JP6691951B2 - 多孔質構造体、多孔質構造体の製造方法、及び、3d造形用データ - Google Patents

多孔質構造体、多孔質構造体の製造方法、及び、3d造形用データ Download PDF

Info

Publication number
JP6691951B2
JP6691951B2 JP2018212137A JP2018212137A JP6691951B2 JP 6691951 B2 JP6691951 B2 JP 6691951B2 JP 2018212137 A JP2018212137 A JP 2018212137A JP 2018212137 A JP2018212137 A JP 2018212137A JP 6691951 B2 JP6691951 B2 JP 6691951B2
Authority
JP
Japan
Prior art keywords
porous structure
bone
cell
skeleton
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018212137A
Other languages
English (en)
Other versions
JP2019210448A (ja
Inventor
飯塚 誠
飯塚  誠
大一 板橋
大一 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2018212137A priority Critical patent/JP6691951B2/ja
Publication of JP2019210448A publication Critical patent/JP2019210448A/ja
Application granted granted Critical
Publication of JP6691951B2 publication Critical patent/JP6691951B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mattresses And Other Support Structures For Chairs And Beds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、多孔質構造体、多孔質構造体の製造方法、及び、3D造形用データに関する。
従来より、クッション性のある多孔質構造体(例えば、ウレタンフォーム)は、例えば金型成形等において、化学反応により発泡させる工程を経て、製造されている(例えば、特許文献1)。
特開2016−44292号公報
しかしながら、上述したように化学反応により発泡させる工程を経て多孔質構造体を製造する場合は、製造に時間や手間が掛かるという問題や、所期したとおりの構成が得られないおそれがあるという問題があった。
そこで、本発明の発明者は、3Dプリンタを用いて多孔質構造体を製造できるようにすれば、製造が簡単になり、かつ、所期したとおりの構成が得られることに、新たに着目し、本発明をするに至った。
本発明は、3Dプリンタによってクッション性のある多孔質構造体を容易に製造することが可能な、多孔質構造体、多孔質構造体の製造方法、及び、3D造形用データを、提供することを目的とする。
本発明の多孔質構造体は、
可撓性のある樹脂又はゴムから構成された多孔質構造体であって、
前記多孔質構造体は、その全体にわたって、骨格部を備えており、
前記骨格部は、
複数の骨部と、
それぞれ前記複数の骨部の端部どうしを結合する、複数の結合部と、
から構成されており、
前記多孔質構造体の体積のうち、前記骨格部の占める体積の割合が、3〜10%である。
これにより、3Dプリンタによって、クッション性のある多孔質構造体を容易に製造することができる。
本発明の多孔質構造体においては、
前記骨格部は、環状に構成された第1環状部を有しており、
前記第1環状部は、その内周側縁部によって、第1仮想面を区画しており。
前記第1環状部は、複数の前記骨部と複数の前記結合部とから構成されていると、好適である。
これにより、多孔質構造体のクッション材としての特性がより良好になる。
本発明の多孔質構造体においては、
前記骨格部は、第1セル孔を内部に区画する第1セル区画部を有しており、
前記第1セル区画部は、それぞれ環状に構成された複数の第1環状部を有しており、
前記複数の第1環状部は、それぞれの内周側縁部によって区画する第1仮想面どうしが交差しないように互いに連結されており、
前記第1セル孔は、前記複数の第1環状部と、前記複数の第1環状部がそれぞれ区画する複数の前記第1仮想面とによって、区画されており、
前記第1環状部は、複数の前記骨部と複数の前記結合部とから構成されていると、好適である。
これにより、多孔質構造体のクッション材としての特性がより良好になる。
本発明の多孔質構造体においては、
前記骨格部は、第2セル孔を内部に区画する第2セル区画部を有しており、
前記第2セル区画部は、それぞれ環状に構成された複数の第2環状部を有しており、
前記複数の第2環状部は、それぞれの内周側縁部によって区画する第2仮想面どうしが交差するように互いに連結されており、
前記第2セル孔は、少なくとも前記複数の第2環状部のそれぞれの内周側縁部によって、区画されている、
前記第2環状部は、複数の前記骨部と複数の前記結合部とから構成されていると、好適である。
これにより、多孔質構造体のクッション材としての特性がより良好になる。
本発明の多孔質構造体においては、
前記骨部は、
断面積を一定に保ちつつ延在する、骨一定部と、
断面積を徐々に変化させつつ、前記骨一定部から前記結合部まで延在する、骨変化部と、
を有し、
前記骨一定部は、前記骨変化部及び前記結合部よりも、幅が小さいと、好適である。
これにより、多孔質構造体のクッション材としての特性がより良好になる。
本発明の多孔質構造体においては、
前記骨一定部の断面形状は、円形又は多角形であると、好適である。
これにより、多孔質構造体のクッション材としての特性がより良好になる。
本発明の多孔質構造体においては、
前記骨変化部は、傾斜面を有しており、
前記傾斜面は、前記骨変化部の延在方向に対して傾斜しているとともに、前記結合部に向かうにつれて、幅が徐々に増大すると、好適である。
これにより、多孔質構造体のクッション材としての特性がより良好になる。
本発明の多孔質構造体においては、
前記多孔質構造体は、シートパッドに用いられるものであるとよい。
本発明の多孔質構造体においては、
前記多孔質構造体は、3Dプリンタによって造形されたものであるとよい。
本発明の多孔質構造体の製造方法は、
3Dプリンタを用いて、上述の多孔質構造体を製造するものである。
これにより、3Dプリンタによって、クッション性のある多孔質構造体を容易に製造することができる。
本発明の3D造形用データは、
3Dプリンタの造形部が造形を行う際に前記3Dプリンタの制御部に読み込まれる3D造形用データであって、
前記制御部が、前記造形部に、上述の多孔質構造体を、造形させるように構成されている。
これにより、3Dプリンタによって、クッション性のある多孔質構造体を容易に製造することができる。
本発明によれば、3Dプリンタによってクッション性のある多孔質構造体を容易に製造することが可能な、多孔質構造体、多孔質構造体の製造方法、及び、3D造形用データを、提供することができる。
本発明の一実施形態に係る多孔質構造体の一部を、図2〜図4のC矢印の方向から観たときの様子を示す、平面図である。 図1の多孔質構造体を、図1、図3、図4のA矢印の方向から観たときの様子を示す、側面図である。 図1の多孔質構造体を、図1、図2、図4のD矢印の方向から観たときの様子を示す、斜視図である。 図1の多孔質構造体を、図2、図3のB矢印の方向から観たときの様子を示す、斜視図である。 図1の多孔質構造体の単位部を、図1、図2、図4のD矢印の方向から観たときの様子を示す、斜視図である。 図5の多孔質構造体の単位部の一部を拡大して観たときの様子を示す、斜視図である。 図5の多孔質構造体の単位部を、図5のE矢印の方向から観たときの様子を示す、斜視図である。 図7と同じ図面であり、一部の符号や破線・鎖線のみが図7と異なる図面である。 図5の多孔質構造体の単位部を、図5のF矢印の方向から観たときの様子を示す、斜視図である。 図9と同じ図面であり、一部の符号や破線・鎖線のみが図9と異なる図面である。 図11(a)は、外力が加わっていない状態における図1の多孔質構造体の骨部を示す斜視図であり、図11(b)は、外力が加わっている状態における図11(a)の骨部を示す斜視図である。 図8に対応する図面であり、本発明の第1変形例に係る多孔質構造体を説明するための図面である。 図8に対応する図面であり、本発明の第2変形例に係る多孔質構造体を説明するための図面である。 図8に対応する図面であり、本発明の第3変形例に係る多孔質構造体を説明するための図面である。 本発明の一実施形態に係る多孔質構造体を備えた、車両用シートパッドを示す斜視図である。 本発明の一実施形態に係る、多孔質構造体の製造方法を説明するための図面である。 本発明の一変形例に係る、多孔質構造体の製造方法を説明するための図面である。 図18(a)は、本発明の一実施形態に係る多孔質構造体からなる車両用シートパッドのクッションパッド部の一例を、図15のG−G線に沿う断面により示す、断面図であり、図18(b)は、図本発明の一実施形態に係る多孔質構造体からなる車両用シートパッドのバックパッド部の一例を、図15のH−H線に沿う断面により示す、断面図である。
本発明の多孔質構造体、及び、本発明の多孔質構造体の製造方法又は3D造形用データを用いて製造される多孔質構造体は、クッション材に用いられるのが好適であり、着座用のクッション材(シートパッド等)に用いられるのがより好適であり、車両用シートパッドに用いられるのがさらに好適である。
以下、本発明に係る多孔質構造体、多孔質構造体の製造方法、及び、3D造形用データの実施形態について、図面を参照しながら例示説明する。
各図において共通する構成要素には同一の符号を付している。
また、図1〜図10、図12〜図14では、多孔質構造体の向きを理解しやすくするために、多孔質構造体に固定されたXYZ直交座標系の向きを表示している。
まず、図1〜図11を参照しながら、本発明の一実施形態に係る多孔質構造体について説明する。
図1〜図4では、本実施形態に係る多孔質構造体1のうち、直方体に切断された一部分を、それぞれ別々の角度から観ている。図1は、多孔質構造体1の当該部分における、ある1つの面を平面視しており、すなわち、多孔質構造体1の当該部分を、図2〜図4のC矢印の方向(−X方向)から観ている。図2は、多孔質構造体1の当該部分における、図1での右側の面を平面視しており、すなわち、多孔質構造体1の当該部分を、図1、図3、図4のA矢印の方向(−Y方向)から観ている。図3は、多孔質構造体1の当該部分における、図1と同じ面を斜め上から観ており、すなわち、多孔質構造体1の当該部分を、図1、図2、図4のD矢印の方向から観ている。図4は、多孔質構造体1の当該部分における、図1及び図3とは逆側の面を斜め上から観ており、すなわち、多孔質構造体1の当該部分を、図2、図3のB矢印の方向から観ている。
本実施形態の多孔質構造体1は、3Dプリンタによって造形されたものである。3Dプリンタを用いて多孔質構造体を製造することにより、従来のように化学反応により発泡させる工程を経る場合に比べ、製造が簡単になり、かつ、所期したとおりの構成が得られる。また、今後の3Dプリンタの技術進歩により、将来的に、3Dプリンタによる製造を、より短時間かつ低コストで、実現できるようになることが期待できる。
