JP6686949B2 - Granulation product manufacturing method - Google Patents

Granulation product manufacturing method Download PDF

Info

Publication number
JP6686949B2
JP6686949B2 JP2017058174A JP2017058174A JP6686949B2 JP 6686949 B2 JP6686949 B2 JP 6686949B2 JP 2017058174 A JP2017058174 A JP 2017058174A JP 2017058174 A JP2017058174 A JP 2017058174A JP 6686949 B2 JP6686949 B2 JP 6686949B2
Authority
JP
Japan
Prior art keywords
sprinkling
outlet temperature
granulator
water
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017058174A
Other languages
Japanese (ja)
Other versions
JP2018158320A (en
Inventor
達哉 海瀬
達哉 海瀬
勝也 木戸
勝也 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017058174A priority Critical patent/JP6686949B2/en
Publication of JP2018158320A publication Critical patent/JP2018158320A/en
Application granted granted Critical
Publication of JP6686949B2 publication Critical patent/JP6686949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/22Extrusion presses; Dies therefor
    • B30B11/227Means for dividing the extruded material into briquets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/08Making granules by agglomerating smaller particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/005Control arrangements
    • B30B11/006Control arrangements for roller presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/20Roller-and-ring machines, i.e. with roller disposed within a ring and co-operating with the inner surface of the ring
    • B30B11/201Roller-and-ring machines, i.e. with roller disposed within a ring and co-operating with the inner surface of the ring for extruding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Glanulating (AREA)

Description

本発明は、廃プラスチックから代替原料に適した造粒物を製造する技術に関する。特に、生活や産業活動などで廃棄されたプラスチックである廃プラスチックを、還元材や燃料などとして再利用しやすく加工した、廃プラスチック製の造粒物の製造方法に関する。   TECHNICAL FIELD The present invention relates to a technique for producing a granulated product suitable as an alternative raw material from waste plastic. In particular, the present invention relates to a method for producing a granulated product made of waste plastic, in which waste plastic, which is plastic discarded in daily life or industrial activities, is processed so as to be easily reused as a reducing material or a fuel.

コークスや微粉炭の代替原料として利用するために、使用済みプラスチック(以下、廃プラとも呼ぶ)を、高炉等の竪型炉に羽口から吹き込む技術が知られている。このように廃プラからなる粒状物を空気輸送して羽口から吹き込むことで、廃プラを、コークス代替品として有効にリサイクル利用することが可能である。また、廃プラの発生量は年々増加しており、より多量にリサイクル利用することが望まれている。また、高炉等で用いる場合は、製鉄コスト削減のためにも廃プラの利用率を高めることが望ましい。   There is known a technique of blowing used plastic (hereinafter also referred to as waste plastic) from a tuyere into a vertical furnace such as a blast furnace in order to use it as an alternative raw material for coke and pulverized coal. In this way, by transporting the granular material made of waste plastic by air and blowing it from the tuyere, the waste plastic can be effectively recycled as a substitute for coke. In addition, the amount of waste plastics generated is increasing year by year, and it is desired to recycle a larger amount. Further, when used in a blast furnace or the like, it is desirable to increase the utilization rate of waste plastic in order to reduce the cost of iron making.

一方で、廃プラは微粉炭等に比較して燃焼性が劣るという課題がある。これに対し、廃プラを多量に炉に吹きこんだ場合に良好なガス化を確実に起こすために、例えば、酸素を炉風に加える技術(特許文献1参照。)や、廃プラと微粉炭とを混合して炉に吹き込む技術(特許文献2参照。)が提案されている。また、炉のレースウエイ内における燃焼率を向上させるために、炉に吹き込むプラスチック粒状物の強度や粒径の制御が重要であることが知られている(特許文献3参照。)。ここで、レースウエイとは、高炉等の竪型炉において熱風を吹き込む羽口先に形成される燃焼空間であって、高温のガスが旋回している燃焼空間である。特許文献3によれば、プラスチック粒状物の強度がレースウエイ内において崩壊しない所定の圧縮強度以上となるように、粒径を所定の粒径以上にすることで燃焼率が向上するとされている。   On the other hand, waste plastic has a problem that it is inferior in combustibility to pulverized coal or the like. On the other hand, in order to ensure good gasification when a large amount of waste plastic is blown into the furnace, for example, a technique of adding oxygen to the furnace air (see Patent Document 1), waste plastic and pulverized coal A technique (see Patent Document 2) of mixing and blowing into a furnace has been proposed. Further, it is known that it is important to control the strength and particle size of the plastic granules blown into the furnace in order to improve the combustion rate in the raceway of the furnace (see Patent Document 3). Here, the raceway is a combustion space formed at the tuyere tip that blows hot air in a vertical furnace such as a blast furnace, and is a combustion space in which high-temperature gas is swirling. According to Patent Document 3, it is said that the burning rate is improved by setting the particle size to a predetermined particle size or more so that the strength of the plastic granular material becomes a predetermined compressive strength that does not collapse in the raceway.

さらに、廃プラから製造した造粒物は、貯留サイロから切り出す際の排出性や高炉に気送する際の流動性、搬送性が悪く、サイロの切出部や気送管系の途中で詰まりを生じやすいという問題もある(特許文献3参照)。発明者らの知見によれば、この原因としては、廃プラの造粒物の性状が不均一であることが大きな原因であると考えられる。特に、フィルム状の廃プラは、搬送性が悪く、閉塞した配管から検出されることが多い。さらに、発明者らが検討したところ、上記の廃プラの造粒物性状の不均一性は、造粒物製造において造粒機出口温度の変化が大きいことが、不均一性の一因であると考えられる。   In addition, the granules produced from waste plastic have poor dischargeability when cut out from storage silos, poor flowability when conveyed to the blast furnace, and poor transportability, and are clogged during the silo cutouts and air pipe systems. There is also a problem that is likely to occur (see Patent Document 3). According to the findings of the inventors, it is considered that the main cause of this is that the properties of the granulated product of the waste plastic are not uniform. Particularly, the film-like waste plastic has poor transportability and is often detected from a closed pipe. Furthermore, as a result of examination by the inventors, the non-uniformity of the granulated physical properties of the waste plastic described above is one of the reasons that the change in the granulator outlet temperature in the production of the granulated product is large. it is conceivable that.

