練温度が150℃より低いと、ポリカーボネート樹脂の溶融粘度が高く、押出機への負荷が大きくなり、生産性が低下する。300℃より高いと、ポリカーボネート樹脂の熱劣化が激しくなり、分子量の低下による機械的強度の低下や着色、ガスの発生を招きうる。
本発明に用いるポリカーボネート樹脂を製造する際には、異物の混入を防止するため、フィルターを設置することが望ましい。フィルターの設置位置は押出機の下流側が好ましく、フィルターの異物除去の大きさ(目開き)は、99%除去の濾過精度として100μm以下が好ましい。特に、フィルム用途等で微少な異物の混入を嫌う場合は、40μm以下、さらには10μm以下が好ましい。
本発明に用いるポリカーボネート樹脂の押出は、押出後の異物混入を防止するために、好ましくはJIS B 9920(2002年)に定義されるクラス7、更に好ましくはクラス6より清浄度の高いクリーンルーム中で実施することが望ましい。
また、押出されたポリカーボネート樹脂を冷却しチップ化する際は、空冷、水冷等の冷却方法を使用するのが好ましい。空冷の際に使用する空気は、ヘパフィルター等で空気中の異物を事前に取り除いた空気を使用し、空気中の異物の再付着を防ぐのが望ましい。水冷を使用する際は、イオン交換樹脂等で水中の金属分を取り除き、さらにフィルターにて、水中の異物を取り除いた水を使用することが望ましい。用いるフィルターの目開きは、99%除去の濾過精度として10μm〜0.45μmであることが好ましい。
<ポリカーボネート樹脂の物性>
このようにして得られた本発明で用いるポリカーボネート樹脂の分子量は、還元粘度で表すことができ、還元粘度は、通常0.30dL/g以上であり、0.35dL/g以上が好ましく、通常1.20dL/g以下であり、1.00dL/g以下が好ましく、0.80dL/g以下がより好ましい。
ポリカーボネート樹脂の還元粘度が低すぎると成形品の機械的強度が低下する傾向があり、大きすぎると、成形する際の流動性が低下し、生産性や成形性を低下させる傾向がある。尚、還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート濃度を0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定する。
また、本発明で用いるポリカーボネート樹脂は、種々の成形を行う前に、必要に応じて、熱安定剤、中和剤、紫外線吸収剤、離型剤、着色剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤、難燃剤等の添加剤を、タンブラー、スーパーミキサー、フローター、V型ブレンダー、ナウターミキサー、バンバリーミキサー、押出機等で混合することもできる。
[酸化チタン]
本発明のポリカーボネート樹脂組成物はポリカーボネート樹脂100重量部に対して酸化チタンを0.01重量部以上30重量部以下含有する。前記ポリカーボネート樹脂と共に酸化チタンを配合することにより、光反射率や耐衝撃性等が改善される。
本発明における酸化チタン(後述する「表面処理剤」の量を含む。)の含有量は、ポリカーボネート樹脂100重量部に対して0.01重量部以上30重量部以下であるが、好ましくは0.1重量部以上、より好ましくは0.5重量部以上であり、更に好ましくは1重量部以上であり、一方、好ましくは30重量部以下、より好ましくは10重量部以下、更に好ましくは5重量部以下である。酸化チタンの含有量が少なすぎると、酸化チタンの配合による光反射率や耐衝撃性の改良効果が十分得られなくなり、一方、多すぎると耐衝撃性の低下や外観が不良となる。
本発明に用いる酸化チタンは、従来公知の任意のものを使用でき、その表面を、有機表面処理剤、又は無機表面処理剤により表面処理されたものであってもよい。例えば、酸化チタンとして市販されているものには、耐候性や分散性、ハンドリング性向上の観点から、シリカ、アルミナ、ジルコニア等の含水酸化物により、表面処理が施されている場合が多い。しかしシリカは吸水性が高く、水分の影響を受けやすいので、無機表面処理剤としては、アルミナやジルコニアが好ましい。
これらの酸化チタンの無機表面処理剤の量は、適宜選択して決定すればよい。ただし、例えば、酸化チタン等において表面処理剤の含有量が酸化チタン等に対して多すぎると、
金属表面に無機処理層が形成され、その吸着水により、これを含むポリカーボネート樹脂組成物を成形してなるポリカーボネート樹脂成形品において、外観不良や、燃焼時のドリッピングが増加する場合がある。逆に少なすぎても分散性が不十分となる等、改良効果が不十分となることがある。これらの観点からこの表面処理剤の量は、酸化チタンに対して0.1〜5重量%であることが好ましい。
また、上述した吸着水による問題を回避するためには、酸化チタンの表面処理剤として有機表面処理剤を用いることが好ましい。この様な表面処理剤としては、アルコキシ基、エポキシ基、アミノ基、又はSi−H結合を有する、有機シラン化合物や有機シリコン化合物等が挙げられる。中でもハイドロジェンポリシロキサン(Si−H結合を有するシリコン化合物)が好ましく、有機表面処理剤による処理量は、酸化チタンに対して、0.5〜5重量%であることが好ましく、1〜3重量%であることがより好ましい。
本発明に用いる酸化チタンの平均粒子径は任意であり、これを含有するポリカーボネート樹脂組成物の用途等に応じて、適宜選択して決定すればよい。この平均粒子径が小さすぎると、本発明のポリカーボネート樹脂組成物における遮光性及び光反射性が不十分となる場合がある。逆に平均粒子径が大きすぎても遮光性及び光反射性が劣ると共に、樹脂成形体表面に肌荒れが生じたり、耐衝撃性が低下する場合がある。よって酸化チタンの平均粒子径は、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.15μm以上であることが更に好ましく、一方、0.5μm以下であることが好ましく、0.35μm以下であることが更に好ましい。
本発明において用いられる酸化チタンの製造方法は、塩酸法、硫酸法等の従来公知の任意の製造方法により得られたものを用いることができ、いずれも好適に用いることができる。特に、塩素法で製造された酸化チタンは白度が優れているために好ましい。
また、酸化チタンの結晶形態についても特に制限はなく、ルチル型、アナターゼ型等、いずれも使用することができる。特に、ルチル型の酸化チタンは、白度、光線反射性、及び耐光性の点で優れているために好ましい。
また、酸化チタンは市販品として入手することができる。市販品の例としては、デュポン社製タイピュア(登録商標)シリーズ、デュポン社製タイセレクト(登録商標)シリーズ、石原産業社製タイペーク(登録商標)等が挙げられる。
[リン酸エステル金属塩]
本発明のポリカーボネート樹脂組成物はポリカーボネート樹脂100重量部に対してリン酸エステル金属塩を0.01重量部以上1重量部以下含有する。前記ポリカーボネート樹脂、酸化チタンと共にリン酸エステル金属塩を配合することにより、ポリカーボネート樹脂組成物の屋外曝露での色差が改善される。
