JP6686605B2 - Binder composition for non-aqueous secondary battery positive electrode, slurry composition for non-aqueous secondary battery positive electrode, non-aqueous secondary battery positive electrode, and non-aqueous secondary battery - Google Patents

Binder composition for non-aqueous secondary battery positive electrode, slurry composition for non-aqueous secondary battery positive electrode, non-aqueous secondary battery positive electrode, and non-aqueous secondary battery Download PDF

Info

Publication number
JP6686605B2
JP6686605B2 JP2016062500A JP2016062500A JP6686605B2 JP 6686605 B2 JP6686605 B2 JP 6686605B2 JP 2016062500 A JP2016062500 A JP 2016062500A JP 2016062500 A JP2016062500 A JP 2016062500A JP 6686605 B2 JP6686605 B2 JP 6686605B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
aqueous secondary
binder composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016062500A
Other languages
Japanese (ja)
Other versions
JP2017174764A (en
Inventor
晶洋 尾上
晶洋 尾上
拓己 杉本
拓己 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2016062500A priority Critical patent/JP6686605B2/en
Publication of JP2017174764A publication Critical patent/JP2017174764A/en
Application granted granted Critical
Publication of JP6686605B2 publication Critical patent/JP6686605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水系二次電池正極用バインダー組成物、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池に関するものである。   The present invention relates to a binder composition for a non-aqueous secondary battery positive electrode, a slurry composition for a non-aqueous secondary battery positive electrode, a non-aqueous secondary battery positive electrode, and a non-aqueous secondary battery.

リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある。)は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、非水系二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。   A non-aqueous secondary battery such as a lithium-ion secondary battery (hereinafter sometimes simply referred to as “secondary battery”) has characteristics that it is small and lightweight, has high energy density, and can be repeatedly charged and discharged. Yes, it is used for a wide range of purposes. Therefore, in recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of non-aqueous secondary batteries.

ここで、非水系二次電池用の正極は、通常、集電体と、集電体上に形成された電極合材層(正極合材層)とを備えている。そして、この正極合材層は、例えば、正極活物質と、結着材を含むバインダー組成物などとを分散媒に分散させてなるスラリー組成物を用いて形成される。   Here, the positive electrode for a non-aqueous secondary battery usually includes a current collector and an electrode mixture layer (positive electrode mixture layer) formed on the current collector. The positive electrode mixture layer is formed using, for example, a slurry composition obtained by dispersing a positive electrode active material and a binder composition containing a binder in a dispersion medium.

そこで、近年では、非水系二次電池の更なる性能の向上を達成すべく、正極合材層の形成に用いられるバインダー組成物の改良が試みられている。
具体的には、例えば特許文献1では、フッ素系ポリマーと水素添加ニトリルゴムの混合物を結着材として用いることにより、非水系二次電池のサイクル特性を向上させる技術が提案されている。
Therefore, in recent years, in order to further improve the performance of the non-aqueous secondary battery, attempts have been made to improve the binder composition used for forming the positive electrode mixture layer.
Specifically, for example, Patent Document 1 proposes a technique for improving the cycle characteristics of a non-aqueous secondary battery by using a mixture of a fluoropolymer and hydrogenated nitrile rubber as a binder.

特開平9−63590号公報JP, 9-63590, A

しかしながら、上記従来の技術を用いても二次電池に十分に優れたサイクル特性を発揮させることは困難な場合があった。例えば、近年、二次電池の正極合材層の高密度化による二次電池の性能向上が試みられている。ここで、高密度化した正極合材層に十分に電解液を浸透させるためには、電解液の組成を調整して粘度を低下させることが好ましい。しかしながら、低粘度である電解液と、結着材として用いられる水素添加ニトリルゴムのSP値(「溶解度パラメータ」とも言う。)の差は小さくなり易く、電解液中に水素添加ニトリルゴムが溶出し易い。そのため、二次電池のサイクル特性が低下するという問題があった。   However, it may be difficult to make the secondary battery exhibit sufficiently excellent cycle characteristics even by using the above-mentioned conventional technique. For example, in recent years, attempts have been made to improve the performance of secondary batteries by increasing the density of the positive electrode mixture layer of secondary batteries. Here, in order to sufficiently permeate the electrolyte solution into the densified positive electrode mixture layer, it is preferable to adjust the composition of the electrolyte solution to reduce the viscosity. However, the difference in SP value between the low-viscosity electrolytic solution and the hydrogenated nitrile rubber used as the binder (also referred to as “solubility parameter”) is likely to be small, and the hydrogenated nitrile rubber is eluted in the electrolytic solution. easy. Therefore, there is a problem that the cycle characteristics of the secondary battery deteriorate.