特許第3224394号公報Japanese Patent No. 3224394 特開平8−73909号公報Japanese Patent Laid-Open No. 8-73909 特開2001−220589号公報JP, 2001-220589, A

本発明は、上記のような点に着目してなされたもので、より性状が均一な廃プラからなる造粒物を製造することを目的としている。
ここで特許文献3には、サイロの切出部や気送管系の途中で詰まりを抑制するために、造粒機に投入する原料の水分付着量を5%以下とし、更に造粒機の出口温度を100℃以上とするなどに設定することについて記載がある。しかし、特許文献3には、製造する造粒物の均一性を向上させること、特に造粒機の出口温度の変動を抑制して造粒物の均一性を向上させる点について記載が無い。
The present invention has been made in view of the above points, and an object thereof is to produce a granulated product made of waste plastic having more uniform properties.
Here, in Patent Document 3, in order to suppress clogging in the cutout part of the silo or in the middle of the pneumatic tube system, the amount of adhering water of the raw material to be fed into the granulator is set to 5% or less, and There is a description about setting the outlet temperature to 100 ° C. or higher. However, Patent Document 3 does not describe how to improve the uniformity of the granulated product to be produced, particularly to suppress the fluctuation of the outlet temperature of the granulator and improve the uniformity of the granulated product.

課題を解決するために、本発明の一態様は、円周方向に沿って複数の貫通孔が配列したリング状ダイと、リング状ダイの内周側に配置されたローラとを有し、上記リング状ダイ及び上記ローラによって、上記リング状ダイの内側に投入された原料を磨り潰し及び圧縮押し出しすることで造粒物とする造粒機を用いた造粒物の製造方法であって、廃プラスチックを含む原料を、連続して上記造粒機まで搬送し上記造粒機に投入する搬送手段と、上記搬送手段で搬送中の原料に対し散水可能な散水設備と、上記造粒機の出口温度を取得する出口温度取得手段と、を備え、上記出口温度取得手段に基づく上記造粒機の出口温度の温度変動が5℃以下となるように、上記散水設備による散水量を、上記出口温度に応じて調整することを特徴とする。   In order to solve the problems, one aspect of the present invention includes a ring-shaped die in which a plurality of through holes are arranged along a circumferential direction, and a roller arranged on an inner peripheral side of the ring-shaped die, A method for producing a granulated product using a granulating machine, which comprises a ring-shaped die and the roller, and a raw material charged inside the ring-shaped die is crushed and extruded by compression to obtain a granulated product, A raw material containing a plastic is continuously conveyed to the granulator and is introduced into the granulator, a conveying device capable of sprinkling the raw material being conveyed by the conveyer, and an outlet of the granulator. An outlet temperature acquisition unit for acquiring a temperature, and the outlet water temperature of the granulator based on the outlet temperature acquisition unit is 5 ° C. or less so that the amount of water sprinkled by the sprinkler is adjusted to the outlet temperature. It is characterized by adjusting according to.

本発明の一態様によれば、粒径が所定の粒径以上であり、且つより性状が均一な廃プラからなる造粒物を製造することが可能となる。   According to one aspect of the present invention, it is possible to manufacture a granulated product made of waste plastic having a particle size equal to or larger than a predetermined particle size and having more uniform properties.

本発明に基づく実施形態に係る造粒物製造の処理を説明する概念図である。It is a conceptual diagram explaining the process of granulated material manufacturing which concerns on embodiment based on this invention. 造粒機出口温度と散水の関係を示す図であって、(a)が比較例の図であり、(b)が実施例の図である。It is a figure which shows the relationship between a granulator exit temperature and water sprinkling, (a) is a figure of a comparative example, (b) is a figure of an Example. 本実施例の履歴を示す図である。It is a figure which shows the log | history of a present Example. 出口温度の温度変動ΔTと嵩密度標準偏差(σ嵩密度)との関係を示す図である。It is a figure which shows the relationship between the temperature variation (DELTA) T of outlet temperature, and a bulk density standard deviation ((sigma) bulk density).