本発明におけるリン酸エステル金属塩の含有量は、ポリカーボネート樹脂100重量部に対して0.01重量部以上1重量部以下であるが、好ましくは0.02重量部以上、より好ましくは0.03重量部以上であり、更に好ましくは0.05重量部以上であり、一方、好ましくは1重量部以下、より好ましくは0.8重量部以下、更に好ましくは0.5重量部以下である。リン酸エステル金属塩の含有量が少なすぎると、ポリカーボネート樹脂組成物の屋外曝露での色差が改良効果が十分得られなくなり、一方、多すぎると機械物性が不良となる。
本発明におけるリン酸エステル金属塩のリン酸エステルの炭素数としては、ポリカーボネート樹脂組成物の屋外曝露での色差が改良効果が得やすくなることから、炭素数の上限値が10以上が好ましく、炭素数が12以上がより好ましく、炭素数が14以上がさらに好ましい。また、下限値が50以下が好ましく、炭素数が45以下がより好ましく、炭素
数が40以下がさらに好ましい。
本発明におけるリン酸エステル金属塩は、第2族、第12族、第13族金属塩であることが高温下での変色防止効果から好ましく、これらの中でも、第12族金属がより好ましい。また、第2族、第12族、第13族金属の具体例としては、亜鉛、マグネシウム、カルシウムが挙げられ、これらの中でも、第12族の亜鉛が添加時の色相悪化が少ないため特に好ましい。
本発明におけるリン酸エステル金属塩は、具体的には以下のリン酸エステルの金属塩である。
例えば、モノステアリルアシッドホスフェート亜鉛塩、ジステアリルアシッドホスフェート亜鉛塩、およびその混合物等があげられる。これらの中でも、変色防止効果とその持続性からモノステアリルアシッドホスフェート亜鉛塩とジステアリルアシッドホスフェート亜鉛塩との混合物が特に好ましい。
また、リン酸エステル金属塩は市販品として入手することができる。市販品の例としては、ADEKA社製”アデカスタブ“(登録商標)SP−2011(登録商標)、城北化学工業社製JP−518Znシリーズ、堺化学工業社製LBT−1830等が挙げられる。
[酸化防止剤]
本発明のポリカーボネート樹脂組成物は更に酸化防止剤を含有することが好ましい。酸化防止剤を用いる場合、その配合量は、ポリカーボネート樹脂100重量部に対し、好ましくは0.001重量部以上であり、より好ましくは、0.05重量部以上であり、更に好ましくは0.01重量部以上であり、一方、好ましくは1重量部以下であり、より好ましくは0.5重量部以下であり、更に好ましくは0.3重量部以下である。酸化防止剤の含有量が上記下限値以上であると成形時の着色抑制効果が良好となる傾向があるために好ましい。一方、酸化防止剤の含有量が上記上限値以下であると射出成形時における金型への付着物が少なくなったり、押出成形によりフィルムを成形する際にロールへの付着物が少なくなったりすることにより、製品の表面外観がより良好となる傾向にあるために好ましい。
酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等が好ましいものとして挙げられ、いずれも1種のみでも2種以上を組み合わせて用いてもよい。特にイオウ系酸化防止剤が耐光性向上の点から好ましい。
フェノール系酸化防止剤としては、例えばペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、グリセロール−3−ステアリルチオプロピオネート、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、N,N−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマイド)、3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンジルホスホネート−ジエチルエステル、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、3,9−ビス{1,1−ジメチル−2−[β−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル}−2,4,8,10−テトラオキサスピロ(5,5)ウ
ンデカン等が挙げられる。これらの化合物の中でも、炭素数5以上のアルキル基によって1つ以上置換された芳香族モノヒドロキシ化合物が好ましく、具体的には、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、ペンタエリスリチル−テトラキス{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート}、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン等が好ましく、ペンタエリスリチル−テトラキス{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートが更に好ましい。
リン系酸化防止剤としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト等が挙げられる。これらの中でも、トリスノニルフェニルホスファイト、トリメチルホスフェート、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトが好ましく、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイトが更に好ましい。
イオウ系酸化防止剤としては、例えば、ジラウリル−3,3’−チオジプロピオン酸エステル、ジトリデシル−3,3’−チオジプロピオン酸エステル、ジミリスチル−3,3’−チオジプロピオン酸エステル、ジステアリル−3,3’−チオジプロピオン酸エステル、ラウリルステアリル−3,3’−チオジプロピオン酸エステル、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、ビス[2−メチル−4−(3−ラウリルチオプロピオニルオキシ)−5−tert−ブチルフェニル]スルフィド、オクタデシルジスルフィド、メルカプトベンズイミダゾール、2−メルカプト−6−メチルベンズイミダゾール、1,1’−チオビス(2−ナフトール)等が挙げられる。上記のうち、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)が好ましい。
[離型剤]
本発明のポリカーボネート樹脂組成物は、離型剤を含むことが好ましい。離型剤を用いる場合、その含有量は、ポリカーボネート樹脂100重量部に対し、好ましくは0.001重量部以上であり、より好ましくは0.01重量部以上であり、更に好ましくは0.1重量部以上であり、一方、好ましくは2重量部以下であり、より好ましくは1重量部以下であり、更に好ましくは0.5重量部以下である。離型剤の含有量が上記下限値以上であると、成形時、成形品が金型から離型しやすくなり、成形品が取得しやすいという利点があるために好ましい。一方、離型剤の含有量が上記上限値以下であると、成形時に金型付着物が減少しやくなる傾向にあり、大量に成形を実施した場合には金型の整備の労力を軽減することができ、また、成形品は外観が良好となる傾向にあるため好ましい。