多孔質構造体1は、可撓性のある樹脂又はゴムから構成されている。より具体的に、多孔質構造体1は、多孔質構造体1の骨格をなす骨格部2と、骨格部2によって区画された多数のセル孔Cと、を備えている。骨格部2は、多孔質構造体1の全体にわたって存在しており、可撓性のある樹脂又はゴムから構成されている。本例において、多孔質構造体1のうち、骨格部2以外の部分は、空隙である。
ここで、「可撓性のある樹脂」とは、外力が加わると変形することができる樹脂を指しており、例えば、エラストマー系の樹脂が好適であり、ポリウレタンがより好適であり、軟質ポリウレタンがさらに好適である。ゴムとしては、天然ゴム又は合成ゴムが挙げられる。多孔質構造体1は、可撓性のある樹脂又はゴムから構成されているので、外力の付加・解除に応じた圧縮・復元変形が可能であり、クッション性を有することができる。
なお、3Dプリンタによる製造のし易さの観点からは、多孔質構造体1は、可撓性のある樹脂から構成されている場合のほうが、ゴムから構成されている場合よりも、好適である。
本実施形態の多孔質構造体1は、それぞれ立方体をなす複数の単位部Uどうしが、X、Y、Zの各方向に一体に連なった構成を有している。多孔質構造体1のうち、図1〜図4に示す部分は、Z方向に3個、Y方向に3個、X方向に2個が配列された、計18個の単位部Uからなる。本例では、多孔質構造体1を構成する各単位部Uの構成、寸法、向きが、それぞれ同じである。便宜のため、図1〜図4では、1つの単位部Uのみを、他の単位部Uよりも濃いグレー色で着色しているとともに、図1及び図2ではさらに、濃いグレー色で着色した単位部Uの外縁を、点線で示している。
本例のように、多孔質構造体1の各単位部Uの外縁(外輪郭)が立方体をなす場合、X-Y-Zそれぞれの方向に等しい機械特性を得ることが可能になる。
なお、単位部Uの外縁(外輪郭)は、立方体以外の直方体、あるいは、その他の形状をなしていてもよい。また、多孔質構造体1を構成する各単位部Uの構成及び/又は寸法は、完全に同一でなくてもよく、個々に少しずつ異なっていてもよい。多孔質構造体1の各単位部Uの外縁(外輪郭)が立方体以外の直方体をなす場合、多孔質構造体1の機能として、意図的な異方性を得ることが可能になる。例えば、多孔質構造体1を車両用のシートパッドに適用する場合、各単位部Uの外縁(外輪郭)を立方体以外の直方体とすることで、例えばZ方向(人が座る方向)には柔らかくして乗り心地を向上させること可能になる。
図5〜図10は、1つ単位部Uを単独で示している。図5は、単位部Uを、図3とほぼ同じ方向から観ており、すなわち、単位部Uを、図1、図2、図4のD矢印の方向から観ている。図6は、図5の一部を拡大して観ている。図7及び図8は、同じ図面であり、単位部Uにおける、図5と同じ側の部分を下側から観ており、すなわち、単位部Uを、図3、図5のE矢印の方向から観ている。図7及び図8は、図面の見易さのために、それぞれ異なる破線、鎖線を付けている点のみで異なる。図9及び図10は、同じ図面であり、単位部Uにおける、図5とは逆側の部分を上側から観ており、すなわち、単位部Uを、図4、図5のF矢印の方向から観ている。図9及び図10は、図面の見易さのために、それぞれ異なる破線、鎖線を付けている点のみで異なる。参考のため、図1〜図4におけるA矢印、B矢印、C矢印を、図5、図7〜図10にも示している。
図1〜図10に示すように、多孔質構造体1の骨格部2は、複数の骨部2Bと、複数の結合部2Jと、から構成されており、骨格部2の全体が一体に構成されている。本例において、各骨部2Bは、それぞれ柱状に構成されており、また、本例では、それぞれ直線状に延在している。各結合部2Jは、それぞれ、互いに異なる方向に延在する複数(図の例では、2つ〜6つ)の骨部2Bの端部2Beどうしが互いに隣接する箇所で、これらの端部2Beどうしを結合している。
図6、図7、図9には、多孔質構造体1の一部分に、骨格部2の骨格線Oを示している。骨格部2の骨格線Oは、各骨部2Bの骨格線Oと、各結合部2Jの骨格線Oと、からなる。骨部2Bの骨格線Oは、骨部2Bの中心軸線であり、後述の骨一定部2B1の中心軸線と骨変化部2B2の中心軸線とからなる。結合部2Jの骨格線Oは、当該結合部2Jに結合された各骨部2Bの中心軸線をそれぞれ当該結合部2J内へ滑らかに延長させて互いに連結させてなる、延長線部分である。
骨部2Bの延在方向は、骨部2Bの骨格線O(骨格線Oのうち、骨部2Bに対応する部分。以下同じ。)の延在方向である。
多孔質構造体1は、その全体にわたって骨格部2を備えているので、通気性を確保しつつ、外力の付加・解除に応じた圧縮・復元変形が可能であるので、クッション材としての特性が良好になる。また、多孔質構造体1の構造がシンプルになり、3Dプリンタによる造形がしやすくなる。
なお、骨格部2を構成する各骨部2Bのうち、一部又は全部の骨部2Bが、湾曲しながら延在してもよい。この場合、一部又は全部の骨部2Bが湾曲していることで、荷重の入力時において、骨部2Bひいては多孔質構造体1の急激な形状変化を防ぎ、局所的な座屈を抑制することができる。
また、各図面においては、骨格部2の各エッジ部分(互いに隣接する一対の面どうしが突き合う、辺部分)が角張っているが、骨格部2の各エッジ部分は、滑らかに湾曲していてもよい。
本例では、骨格部2を構成する各骨部2Bが、それぞれほぼ同じ形状及び長さを有している。ただし、本例に限らず、骨格部2を構成する各骨部2Bの形状及び/又は長さは、それぞれ同じでなくてもよく、例えば、一部の骨部2Bの形状及び/又は長さが他の骨部2Bとは異なっていてもよい。この場合、骨格部2のうちの特定の部分の骨部2Bの形状及び/又は長さを他の部分とは異ならせることで、意図的に異なる機械特性を得ることができる。例えば、後述する図18(a)の例のように、多孔質構造体1を車両用のシートパッドに適用する場合、メインパッド部311の座面側(表面側)の部分11は乗り心地向上のため柔らかくし、サイドパッド部312を構成する部分12はホールド感を得るため硬くする、といったことができる。
図11は、本例の骨部2Bを、単独で示している。図11(a)は骨部2Bに外力が加わっていない自然状態を示しており、図11(b)は骨部2Bに外力が加わった状態を示している。図11には、骨部2Bの中心軸線(骨格線O)を示している。
図11(a)に示すように、各骨部2Bは、それぞれ、断面積を一定に保ちつつ延在する、骨一定部2B1と、骨一定部2B1の延在方向の両側において、断面積を徐々に変化させつつ、骨一定部2B1から結合部2Jまで延在する、一対の骨変化部2B2と、から構成されている。本例において、各骨変化部2B2は、断面積を徐々に増大させつつ、骨一定部2B1から結合部2Jまで延在している。なお、本例に限らず、骨格部2を構成する各骨部2Bのうち一部の骨部2Bのみが、この構成を満たしていても、同様の効果が得られる。また、骨格部2を構成する各骨部2Bのうち一部又は全部の骨部2Bは、それぞれ、骨一定部2B1の一方側の端部のみに骨変化部2B2を有し、骨一定部2B1の他方側の端部が直接結合部2Jに結合されていてもよく、その場合も、程度の差はあり得るものの、同様の効果が得られる。
ここで、骨一定部2B1及び骨変化部2B2の断面積は、それぞれ、骨一定部2B1及び骨変化部2B2の骨格線Oに垂直な断面の断面積を指す。
本例では、多孔質構造体1を構成する各骨部2Bが、骨一定部2B1と骨変化部2B2とからなり、骨変化部2B2が、骨一定部2B1から結合部2Jに向かうにつれて断面積が徐々に増大するので、骨部2Bが、骨一定部2B1と骨変化部2B2との境界の近傍部分で、骨一定部2B1に向かって細くなるようにくびれた形状をなしている。そのため、外力が加わる際に、骨部2Bが、そのくびれた部分や骨一定部2B1の中間部分で座屈変形しやすくなり、ひいては、多孔質構造体1が圧縮変形しやすくなる。これにより、化学反応によって発泡させる工程を経て製造された一般的なポリウレタンフォームと同等の挙動及び特性が得られる。また、これにより、多孔質構造体1の表面のタッチ感がより柔らかくなる。例えば、多孔質構造体1を着座用のクッション材(シートパッド等)として用いる場合、着座する際の、特に着座し始めのタイミングで、着座者に、より柔らかい感触を与えるようになる。このような柔らかい感触は、一般的に、広く好まれるものであり、また、高級車のシートパッドの着座者(例えば運転手付きで後部座席に人を乗せる場合、後部座席に座る着座者)に好まれるものである。
本例のように、骨部2Bが、その少なくとも一部分において骨一定部2B1を有している場合、骨部2Bのいずれか一方側(好ましくは両側)の端2B21の断面積A1(図11(a))に対する、骨一定部2B1の断面積A0(図11(a))の比A0/A1は、
0.5≦A0/A1≦2.0
を満たしていると、好適である。これにより、多孔質構造体1の表面のタッチ感を、クッション材の特性として、また特に着座用のクッション材の特性として、柔らかすぎず、硬すぎず、ほどよい硬さにすることができる。例えば、多孔質構造体1を着座用のクッション材(シートパッド等)として用いる場合、着座する際の、特に着座し始めのタイミングで、着座者に、ほどよい硬さの感触を与えるようになる。比A0/A1が小さいほど、多孔質構造体1の表面のタッチ感が、より柔らかくなる。比A0/A1が0.5未満である場合は、多孔質構造体1の表面のタッチ感が柔らかくなりすぎて、クッション材の特性として好ましくなくなるおそれがある。比A0/A1が2.0超である場合は、多孔質構造体1の表面のタッチ感が硬くなりすぎて、クッション材の特性として好ましくなくなるおそれがある。
より具体的に、本例では、骨部2Bが骨一定部2B1とその両側に連続する一対の骨変化部2B2とを有しており、各骨変化部2B2が、それぞれ、断面積を徐々に増大させつつ、骨一定部2B1から結合部2Jまで延在しており、比A0/A1が1.0未満である。これにより、多孔質構造体1の表面のタッチ感を、クッション材の特性として、また特に着座用のクッション材の特性として、比較的柔らかくすることができる。このような柔らかい感触は、一般的に、広く好まれるものであり、また、高級車のシートパッドの着座者(例えば運転手付きで後部座席に人を乗せる場合、後部座席に座る着座者)に好まれるものである。
なお、骨格部2を構成する各骨部2Bがこの構成を満たしていてもよいし、あるいは、骨格部2を構成する各骨部2Bのうち一部の骨部2Bのみが、この構成を満たしていてもよく、いずれの場合でも、程度の差はあり得るものの、同様の効果が得られる。
なお、本例に代えて、骨変化部2B2は、断面積を徐々に減少させつつ、骨一定部2B1から結合部2Jまで延在していてもよい。この場合、骨一定部2B1は、骨変化部2B2よりも、断面積が大きく(太く)なる。これにより、外力が加わる際に、骨一定部2B1が変形しにくくなり、代わりに、比較的座屈しやすい箇所が骨変化部2B2(特に、連結部2J側の部分)となり、ひいては、多孔質構造体1が圧縮変形しにくくなる。これにより、多孔質構造体1の表面のタッチ感がより硬くなり、また、高硬度の機械特性が得られる。例えば、多孔質構造体1を着座用のクッション材として用いる場合、着座する際の、特に着座し始めのタイミングで、着座者に、より硬い感触を与えるようになる。このような挙動は、化学反応によって発泡させる工程を経て製造された一般的なポリウレタンフォームでは得ることができない。このような構成により、硬めの感触を好むユーザに対応できる。このような硬い感触は、例えば、素早い加減速や斜線変更を行うようなスポーツ車のシートパッドにおける、着座者に好まれるものである。