そこで、本発明は、非水系二次電池に優れたサイクル特性を発揮させることが可能な非水系二次電池正極用バインダー組成物および非水系二次電池正極用スラリー組成物を提供することを目的とする。
また、本発明は、非水系二次電池に優れたサイクル特性を発揮させることが可能な非水系二次電池用正極を提供することを目的とする。
更に、本発明は、優れたサイクル特性を有する非水系二次電池を提供することを目的とする。
Therefore, the present invention aims to provide a binder composition for a non-aqueous secondary battery positive electrode and a slurry composition for a non-aqueous secondary battery positive electrode capable of exhibiting excellent cycle characteristics in the non-aqueous secondary battery. And
Another object of the present invention is to provide a positive electrode for a non-aqueous secondary battery, which is capable of exhibiting excellent cycle characteristics in the non-aqueous secondary battery.
Another object of the present invention is to provide a non-aqueous secondary battery having excellent cycle characteristics.

本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、溶媒中に水素添加ニトリルゴムを含んでなるバインダー組成物に、更に架橋剤を添加することで、得られる正極合材層中の水素添加ニトリルゴムが電解液に溶出するのを抑制しうることに着想した。そしてこのバインダー組成物から形成されるバインダーフィルムを高温(150℃)環境で真空乾燥後に所定の電解液に浸漬させた際の溶出率と、同バインダーフィルムを低温(25℃)環境で真空乾燥後に所定の電解液に浸漬させた際の溶出率を比較し、これらの溶出率の比が所定の値以下であれば、二次電池に優れたサイクル特性を発揮させうることができることを見出し、本発明を完成させた。   The present inventor has conducted earnest studies for the purpose of solving the above problems. Then, the present inventors, by adding a crosslinking agent to the binder composition comprising hydrogenated nitrile rubber in the solvent, the hydrogenated nitrile rubber in the obtained positive electrode mixture layer is eluted into the electrolytic solution. The idea was to suppress Then, a binder film formed from this binder composition was vacuum dried in a high temperature (150 ° C.) environment and then immersed in a predetermined electrolytic solution, and the elution rate was measured after the binder film was vacuum dried in a low temperature (25 ° C.) environment. Comparing the elution rate when immersed in a predetermined electrolytic solution, if the ratio of these elution rates is a predetermined value or less, found that it is possible to exhibit excellent cycle characteristics in the secondary battery, the present Completed the invention.

即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池正極用バインダー組成物は、水素添加ニトリルゴム、架橋剤、および溶媒を含み、以下の式(1)によって算出される溶出率比が0.45以下であることを特徴とする。
溶出率比=溶出率A/溶出率B・・・(1)
式(1)中、
溶出率Aは、前記非水系二次電池正極用バインダー組成物から形成されるバインダーフィルムを150℃で6時間真空乾燥し、真空乾燥後のバインダーフィルムを、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、エチルメチルカーボネート(EMC)、およびn−プロピルプロピオネート(PP)を質量比EC:PC:EMC:PP=2:1:1:6で混合して得られる溶媒にLiPFを1.0モル/リットルの濃度で溶解させた測定用電解液中に、60℃で72時間浸漬させた際の溶出率を表し、
溶出率Bは、前記非水系二次電池正極用バインダー組成物から形成されるバインダーフィルムを25℃で6時間真空乾燥し、真空乾燥後のバインダーフィルムを、前記測定用電解液中に、60℃で72時間浸漬させた際の溶出率を表す。このようなバインダー組成物を用いれば、二次電池に優れたサイクル特性を発揮させ得る正極合材層を形成することができる。
なお、本発明において、「架橋剤」とは、フリーラジカルを生成して架橋反応を進行させる化合物をいう。また、本発明において、「真空乾燥」とは、10kPa以下の減圧環境下で乾燥を行うことをいう。
That is, the present invention is intended to advantageously solve the above problems, the binder composition for a non-aqueous secondary battery positive electrode of the present invention comprises a hydrogenated nitrile rubber, a crosslinking agent, and a solvent, The dissolution rate ratio calculated by the following equation (1) is 0.45 or less.
Dissolution rate ratio = Dissolution rate A / Dissolution rate B (1)
In formula (1),
The elution rate A was determined by vacuum-drying a binder film formed from the binder composition for a non-aqueous secondary battery positive electrode at 150 ° C. for 6 hours, and then subjecting the binder film after vacuum drying to ethylene carbonate (EC) and propylene carbonate (PC). ), Ethyl methyl carbonate (EMC), and n-propyl propionate (PP) in a mass ratio of EC: PC: EMC: PP = 2: 1: 1: 6, and LiPF 6 is added to a solvent obtained by adding 1. It represents the dissolution rate when immersed in a measuring electrolyte solution having a concentration of 0 mol / liter for 72 hours at 60 ° C.,
The elution rate B was determined by vacuum-drying a binder film formed from the binder composition for a non-aqueous secondary battery positive electrode at 25 ° C. for 6 hours, and applying the vacuum-dried binder film to the measuring electrolyte at 60 ° C. Represents the dissolution rate when immersed for 72 hours. By using such a binder composition, it is possible to form a positive electrode mixture layer capable of exhibiting excellent cycle characteristics in a secondary battery.
In addition, in this invention, a "crosslinking agent" means the compound which produces | generates a free radical and advances a crosslinking reaction. Further, in the present invention, “vacuum drying” means performing drying under a reduced pressure environment of 10 kPa or less.