次に、本発明の実施形態について図面を参照しつつ説明する。
本実施形態の造粒物の製造方法は、図1に示すように、円周方向に沿って複数の貫通孔5が配列したリング状ダイ2と、リング状ダイ2の内周側に配置されたローラ3とを有し、リング状ダイ2及びローラ3によって、リング状ダイ2の内側に投入された原料10を磨り潰し及び圧縮押し出しを行う、圧縮押し出し工程にて造粒物とする造粒機1を用いた造粒物の製造方法である。また、本実施形態の造粒物の製造方法は、廃プラを含む原料10を乾燥する乾燥工程30と、乾燥工程30で乾燥された原料10を、連続して上記の造粒機1まで搬送し造粒機1に投入する搬送手段と、搬送手段で搬送中の原料10に対し散水可能な散水設備50と、造粒機1の出口温度を取得する出口温度取得手段70と、を備え、出口温度取得手段70に基づく造粒機1の出口温度の温度変動ΔTが5℃以下となるように、散水設備50による散水量を、出口温度に応じて調整する。この調整は、例えば出口温度に基づくフィードバック制御にて行う。
Next, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the method for manufacturing a granulated product according to the present embodiment includes a ring-shaped die 2 having a plurality of through holes 5 arranged in the circumferential direction and an inner peripheral side of the ring-shaped die 2. And a roller 3, and the raw material 10 charged inside the ring-shaped die 2 is ground and compressed and extruded by the ring-shaped die 2 and the roller 3. It is a method of manufacturing a granulated product using the machine 1. In addition, in the method for manufacturing the granulated product of the present embodiment, the drying step 30 for drying the raw material 10 containing waste plastic, and the raw material 10 dried in the drying step 30 are continuously conveyed to the above granulator 1. And a sprinkler 50 capable of sprinkling the raw material 10 being conveyed by the conveying means, and an outlet temperature acquiring means 70 for acquiring the outlet temperature of the granulator 1, The amount of water sprayed by the water sprinkler 50 is adjusted according to the outlet temperature so that the temperature variation ΔT of the outlet temperature of the granulator 1 based on the outlet temperature acquisition means 70 is 5 ° C. or less. This adjustment is performed, for example, by feedback control based on the outlet temperature.

本実施形態の造粒物の製造方法は、乾燥工程30、散水工程(散水設備50)、圧縮押し出し工程からなる造粒工程(造粒機1)、及び冷却工程60を備える。
なお、回収された廃プラは、前処理工程20において、除去・選別の処理が行われ、選別後の廃プラが、造粒物の原料10として造粒物製造設備に投入される。また、前処理工程20として、所定の大きさの粒径に廃プラを粉砕する処理が施されている。
The method for producing a granulated product of the present embodiment includes a drying step 30, a water spraying step (sprinkling equipment 50), a granulating step (granulator 1) including a compression extrusion step, and a cooling step 60.
The collected waste plastic is subjected to removal / sorting processing in the pretreatment step 20, and the waste plastic after sorting is put into the granulated product manufacturing facility as the raw material 10 of the granulated product. Further, as the pretreatment step 20, a treatment of crushing the waste plastic into a particle size of a predetermined size is performed.

(乾燥工程30)
造粒物製造設備に投入された原料10は、乾燥工程30にて乾燥処理が施された後に、搬送手段である搬送コンベア40に載せられて造粒機1に向けて連続的に搬送される。これによって、原料10は連続的に造粒機1に投入される。
乾燥工程30は、原料10を加熱し気流を吹き付けて乾燥する処理を施して、原料10の水分付着量を例えば5%以下に調整する工程である。例えば、原料10を加熱した気流を吹き付けて乾燥させる。
(Drying process 30)
The raw material 10 charged into the granulation product manufacturing facility is subjected to a drying process in a drying step 30, and then placed on a conveyor 40 serving as a conveying means and continuously conveyed toward the granulator 1. . Thereby, the raw material 10 is continuously charged into the granulator 1.
The drying step 30 is a step in which the raw material 10 is heated, and an air stream is blown to dry the raw material 10 to adjust the moisture adhesion amount of the raw material 10 to, for example, 5% or less. For example, the raw material 10 is dried by blowing a heated air flow.

乾燥処理が施された原料10は、搬送コンベア40で搬送されている間に、散水による冷却処理が施された後に、造粒機1のリング状ダイ2の内側に投入される。
ここで、圧縮押し出し工程における摩擦熱によってダイ2内の雰囲気温度が上昇することによる廃プラ原料10の溶融を避けるため、本実施形態では散水にて冷却を行うが、乾燥工程30の出口温度が高ければ、ダイ2内への投入熱量が上昇し、散水原単位の増加につながる。
これに対し、散水後のダイ2に投入前の原料10の温度を40℃以上50℃未満となるように、乾燥工程30の出口温度を設定することが好ましい。発明者らが確認したところ、40℃未満では、原料水分が高く、リング状ダイ2での圧縮負荷電流が、不安定となりうまく圧縮できないそれがあった。このため、ダイ2に投入前の原料温度の最低温度を、40℃と設定することが好ましい。
The raw material 10 that has been subjected to the drying treatment is introduced into the inside of the ring-shaped die 2 of the granulator 1 after being subjected to the cooling treatment by sprinkling while being conveyed by the conveyor 40.
Here, in order to avoid melting of the waste plastic raw material 10 due to an increase in the atmospheric temperature in the die 2 due to the frictional heat in the compression extrusion process, cooling is performed by sprinkling in the present embodiment, but the outlet temperature of the drying process 30 is If it is high, the amount of heat input into the die 2 will increase, leading to an increase in the basic unit of watering.
On the other hand, it is preferable to set the outlet temperature of the drying step 30 so that the temperature of the raw material 10 before being charged into the die 2 after watering is 40 ° C. or more and less than 50 ° C. As confirmed by the inventors, when the temperature is lower than 40 ° C., the water content of the raw material is high, and the compression load current in the ring die 2 becomes unstable, and it cannot be compressed properly. For this reason, it is preferable to set the minimum temperature of the raw material temperature to 40 ° C. before charging the die 2.

(散水工程)
散水設備50は、搬送コンベア40で搬送中の原料10に向けて複数のノズルから水を噴出することで実現される。本実施形態では、連続散水方式を採用することで、散水されない原料10が無いようにする。
(Sprinkling process)
The water sprinkling equipment 50 is realized by ejecting water from a plurality of nozzles toward the raw material 10 being conveyed by the conveyor 40. In this embodiment, the continuous watering method is adopted so that there is no raw material 10 that is not watered.