そして、骨変化部2B2が、断面積を徐々に減少させつつ、骨一定部2B1から結合部2Jまで延在している場合、比A0/A1は、1.0超となる。
なお、骨格部2を構成する各骨部2Bがこの構成を満たしていてもよいし、あるいは、骨格部2を構成する各骨部2Bのうち一部の骨部2Bのみが、この構成を満たしていてもよく、いずれの場合でも、程度の差はあり得るものの、同様の効果が得られる。
あるいは、図12に一部点線で示す第1変形例のように、骨部2Bは、骨変化部2B2を有さずに、骨一定部2B1のみからなるものでもよい。この場合、骨部2の断面積は、その全長にわたって一定になる。そして、外力が加わる際における多孔質構造体1の表面のタッチ感は、中程度の硬さになる。このような構成により、中程度の硬さの感触を好むユーザに対応できる。また、高級車やスポーツ車など、あらゆる車種のシートパッドに好適に適用できる。
この場合、比A0/A1は、1.0となる。
なお、骨格部2を構成する各骨部2Bがこの構成を満たしていてもよいし、あるいは、骨格部2を構成する各骨部2Bのうち一部の骨部2Bのみが、この構成を満たしていてもよく、いずれの場合でも、程度の差はあり得るものの、同様の効果が得られる。
図1〜図11の例に戻り、本例において、骨格部2を構成する各骨部2Bは、骨一定部2B1が、骨変化部2B2及び結合部2Jよりも、断面積が小さい。より具体的には、骨一定部2B1の断面積は、骨変化部2B2及び結合部2Jのそれぞれのどの部分(ただし、骨一定部2B1と骨変化部2B2との境界部分を除く)の断面積よりも、小さい。すなわち、骨一定部2B1は、骨格部2の中で最も断面積が小さい(細い)部分である。これにより、上述したことと同様に、外力が加わる際に、骨一定部2B1が変形しやすくなり、ひいては、多孔質構造体1が圧縮変形しやすくなる。これにより、多孔質構造体1の表面のタッチ感がより柔らかくなる。
なお、結合部2Jの断面積は、結合部2Jの骨格線Oに垂直な断面の断面積を指す。
なお、本例に限らず、骨格部2を構成する各骨部2Bのうち一部の骨部2Bのみが、この構成を満たしていてもよく、その場合でも、程度の差はあり得るものの、同様の効果が得られる。
同様に、本例において、骨格部2を構成する各骨部2Bは、骨一定部2B1が、骨変化部2B2及び結合部2Jよりも、幅が小さい。より具体的には、骨一定部2B1の幅は、骨変化部2B2及び結合部2Jのそれぞれのどの部分(ただし、骨一定部2B1と骨変化部2B2との境界部分を除く)の幅よりも、小さい。すなわち、骨一定部2B1は、骨格部2の中で最も幅が小さい(細い)部分である。これによっても、外力が加わる際に骨一定部2B1が変形しやすくなり、それにより、多孔質構造体1の表面のタッチ感がより柔らかくなる。
なお、骨一定部2B1、骨変化部2B2、結合部2Jの幅は、それぞれ、骨一定部2B1、骨変化部2B2、結合部2Jの骨格線Oに垂直な断面に沿って測ったときの、当該断面における最大幅を指す。結合部2Jの骨格線Oは、骨格線Oのうち、結合部2Jに対応する部分である。図11(a)には、参考のため、骨一定部2B1の幅W0と、骨変化部2B2の幅W1とを、示している。
なお、本例に限らず、骨格部2を構成する各骨部2Bのうち一部の骨部2Bのみが、この構成を満たしていてもよく、その場合でも、程度の差はあり得るものの、同様の効果が得られる。
上述した各例において、多孔質構造体1の構造の簡単化、ひいては、3Dプリンタの製造のし易さの観点からは、骨一定部2B1の幅W0(図11)は、0.05mm以上であると好適であり、0.10mm以上であるとより好適である。幅W0が0.05mm以上の場合、高性能な3Dプリンタの解像度で造形可能であり、0.10mm以上の場合、高性能な3Dプリンタだけでなく汎用の3Dプリンタの解像度でも造形可能である。
一方、多孔質構造体1の外縁(外輪郭)形状の精度を向上させる観点や、セル孔C間の隙間(間隔)を小さくする観点や、クッション材としての特性を良好にする観点からは、骨一定部2B1の幅W0(図11)は、0.05mm以上2.0mm以下であると好適である。
なお、骨格部2を構成する各骨部2Bがこの構成を満たしていると好適であるが、骨格部2を構成する各骨部2Bのうち一部の骨部2Bのみが、この構成を満たしていてもよく、その場合でも、程度の差はあり得るものの、同様の効果が得られる。
図11に示すように、本例において、骨格部2を構成する各骨部2Bは、骨変化部2B2が、その側面に、1又は複数(本例では、3つ)の傾斜面2B23を有しており、この傾斜面2B23は、骨変化部2B2の延在方向に対して傾斜(90°未満で傾斜)しているとともに、骨一定部2B1から結合部2Jに向かうにつれて、幅W2が徐々に増大している。
これによっても、外力が加わる際に、骨部2Bが、骨一定部2B1と骨変化部2B2との境界近傍におけるくびれた部分で、座屈変形しやすくなり、ひいては、多孔質構造体1が圧縮変形しやすくなる。これにより、多孔質構造体1の表面のタッチ感がより柔らかくなる。
ここで、骨変化部2B2の延在方向は、骨変化部2B2の中心軸線(骨格線O)の延在方向である。また、骨変化部2B2の傾斜面2B23の幅W2は、骨変化部2B2の骨格線Oに垂直な断面に沿って測ったときの、傾斜面2B23の幅を指す。
なお、本例に限らず、骨格部2を構成する各骨部2Bのうち一部の骨部2Bのみが、この構成を満たしていてもよく、その場合でも、程度の差はあり得るものの、同様の効果が得られる。
本例において、骨格部2を構成する各骨部2Bにおいて、骨一定部2B1と骨変化部2B2は、それぞれの断面形状が、正三角形である。
これにより、多孔質構造体1の構造がシンプルになり、3Dプリンタによる造形がしやすくなる。また、化学反応によって発泡させる工程を経て製造された一般的なポリウレタンフォームでの機械特性を再現しやすい。また、このように骨部2Bを柱状に構成することにより、仮に骨部2Bを薄い膜状の部分に置き換えた場合に比べて、多孔質構造体1の耐久性を向上できる。
なお、骨一定部2B1、骨変化部2B2の断面形状は、それぞれ、骨一定部2B1、骨変化部2B2の中心軸線(骨格線O)に垂直な断面における形状である。
なお、本例に限らず、骨格部2を構成する各骨部2Bのうち一部の骨部2Bのみが、この構成を満たしていてもよく、その場合でも、程度の差はあり得るものの、同様の効果が得られる。
また、骨格部2を構成する各骨部2Bのうち全部又は一部の骨部2Bにおいて、骨一定部2B1と骨変化部2B2は、それぞれの断面形状が、正三角形以外の多角形(正三角形以外の三角形、四角形等)でもよいし、あるいは、円形(真円形、楕円形等)でもよく、その場合でも、本例と同様の効果が得られる。また、骨一定部2B1と骨変化部2B2は、それぞれの断面形状が互いに異なるものでもよい。
本実施形態においては、多孔質構造体1の体積VSのうち、骨格部2の占める体積VBの割合(VB×100/VS[%])が、3〜10%である。この構成により、多孔質構造体1に外力が付加されたときに多孔質構造体1に生じる反力、ひいては、多孔質構造体1の硬さを、クッション材として、特には着座用のクッション材(シートパッド等)として、さらに特には車両用のシートパッドとして、良好なものにすることができる。また、この構成によれば、3Dプリンタによる造形がしやすくなる。
ここで、「多孔質構造体1の体積VS」とは、多孔質構造体1の外縁(外輪郭)によって囲まれた内部空間の全体(骨格部2の占める体積と、後述の膜3が設けられる場合は膜3の占める体積と、空隙の占める体積との合計)の体積を指している。
多孔質構造体1を構成する材料を同じとして考えたとき、多孔質構造体1の体積VSのうち、骨格部2の占める体積VBの割合が高いほど、多孔質構造体1は硬くなる。また、多孔質構造体1の体積VSのうち、骨格部2の占める体積の割合VBが低いほど、多孔質構造体1は柔らかくなる。
多孔質構造体1に外力が付加されたときに多孔質構造体1に生じる反力、ひいては、多孔質構造体1の硬さを、クッション材として、特には着座用のクッション材として、良好なものにする観点からは、多孔質構造体1の体積VSのうち、骨格部2の占める体積VBの割合が、4〜8%であると、より好適である。
なお、多孔質構造体1の体積VSのうち、骨格部2の占める体積VBの割合を調整する方法としては、任意の方法を用いてよいが、例えば、多孔質構造体1の各単位部Uの寸法を変えずに、骨格部2を構成する一部又は全部の骨部2Bの太さ(断面積)、及び/又は、骨格部2を構成する一部又は全部の結合部Jの大きさ(断面積)を、調整する方法が挙げられる。
その一例として、図13に示す第2変形例では、点線で示すように、骨格部2を構成する各骨部2Bの太さ(断面積)、及び、骨格部2を構成する各結合部Jの大きさ(断面積)を、実線で示す多孔質構造体1(図8の例)よりも増大させることにより、多孔質構造体1の体積VSのうち、骨格部2の占める体積VBの割合を増大させている。
多孔質構造体1が車両用シートパッドに利用される場合、多孔質構造体1の25%硬度は、60〜500Nが好適であり、100〜450Nがより好適である。ここで、多孔質構造体1の25%硬度(N)は、インストロン型圧縮試験機を用いて、23℃、相対湿度50%の環境にて、多孔質構造体を25%圧縮するのに要する荷重(N)を測定して得られる測定値であるものとする。
図1〜図4に示すように、本実施形態において、多孔質構造体1は、第1セル孔C1と、第1セル孔C1よりも直径の小さな第2セル孔C2との、2種類のセル孔Cを有している。 本例において、各セル孔C(第1セル孔C1及び第2セル孔C2)は、それぞれ、略多面体の形状をなしている。より具体的には、本例において、第1セル孔C1は、略ケルビン14面体(切頂8面体)の形状をなしている。ケルビン14面体(切頂8面体)は、6つの正4角形の構成面と8つの正6角形の構成面とから構成される、多面体である。本例において、第2セル孔C2は、略8面体の形状をなしている。ただし、図の例では、各骨部2Bが、骨一定部2B1だけでなく、その両側に骨変化部2B2を有していることから、第1セル孔C1、第2セル孔C2の形状は、それぞれ、数学的な(完全な)ケルビン14面体、8面体をなしているわけではない。多孔質構造体1を構成するセル孔Cは、概略的に言えば、多孔質構造体1の外縁(外輪郭)により囲まれた内部空間を空間充填するように(セル孔C間の隙間(間隔)を小さくするように)、規則性をもって配列されている。第2セル孔C2は、第1セル孔C1どうしの間のわずかな隙間(間隔)を埋めるように、配置されている。ただし、本例においては、特に図4及び図9から判るように、第2セル孔C2は、その一部分が、第1セル孔C1の内部に入っており、すなわち、第1セル孔C1と第2セル孔C2とが、一部分で重複している。
本例のように、多孔質構造体1の一部または全部(本例では、全部)のセル孔Cの形状を略多面体とすることにより、多孔質構造体1を構成するセル孔C間の隙間(間隔)をより小さくすることが可能になり、より多くのセル孔Cを多孔質構造体1の内部に形成することができる。また、これにより、外力の付加・解除に応じた多孔質構造体1の圧縮・復元変形の挙動が、クッション材として、特には着座用のクッション材として、より良好になる。
セル孔Cのなす多面体形状としては、本例に限らず、任意のものが可能である。例えば、第1セル孔C1の形状を略4面体、略8面体又は略12面体とした場合も、セル孔C間の隙間(間隔)を小さくする観点から好適である。また、多孔質構造体1の一部または全部のセル孔Cの形状が、略多面体以外の立体形状(例えば、球、楕円体、円柱等)でもよい。また、多孔質構造体1は、1種類のセル孔Cのみ(例えば、第1セル孔C1のみ)を有していてもよいし、あるいは、3種類以上のセル孔Cを有していてもよい。なお、本例のように、第1セル孔C1の形状を略ケルビン14面体(切頂8面体)とした場合は、他の形状に比べて、化学反応によって発泡させる工程を経て製造された一般的なポリウレタンフォームと同等のクッション材の特性を、最も再現し易い。