ここで、本発明の非水系二次電池正極用バインダー組成物は、前記架橋剤の10時間半減期温度が、80℃以上160℃以下であることが好ましい。上述の範囲内の10時間半減期温度を有する架橋剤を用いれば、バインダー組成物の保存安定性および正極のピール強度(正極合材層と集電体の密着強度)を高めると共に、二次電池のサイクル特性を更に向上させることができる。
なお、本発明において、「10時間半減期温度」とは、架橋剤の濃度が初期の半分に減ずるまでの時間(半減期)が10時間となる温度を意味する。
Here, in the binder composition for a non-aqueous secondary battery positive electrode of the present invention, the 10-hour half-life temperature of the cross-linking agent is preferably 80 ° C. or higher and 160 ° C. or lower. If a crosslinking agent having a 10-hour half-life temperature within the above range is used, the storage stability of the binder composition and the peel strength of the positive electrode (adhesion strength between the positive electrode mixture layer and the current collector) are increased, and the secondary battery is used. The cycle characteristics of can be further improved.
In the present invention, the “10-hour half-life temperature” means the temperature at which the time (half-life) until the concentration of the cross-linking agent is reduced to half the initial time is 10 hours.

また、本発明の非水系二次電池正極用バインダー組成物は、前記架橋剤が有機過酸化物であることが好ましい。架橋剤が有機過酸化物であれば、正極のピール強度を高めると共に、二次電池のサイクル特性を更に向上させることができる。   Moreover, in the binder composition for a non-aqueous secondary battery positive electrode of the present invention, the cross-linking agent is preferably an organic peroxide. When the crosslinking agent is an organic peroxide, the peel strength of the positive electrode can be increased and the cycle characteristics of the secondary battery can be further improved.

更に、本発明の非水系二次電池正極用バインダー組成物は、前記水素添加ニトリルゴム100質量部当たり、前記架橋剤を1質量部以上3質量部以下含むことが好ましい。架橋剤の含有量が上述の範囲内であれば、正極の柔軟性およびピール強度、並びにバインダー組成物の安定性を高めると共に、二次電池のサイクル特性を更に向上させることができる。   Furthermore, the binder composition for a non-aqueous secondary battery positive electrode of the present invention preferably contains 1 part by mass or more and 3 parts by mass or less of the crosslinking agent per 100 parts by mass of the hydrogenated nitrile rubber. When the content of the cross-linking agent is within the above range, the flexibility and peel strength of the positive electrode and the stability of the binder composition can be increased, and the cycle characteristics of the secondary battery can be further improved.