(造粒工程)
造粒機1は、図1に示すように、円周方向に沿って複数の貫通孔5が配列したリング状ダイ2と、リング状ダイ2の内周側に配置された1又は2以上のローラ3とを有する。図1では、2つのローラ3を配した例である。造粒機1に投入される原料10の粒度をDとするとき、貫通孔5の直径dとの比D/dが1.2〜3.0の範囲であることが好ましい。
リング状ダイ2およびローラ3はそれぞれ軸回転し、リング状ダイ2の内周側に投入された原料10は、リング状ダイ2の内周面とローラ3の周面との間で磨り潰されつつ、貫通孔5内に押し込まれることで圧縮される。そして、原料10は、貫通孔5を通ってリング状ダイ2の外側に押し出される。このようにリング状ダイ2の外側に押し出された原料10は、順次、カッター6によって、所定の長さに切断されることで、造粒物100となる。
(Granulation process)
As shown in FIG. 1, the granulator 1 includes a ring-shaped die 2 in which a plurality of through holes 5 are arranged in the circumferential direction, and one or more of the ring-shaped dies 2 arranged on the inner peripheral side of the ring-shaped die 2. And a roller 3. FIG. 1 shows an example in which two rollers 3 are arranged. When the particle size of the raw material 10 charged into the granulator 1 is D, the ratio D / d to the diameter d of the through hole 5 is preferably in the range of 1.2 to 3.0.
The ring-shaped die 2 and the roller 3 rotate about their respective axes, and the raw material 10 charged on the inner peripheral side of the ring-shaped die 2 is crushed between the inner peripheral surface of the ring-shaped die 2 and the peripheral surface of the roller 3. Meanwhile, it is compressed by being pushed into the through hole 5. Then, the raw material 10 is extruded to the outside of the ring-shaped die 2 through the through hole 5. The raw material 10 extruded on the outside of the ring-shaped die 2 in this manner is sequentially cut by the cutter 6 into a predetermined length, whereby the granule 100 is obtained.

出口温度取得手段70は、例えば放射温度計からなる。出口温度取得手段70は、造粒機1の出口温度を検出し、検出温度を後述の温度制御部80に出力する。出口温度取得手段70による温度計測は、例えば貫通孔5におけるダイ外周側での温度を検出する。
ここで、上記の磨り潰し、圧縮押し出し工程における摩擦熱によって、原料10は半溶融となり、造粒後に固化することで、造粒物の強度が高められ、崩壊しにくくなる。しかし、このことは、廃プラがダイ2内で溶融し貫通孔5を閉塞させることに繋がる。このため、本実施形態では、散水設備50で原料10を散水冷却することで、乾燥工程30で温度上昇した原料10の温度を下げてから、造粒機1に投入する。造粒機1の出口温度を100℃以上110℃以下の範囲となるように、散水工程の散水量の範囲を初期設定する。
The outlet temperature acquisition means 70 is, for example, a radiation thermometer. The outlet temperature acquisition means 70 detects the outlet temperature of the granulator 1 and outputs the detected temperature to a temperature control unit 80 described later. The temperature measurement by the outlet temperature acquisition unit 70 detects, for example, the temperature on the outer peripheral side of the die in the through hole 5.
Here, the raw material 10 is semi-melted by the frictional heat in the grinding and compression extrusion steps described above, and is solidified after granulation, whereby the strength of the granulated product is increased and it becomes difficult to collapse. However, this leads to the waste plastic melting in the die 2 and closing the through hole 5. For this reason, in this embodiment, the raw material 10 is sprinkled and cooled by the sprinkling equipment 50 to lower the temperature of the raw material 10 whose temperature has risen in the drying step 30, and then the raw material 10 is charged into the granulator 1. The range of the sprinkling amount in the sprinkling step is initially set so that the outlet temperature of the granulator 1 is in the range of 100 ° C. or higher and 110 ° C. or lower.

(冷却工程60)
冷却工程60は、造粒機1で製造した造粒物100を急速冷却する。急速冷却は、造粒後、例えば、ペレットクーラによって造粒物を40℃以下の温度まで冷却するようにする。これによって、製造した造粒物100を急冷・固化させる。
上記のように造粒物製造設備で製造された廃プラからなる造粒物100は、貯留され、適宜、例えば、高炉等の竪型炉に対し羽口から代替原料として吹き込む。すなわち、廃プラからなる粒状物を空気輸送して羽口から吹き込むことで、廃プラをコークス代替品として有効にリサイクル利用する。
(Cooling process 60)
In the cooling step 60, the granulated product 100 manufactured by the granulator 1 is rapidly cooled. In the rapid cooling, after granulation, the granulated product is cooled to a temperature of 40 ° C. or lower by, for example, a pellet cooler. Thereby, the manufactured granulated material 100 is rapidly cooled and solidified.
The granulated product 100 made of waste plastic manufactured in the granulated product manufacturing facility as described above is stored and appropriately blown into a vertical furnace such as a blast furnace as a substitute raw material from a tuyere. That is, the waste plastic is effectively recycled as a substitute for coke by pneumatically transporting the granular plastic waste and blowing it from the tuyere.