本例において、1つの第1セル孔C1は、X、Y、Zの各方向にそれぞれ2個ずつ配列された、計8個の単位部Uから、構成されている。また、1個の単位部Uは、複数の第1セル孔C1のそれぞれの一部分を構成している。一方、第2セル孔C2は、1つの単位部Uにつき2個ずつ配置されている。
ただし、本例に限らず、多孔質構造体1の各セル孔Cは、それぞれ、任意の数の単位部Uから構成されてもよいし、また、各単位部Uは、それぞれ、任意の数のセル孔Cを構成してもよい。
図1〜図4に示すように、本例において、骨格部2は、第1セル孔C1を内部に区画する第1セル区画部21を複数(第1セル孔C1の数だけ)有している。
図1、図2、図5、図7〜図10に示すように、各第1セル区画部21は、それぞれ、複数(本例では、14つ)の第1環状部211を有している。各第1環状部211は、それぞれ、環状に構成されており、それぞれの内周側縁部2111によって、略平な第1仮想面V1を区画している。第1セル区画部21を構成する複数の第1環状部211は、それぞれの内周側縁部2111によって区画する第1仮想面V1どうしが交差しないように互いに連結されている。
第1セル孔C1は、第1セル区画部21を構成する複数の第1環状部211と、これら複数の第1環状部211がそれぞれ区画する複数の第1仮想面V1とによって、区画されている。概略的に言えば、第1環状部211は、第1セル孔C1のなす立体形状の辺を区画する部分であり、第1仮想面V1は、第1セル孔C1のなす立体形状の構成面を区画する部分である。
各第1環状部211は、それぞれ、複数の骨部2Bと、これらの複数の骨部2Bの端部2Beどうしを結合する複数の結合部2Jと、から構成されている。
互いに連結された一対の第1環状部211どうしの連結部分は、これら一対の第1環状部211に共有される、1つの骨部2Bと、その両側の一対の結合部2Jと、から構成されている。
各第1仮想面V1(ただし、後述の第2仮想面V2も構成するものを除く。)は、それぞれ、第1仮想面V1の一方側の面(第1仮想面V1の表面)によって、ある1つの第1セル孔C1の一部を区画しているとともに、当該第1仮想面V1の他方側の面(第1仮想面V1の裏面)によって、別の第1セル孔C1の一部を区画している。
本例において、各第1仮想面V1は、膜によって覆われておらず、開放されており、すなわち、開口を構成している。このため、第1仮想面V1を通じて、セル孔Cどうしが連通され、セル孔C間の通気が、可能にされている。これにより、多孔質構造体1の通気性を向上できるとともに、外力の付加・解除に応じた多孔質構造体1の圧縮・復元変形がし易くなる。
図1、図2、図5、図7〜図10に示すように、本例において、第1セル区画部21を構成する複数(本例では、14つ)の第1環状部211は、それぞれ、1つ又は複数(本例では、6つ)の第1小環状部211Sと、1つ又は複数(本例では、8つ)の第1大環状部211Lと、を含んでいる。各第1小環状部211Sは、それぞれ、その内周側縁部2111によって、第1小仮想面V1Sを区画している。各第1大環状部211Lは、それぞれ、その内周側縁部2111によって、第1小仮想面V1Sよりも面積の大きな第1大仮想面V1Lを区画している。
図7及び図9には、単位部Uのうち、第1セル区画部21を構成する部分の骨格線Oを示している。図7及び図9から判るように、本例において、第1大環状部211Lは、その骨格線Oが正6角形をなしており、それに伴い、第1大仮想面V1Lも、略正6角形をなしている。また、本例において、第1小環状部211Sは、その骨格線Oが正4角形をなしており、それに伴い、第1小仮想面V1Sも、略正4角形をなしている。このように、本例において、第1小仮想面V1Sと第1大仮想面V1Lとは、面積だけでなく、形状も異なる。
各第1大環状部211Lは、それぞれ、複数(本例では、6つ)の骨部2Bと、これらの複数の骨部2Bの端部2Beどうしを結合する複数(本例では、6つ)の結合部2Jと、から構成されている。各第1小環状部211Sは、それぞれ、複数(本例では、4つ)の骨部2Bと、これらの複数の骨部2Bの端部2Beどうしを結合する複数(本例では、4つ)の結合部2Jと、から構成されている。
第1セル区画部21を構成する複数の第1環状部211が、大きさの異なる第1小環状部211Sと第1大環状部211Lとを含むことにより、多孔質構造体1を構成する第1セル孔C1間の隙間(間隔)をより小さくすることが可能になる。また、本例のように、第1小環状部211Sと第1大環状部211Lとの形状が異なる場合、多孔質構造体1を構成する第1セル孔C1間の隙間(間隔)をさらに小さくすることが可能になる。
ただし、第1セル区画部21を構成する複数の第1環状部211は、それぞれ、大きさ及び/又は形状が互いに同じでもよい。第1セル区画部21を構成する各第1環状部211の大きさ及び形状が同じである場合、X-Y-Zそれぞれの方向に等しい機械特性を得ることができる。
本例のように、第1セル区画部21を構成する各第1仮想面V1のうち、一部又は全部(本例では全部)の第1仮想面V1が、略多角形状をなすことにより、多孔質構造体1を構成するセル孔Cどうしの間隔をより小さくすることが可能になる。また、外力の付加・解除に応じた多孔質構造体1の圧縮・復元変形の挙動が、クッション材として、特には着座用のクッション材として、より良好になる。また、第1仮想面V1の形状がシンプルになるので、製造性や特性の調整のし易さを向上できる。なお、多孔質構造体1を構成する各第1仮想面V1のうち、少なくとも1つの第1仮想面V1が、この構成を満たしている場合は、程度の差はあり得るものの、同様の効果が得られる。
なお、多孔質構造体1を構成する各第1仮想面V1のうち、少なくとも1つの第1仮想面V1が、本例のような略正6角形、略正4角形以外の任意の略多角形状、あるいは、略多角形状以外の平面形状(例えば、円(真円、楕円等))をなしてもよい。第1仮想面V1の形状が円(真円、楕円等)である場合は、第1仮想面V1の形状がシンプルになるので、製造性や特性の調整のし易さを向上できるとともに、より均質な機械特性が得られる。例えば、第1仮想面V1の形状が、荷重が掛かる方向に対して略垂直な方向に長い楕円(横長の楕円)である場合は、荷重が掛かる方向に略平行な方向に長い楕円(縦長の楕円)である場合に比べて、当該第1仮想面V1を区画する第1環状部211が、ひいては、多孔質構造体1が、荷重の入力に対して変形し易くなる(柔らかくなる)。
図1〜図4に示すように、本例において、骨格部2は、第2セル孔C2を内部に区画する第2セル区画部22を複数(第2セル孔C2の数だけ)有している。
図1、図2、図5〜図10(特に図6)に示すように、各第2セル区画部22は、それぞれ、複数(本例では、2つ)の第2環状部222を有している。各第2環状部222は、それぞれ、環状に構成されており、それぞれの内周側縁部2221によって、略平な第2仮想面V2を区画している。第2セル区画部22を構成する各第2環状部222は、それぞれの内周側縁部2221によって区画する第2仮想面V2どうしが交差(本例では、直交)するように互いに連結されている。
第2セル孔C2は、第2セル区画部22を構成する各第2環状部のそれぞれの内周側縁部2221と、これらの内周側縁部2221どうしを滑らかに連結する仮想面とによって、区画されている。
図6には、単位部Uのうち、第2セル区画部22を構成する部分の骨格線Oを示している。図6から判るように、本例において、第2セル区画部22を構成する各第2環状部222は、それぞれ、その骨格線Oが正4角形をなしており、それに伴い、第2仮想面V2も、略正4角形をなしている。
各第2環状部222は、それぞれ、複数(本例では、4つ)の骨部2Bと、これらの複数の骨部2Bの端部2Beどうしを結合する複数(本例では、4つ)の結合部2Jと、から構成されている。
本例において、第2セル区画部22を構成する各第2環状部222どうしの連結部分は、各第2環状部222に共有される、2つの結合部Jで構成されている。
また、本例において、第2セル区画部22を構成する各第2仮想面V2の形状及び面積は、互いに同じである。
なお、第2セル区画部22を構成する各第2仮想面V2の形状は、本例に限らず、略正4角形以外の任意の略多角形状、あるいは、略多角形状以外の平面形状(例えば、円(真円、楕円等))をなしてよい。第2仮想面V2の形状が略多角形状あるいは円(真円、楕円等)である場合は、第2仮想面V2の形状がシンプルになるので、製造性や特性の調整のし易さを向上できる。例えば、第2仮想面V2の形状が、荷重が掛かる方向に対して略垂直な方向に長い楕円(横長の楕円)である場合は、荷重が掛かる方向に略平行な方向に長い楕円(縦長の楕円)である場合に比べて、当該第2仮想面V2を区画する第2環状部222が、ひいては、多孔質構造体1が、荷重の入力に対して変形し易くなる(柔らかくなる)。
図6、図9に示すように、本例において、第2セル区画部22を構成する2つの第2環状部222のうちの1つは、第1環状部211(より具体的には、第1小環状部211S)をも構成している。
本例において、各第2仮想面V2は、膜によって覆われておらず、開放されており、すなわち、開口を構成している。このため、第2仮想面V2を通じて、セル孔Cどうし(特に、第1セル孔C1及び第2セル孔C2どうし)が連通され、セル孔C間の通気が、可能にされている。これにより、多孔質構造体1の通気性を向上できるとともに、外力の付加・解除に応じた多孔質構造体1の圧縮・復元変形がし易くなる。
本明細書で説明する各例において、多孔質構造体1は、直径が5mm以上のセル孔Cを少なくとも1つ有すると、好適である。これにより、3Dプリンタを用いた多孔質構造体1の製造が実現し易くなる。多孔質構造体1の各セル孔Cの直径が5mm未満であると、多孔質構造体1の構造が複雑になりすぎる結果、多孔質構造体1の3次元形状を表す3次元形状データ(CADデータ等)、あるいは、その3次元形状データに基づき生成される3D造形用データを、コンピュータ上で生成するのが難しくなるおそれや、仮にそれらを生成できたとしても、その3D造形用データに従って3Dプリンタが造形するのが難しくなるおそれがある。
なお、従来のクッション性を有する多孔質構造体は、上述のように、化学反応によって発泡させる工程を経て製造されていたため、直径が5mm以上のセル孔Cを形成することはできなかった。しかし、本発明の発明者は、多孔質構造体が直径5mm以上のセル孔Cを有する場合でも、クッション材としての特性として従来と同等のものが得られることを、新たに見い出した。そして、多孔質構造体が直径5mm以上のセル孔Cを有するようにすることにより、3Dプリンタによる製造がし易くなるのである。
また、多孔質構造体1が直径5mm以上のセル孔Cを有することにより、多孔質構造体1の通気性や変形し易さを向上しやすくなる。
セル孔Cの直径が大きくなるほど、3Dプリンタを用いた多孔質構造体1の製造が実現し易くなり、また、通気性や変形し易さを向上しやすくなる。このような観点から、多孔質構造体1は、少なくとも1つのセル孔Cの直径が、より好適には8mm以上、であるとよい。
一方、多孔質構造体1のセル孔Cが大きすぎると、多孔質構造体1の外縁(外輪郭)形状をきれいに(滑らかに)形成するのが難しくなり、例えば多孔質構造体1をシートパッドに適用する場合等に、形状精度が低下し外観が悪化するおそれがある。また、クッション材としての特性も、十分に良好でなくなるおそれがある。よって、外観やクッション材としての特性を向上させる観点から、多孔質構造体1の各セル孔Cの直径は、好適には30mm未満、より好適には25mm以下、さらに好適には20mm以下であるとよい。