離型剤としては、特に限定されないが、高級脂肪酸、ステアリン酸エステル等が挙げられる。離型性と透明性の観点から離型剤とし・BR>トより好ましいのはステアリン酸エス
テルである。離型剤はいずれの種類であっても、1種のみで用いても2種以上を組み合わせて用いてもよい。
ステアリン酸エステルとしては、置換又は無置換の炭素数1〜炭素数20の一価又は多価アルコールとステアリン酸との部分エステル又は全エステルが好ましい。かかる一価又は多価アルコールとステアリン酸との部分エステル又は全エステルとしては、エチレングリコールジステアレート、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸モノソルビテート、ステアリン酸ステアリル、ペンタエリスリトールモノステアレート、ペンタエリスリトールテトラステアレート、プロピレングリコールモノステアレート、ステアリルステアレート、ブチルステアレート、ソルビタンモノステアレート、2−エチルヘキシルステアレート等がより好ましい。なかでも、ステアリン酸モノグリセリド、ステアリン酸トリグリセリド、ペンタエリスリトールテトラステアレート、ステアリルステアレートが更に好ましく、エチレングリコールジステアレート、ステアリン酸モノグリセリドが特に好ましい。
高級脂肪酸としては、置換又は無置換の炭素数10〜炭素数30の飽和脂肪酸が好ましい。炭素数10〜炭素数30の飽和脂肪酸がより好ましく、このような高級脂肪酸としてミリスチン酸、ラウリン酸、パルミチン酸、ステアリン酸、ベヘニン酸等が挙げられる。また、炭素数16〜18の飽和脂肪酸が更に好ましく、このような飽和脂肪酸としてパルミチン酸、ステアリン酸等が挙げられるが、ステアリン酸が特に好ましい。
本発明において、離型剤の添加時期、添加方法は特に限定されない。添加時期としては、例えば、エステル交換法でポリカーボネート樹脂を製造した場合は重合反応終了時;更に、重合法に関わらず、ポリカーボネート樹脂と他の配合剤との混練途中等のポリカーボネート樹脂が溶融した状態;押出機等を用い、ペレット又は粉末等の固体状態のポリカーボネート樹脂とブレンド・混練する際等が挙げられる。添加方法としては、ポリカーボネート樹脂に離型剤を直接混合又は混練する方法;少量のポリカーボネート樹脂又は他の樹脂等と離型剤を用いて作成した高濃度のマスターバッチとして添加することもできる。
[その他の成分]
以下に本発明のポリカーボネート樹脂組成物に配合可能な成分を挙げる。これらの成分は本発明の効果を著しく阻害しない範囲で用いることができ、以下の説明において特に断らない限りは各成分の「重量部」はポリカーボネート樹脂100重量部に対する配合量を意味するものとする。ただし、以下に挙げる各成分においては、前述のポリカーボネート樹脂、酸化チタン、酸化防止剤及び離型剤に該当するものは含まないものとする。
本発明のポリカーボネート樹脂組成物には、成形加工性や諸物性のさらなる向上・調整を目的として、ポリカーボネート樹脂以外の樹脂(以下、単に「その他の樹脂」と称することがある。)を使用することも出来る。その他の樹脂の具体例としては、ポリエステル系樹脂、ポリエーテル、ポリアミド、ポリオレフィン、ポリメチルメタクリレート等の樹脂やコア−シェル型、グラフト型又は線状のランダム及びブロック共重合体のようなゴム状改質剤等が挙げられる。
その他の樹脂の配合量としては、本発明に用いるポリカーボネート樹脂組成物全体に対して、通常、0重量部以上30重量部以下の割合で配合され、20重量部以下の割合で配合することが好ましく、10重量部以下の割合で配合することが更に好ましい。
また、本発明のポリカーボネート樹脂組成物には本発明の目的を損なわない範囲で、スチルベンベンゾオキサゾール誘導体、蛍光増白剤、充填剤、難燃剤、難燃助剤、酸性化合物、紫外線吸収助剤、熱安定剤、光安定剤、帯電防止剤等を適宜配合することが可能である。ただし、以下にあげる成分は使用可能なものの代表例であり、本発明において、以下に挙げるもの以外の成分を配合することを妨げるものではない。
本発明のポリカーボネート樹脂組成物は、光反射率や耐光性を高める目的で4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン等のスチルベンベンゾオキサゾール誘導体をポリカーボネート樹脂組成物中に1〜1000ppm含有することができる。この含有量が1000ppmを越えると、含有量の増加に見合う効果の向上が期待できないばかりか、滞留熱安定性や外観が低下する場合がある。なお、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベンは従来公知の任意の方法、例えば特公昭41−20225号公報や、特表2002−535393号公報等に記載の方法により、得ることができる。
本発明においては、本発明の効果を損ねない範囲で、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン以外の、従来公知の任意の蛍光増白剤を用いてもよい。蛍光増白剤としては例えば、クマリン系、ナフトトリアゾリルスチルベン系、ベンゾオキサゾール系、ベンズイミダゾール系、及びジアミノスチルベン−ジスルホネート系蛍光増白剤等が挙げられる。
本発明において、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベンと、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン以外の蛍光増白剤を併用する場合には、蛍光増白剤全体に占める4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベンの含有率は20重量%以上であることが好ましい。中でも30重量%以上、更には40重量%以上、特に50重量%以上であることが好ましい。4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベンの含有量が低すぎると、得られるポリカーボネート樹脂組成物や樹脂成形体における光反射性、耐光性、色相等の改良が不十分となる場合がある。
本発明のポリカーボネート樹脂組成物には本発明の目的を損なわない範囲で充填剤を配合することができる。本発明のポリカーボネート樹脂組成物に配合することのできる充填剤としては無機充填剤及び有機充填剤が挙げられる。
充填剤の配合量は、0重量部以上100重量部以下である。充填剤の配合量は、好ましくは50重量部以下、より好ましくは40重量部以下、更に好ましくは35重量部以下である。充填剤を配合することによりポリカーボネート樹脂組成物の補強効果が得られるが、100重量部より多く配合すると外観が悪くなる傾向にある。