(温度制御部80)
また、本実施形態は温度制御部80を備える。
温度制御部80は、出口温度取得手段70が検出した造粒機1の出口温度を入力し、100℃以上110℃以下の範囲で設定した目標出口温度となるように、散水設備50での散水量をフィードバック制御する。フィードバック制御は、例えばPID制御にて実施する。
温度制御部80は、例えば、今までの操業実績から、造粒機1の出口温度が100℃以上110℃以下の範囲の所定出側目標温度になると推定される初期の散水量(単位時間当たりの散水量)を求めて、その初期の散水量となるように散水設備50の散水量の初期値を設定しておく。そして、温度制御部80は、予め設定した出側目標温度と実績出口温度との差分から散水量の変更量を演算し、その演算量を散水変更指令として散水設備50に出力する。散水設備50では、入力した散水変更指令によって散水量を変更する。
(Temperature control unit 80)
In addition, this embodiment includes a temperature controller 80.
The temperature control unit 80 inputs the outlet temperature of the granulator 1 detected by the outlet temperature acquisition unit 70, and sprays the sprinkling equipment 50 so that the target outlet temperature is set in the range of 100 ° C. or higher and 110 ° C. or lower. Feedback control of water volume. The feedback control is performed by PID control, for example.
The temperature control unit 80, for example, based on the operation results up to now, the initial sprinkling amount (per unit time) at which the outlet temperature of the granulator 1 is estimated to be the predetermined outlet target temperature in the range of 100 ° C. or higher and 110 ° C. or lower The amount of water sprinkling) is calculated, and the initial value of the amount of water sprinkling of the water sprinkling equipment 50 is set so as to be the initial amount of water sprinkling. Then, the temperature control unit 80 calculates the change amount of the water spray amount from the difference between the preset target temperature on the outlet side and the actual outlet temperature, and outputs the calculated amount to the water sprinkling equipment 50 as a water spray change command. The sprinkling facility 50 changes the sprinkling amount according to the input sprinkling change command.

このように、造粒機1の出口温度の温度変動ΔTが5℃以下となるように、散水設備50による散水量を出口温度に応じて調整する。出口温度の温度変動ΔTを3℃以下に抑えることが、より好ましい。
なお、温度制御部80は、単純に、出口温度が所定量の勾配以上で上昇していると判定した場合に、散水量増加指令を出力し、出口温度が所定量の勾配以上で下降していると判定した場合に、散水量減少指令を出力するように制御しても良い。
ここで、散水設備50による散水をバッチ処理によって間欠的に散水を行う場合に比べて、連続散水する場合には、トータルの散水量を抑えることが可能になる。
In this way, the amount of water sprinkled by the water sprinkling equipment 50 is adjusted according to the outlet temperature so that the temperature variation ΔT of the outlet temperature of the granulator 1 is 5 ° C. or less. It is more preferable to suppress the temperature variation ΔT of the outlet temperature to 3 ° C. or less.
When the temperature control unit 80 simply determines that the outlet temperature is rising above a gradient of a predetermined amount, it outputs a sprinkling amount increase command, and the outlet temperature falls below a gradient of a predetermined amount. If it is determined that there is water, control may be performed to output a water sprinkling amount reduction command.
Here, as compared with the case where the water sprinkling by the water sprinkling equipment 50 is intermittently sprinkled by the batch process, the total sprinkling amount can be suppressed in the case of continuous water sprinkling.

<動作その他>
本実施形態では、選別された廃プラからなる原料10が、乾燥工程30で乾燥された後、散水設備50によって連続散水することで造粒機1に投入する原料10を均一に冷却した後に、当該造粒機1に投入されて造粒物100となる。
更に、本実施形態では、造粒機1の出口温度の変動を小さく抑えるために、造粒機1の出口温度に基づき連続散水の散水量をフィードバック制御することで、造粒機1の出口温度の変動を抑えることが出来る。この時、出口温度の温度変化が5℃以下、好ましくは3℃以下となるようにフィードバック制御などによって調整する。
<Operation and others>
In the present embodiment, after the raw material 10 made of the sorted waste plastic is dried in the drying step 30, the raw material 10 to be continuously sprinkled by the sprinkling equipment 50 is uniformly cooled, and then the raw material 10 is put into the granulator 1. It is put into the granulator 1 to form the granulated product 100.
Further, in the present embodiment, in order to suppress the fluctuation of the outlet temperature of the granulator 1 to be small, the outlet temperature of the granulator 1 is controlled by feedback-controlling the sprinkling amount of continuous sprinkling water based on the outlet temperature of the granulator 1. The fluctuation of can be suppressed. At this time, the outlet temperature is adjusted by feedback control or the like so that the temperature change is 5 ° C. or less, preferably 3 ° C. or less.

ここで、発明者らの知見によれば、散水設備50による散水冷却の方式を単純にバッチ方式とした場合、散水が掛かり低温で圧縮された強度の低い造粒物と、散水が掛からず高温で圧縮された強度の高い造粒物とが製造され、前者の造粒物が輸送中にフィルム状に崩壊し、配管詰りの要因となることが分かった。
このような、造粒物性状の不均一性に対し、本実施形態では、造粒機1の出口温度変動ΔTを低減すべく、PID制御等による連続散水方式を採用し、被散水造粒物の有無による原料10の不均一性を抑制し、且つ配管詰りの回数を低減させた。
Here, according to the knowledge of the inventors, when the method of sprinkling cooling by the sprinkling equipment 50 is simply a batch method, it is sprinkled, and a low-strength granulated product compressed at a low temperature and sprinkled water at a high temperature without sprinkling. It was found that a granulated product with high strength compressed by the method described above was produced, and the granulated product of the former collapsed into a film during transportation, resulting in clogging of the pipe.
In order to reduce the outlet temperature fluctuation ΔT of the granulator 1, in the present embodiment, in order to reduce the non-uniformity of the properties of the granulated product, a continuous water sprinkling method such as PID control is adopted. The non-uniformity of the raw material 10 due to the presence or absence of the phenomenon was suppressed, and the number of pipe clogging was reduced.