なお、多孔質構造体1は、上記の数値範囲を満たすセル孔Cを多く有するほど、上記の各効果が得られやすくなる。この観点からは、多孔質構造体1を構成する複数のセル孔Cのうち、少なくとも各第1セル孔C1の直径が、上記の少なくともいずれか1つの数値範囲を満たすと、好適である。また、多孔質構造体1を構成する各セル孔C(各第1セル孔C1及び各第2セル孔C2)の直径が、上記の少なくともいずれか1つの数値範囲を満たすと、より好適である。
なお、セル孔Cの直径は、本例のようにセル孔Cが厳密な球形状とは異なる形状をなす場合、セル孔Cの外接球の直径を指す。
多孔質構造体1のセル孔Cが小さすぎると、3Dプリンタを用いた多孔質構造体1の製造がしにくくなる。3Dプリンタを用いた多孔質構造体1の製造を容易にする観点から、多孔質構造体1を構成する各セル孔Cのうち、最小の直径を有するセル孔C(本例では、第2セル孔C2)の直径が、0.05mm以上であると好適であり、0.10mm以上であるとより好適である。最小の直径を有するセル孔C(本例では、第2セル孔C2)の直径が、0.05mm以上の場合、高性能な3Dプリンタの解像度で造形可能であり、0.10mm以上の場合、高性能な3Dプリンタだけでなく汎用の3Dプリンタの解像度でも造形可能である。
図14に示す第3変形例のように、多孔質構造体1は、多孔質構造体1を構成する各第1仮想面V1のうちの少なくとも1つが、膜3で覆われていてもよい。膜3は、骨格部2と同じ材料からなり、骨格部2と一体に構成される。膜3によって、第1仮想面V1を間に挟んだ2つの第1セル孔C1どうしが非連通状態になり、ひいては、多孔質構造体1の全体としての通気性が低下する。多孔質構造体1を構成する各第1仮想面V1のうち、膜3で覆われたものの数を調整することにより、多孔質構造体1の全体としての通気性を調整でき、要求に応じて様々な通気性レベルを実現可能である。例えば、多孔質構造体1が車両用シートパッドに利用される場合、多孔質構造体1の通気性を調整することにより、車内のエアコンの効きを高めたり、耐ムレ性を高めたり、乗り心地を高めることができる。多孔質構造体1が車両用シートパッドに利用される場合、車内のエアコンの効き及び耐ムレ性を高めるとともに、乗り心地を高める観点からは、多孔質構造体1を構成する各第1仮想面V1の全てが膜3で覆われているのは好ましくなく、言い換えれば、多孔質構造体1を構成する各第1仮想面V1のうち少なくとも1つが膜3で覆われておらず開放されていることが好ましい。
多孔質構造体1が車両用シートパッドに利用される場合、車内のエアコンの効き及び耐ムレ性を高めたり、乗り心地を高める観点からは、多孔質構造体1の通気性は、100〜700cc/cm/secが好適であり、150〜650cc/cm/secがより好適であり、200〜600cc/cm/secがさらに好適である。ここで、多孔質構造体1の通気性(cc/cm/sec)は、JIS K 6400-7に準拠して測定されるものとする。また、多孔質構造体1が車両用シートパッドに利用される場合、多孔質構造体1の共振倍率は、3倍以上8倍未満が好適であり、3倍以上5倍以下がより好適である。
なお、従来の多孔質構造体は、上述のように、化学反応によって発泡させる工程を経て製造されていたため、各セルどうしを連通する連通孔における膜を、所期したとおりの位置及び個数で形成することは難しかった。本例のように、多孔質構造体1を3Dプリンタで製造する場合は、3Dプリンタに読み込まれる3D造形用データに、予め膜3の情報も含めることで、確実に、所期したとおりの位置及び個数で膜3を形成することが可能である。
同様の観点から、多孔質構造体1を構成する各第1小仮想面V1Sのうちの少なくとも1つが、膜3で覆われていてもよい。かつ/又は、多孔質構造体1を構成する各第1大仮想面V1Lのうちの少なくとも1つが、膜3で覆われていてもよい。
上述したように、本発明の多孔質構造体は、クッション材に用いられるのが好適であり、着座用のクッション材(シートパッド等)に用いられるのがより好適であり、車両用シートパッドに用いられるのがさらに好適である。
一例として、図15に、図1の例の多孔質構造体1を備えた車両用シートパッド300を示す。図15の例における車両用シートパッド300は、着座者が着座するためのクッションパッド310と、着座者の背中を支持するためのバックパッド320と、を備えている。
図15では、車両用シートパッド300に着座した着座者から観たときの「上」、「下」、「左」、「右」、「前」、「後」の各方向を、表記している。
クッションパッド310は、着座者の臀部及び大腿部が載るように構成されたメインパッド部311と、メインパッド部311の左右両側に位置する一対のサイドパッド部322と、を有している。
図15の例では、クッションパッド310とバックパッド320とが、それぞれ、別々の(別部材としての)多孔質構造体1から構成されている。クッションパッド310は、その全体が一体に構成されている。また、バックパッド320は、その全体が一体に構成されている。
クッションパッド310及びバックパッド320を構成する多孔質構造体1は、それぞれ、3Dプリンタによって造形されたものである。
つぎに、図16を参照しつつ、本発明の一実施形態に係る多孔質構造体の製造方法を説明する。図16では、図15に示すクッションパッド310又はバックパッド320を構成する本発明の一実施形態に係る多孔質構造体1を、3Dプリンタにより製造する様子を一例として示している。
まず、事前に、コンピュータを用いて、多孔質構造体1の3次元形状を表す3次元形状データ(例えば、3次元CADデータ)を作成する。
つぎに、コンピュータを用いて、上記3次元形状データを、3D造形用データ500に変換する。3D造形用データ500は、3Dプリンタ400の造形部420が造形を行う際に3Dプリンタ400の制御部410に読み込まれるものであり、制御部410が、造形部420に、多孔質構造体1を、造形させるように構成されている。3D造形用データ500は、例えば、多孔質構造体1の各層の2次元形状を表すスライスデータを含む。
つぎに、3Dプリンタ400によって多孔質構造体1の造形を行う。3Dプリンタ400は、例えば、光造形方式、粉末焼結積層方式、熱溶融積層方式(FDM方式)、インクジェット方式等、任意の造形方式を用いて造形を行ってよい。図16では、熱溶融積層方式(FDM方式)によって造形を行う様子を示している。
3Dプリンタ400は、例えば、CPU等によって構成された制御部410と、制御部410による制御に従って造形を行う造形部420と、造形される造形物(すなわち、多孔質構造体1)を載せるための支持台430と、支持台430及び造形物が収容される収容体440と、を備える。造形部420は、本例のように熱溶融積層方式(FDM方式)を用いる場合、最終的に造形物(すなわち、多孔質構造体1)を構成するメイン材MMを吐出するように構成されたメイン材ノズル421と、造形中にメイン材MMを支持するサポート材SMを吐出するように構成されたサポート材ノズル422と、を有している。メイン材MMとしては、可撓性のある樹脂又はゴムを用いるのがよいが、特に、可撓性のある樹脂を用いるのが好適である。
このように構成された3Dプリンタ400は、まず、制御部410が、3D造形用データ500を読み込み、読み込んだ3D造形用データ500に含まれる3次元形状に基づいて、造形部420にメイン材MM、サポート材SMを吐出させるよう制御しながら、各層を順次造形していく。このとき、多孔質構造体1のうち、空隙以外の部分(すなわち、骨格部2や膜3)を、メイン材MMによって造形し、多孔質構造体1の空隙部分を、サポート材SMによって形成する。
3Dプリンタ400による造形が完了した後は、造形物からサポート材SMを除去する。それにより、最終的に、造形物として、多孔質構造体1(ひいては、クッションパッド310又はバックパッド320)が得られる。
なお、多孔質構造体1を樹脂で構成する場合、3Dプリンタ400による造形が完了した後に、造形物としての多孔質構造体1を、オーブンの中で加熱してもよい。その場合、多孔質構造体1を構成する各層どうしの結合を強化し、それにより多孔質構造体1の異方性を低減できるので、多孔質構造体1のクッション材としての特性をさらに向上できる。
また、多孔質構造体1をゴムで構成する場合、3Dプリンタ400による造形が完了した後に、造形物としての多孔質構造体1を加硫してもよい。
なお、図17に示す変形例のように、3Dプリンタ400による造形中に、配合が異なる複数種類の材料をメイン材MMとして用いてもよい。その場合、3Dプリンタ400は、複数のメイン材ノズル421を備えるとよい。これによって、例えば、造形物としての多孔質構造体1を、部位によって異なる配合の材料で構成することが可能になり、ひいては、部位によって特性(硬さ、通気性等)を異ならせることが可能になる。
従来の金型等を用いる製造方法では、多孔質構造体を一体に構成しつつ、部位によって異なる配合の材料で構成することが難しかった。そのため、部位によって異なる配合の材料で構成する際には、異なる配合の材料で構成された複数の別部材の多孔質構造体をそれぞれ別々に製造し、それにより得られた各多孔質構造どうしを、接着剤等により貼り合わせる必要があった。そのため、製造にあたって、時間や手間が掛かっていた。
しかし、3Dプリンタ400を用いれば、簡単に、また、短時間で、構造体を一体に構成しつつ、部位によって異なる配合の材料で構成することが可能になる。
図18(a)は、図15のクッションパッド310の左右方向に平行なG−G線に沿った断面の一例を示している。図18(a)の例では、クッションパッド310を構成する多孔質構造体1が、メインパッド部311の表面側部分を構成する第1部分11と、サイドパッド部312を構成する第2部分12と、メインパッド部311の裏面側部分を構成する第3部分13と、を有しており、これらが一体に構成されている。
このとき、第2部分12は、第1部分11よりも硬いと、好適である。これにより、着座者が、左右両側のサイドパッド部312によって、しっかりとホールドされている感覚を得ることができる。
また、第1部分11は、第3部分13よりも硬いと、好適である。これにより、着座者が着座する際に、着座者が、着座し始めは柔らかく、後のほうで硬くなるような、着座感を感じることができる。
なお、第2部分12と第3部分13は、硬さが同じでもよい。
また、メインパッド部311の全体が、同じ硬さに構成されてもよい。
多孔質構造体1の第1部分11、第2部分12、第3部分13の硬さを上述のように調整する方法としては、例えば、図17の例の製造方法を用いることにより、多孔質構造体1における第1部分11、第2部分12、第3部分13のそれぞれを構成する材料を異ならせる方法や、それに加えて/代えて、多孔質構造体1における第1部分11、第2部分12、第3部分13のそれぞれの、構成(骨格部2の構成(各セル孔の直径や形状、各骨部2Bの比A0/A1、各骨一定部2B1の幅W0等)、膜3の有無や数、各部分の体積のうち骨格部2の占める体積の割合等)を異ならせる方法を、用いるとよい。
図18(b)は、図15のバックパッド320の左右方向に平行なH−H線に沿った断面の一例を示している。図18(b)の例では、バックパッド320を構成する多孔質構造体1が、メインパッド部321を構成する第1部分11と、サイドパッド部322を構成する第2部分12と、を有しており、これらが一体に構成されている。
このとき、第2部分12は、第1部分11よりも硬いと、好適である。これにより、着座者が、左右両側のサイドパッド部322によって、しっかりとホールドされている感覚を得ることができる。