そして、本発明の非水系二次電池正極用バインダー組成物は、更に共架橋剤を含むことが好ましい。架橋剤に加え、共架橋剤を含むバインダー組成物を用いれば、正極のピール強度を高めると共に、二次電池のサイクル特性を更に向上させることができる。
なお、本発明において、「共架橋剤」とは、エチレン性不飽和結合などのラジカル反応性の不飽和基を一分子中に複数個有する化合物をいう。
The binder composition for a non-aqueous secondary battery positive electrode of the present invention preferably further contains a co-crosslinking agent. By using a binder composition containing a co-crosslinking agent in addition to the crosslinking agent, the peel strength of the positive electrode can be increased and the cycle characteristics of the secondary battery can be further improved.
In the present invention, the “co-crosslinking agent” refers to a compound having a plurality of radically reactive unsaturated groups such as ethylenic unsaturated bonds in one molecule.

ここで、本発明の非水系二次電池正極用バインダー組成物は、前記水素添加ニトリルゴム100質量部当たり、前記共架橋剤を1質量部以上5質量部以下含むことが好ましい。共架橋剤の含有量が上述の範囲内であれば、正極の柔軟性およびピール強度を高めると共に、二次電池のサイクル特性を更に向上させることができる。   Here, the binder composition for a non-aqueous secondary battery positive electrode of the present invention preferably contains 1 part by mass or more and 5 parts by mass or less of the co-crosslinking agent per 100 parts by mass of the hydrogenated nitrile rubber. When the content of the co-crosslinking agent is within the above range, it is possible to increase the flexibility and peel strength of the positive electrode and further improve the cycle characteristics of the secondary battery.

また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池正極用スラリー組成物は、正極活物質と、上述した何れかの非水系二次電池正極用バインダー組成物とを含むことを特徴とする。このようなスラリー組成物を用いれば、二次電池に優れたサイクル特性を発揮させ得る正極合材層を形成することができる。   Moreover, this invention aims at solving the said subject advantageously, and the slurry composition for non-aqueous secondary battery positive electrodes of this invention is a positive electrode active material, and any non-aqueous secondary battery mentioned above. And a binder composition for a secondary battery positive electrode. By using such a slurry composition, it is possible to form a positive electrode mixture layer capable of exhibiting excellent cycle characteristics in a secondary battery.

また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用正極は、上述した非水系二次電池正極用スラリー組成物を用いて形成した正極合材層を備えることを特徴とする。このように、上述したスラリー組成物を用いて形成した正極合材層を有する正極を使用すれば、二次電池に優れたサイクル特性を発揮させることができる。   Moreover, this invention aims at solving the said subject advantageously, and the positive electrode for non-aqueous secondary batteries of this invention is formed using the slurry composition for non-aqueous secondary batteries positive electrode mentioned above. It is characterized by including the positive electrode mixture layer. As described above, when the positive electrode having the positive electrode mixture layer formed by using the above-mentioned slurry composition is used, the secondary battery can exhibit excellent cycle characteristics.

更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、上述した非水系二次電池用正極と、負極と、電解液と、セパレータとを備えることを特徴とする。このように、上述した非水系二次電池用正極を使用すれば、優れたサイクル特性を有する二次電池を得ることができる。   Furthermore, the present invention is intended to advantageously solve the above problems, the non-aqueous secondary battery of the present invention, the positive electrode for a non-aqueous secondary battery described above, a negative electrode, and an electrolyte solution, And a separator. Thus, by using the positive electrode for a non-aqueous secondary battery described above, a secondary battery having excellent cycle characteristics can be obtained.

ここで、本発明の非水系二次電池は、前記電解液のSP値が22.0以上23.0以下であることが好ましい。SP値が上述の範囲内である電解液を用いた二次電池は、サイクル特性等の電池特性に一層優れる。
なお、本発明において、電解液の「SP値」は、Hoyの計算方法(H.L.Hoy Journal of Painting,1970,Vol.42,76-118を参照。)により電解液に含まれる各溶媒のSP値を算出し、それらのSP値に各溶媒の25℃における体積分率(0%超100%未満)を乗じたものの和を100で除することで算出することができる。
Here, in the non-aqueous secondary battery of the present invention, the SP value of the electrolytic solution is preferably 22.0 or more and 23.0 or less. The secondary battery using the electrolytic solution having the SP value within the above range is more excellent in battery characteristics such as cycle characteristics.
In the present invention, the “SP value” of the electrolytic solution is the SP value of each solvent contained in the electrolytic solution according to the Hoy calculation method (HLHoy Journal of Painting, 1970, Vol. 42, 76-118). It can be calculated by dividing the sum of those calculated by multiplying the SP value by the volume fraction (more than 0% and less than 100%) at 25 ° C. of each solvent by 100.