無機充填剤(ただし、本発明において「無機充填剤」から酸化チタンは除くものとする。)としては、例えば、ガラス繊維、ガラスミルドファイバー、ガラスフレーク、ガラスビーズ、シリカ、アルミナ、石膏、石膏ウィスカー、タルク、マイカ;カーボンブラック、グラファイト、鉄粉、銅粉、炭化ケイ素、炭化ケイ素繊維、窒化ケイ素、窒化ケイ素繊維、黄銅繊維、ステンレス繊維、ウィスカー等が挙げられる。これらの中でも、ガラスの繊維状充填剤、ガラスの粉状充填剤、ガラスのフレーク状充填剤;各種ウィスカー、マイカ、タルクが好ましい。より好ましくは、ガラス繊維、ガラスフレーク、ガラスミルドファイバー、マイカ、タルクが挙げられる。特に好ましくはガラス繊維及びタルクから選ばれる少なくとも1種が挙げられる。以上に挙げた無機充填剤は1種のみで用いることもできるが、2種以上を組み合わせて用いることもできる。
また、無機充填剤の中でも、ガラス繊維、ガラスミルドファイバーとしては、熱可塑性樹脂に使用されているものであればいずれも使用できる。特に、無アルカリガラス(Eガラス)が好ましい。ガラス繊維の直径は、好ましくは6μm〜20μmであり、より好ましくは9μm〜14μmである。ガラス繊維の直径が過度に小さいと補強効果が不充分となる傾向がある。また、過度に大きいと、製品外観に悪影響を与えやすい。また、ガラス繊維としては、好ましくは長さ1mm〜6mmにカットされたチョップドストランド;好
ましくは長さ0.01mm〜0.5mmに粉砕されて市販されているガラスミルドファイバーが挙げられる。これらは単独で用いても、両者を混合して用いてもよい。本発明においてガラス繊維を用いる場合、ポリカーボネート樹脂との密着性を向上させるために、アミノシラン、エポキシシラン等のシランカップリング剤等による表面処理、あるいは取扱い性を向上させるために、アクリル系樹脂、ウレタン系樹脂等による集束処理を施して使用してもよい。
ガラスビーズとしては、熱可塑性樹脂に使用されているものであればいずれも使用できる。その中でも、無アルカリガラス(Eガラス)が好ましい。ガラスビーズの形状は、粒径10μm〜50μmの球状が好ましい。
ガラスフレークとしては、鱗片状のガラスフレークが挙げられる。ポリカーボネート樹脂を配合後のガラスフレークの最大径は、一般的には1000μm以下、好ましくは1μm〜500μmであり、且つアスペクト比(最大径と厚み途の比)が5以上、好ましくは10以上、さらに好ましくは30以上である。
有機充填剤としては、例えば、木粉、竹粉、ヤシ澱粉、コルク粉、パルプ粉等の粉末状有機充填剤;架橋ポリエステル、ポリスチレン、スチレン・アクリル共重合体、尿素樹脂等のバルン状・球状有機充填剤;炭素繊維、合成繊維、天然繊維等の繊維状有機充填剤が挙げられる。
炭素繊維としては、特に限定されず、例えば、アクリル繊維、石油又は炭素系特殊ピッチ、セルロース繊維、リグニン等を原料として焼成によって製造されたものであって、耐炎質、炭素質、黒鉛質等の種々のものが挙げられる。炭素繊維のアスペクト比(繊維長/繊維径)の平均は、好ましくは10以上であり、より好ましくは50以上である。アスペクト比の平均が過度に小さいと、ポリカーボネート樹脂組成物の導電性、強度、剛性が低下する傾向がある。炭素繊維の径は3μm〜15μmであり、上記のアスペクト比に調整するために、チョップドストランド、ロービングストランド、ミルドファイバー等のいずれの形状も使用できる。炭素繊維は、1種又は2種以上混合して用いることができる。
炭素繊維は、本発明のポリカーボネート樹脂組成物の特性を損なわない限りにおいて、ポリカーボネート樹脂との親和性を増すために、例えばエポキシ処理、ウレタン処理、酸化処理等の表面処理が施されてもよい。
本発明のポリカーボネート樹脂組成物には更に酸性化合物を含有していてもよい。酸性化合物を使用する場合には、酸性化合物の配合量は、酸性化合物を通常、0.00001重量部以上0.1重量部以下、好ましくは、0.0001重量部以上0.01重量部以下、さらに好ましくは0.0002重量部以上0.001重量部以下である。酸性化合物の配合量が0.00001重量部以上であると、射出成形する際に、ポリカーボネート樹脂組成物の射出成形機内の滞留時間が長くなった場合における着色抑制の点で好ましいが、酸性化合物の配合量が0.1重量部より多いと、ポリカーボネート樹脂組成物の耐加水分解性が低下する場合がある。
酸性化合物としては、例えば、塩酸、硝酸、ホウ酸、硫酸、亜硫酸、リン酸、亜リン酸、次亜リン酸、ポリリン酸、アジピン酸、アスコルビン酸、アスパラギン酸、アゼライン酸、アデノシンリン酸、安息香酸、ギ酸、吉草酸、クエン酸、グリコール酸、グルタミン酸、グルタル酸、ケイ皮酸、コハク酸、酢酸、酒石酸、シュウ酸、p−トルエンルフィン酸、p−トルエンスルホン酸、ナフタレンスルホン酸、ニコチン酸、ピクリン酸、ピコリン酸、フタル酸、テレフタル酸、プロピオン酸、ベンゼンスルフィン酸、ベンゼンスルホン酸、マロン酸、マレイン酸等のブレンステッド酸及びそのエステル類が挙げられる。これらの酸性化合物又はその誘導体の中でも、スルホン酸類又はそのエステル類が好ましく、中でも、p−トルエンスルホン酸、p−トルエンスルホン酸メチル、p−トルエンスルホン酸ブチルが特に好ましい。
これらの酸性化合物は、上述したポリカーボネート樹脂の重縮合反応において使用される塩基性エステル交換触媒を中和する化合物として、ポリカーボネート樹脂組成物の製造工程において添加することができる。
本発明のポリカーボネート樹脂組成物には本発明の目的を損なわない範囲で、紫外線吸収剤を配合することができる。紫外線吸収剤の配合量は、紫外線吸収剤の種類に応じて適宜選択することが可能であるが、本発明においてはポリカーボネート樹脂組成物全体に対して、紫外線吸収剤0重量部〜5重量部である。
ここで、紫外線吸収剤としては、紫外線吸収能を有する化合物であれば特に限定されない。紫外線吸収能を有する化合物としては、有機化合物、無機化合物が挙げられる。なかでも有機化合物はポリカーボネート樹脂との親和性を確保しやすく、均一に分散しやすいので好ましい。
紫外線吸収能を有する有機化合物の分子量は特に限定されないが、通常200以上、好ましくは250以上である。また。通常600以下、好ましくは450以下、より好ましくは400以下である。分子量が過度に小さいと、長期間使用での耐紫外線性能の低下を引き起こす可能性がある。分子量が過度に大きいと、長期間使用での樹脂組成物の透明性低下を引き起こす可能性がある。
好ましい紫外線吸収剤としては、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物、ベンゾエート系化合物、サリチル酸フェニルエステル系化合物、シアノアクリレート系化合物、マロン酸エステル系化合物、シュウ酸アニリド系化合物等が挙げられる。なかでも、ベンゾトリアゾール系化合物、ヒドロキシベンゾフェノン系化合物、マロン酸エステル系化合物が好ましく用いられる。これらは、単独で用いても2種以上を併用してもよい。