また、連続散水方式とすることで、造粒機1の出口温度を100℃以上に設定しても、後述の実施例から分かるように、バッチ方式に比べてトータルの散水量を抑えることが出来る。このため、本実施形態では、散水が掛けられる原料10の温度低下が抑制されることから、原料10に散水して造粒機1の出口温度を抑制しつつ、散水による原料10の温度低下による強度低下を抑えることが出来る。この結果、製造された造粒物の品質が安定する。
ここで、出口温度を100℃以上に設定して実際に確認したところ、バッチ方式では、散水ノズルの出力が60L/minであったのに対し、連続散水方式とした場合には散水ノズルの出力が30L/minとなり、少量の散水を連続で、かつ均一に原料10に散布することで、出口温度を100℃以上に調整できたことを確認している。
Further, by adopting the continuous water sprinkling method, even if the outlet temperature of the granulator 1 is set to 100 ° C. or higher, the total water sprinkling amount can be suppressed as compared with the batch method, as will be understood from the examples described later. . Therefore, in the present embodiment, the temperature decrease of the raw material 10 to which water is applied is suppressed, so that the temperature of the raw material 10 is decreased due to the water spray while sprinkling the raw material 10 to suppress the outlet temperature of the granulator 1. It is possible to suppress a decrease in strength. As a result, the quality of the produced granulated product becomes stable.
Here, when the outlet temperature was set to 100 ° C. or higher and actually confirmed, the output of the sprinkling nozzle was 60 L / min in the batch method, whereas the output of the sprinkling nozzle was in the case of the continuous sprinkling method. Was 30 L / min, and it was confirmed that the outlet temperature could be adjusted to 100 ° C. or higher by continuously and uniformly spraying a small amount of water on the raw material 10.

このように、本実施形態に基づき製造した廃プラからなる造粒物を高炉に使用した場合、プラスチック粒状物の強度をレースウエイ内において崩壊しない所定の圧縮強度以上にし、粒径を所定の粒径以上にすることで燃焼率が向上させ、且つ、廃プラの造粒物の貯留サイロから切り出す際の排出性や高炉に気送する際の流動性、搬送性が向上し、サイロの切出部や気送管系の途中で詰まりを抑制出来る。このように、安定した廃プラの吹き込みが可能となった。   As described above, when the granulated product made of the waste plastic produced according to the present embodiment is used in the blast furnace, the strength of the plastic granular material is set to the predetermined compressive strength or more that does not collapse in the raceway, and the particle size is the predetermined particle size. By increasing the diameter or more, the burning rate is improved, and the dischargeability when cutting out the waste plastic granules from the storage silo, the fluidity when conveying to the blast furnace and the transportability are improved, and the silo cutting It is possible to suppress clogging in the middle of parts and pneumatic systems. In this way, stable injection of waste plastic became possible.

同一の造粒設備において、散水設備50による散水をバッチ方式で行う比較例の場合と、フィードバック制御しつつ散水を連続方式で行う本発明に基づく発明例の場合とについて実施した。
このとき、造粒機1の出口温度が100℃以上110℃以下の範囲に収まるようにして散水した。
具体的には、比較例では、出口温度が107℃以上になったら散水を開始し、その後、出口温度が103℃になったら散水を停止するという条件で間欠的に散水した。
In the same granulation equipment, it was carried out for the case of the comparative example in which the water was sprinkled by the sprinkling equipment 50 in the batch system and the case of the invention example in which the water sprinkling was carried out in the continuous system while performing feedback control.
At this time, water was sprayed so that the outlet temperature of the granulator 1 was in the range of 100 ° C or higher and 110 ° C or lower.
Specifically, in the comparative example, water was intermittently sprinkled under the condition that water spouting was started when the outlet temperature reached 107 ° C. or higher, and then stopped when the outlet temperature reached 103 ° C.

発明例では、出側目標温度を107℃に設定し、出側目標温度以上であって出口温度が上昇しているときには、散水量を増加させ、出側目標温度以上であって出口温度が下降している場合には、その散水量を減少させるという簡単なフィードバック制御を行った。
上記の各散水制御による造粒機1の出口温度の実績値の変化を図2に示す。図2(a)は比較例の場合であり、図2(b)が実施例の場合である。
また、上記の各散水制御を長期にわたって採用した場合における、単重、嵩密度、散水原単位の各推移の履歴を図3に示す。この図3の推移は、前半が比較例の場合であり、途中から発明例に切り換えた場合を例示している。
In the invention example, the outlet side target temperature is set to 107 ° C., and when the outlet side target temperature is equal to or higher than the outlet temperature, the sprinkling amount is increased. If so, simple feedback control was performed to reduce the amount of water spray.
FIG. 2 shows a change in the actual value of the outlet temperature of the granulator 1 by each of the above watering controls. 2A shows the case of the comparative example, and FIG. 2B shows the case of the example.
Further, FIG. 3 shows the history of each transition of the unit weight, bulk density, and basic unit of sprinkling when each sprinkling control described above is adopted for a long period of time. The transition of FIG. 3 is the case of the comparative example in the first half, and illustrates the case of switching from the middle to the invention example.

図3から分かるように、造粒物の嵩密度が、比較例では0.359t/mであったのに対し、実施例では0.375t/mと上昇している。このように、実施例では、フィルム状の低密度造粒物の製造が抑制され、しっかりと表面が焼き固められた造粒物が増えたことが分かる。
また、散水原単位が比較例では25L/tであったのに対し、実施例では10L/tまで減少し、散水量自体も低減できていることが分かった。ここで、比較例のバッチ方式では、およそ2分の散水と6分の非散水の繰り返しとなっており、造粒物水分は、約0〜10%の範囲で推移していたが、実施例では、造粒物水分が約0〜2%の範囲と水分変動値が縮小した。そして、図2から分かるように、比較例では、造粒機1の出口温度変動ΔTは6℃であったが、実施例では2℃に抑えられて、性状が均一な造粒物が製造されていることが分かった。
As can be seen from FIG. 3, the bulk density of the granulated product was 0.359 t / m 3 in the comparative example, whereas it increased to 0.375 t / m 3 in the example. As described above, in the examples, it can be seen that the production of the film-shaped low-density granulated product was suppressed, and the number of granulated products whose surface was firmly baked was increased.
Further, it was found that the water spraying unit was 25 L / t in the comparative example, but was decreased to 10 L / t in the example, and the water spraying amount itself was also reduced. Here, in the batch method of the comparative example, about 2 minutes of sprinkling and 6 minutes of non-sprinkling were repeated, and the water content of the granulated product remained in the range of about 0 to 10%. Then, the water content variation value decreased in the range of about 0 to 2% of the water content of the granulated product. As can be seen from FIG. 2, the outlet temperature variation ΔT of the granulator 1 was 6 ° C. in the comparative example, but was suppressed to 2 ° C. in the example, and a granulated product having uniform properties was produced. I found out.