本発明によれば、非水系二次電池に優れたサイクル特性を発揮させることが可能な非水系二次電池正極用バインダー組成物および非水系二次電池正極用スラリー組成物を提供することができる。
また、本発明によれば、非水系二次電池に優れたサイクル特性を発揮させることが可能な非水系二次電池用正極を提供することができる。
更に、本発明によれば、優れたサイクル特性を有する非水系二次電池を提供することができる。
According to the present invention, it is possible to provide a binder composition for a non-aqueous secondary battery positive electrode and a slurry composition for a non-aqueous secondary battery positive electrode capable of exhibiting excellent cycle characteristics in the non-aqueous secondary battery. .
Further, according to the present invention, it is possible to provide a positive electrode for a non-aqueous secondary battery, which is capable of exhibiting excellent cycle characteristics in the non-aqueous secondary battery.
Furthermore, according to the present invention, a non-aqueous secondary battery having excellent cycle characteristics can be provided.

以下、本発明の実施形態について詳細に説明する。
ここで、本発明の非水系二次電池正極用バインダー組成物は、非水系二次電池正極用スラリー組成物を調製する際に用いることができる。そして、本発明の非水系二次電池正極用バインダー組成物を用いて調製した非水系二次電池正極用スラリー組成物は、リチウムイオン二次電池等の非水系二次電池の正極を形成する際に用いることができる。更に、本発明の非水系二次電池は、本発明の非水系二次電池正極用スラリー組成物を用いて形成した非水系二次電池用正極を用いたことを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the binder composition for a positive electrode of a non-aqueous secondary battery of the present invention can be used when preparing a slurry composition for a positive electrode of a non-aqueous secondary battery. Then, the slurry composition for a non-aqueous secondary battery positive electrode prepared using the binder composition for a non-aqueous secondary battery positive electrode of the present invention is used when forming a positive electrode of a non-aqueous secondary battery such as a lithium ion secondary battery. Can be used for. Furthermore, the non-aqueous secondary battery of the present invention is characterized by using a non-aqueous secondary battery positive electrode formed by using the non-aqueous secondary battery positive electrode slurry composition of the present invention.

(非水系二次電池正極用バインダー組成物)
本発明の非水系二次電池正極用バインダー組成物は、水素添加ニトリルゴムと、架橋剤と、溶媒とを含み、任意に、共架橋剤と、二次電池の正極に配合され得るその他の成分とを更に含有する。そして、本発明のバインダー組成物は、以下の式(1)によって算出される溶出率比が0.45以下であることを特徴とする。
溶出率比=溶出率A/溶出率B・・・(1)
なお、式(1)中、溶出率Aは、バインダー組成物から形成されるバインダーフィルムを150℃で6時間真空乾燥し、真空乾燥後のバインダーフィルムを、測定用電解液(EC:PC:EMC:PP=2:1:1:6(質量基準)の混合溶媒にLiPFを1.0モル/リットルの濃度で溶解させてなる)中に、60℃で72時間浸漬させた際の溶出率を表し、溶出率Bは、バインダー組成物から形成されるバインダーフィルムを25℃で6時間真空乾燥し、真空乾燥後のバインダーフィルムを、測定用電解液中に、60℃で72時間浸漬させた際の溶出率を表す。
(Binder composition for non-aqueous secondary battery positive electrode)
The binder composition for a non-aqueous secondary battery positive electrode of the present invention contains a hydrogenated nitrile rubber, a cross-linking agent, and a solvent, and optionally, a co-cross-linking agent and other components that can be blended in the positive electrode of the secondary battery. And are further contained. The binder composition of the present invention is characterized in that the elution rate ratio calculated by the following formula (1) is 0.45 or less.
Dissolution rate ratio = Dissolution rate A / Dissolution rate B (1)
In the formula (1), the elution rate A was obtained by vacuum-drying a binder film formed from the binder composition at 150 ° C. for 6 hours, and measuring the binder film after vacuum drying with an electrolytic solution for measurement (EC: PC: EMC). : PP = 2: 1: 1: 6 (mass basis) in a mixed solvent of LiPF 6 at a concentration of 1.0 mol / liter), and the elution rate when immersed for 72 hours at 60 ° C. The elution rate B was obtained by vacuum-drying a binder film formed from the binder composition at 25 ° C. for 6 hours, and immersing the vacuum-dried binder film in a measuring electrolyte solution at 60 ° C. for 72 hours. The elution rate is shown.