ベンゾトリアゾール系化合物のより具体的な例としては、2−(2’−ヒドロキシ−3’−メチル−5’−ヘキシルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−t−ブチル−5’−ヘキシルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−メチル−5’−t−オクチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−ドデシルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−メチル−5’−t−ドデシルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−ブチルフェニル)ベンゾトリアゾール、メチル−3−(3−(2H−ベンゾトリアゾール−2−イル)−5−t−ブチル−4−ヒドロキシフェニル)プロピオネート等が挙げられる。
ヒドロキシベンゾフェノン系化合物としては、2,2’−ジヒドロキシベンゾフェノン、2,2’、4,4’−テトラヒドロキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン等が挙げられる。
マロン酸エステル系化合物としては、2−(1−アリールアルキリデン)マロン酸エステル類、テトラエチル−2,2‘−(1,4−フェニレン−ジメチリデン)−ビスマロネート等が挙げられる。
トリアジン系化合物としては、2−[4−[(2−ヒドロキシ−3−ドデシルオキシプロピル)オキシ]−2−ヒドロキシフェニル]−4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン、2,4−ビス(2,4−ジメチルフェニル)−6−(2−ヒドロキシ−4−イソオクチルオキシフェニル)−s−トリアジン、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−[(ヘキシル)オキシ]−フェノール(チバガイギー社製、Tinuvin1577FF)等が挙げられる。
シアノアクリレート系化合物としては、エチル−2−シアノ−3,3−ジフェニルアクリレート、2’−エチルヘキシル−2−シアノ−3,3−ジフェニルアクリレート等が挙げられる。
シュウ酸アニリド系化合物としては、2−エチル−2’−エトキシ−オキサルアニリド(Clariant社製、SanduvorVSU)等が挙げられる。
また、本発明のポリカーボネート樹脂組成物及びポリカーボネート樹脂成形品の耐光性をさらに向上する目的で、光安定剤を配合することができる。かかる光安定剤としては、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス−(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ポリ[[6−(1,1,3,
3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル][(2,2,6,6−テトラメチル−4−ピペリジル)イミノ]ヘキサメチレン[(2,2,6,6−テトラメチル−4−ピペリジル)イミノ]]、N,N’−ビス(3−アミノプロピル)エ
チレンジアミン−2,4−ビス[N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジルアミノ)−6−クロロ−1,3,5−トリアジン縮合物、ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6)−テトラメチル−4−ピペリジル−1、6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物等が挙げられる。なかでもビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス−(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケートが好ましい。
前記光安定剤の配合量は、0重量部以上、2重量部以下の割合で配合することができるが、光安定剤の配合効果を得るためには0.005重量部以上、0.5重量部以下の割合で配合することが好ましく、0.01重量部以上、0.2重量部以下の割合で配合することがより好ましい。かかる範囲で光安定剤を配合することにより、ポリカーボネート樹脂組成物表面への光安定剤のブリード、各種成形品の機械特性低下を生じることなく、本発明のポリカーボネート樹脂組成物を成形した成形品の耐光性を向上することができる。
さらに、本発明のポリカーボネート樹脂組成物には、本発明の目的を損なわない範囲で帯電防止剤を含有することができる。帯電防止剤は通常、ポリカーボネート樹脂100重量部に対し、0〜2重量部で用いられる。
本実施の形態において、ポリカーボネート樹脂組成物に配合する蛍光増白剤、充填剤、酸性化合物、紫外線吸収助剤、熱安定剤、光安定剤、帯電防止剤等の成分の添加時期、添加方法は特に限定されない。添加時期としては、例えば、エステル交換法でポリカーボネート樹脂を製造した場合は重合反応終了時;さらに、重合法に関わらず、ポリカーボネート樹脂、他の配合剤との混練途中等のポリカーボネート樹脂又はポリカーボネート樹脂組成物が溶融した状態や、押出機等を用い、ペレット又は粉末等の固体状態のポリカーボネート樹脂組成物とブレンド・混練する際等が挙げられる。添加方法としては、ポリカーボネート樹脂に各種成分を直接混合又は混練する方法、少量のポリカーボネート樹脂組成物又は他の樹脂等と各種成分を用いて作成した高濃度のマスターバッチとして添加する方法等が挙げられる。
〔ポリカーボネート樹脂成形品〕
本発明のポリカーボネート樹脂組成物を成形することによりポリカーボネート樹脂成形品が得られる。ポリカーボネート樹脂成形品を得る方法としては、ポリカーボネート樹脂、酸化チタン及び必要に応じてその他の樹脂や添加剤等の原料を直接混合し、押出機或いは射出成形機に投入して成形する方法、前記原料を二軸押出機を用いて溶融混合し、ストランド形状に押出してペレットを作製した後、このペレットを押出機或いは射出成形機に投入して成形する方法等が挙げられる。ポリカーボネート樹脂成形品の成形方法は特に限
定されず、射出成形法、押出成形法、圧縮成形法等の成形方法を用いることができるが、成形品の形状の自由度の観点から射出成形法が好ましい。
〔光反射部材〕
本発明のポリカーボネート樹脂組成物は色相、光反射率、耐衝撃性等に優れたものであるため、これを成形したものを光反射部材として好適に用いることができる。また、本発明のポリカーボネート樹脂組成物が耐光性に優れ、光照射による劣化が起こりにくいものである点からも、光反射部材として有利である。本発明の光反射部材は優れた色相を有するだけでなく、ポリカーボネート樹脂が本来有する耐衝撃性、耐光性、色相、耐熱性、寸法安定性、熱安定性、外観等をも同時に維持されているので、液晶表示装置のバックライト用光線反射板、光反射枠又は光反射シート、並びに、電気・電子機器、広告灯等の照明用装置、自動車用メーターパネル等の自動車用機器等の光反射部品又は光反射シート等、広範囲の光反射部剤用途において有用である。なお、本発明のポリカーボネート樹脂組成物の用途は光反射部剤用途に何ら制限はされず、本発明の要旨を逸脱しない範囲であれば、適宜応用することができる。
以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。