更に、出口温度変動ΔTを変化させて、出口温度変動ΔTと造粒物の嵩密度との関係を求めてみた。その結果を図4に示す。なお図4では、嵩密度を嵩密度標準偏差(σ嵩密度)にて表している。造粒機1の出口平均温度が同じであれば嵩密度の相違は明確でなく、同じレベルに近いと推定されるが、図4から分かるように、出口温度変動ΔTが大きいほど嵩密度のバラツキが大きくなり造粒物の性状が不均一となる。これに対し、本発明では出口温度変動ΔTを5℃以下としたことにより嵩密度のバラツキを小さくすることができる。この結果造粒物の性状も安定させることができる。すなわち、本発明によれば、σ嵩密度が小さくなり造粒物の性状が安定する。   Further, the outlet temperature fluctuation ΔT was changed to find the relationship between the outlet temperature fluctuation ΔT and the bulk density of the granulated product. The result is shown in FIG. In FIG. 4, the bulk density is represented by the bulk density standard deviation (σ bulk density). If the average outlet temperature of the granulator 1 is the same, the difference in bulk density is not clear, and it is estimated that the difference is close to the same level. However, as can be seen from FIG. 4, the larger the outlet temperature fluctuation ΔT, the greater the variation in bulk density. Becomes larger and the properties of the granulated product become non-uniform. On the other hand, in the present invention, the variation in bulk density can be reduced by setting the outlet temperature variation ΔT to 5 ° C. or less. As a result, the properties of the granulated product can be stabilized. That is, according to the present invention, the σ bulk density is reduced and the properties of the granulated product are stabilized.

1 造粒機
2 リング状ダイ
3 ローラ
5 貫通孔
6 カッター
10 原料
20 前処理工程
30 乾燥工程
40 搬送コンベア(搬送手段)
50 散水設備
60 冷却工程
70 出口温度取得手段
80 温度制御部
ΔT 温度変動
1 Granulator 2 Ring Die 3 Roller 5 Through Hole 6 Cutter 10 Raw Material 20 Pretreatment Step 30 Drying Step 40 Conveyor (Conveyor)
50 Water sprinkling equipment 60 Cooling process 70 Outlet temperature acquisition means 80 Temperature controller ΔT Temperature fluctuation

Claims (4)

円周方向に沿って複数の貫通孔が配列したリング状ダイと、リング状ダイの内周側に配置されたローラとを有し、上記リング状ダイ及び上記ローラによって、上記リング状ダイの内側に投入された原料を磨り潰し、貫通孔を通って圧縮押し出しすることで造粒物とする造粒機を用いた造粒物の製造方法であって、
廃プラスチックを含む原料を、ベルトコンベアの上行き側に載せて、連続して上記造粒機まで搬送し、上記造粒機に投入する搬送手段と、
上記ベルトコンベアで搬送中の原料に対し、上側から水を噴出することで散水可能な散水設備と、
上記造粒機の出口温度を取得する出口温度取得手段と、を備え、
上記出口温度取得手段が取得する出口温度を、上記貫通孔におけるダイ外周側での温度とし、
上記散水設備による散水後かつ上記造粒機に投入前の上記原料の温度を、40℃以上50℃未満に制御すると共に、
上記出口温度取得手段に基づく上記造粒機の出口温度の温度変動が5℃以下となるように、上記散水設備による散水を連続散水とし、その散水量を、上記出口温度に応じて調整することを特徴とする造粒物の製造方法。
A ring-shaped die in which a plurality of through holes are arranged along the circumferential direction, and a roller arranged on the inner peripheral side of the ring-shaped die, the inner side of the ring-shaped die by the ring-shaped die and the roller. A method of manufacturing a granulated product using a granulator, which grinds the raw material put in, and compresses and extrudes through a through hole to form a granulated product,
A raw material containing waste plastic is placed on the upstream side of a belt conveyor, continuously conveyed to the granulator, and a conveying means for charging the granulator,
For the raw material being conveyed by the belt conveyor, a sprinkling facility capable of sprinkling water by ejecting water from the upper side,
Outlet temperature acquisition means for acquiring the outlet temperature of the granulator,
The outlet temperature acquired by the outlet temperature acquisition means, the temperature on the die outer peripheral side in the through hole,
The temperature of the raw material after being sprinkled by the sprinkling equipment and before being put into the granulator is controlled to 40 ° C. or higher and lower than 50 ° C.,
Continuously watering the water by the water spraying equipment so that the temperature fluctuation of the outlet temperature of the granulator based on the outlet temperature acquisition means is 5 ° C. or less, and adjusting the amount of water spray according to the outlet temperature. A method for producing a granulated product, comprising:
上記散水設備による散水を連続散水とし、上記散水設備による散水量について、上記出口温度が増加していると判定すると散水量を増加し、上記出口温度が減少していると判定すると散水量を減少させることで、上記出口温度の温度変動を5℃以下とすることを特徴とする請求項1に記載した造粒物の製造方法。   The sprinkling by the sprinkling equipment is continuous sprinkling, and the sprinkling quantity by the sprinkling equipment increases the sprinkling amount when it is determined that the outlet temperature is increasing, and decreases the sprinkling amount when it is determined that the outlet temperature is decreasing. The temperature fluctuation of the outlet temperature is set to 5 ° C. or less by performing the above process, and the method for producing a granulated product according to claim 1, wherein 上記出口温度を、100℃以上110℃以下の範囲とすることを特徴とする請求項1又は請求項2に記載した造粒物の製造方法。   The method for producing a granulated product according to claim 1 or 2, wherein the outlet temperature is in the range of 100 ° C or higher and 110 ° C or lower. 上記散水設備による散水の前工程として、原料を加熱・乾燥する乾燥工程を備えることを特徴とする請求項1〜請求項3のいずれか1項に記載した造粒物の製造方法。   The method for producing a granulated product according to any one of claims 1 to 3, comprising a drying step of heating and drying the raw material as a pre-step of water sprinkling by the water sprinkling equipment.
JP2017058174A 2017-03-23 2017-03-23 Granulation product manufacturing method Active JP6686949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017058174A JP6686949B2 (en) 2017-03-23 2017-03-23 Granulation product manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017058174A JP6686949B2 (en) 2017-03-23 2017-03-23 Granulation product manufacturing method