そして、本発明のバインダー組成物を用いて得られる正極合材層を備える正極は、二次電池に優れたサイクル特性を発揮させることができる。
ここで、本発明のバインダー組成物を用いることにより、二次電池のサイクル特性を向上させる正極合材層が得られる理由は、明らかではないが以下の通りであると推察される。
即ち、本発明のバインダー組成物は、水素添加ニトリルゴム、架橋剤、溶媒を含むため、本発明のバインダー組成物を用いて調製したスラリー組成物を乾燥等させて正極合材層を形成する際、溶媒が除去されると共に、架橋剤から生成されるフリーラジカルが、水素添加ニトリルゴム中の水素原子(特には、水素添加ニトリルゴムの残留二重結合に隣接する炭素原子上(アリル位)に位置する水素原子)を引き抜き、ラジカル反応により正極合材層中に剛直な架橋ネットワークが形成される。この架橋ネットワークにより水素化ニトリルゴムの電解液中への溶出が抑えられ、そして正極合材層が膨らんで導電パスが切断されるのを抑制することができる。加えて、本発明のバインダー組成物は、上述した溶出率比の値が0.45以下であるため、比較的低温では架橋剤と水素添加ニトリルゴムの反応が抑制されている一方、比較的高温では、架橋剤と水素添加ニトリルゴムの反応が良好に進行する。よって、本発明のバインダー組成物は、バインダー組成物としての保存安定性を保持しつつ、正極合材層形成の際には良好な架橋ネットワークを形成し、導電パスの切断を抑制することができる。従って、本発明のバインダー組成物を用いて正極合材層を形成すれば、二次電池に優れたサイクル特性を発揮させることができる。
Then, the positive electrode including the positive electrode mixture layer obtained by using the binder composition of the present invention can exhibit excellent cycle characteristics in the secondary battery.
Here, the reason why the positive electrode mixture layer that improves the cycle characteristics of the secondary battery can be obtained by using the binder composition of the present invention is not clear, but is presumed to be as follows.
That is, since the binder composition of the present invention contains a hydrogenated nitrile rubber, a cross-linking agent, and a solvent, when the slurry composition prepared using the binder composition of the present invention is dried to form the positive electrode mixture layer. , The solvent is removed, and the free radicals generated from the cross-linking agent are generated on the hydrogen atom in the hydrogenated nitrile rubber (especially on the carbon atom (allyl position) adjacent to the residual double bond of the hydrogenated nitrile rubber. Rigid cross-linked network is formed in the positive electrode mixture layer by the radical reaction by extracting the located hydrogen atom). This cross-linked network can suppress the elution of hydrogenated nitrile rubber into the electrolytic solution, and can prevent the positive electrode mixture layer from swelling and cutting the conductive path. In addition, since the binder composition of the present invention has a value of the above-mentioned dissolution rate ratio of 0.45 or less, the reaction between the cross-linking agent and the hydrogenated nitrile rubber is suppressed at a relatively low temperature, while the temperature at a relatively high temperature. Then, the reaction between the crosslinking agent and the hydrogenated nitrile rubber proceeds well. Therefore, the binder composition of the present invention, while maintaining the storage stability as a binder composition, can form a good cross-linked network during the formation of the positive electrode mixture layer, and can suppress the cutting of the conductive path. . Therefore, when the positive electrode mixture layer is formed by using the binder composition of the present invention, the secondary battery can exhibit excellent cycle characteristics.