多孔質構造体1の第1部分11、第2部分12の硬さを上述のように調整する方法としては、図18(a)の例と同様に、例えば、多孔質構造体1における第1部分11、第2部分12のそれぞれを構成する材料を異ならせる方法や、それに加えて/代えて、多孔質構造体1における第1部分11、第2部分12のそれぞれの、構成(骨格部2の構成(各セル孔の直径や形状、各骨部2Bの比A0/A1、各骨一定部2B1の幅W0等)、膜3の有無や数、各部分の体積のうち骨格部2の占める体積の割合等)を異ならせる方法を、用いるとよい。
本発明の多孔質構造体の比較例、実施例を、解析や実験により評価したので、以下に説明する。
[実施例1〜2]
本発明の多孔質構造体の実施例1〜2の3D−CADモデルをPC上で作成した。実施例1〜2の多孔質構造体のモデルは、いずれも、図1〜図10に示す例の形状を有しており、それぞれを構成する材料の物性(剛性等)は同じであった。実施例1〜2の多孔質構造体のモデルの体積は、一般的なシートパッド(より具体的には車両用シートパッド)と同等に、約1000cm3とした。実施例1〜2の多孔質構造体のモデルは、それぞれの単位部Uの寸法が互いに異なり、それに伴い、それぞれの第1セル区画部21及び第2セル区画部22の大きさや骨格部2の太さが互いに異なるものであった。実施例1〜2のモデルは、いずれも、多孔質構造体1の体積VSのうち、骨格部2の占める体積VBの割合(VB×100/VS [%])が、3〜10%の範囲内だった。
表1は、実施例1〜2のモデルにおける、各第1セル孔C1の直径と各骨一定部2B1の幅W0とを、示している。
実施例1〜2の各例について、製造性と、シートパッドに適用した場合の形状精度とを、評価した。
(製造性の評価)
製造性の評価では、各例の多孔質構造体のモデルを処理するPC(パーソナル・コンピュータ)への負荷が現実的であるかにつき評価した。近年において一般的なCAD用PCで処理できる場合は「○」と評価し、近年において比較的高いスペックを持つPCであれば処理できる場合には「△」と評価し、近年において比較的高いスペックを持つPCであっても処理できない(処理速度が極端に遅くなる、フリーズする等)場合には「×」と評価した。その結果を表1に示す。製造性の評価が高いほど、近年のコンピュータ処理能力を考慮した場合に、多孔質構造体の3次元形状を表す3次元形状データ(CADデータ)、及び、その3次元形状データに基づき生成される3D造形用データを、コンピュータ上で生成しやすく、また、その3D造形用データに従って3Dプリンタが造形しやすいことを意味する。
(シートパッドに適用した場合の形状精度の評価)
シートパッドに適用した場合の形状精度の評価では、各例の多孔質構造体のモデルの外縁(外輪郭)形状を、シートパッド(より具体的には車両用シートパッド)の形状にした場合に、求められる形状精度が得られるかについて評価した。一般的なシートパッドにおいて求められる形状(最小の曲率半径が約10mm程度)を形成できる場合は「○」と評価し、一般的なシートパッドにおいて求められる形状を形成することが難しい場合は「×」と評価した。その結果を表1に示す。シートパッドに適用した場合の形状精度の評価が高いほど、多孔質構造体をシートパッドに適用した場合の外観を向上できることを意味する。
表1からわかるように、直径が5mm以上のセル孔を有する実施例1〜2は、十分に良好な製造性が得られるとともに、シートパッドに適用した場合の形状精度ひいては外観も良好になる。
[実施例3〜5]
本発明の多孔質構造体の実施例3〜5の3D−CADモデルをPC上で作成した。実施例3の多孔質構造体のモデルは、図1〜図10に示す例の形状を有していた。実施例4、5の多孔質構造体のモデルは、それぞれ、実施例3に対し、各骨部2Bの両側の端2B21の断面積A1に対する、骨一定部2B1の断面積A0の比A0/A1のみが、異なるものだった。実施例3〜5の多孔質構造体のモデルは、それぞれの体積や各単位部Uの寸法、それぞれを構成する材料の物性(剛性等)が、同じであった。実施例4の多孔質構造体のモデルは、図12に一部点線で示す例の形状を有していた。実施例3〜5のモデルは、いずれも、多孔質構造体1の体積VSのうち、骨格部2の占める体積VBの割合(VB×100/VS [%])が、3〜10%の範囲内だった。
表2は、実施例3〜5のモデルにおける、各骨部2Bの比A0/A1を、示している。
実施例3〜5の各例について、表面のタッチ感を、評価した。
(表面のタッチ感の評価)
表面のタッチ感の評価では、各例の多孔質構造体のモデルについて、荷重−たわみ線図を解析により作成し、作成した荷重−たわみ線図の初期(荷重掛け始め)の傾きを、表面のタッチ感として評価した。その結果を表2に示す。表面のタッチ感が柔らかいものほど、着座する際の、着座し始めのタイミングで、着座者に、より柔らかい感触を与える。
表2からわかるように、実施例3〜5において、比A0/A1が小さいものほど、表面のタッチ感が柔らかかった。柔らかい表面のタッチ感は、高級車の着座者(例えば運転手付きで後部座席に人を乗せる場合、後部座席に座る着座者)に好まれるものであるため、表面のタッチ感が最も柔らかい実施例3は、高級車のシートパッドへの適用性が優れている。一方、硬い表面のタッチ感は、素早い加減速や斜線変更を行うようなスポーツ車の着座者に好まれるものであるため、表面のタッチ感が最も硬い実施例5は、スポーツ車のシートパッドへの適用性が優れている。表面のタッチ感が中程度である実施例4は、高級車及びスポーツ車の両方のシートパッドへの適用性がよい。
[実施例6〜8、比較例1]
本発明の多孔質構造体の実施例6〜8、比較例1を試作した。実施例6〜8、比較例1の多孔質構造体は、図1〜図10に示す例の形状を有しており、多孔質構造体1の体積VSのうち、骨格部2の占める体積VBの割合(VB×100/VS [%])のみが、互いに異なるものだった。実施例6〜8、比較例1の多孔質構造体は、それぞれの体積や各単位部Uの寸法、それぞれを構成する材料の物性(剛性等)が、同じであった。
表3は、実施例6〜8、比較例1における、多孔質構造体1の体積VSのうち、骨格部2の占める体積VBの割合(VB×100/VS [%])を、示している。
実施例6〜8、比較例1の各例について、25%硬度を、評価した。
(25%硬度の評価)
各例の多孔質構造体について、インストロン型圧縮試験機を用いて、23℃、相対湿度50%の環境にて、多孔質構造体を25%圧縮するのに要する荷重(N)を測定し、その測定値を、25%硬度とした。その結果を表3に示す。
表3からわかるように、実施例6〜8、比較例1においては、VB×100/VSの値が高くなるほど、25%硬度が高くなり、ひいては、多孔質構造体が硬くなった。実施例6〜8における25%硬度は、クッション材として、特には着座用のクッション材(シートパッド等)として、さらに特には車両用のシートパッドとして、良好なものであり、特に、そのうち実施例6〜7の25%硬度は、より良好なものであり、実施例7の25%硬度は最も良好であった。比較例1における25%硬度は、700Nと高く、クッション性が悪かった。
[実施例9〜11]
本発明の多孔質構造体の実施例9〜11を試作した。実施例9〜11の多孔質構造体は、骨格部2が図1〜図10に示す例の形状を有しており、また、図14の例のように、多孔質構造体を構成する各第1仮想面V1における膜3の有無や数のみが、互いに異なるものであり、それにより、多孔質構造体の通気性が互いに異なるものであった。実施例9〜11は、いずれも、多孔質構造体を構成する各第1仮想面V1のうちの一部が膜3で覆われており、実施例9よりも実施例10のほうが、そして、実施例10よりも実施例11のほうが、膜3で覆われた第1仮想面V1の数(ひいては、膜3の数)が少なかった。実施例9〜11の多孔質構造体は、それぞれの体積や各単位部Uの寸法、それぞれを構成する材料の物性(剛性等)が、同じであった。実施例9〜11は、いずれも、多孔質構造体1の体積VSのうち、骨格部2の占める体積VBの割合(VB×100/VS [%])が、3〜10%の範囲内だった。
表4は、実施例9〜11の各例の通気性を示している。表4に示す通気性は、JIS K 6400-7に準拠して測定した。
実施例9〜11の各例について、シートパッドに適用した場合のエアコンの効き及び耐ムレ性と、シートパッドに適用した場合の乗り心地とを、評価した。
(シートパッドに適用した場合のエアコンの効き及び耐ムレ性)
シートパッドに適用した場合のエアコンの効き及び耐ムレ性の評価では、各例の多孔質構造体から、シートパッド(より具体的には車両用シートパッド)を作成し、それを車内に設置した上で、試験者が、当該シートパッドの上に着座し、車両が走行する間、車内のエアコンの効き具合や、シートパッドの蒸れにくさ(耐ムレ性)について、総合的に評価した。エアコンの効きや耐ムレ性が、良好である場合は「○」と評価し、中程度である場合は「△」と評価し、良くない場合は「×」と評価した。その結果を表4に示す。
(シートパッドに適用した場合の乗り心地)
シートパッドに適用した場合の乗り心地の評価では、各例の多孔質構造体から、シートパッド(より具体的には車両用シートパッド)を作成し、当該シートパッドの共振倍率を振動試験により求め、求めた共振倍率から、乗り心地を評価した。ここでいう乗り心地とは、当該シートパッドを車内に設置した上で、車両が走行する間にシートパッドの着座者が感じる座り心地を指す。共振倍率が3倍以上5倍以下の範囲内である場合は乗り心地が良好であるという意味で「○」と評価し、共振倍率が5倍超8倍未満の範囲内である場合は、バックパッドとしては良好であるがクッションパッドとしては適さない等、用途が限られるという意味で「△」と評価し、共振倍率が8倍以上である場合は乗り心地が良くないという意味で「×」と評価した。その結果を表4に示す。
表4からわかるように、実施例9〜11は、シートパッドへの適用性が良く、シートパッドに適用した場合のエアコンの効き及び耐ムレ性、ならびに、乗り心地の両方において、良好であった。
本発明の多孔質構造体、及び、本発明の多孔質構造体の製造方法又は3D造形用データを用いて製造される多孔質構造体は、クッション材に用いられるのが好適であり、着座用のクッション材(シートパッド等)に用いられるのがより好適であり、車両用シートパッドに用いられるのがさらに好適である。
1:多孔質構造体、 2:骨格部、 2B:骨部、 2Be:骨部の端部、 2B1:骨一定部、 2B2:骨変化部、 2B21:骨変化部の結合部側の端、 2B22:骨変化部の骨一定部側の端、 2B23:骨変化部の傾斜面、 2J:結合部、 3:膜、 11:多孔質構造体の第1部分、 12:多孔質構造体の第2部分、 13:多孔質構造体の第3部分、 21:第1セル区画部、 22:第2セル区画部、 211:第1環状部、 211L:第1大環状部、 211S:第1小環状部、 2111:第1環状部の内周側縁部、 222:第2環状部、 2221:第2環状部の内周側縁部、 300:車両用シートパッド、 310:クッションパッド、 311:メインパッド部、 312:サイドパッド部、 320:バックパッド、 321:メインパッド部、 322:サイドパッド部、 400:3Dプリンタ、 410:制御部、 420:造形部、 421:メイン材ノズル、 422:サポート材ノズル、 430:支持台、 440:収容体、 MM:メイン材、 SM:サポート材、 500:3D造形用データ、 C:セル孔、 C1:第1セル孔、 C2:第2セル孔、 O:骨格線、 U:多孔質構造体の単位部、 V1:第1仮想面、 V1L:第1大仮想面、 V1S:第1小仮想面、 V2:第2仮想面