Publications (2)

Publication Number Publication Date
JP2018158320A JP2018158320A (en) 2018-10-11
JP6686949B2 true JP6686949B2 (en) 2020-04-22

Family

ID=63795885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017058174A Active JP6686949B2 (en) 2017-03-23 2017-03-23 Granulation product manufacturing method

Country Status (1)

Country Link
JP (1) JP6686949B2 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684011B2 (en) * 1986-05-31 1994-10-26 新田ゼラチン株式会社 Plastic pellet manufacturing method and granulating equipment
JPH05197190A (en) * 1991-10-05 1993-08-06 Kao Corp Image forming method
JP3157409B2 (en) * 1995-02-13 2001-04-16 帝人株式会社 Method and apparatus for producing resin pellets
JPH08300348A (en) * 1995-04-28 1996-11-19 R M J Consulting:Kk Disk type granulator
JP2919821B2 (en) * 1997-12-26 1999-07-19 川崎重工業株式会社 How to convert waste into solid fuel
JP2000176935A (en) * 1998-12-16 2000-06-27 Hagihara Industries Inc Device for producing regenerated pellet
JP2000317935A (en) * 1999-03-10 2000-11-21 Nkk Corp Method for granulating waste plastic
JP2000282073A (en) * 1999-03-30 2000-10-10 Nkk Corp Granulation of waste plastic
TW445202B (en) * 1999-11-02 2001-07-11 Nippon Kokan Kk Molded lump and its production method thereof
JP2001220589A (en) * 2000-02-10 2001-08-14 Nkk Corp Bulked material which surface contains synthetic resin and is melted-solidified and its preparation process
JP2004300115A (en) * 2003-04-01 2004-10-28 Teijin Fibers Ltd Method for recovering valuable component from waste polyester
JP3917576B2 (en) * 2003-10-08 2007-05-23 株式会社日本製鋼所 Volume reduction granulation method and apparatus for waste plastic
JP6028584B2 (en) * 2013-01-17 2016-11-16 Dic株式会社 Method for producing toner for developing electrostatic image
JP6385880B2 (en) * 2015-04-16 2018-09-05 株式会社大貴 Method and apparatus for manufacturing water-absorbing treatment material

Also Published As

Publication number Publication date
JP2018158320A (en) 2018-10-11

Similar Documents

Publication Publication Date Title
JP7200352B2 (en) Method and apparatus for crushing plastic and producing powdered material from this plastic
CA1153518A (en) Granulating process and apparatus
US20030021991A1 (en) Pellets and method for producing the same
US7157032B2 (en) Method and apparatus for making crystalline PET pellets
NZ195178A (en) Spouted bed granulation process-endproduct size control
US5125168A (en) Apparatus for processing a pasty product in a vacuum
JP5819797B2 (en) Continuous kneading granulation drying system
JP6686949B2 (en) Granulation product manufacturing method
KR101916566B1 (en) Extrusion molding device, dried-pellet manufacturing device, and method for extrusion molding and for manufacturing dried-pellet using the same
US5063016A (en) Production of hardwearing and shock-resistant extrudates of ultra-high molecular weight polyethylene and apparatus for this purpose
CN107149056A (en) A kind of production method of the expanded heavy property aquatic feeds of aniseed
CN202618235U (en) High-gelatinization high-productivity granulating device
WO2011159199A1 (en) Method for producing granulated carbamide
JP6819165B2 (en) Coal pretreatment method
JP2021075307A (en) Hopper device, gas blowing method, and manufacturing method of pellet
CN206854047U (en) Refuse reclamation produces the set composite again of high tower compound fertilizer
KR101844158B1 (en) Metal Oxide Powder by Plasma Treatment and Method of using the same
JP7422392B2 (en) drying equipment
JP7388377B2 (en) How to transport waste plastic
RU2643046C1 (en) Granulation device
CN211069997U (en) Nitrophosphate fertilizer slurry melting roller granulation device
CN117814384A (en) Efficient feed processing technology
CN116532042A (en) Method for producing granular compound fertilizer
RU47354U1 (en) TECHNOLOGICAL LINE FOR PRODUCING GRANULATED POROUS MATERIALS
KR20230053778A (en) shaping method of goods recycling plastic waste and equipment of the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6686949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250