以下において、ポリカーボネート樹脂、ポリカーボネート樹脂組成物及び成形品の物性ないし特性の評価は次の方法により行った。
(1)試験片の作成方法
ポリカーボネート樹脂組成物のペレットを、熱風乾燥機を用いて、90℃で6時間乾燥した。次に、乾燥したポリカーボネート樹脂組成物のペレットを射出成形機(日本製鋼所社製J75EII型)に供給し、樹脂温度240℃、金型温度60℃、成形サイクル40秒間の条件で、射出成形板(幅100mm×長さ100mm×厚さ2mm)を成形した。
(2)色相測定
前記(1)で得られた射出成形板についてJIS K7105(1981年)に準拠し、分光色差計(日本電色工業社製SE2000)を使用し、D65光源反射法にて前記試験片のL,a,b値を測定した。
(3)屋外曝露
前記(2)で得られた射出成形板について、晴天時に一昼夜24時間屋外曝露処理を行った。暴露後試験片のL,a,b値を測定した。処理前の値をL ,a ,b 、処理後の値をL、a、bとし、下記の式で色差ΔEを求めた。色差の値が小さいほど屋外曝露試験後の劣化による色調の変化が少ないことを意味する。
ΔL=|L−L
Δa=|a−a
Δb=|b−b
ΔE=〔(ΔL+(Δa+(Δb1/2
また、以下の実施例及び比較例で用いた化合物の略号は次の通りである。
ISB:イソソルビド(ロケットフルーレ社製、商品名POLYSORB)
CHDM:1,4−シクロヘキサンジメタノール(イーストマン社製)
DPC:ジフェニルカーボネート(三菱化学(株)製)
<酸化チタン>
タイピュア R103(デュポン社製、製品名”Ti−Pure”R103)
タイペーク PC−3(石原産業社製、製品名”TIPAQUE”PC−3)
<耐熱性向上剤>
SP−2011:ステアリルアシッドホスフェート亜鉛塩(ADEKA社製、製品名”アデカスタブ”(登録商標)SP−2011)
AX−71:リン酸エステル(ADEKA社製、製品名”アデカスタブ”(登録商標)AX−71)
その他の添加剤は以下の通りである。
<酸化防止剤>
2112:ホスファイト系酸化防止剤(ADEKA社製、製品名”アデカスタブ”(登録商標)2112)
1010:フェノール系酸化防止剤(BASFジャパン社製、製品名”IRGANOX“(登録商標)1010)
AO−412S:リン系酸化防止剤(ADEKA社製、製品名”アデカスタブ”(登録商標)AO−412S)
<離型剤>
E−275:ジステアリン酸グリコール(日油社製、製品名”ユニスター”E−275)
<耐光安定剤>
TINUVIN329:ベンゾトリアゾール系UVA(BASF社製、製品名”TINUVIN”(登録商標)329)
TINUVIN770DF:HALS(BASF社製、製品名”TINUVIN”(登録商標)770DF)
[実施例1]
撹拌翼及び100℃に制御された還流冷却器を具備した重合反応装置に、ISB及びCHDMと、蒸留精製して塩化物イオン濃度を10ppb以下にしたDPC及び酢酸カルシウム1水和物を、モル比率でISB/CHDM/DPC/酢酸カルシウム1水和物=0.70/0.30/1.00/1.3×10-6になるように仕込み、十分に窒素置換した(酸素濃度0.0005〜0.001体積%)。
続いて熱媒で加温を行い、内温が100℃になった時点で撹拌を開始し、内温が100℃になるように制御しながら内容物を融解させ均一にした。その後、昇温を開始し、40分で内温を210℃にし、内温が210℃に到達した時点でこの温度を保持するように制御すると同時に、減圧を開始し、210℃に到達してから90分で13.3kPa(絶対圧力、以下同様)にして、この圧力を保持するようにしながら、さらに60分間保持した。
重合反応とともに副生するフェノール蒸気は、還流冷却器への入口温度として100℃に制御された蒸気を冷媒として用いた還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を重合反応器に戻し、凝縮しないフェノール蒸気は続いて45℃の温水を冷媒として用いた凝縮器に導いて回収した。
このようにしてオリゴマー化させた内容物を、一旦大気圧にまで復圧させた後、撹拌翼及び前記同様に制御された還流冷却器を具備した別の重合反応装置に移し、昇温及び減圧を開始して、60分で内温220℃、圧力200Paにした。その後、20分かけて内温230℃、圧力133Pa以下にして、所定撹拌動力になった時点で復圧し、内容物をストランドの形態で抜出し、回転式カッターでペレット(ポリカーボネート樹脂1)にした。
次に、得られたポリカーボネート樹脂1のペレットと、更に下記の表1に示した組成となるように酸化チタンとしてタイピュアR103、リン酸エステル類としてアデカスタブSP−2011、離型剤としてユニスターE−275、酸化防止剤としてイルガノックス1010及びアデカスタブ2112、更に耐光安定剤としてTINUVIN329及びTINUVIN770DFとを2つのベント口を有する日本製鋼所社製2軸押出機(LABOTEX30HSS−32)を用いて、押出機出口の樹脂温度が250℃になるようにストランド状に押し出し、水で冷却固化させた後、回転式カッターでペレット化した。この際、ベント口は真空ポンプに連結し、ベント口での圧力が500Paになるように制御した。得られたペレット状のポリカーボネート樹脂組成物の前記方法よる評価結果を後述の表1に示す。
[実施例2]
酸化防止剤として更にアデカスタブAO−412Sを用い、下記の表1に示した組成となるようにしたこと以外は、実施例1と同様に行い、ポリカーボネート樹脂組成物の製造と評価を行い、結果を表1に示した。
[比較例1]
アデカスタブSP−2011を用いず、下記の表1に示した組成となるようにしたこと以外は、実施例1と同様に行い、ポリカーボネート樹脂組成物の製造と評価を行い、結果を表1に示した。
[比較例2]
アデカスタブSP−2011を用いず、下記の表1に示した組成となるようにしたこと以外は、実施例2と同様に行い、ポリカーボネート樹脂組成物の製造と評価を行い、結果を表1に示した。
[比較例3]
アデカスタブSP−2011を用いず、リン酸エステル類としてアデカスタブAX−71を用い、下記の表1に示した組成となるように添加量を変更したこと以外は、実施例1と同様に行い、ポリカーボネート樹脂組成物の製造と評価を行い、結果を表1に示した。
[比較例4]
酸化チタンとしてタイペークPC−3を用い、下記の表1に示した組成となるように添加量を変更したこと以外は、比較例1と同様に行い、ポリカーボネート樹脂組成物の製造と評価を行い、結果を表1に示した。
Figure 0006698273
表1より次のことが分かる。
実施例の樹脂組成物は比較例の樹脂組成物と比較して、ΔEの変化が0.8以下と小さく、色相の外観変化はほとんど見られなかった。
本発明のポリカーボネート樹脂組成物及び成形品は、耐光性、色相等に優れ、電気・電
子部品、自動車用部品等の射出成形分野、フィルム、シート等の押出分野等の幅広い分野への材料提供が可能である。また、本発明のポリカーボネート樹脂組成物は色相、屋外曝露での色差等に優れるものであるため、光反射部材として特に有用である。