Claims (14)

  1. 可撓性のある樹脂又はゴムから構成された多孔質構造体であって、
    前記多孔質構造体は、その全体にわたって、骨格部を備えており、
    前記骨格部は、
    複数の骨部と、
    それぞれ前記複数の骨部の端部どうしを結合する、複数の結合部と、
    から構成されており、
    前記多孔質構造体の体積のうち、前記骨格部の占める体積の割合が、3〜10%であり、
    前記骨格部は、第1セル孔を内部に区画する第1セル区画部を複数有しており、
    各前記第1セル区画部は、それぞれ、それぞれ環状に構成された複数の第1環状部を有しており、
    各前記第1環状部は、それぞれ、その内周側縁部によって、第1仮想面を区画しており、
    各前記第1セル孔は、それぞれ、前記複数の第1環状部と、前記複数の第1環状部がそれぞれ区画する複数の前記第1仮想面とによって、区画されており、
    各前記第1仮想面は、それぞれ、その表裏両側の面によって別々の前記第1セル孔の一部を区画しており、
    前記複数の第1環状部は、それぞれの内周側縁部によって区画する前記第1仮想面どうしが交差しないように互いに連結されており、
    前記第1環状部は、複数の前記骨部と複数の前記結合部とから構成されており、
    各前記第1仮想面は、それぞれ平坦であり、
    前記多孔質構造体は、クッション材に用いられる、多孔質構造体。
  2. 各前記第1環状部は、それぞれ、当該第1環状部に隣接する一対の前記第1セル区画部によって共有されている、請求項1に記載の多孔質構造体。
  3. 前記骨格部は、第2セル孔を内部に区画する第2セル区画部を有しており、
    前記第2セル区画部は、それぞれ環状に構成された複数の第2環状部を有しており、
    前記複数の第2環状部は、それぞれの内周側縁部によって区画する第2仮想面どうしが交差するように互いに連結されており、
    前記第2セル孔は、少なくとも前記複数の第2環状部のそれぞれの内周側縁部によって、区画されており、
    前記第2環状部は、複数の前記骨部と複数の前記結合部とから構成されている、請求項1又は2に記載の多孔質構造体。
  4. 前記第2仮想面は、それぞれ平坦であり、
    前記第1セル孔と前記第2セル孔とは、それぞれの一部分で重複している、請求項に記載の多孔質構造体。
  5. 前記骨部は、
    断面積を一定に保ちつつ延在する、骨一定部と、
    断面積を徐々に変化させつつ、前記骨一定部から前記結合部まで延在する、骨変化部と、
    を有し、
    前記骨一定部は、前記骨変化部及び前記結合部よりも、幅が小さい、請求項1〜のいずれか一項に記載の多孔質構造体。
  6. 前記骨一定部の断面形状は、円形又は多角形である、請求項に記載の多孔質構造体。
  7. 前記骨変化部は、傾斜面を有しており、
    前記傾斜面は、前記骨変化部の延在方向に対して傾斜しているとともに、前記結合部に向かうにつれて、幅が徐々に増大する、請求項又はに記載の多孔質構造体。
  8. 前記骨格部の前記複数の骨部のうち少なくとも一部の骨部が、その少なくとも一部分において、断面積を一定に保ちつつ延在する骨一定部を有しており、
    前記少なくとも一部の骨部のそれぞれにおいて、当該骨部のいずれか一方側の端の断面積A1に対する、当該骨部の前記骨一定部の断面積A0の比A0/A1は、
    0.5≦A0/A1≦2.0
    を満たす、請求項1〜のいずれか一項に記載の多孔質構造体。
  9. 前記多孔質構造体は、シートパッドに用いられる、請求項1〜のいずれか一項に記載の多孔質構造体。
  10. 前記複数の第1環状部は、1つ又は複数の第1小環状部と、1つ又は複数の第1大環状部と、を含んでおり、
    各前記第1小環状部は、それぞれ、その内周側縁部によって、第1小仮想面を区画しており、
    各前記第1大環状部は、それぞれ、その内周側縁部によって、前記第1小仮想面よりも面積の大きな第1大仮想面を区画している、請求項1〜9のいずれか一項に記載の多孔質構造体。
  11. 前記第1小仮想面と前記第1大仮想面とは、互いに形状が異なる、請求項10に記載の多孔質構造体。
  12. 各前記第1セル孔は、それぞれ、略ケルビン14面体の形状をなしている、請求項1〜11のいずれか一項に記載の多孔質構造体。
  13. 前記多孔質構造体は、3Dプリンタによって造形されたものである、請求項1〜12のいずれか一項に記載の多孔質構造体。
  14. 3Dプリンタを用いて、請求項1〜12のいずれか一項に記載の多孔質構造体を製造する、多孔質構造体の製造方法。
JP2018212137A 2018-11-12 2018-11-12 多孔質構造体、多孔質構造体の製造方法、及び、3d造形用データ Active JP6691951B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018212137A JP6691951B2 (ja) 2018-11-12 2018-11-12 多孔質構造体、多孔質構造体の製造方法、及び、3d造形用データ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018212137A JP6691951B2 (ja) 2018-11-12 2018-11-12 多孔質構造体、多孔質構造体の製造方法、及び、3d造形用データ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018108120 Division 2018-06-05 2018-06-05