Claims (10)

  1. 環状エーテル構造を有し、かつ、芳香環構造を有しないジヒドロキシ化合物(α)に由来する構造単位(a)を含むポリカーボネート樹脂100質量部に対して、酸化チタンを0.01重量部以上10重量部以下含み、かつ、リン酸エステル金属塩を0.01重量部以上1重量部以下含むポリカーボネート樹脂組成物。
  2. 樹脂組成物中のポリカーボネート樹脂がエステル交換反応触媒として、リチウム化合物及び長周期型周期表第2族の金属化合物からなる群より選ばれる少なくとも1種の金属化合物を用いて製造されたものである請求項1に記載のポリカーボネート樹脂組成物。
  3. リン酸エステル金属塩が、第12族金属元素の塩である請求項1または2に記載のポリカーボネート樹脂組成物。
  4. 酸化防止剤を含有する請求項1〜3のいずれか1項に記載のポリカーボネート樹脂組成物。
  5. 光安定剤を含有する請求項1〜4のいずれか1項に記載のポリカーボネート樹脂組成物。
  6. 離型剤を含有する請求項1〜5のいずれか1項に記載のポリカーボネート樹脂組成物。
  7. 前記環状エーテル構造を有するジヒドロキシ化合物(α)が、下記式(1)で表される構造を有するジヒドロキシ化合物である請求項1〜6のいずれか1項に記載のポリカーボネート樹脂組成物。
    Figure 0006698273
  8. ポリカーボネート樹脂が、脂肪族炭化水素のジヒドロキシ化合物に由来する構造単位を含む請求項1〜7のいずれか1項に記載のポリカーボネート樹脂組成物。
  9. 請求項1〜8のいずれか1項に記載のポリカーボネート樹脂組成物を成形して得られるポリカーボネート樹脂成形品。
  10. 前記ポリカーボネート樹脂成形品が、射出成形法により成形して得られる請求項9に記載のポリカーボネート樹脂成形品。
JP2014254461A 2014-12-16 2014-12-16 ポリカーボネート樹脂組成物および成形品 Active JP6698273B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014254461A JP6698273B2 (ja) 2014-12-16 2014-12-16 ポリカーボネート樹脂組成物および成形品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014254461A JP6698273B2 (ja) 2014-12-16 2014-12-16 ポリカーボネート樹脂組成物および成形品

Publications (2)

Publication Number Publication Date
JP2016113563A JP2016113563A (ja) 2016-06-23
JP6698273B2 true JP6698273B2 (ja) 2020-05-27

Family

ID=56140969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014254461A Active JP6698273B2 (ja) 2014-12-16 2014-12-16 ポリカーボネート樹脂組成物および成形品

Country Status (1)

Country Link
JP (1) JP6698273B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228804A1 (ja) * 2022-05-27 2023-11-30 三菱ケミカル株式会社 樹脂組成物、フィルム、カード、及びパスポート

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5141053B2 (ja) * 2007-03-09 2013-02-13 三菱エンジニアリングプラスチックス株式会社 樹脂組成物および樹脂成形体
JP5601267B2 (ja) * 2011-03-31 2014-10-08 三菱化学株式会社 ポリカーボネート樹脂組成物及び成形品
JP5423835B2 (ja) * 2012-05-14 2014-02-19 三菱エンジニアリングプラスチックス株式会社 芳香族ポリカーボネート樹脂組成物および樹脂成形品

Also Published As

Publication number Publication date
JP2016113563A (ja) 2016-06-23

Similar Documents

Publication Publication Date Title
JP6504119B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP5970822B2 (ja) ポリカーボネート樹脂組成物及びその成形品
JP5978555B2 (ja) ポリカーボネート樹脂組成物及びその成形品
JP6010919B2 (ja) ポリカーボネート樹脂組成物
WO2011071164A1 (ja) ポリカーボネート樹脂組成物及び成形品
US8889790B2 (en) Polycarbonate resin composition and molded article thereof
JP6188272B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP2013049847A (ja) 自動車内装品
JP2016156031A (ja) ポリカーボネート樹脂組成物及び成形品
JP5655657B2 (ja) Led信号用部材
WO2011071163A1 (ja) ポリカーボネート樹脂組成物及び成形品
JP5786551B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP5958025B2 (ja) ポリカーボネート樹脂組成物、ポリカーボネート樹脂成形品及び光反射部材
JP5601267B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP6698273B2 (ja) ポリカーボネート樹脂組成物および成形品
JP2013136659A (ja) ポリカーボネート樹脂組成物及び成形品
JP6024309B2 (ja) ポリカーボネート樹脂組成物及びその成形品
JP2013049846A (ja) 遮音部材
JP2013209584A (ja) ポリカーボネート樹脂組成物及びポリカーボネート樹脂成形品
JP6044058B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP2013084584A (ja) Led照明用部材
JP2012207183A (ja) ポリカーボネート樹脂組成物及び成形品
JP2013213100A (ja) ポリカーボネート樹脂組成物及びその製造方法、並びに該ポリカーボネート樹脂成形品
JP2012197381A (ja) ポリカーボネート樹脂組成物及び成形品

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171004

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200428

R150 Certificate of patent or registration of utility model

Ref document number: 6698273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150