Publications (2)

Publication Number Publication Date
JP2019210448A JP2019210448A (ja) 2019-12-12
JP6691951B2 true JP6691951B2 (ja) 2020-05-13

Family

ID=68844768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018212137A Active JP6691951B2 (ja) 2018-11-12 2018-11-12 多孔質構造体、多孔質構造体の製造方法、及び、3d造形用データ

Country Status (1)

Country Link
JP (1) JP6691951B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11938854B2 (en) 2018-12-03 2024-03-26 Archem Inc. Resin foamed body

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029064A (ja) * 2007-07-30 2009-02-12 Incs Inc 粉末造形品
CA2992848C (en) * 2015-07-22 2023-08-01 Ask Chemicals, L.P. Ceramic filter and method for forming the filter
ES2775775T3 (es) * 2016-09-13 2020-07-28 Covestro Deutschland Ag Uso de un polímero elástico para la producción de un cuerpo poroso en un procedimiento de fabricación aditiva

Also Published As

Publication number Publication date
JP2019210448A (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
JP7335897B2 (ja) 多孔質構造体、多孔質構造体の製造方法、及び、座席シート用のクッション材
JP6633174B1 (ja) 多孔質構造体、多孔質構造体の製造方法、3d造形用データ、及び、座席シート用のクッション材
WO2020116329A1 (ja) クッション材、クッション材の製造方法、及び、座席シート
JP7389026B2 (ja) 多孔質構造体、多孔質構造体の製造方法、及び、3d造形用データ
JP2020172076A (ja) シートパッドの製造方法、シートパッド、及び、3d造形用データ
JP7389024B2 (ja) 多孔質構造体、多孔質構造体の製造方法、及び、3d造形用データ
JP7389025B2 (ja) 多孔質構造体、多孔質構造体の製造方法、及び、3d造形用データ
JP7225226B2 (ja) 多孔質構造体、多孔質構造体の製造方法、及び、3d造形用データ
JP6691951B2 (ja) 多孔質構造体、多孔質構造体の製造方法、及び、3d造形用データ
WO2020116327A1 (ja) 多孔質構造体の製造方法、多孔質構造体、及び、シートパッド
WO2020208938A1 (ja) 多孔質構造体及び車両用ヘッドレスト
JP7444783B2 (ja) 装填体の製造方法、座席シート用のクッション材の製造方法、及び、装填体
JP7166984B2 (ja) 多孔質構造体、多孔質構造体の製造方法、及び、3d造形用データ
JP7258652B2 (ja) 多孔質構造体、多孔質構造体の製造方法、及び、3d造形用データ
WO2020116325A1 (ja) 樹脂発泡体
JP7469018B2 (ja) クッション材、クッション具、及び、クッション材の製造方法
JP7487028B2 (ja) 多孔質構造体、及び、多孔質構造体の製造方法
JP7512144B2 (ja) 多孔質構造体、及び、多孔質構造体の製造方法
JP7512143B2 (ja) クッション体、及び、クッション体の製造方法
JP7494036B2 (ja) クッション体、及び、クッション体の製造方法
JP6644183B1 (ja) 多孔質構造体、多孔質構造体の製造方法、及び、3d造形用データ
WO2022264447A1 (ja) シートパッド、及び、シートパッドの製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181115

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181115

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R150 Certificate of patent or registration of utility model

Ref document number: 6691951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250