<水素添加ニトリルゴム>
水素添加ニトリルゴムは、バインダー組成物を用いて調製した非水系二次電池正極用スラリー組成物を使用して集電体上に正極合材層を形成することにより製造した正極において、正極合材層に含まれる成分が正極合材層から脱離しないように保持する(即ち、結着材として機能する)。そして水素添加ニトリルゴムは、共役ジエン単量体単位およびニトリル基含有単量体単位を含む共重合体(ニトリルゴム)を水素化することにより得ることができる。すなわち、水素添加ニトリルゴムとして、共役ジエン単量体単位およびニトリル基含有単量体単位を含む共重合体の水素化物を用いることができる。
なお、本発明において、「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の繰り返し単位が含まれている」ことを意味する。
<Hydrogenated nitrile rubber>
The hydrogenated nitrile rubber is a positive electrode mixture prepared by forming a positive electrode mixture layer on a current collector using a slurry composition for a non-aqueous secondary battery positive electrode prepared using a binder composition. The components contained in the layer are retained so as not to be released from the positive electrode mixture layer (that is, function as a binder). The hydrogenated nitrile rubber can be obtained by hydrogenating a copolymer (nitrile rubber) containing a conjugated diene monomer unit and a nitrile group-containing monomer unit. That is, a hydride of a copolymer containing a conjugated diene monomer unit and a nitrile group-containing monomer unit can be used as the hydrogenated nitrile rubber.
In addition, in the present invention, “containing a monomer unit” means “a repeating unit derived from a monomer is contained in a polymer obtained by using the monomer”.

[共役ジエン単量体単位およびニトリル基含有単量体単位を含む共重合体]
水素添加ニトリルゴムの調製に用いる上記共重合体は、共役ジエン単量体単位と、ニトリル基含有単量体単位と、任意に、その他の繰り返し単位とを含む。
[Copolymer Containing Conjugated Diene Monomer Unit and Nitrile Group-Containing Monomer Unit]
The above-mentioned copolymer used for preparing the hydrogenated nitrile rubber contains a conjugated diene monomer unit, a nitrile group-containing monomer unit, and optionally other repeating units.

[[共役ジエン単量体単位]]
共役ジエン単量体単位を形成しうる共役ジエン単量体としては、例えば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、2−エチル−1,3−ブタジエン、1,3−ペンタジエンなどの炭素数4以上の共役ジエン化合物が挙げられる。中でも、1,3−ブタジエンが好ましい。これらは一種単独で、または、2種以上を組み合わせて用いることができる。
[[Conjugated diene monomer unit]]
Examples of the conjugated diene monomer capable of forming the conjugated diene monomer unit include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, Examples thereof include conjugated diene compounds having 4 or more carbon atoms such as 1,3-pentadiene. Of these, 1,3-butadiene is preferable. These may be used alone or in combination of two or more.

そして、共重合体中での共役ジエン単量体単位の含有割合は、共重合体中の全繰り返し単位を100質量%とした場合に、30質量%以上が好ましく、98質量%以下が好ましく、80質量%以下がより好ましい。共重合体中での共役ジエン単量体単位の含有割合が上記範囲の下限値以上であれば、共重合体から得られる水素添加ニトリルゴムを含むバインダー組成物を用いた正極の柔軟性を向上させることができる。また、共重合体中での共役ジエン単量体単位の含有割合が上記範囲の上限値以下であれば、共重合体から得られる水素添加ニトリルゴムの溶媒に対する溶解性が確保される。そのため、水素添加ニトリルゴムがスラリー組成物中で導電材などを良好に分散させて、二次電池の電池特性(サイクル特性等)を向上させることができる。   And the content ratio of the conjugated diene monomer unit in the copolymer is preferably 30% by mass or more, and preferably 98% by mass or less, when all the repeating units in the copolymer are 100% by mass. It is more preferably 80% by mass or less. When the content ratio of the conjugated diene monomer unit in the copolymer is at least the lower limit value of the above range, the flexibility of the positive electrode using the binder composition containing the hydrogenated nitrile rubber obtained from the copolymer is improved. Can be made. Further, when the content ratio of the conjugated diene monomer unit in the copolymer is not more than the upper limit value of the above range, the solubility of the hydrogenated nitrile rubber obtained from the copolymer in the solvent is secured. Therefore, the hydrogenated nitrile rubber can well disperse the conductive material and the like in the slurry composition, and can improve the battery characteristics (cycle characteristics and the like) of the secondary battery.

[[ニトリル基含有単量体単位]]
ニトリル基含有単量体単位を形成しうるニトリル基含有単量体としては、α,β−エチレン性不飽和ニトリル単量体が挙げられる。そして、α,β−エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β−エチレン性不飽和化合物であれば特に限定されないが、例えば、アクリロニトリル;α−クロロアクリロニトリル、α−ブロモアクリロニトリルなどのα−ハロゲノアクリロニトリル;メタクリロニトリル、α−エチルアクリロニトリルなどのα−アルキルアクリロニトリル;などが挙げられる。なかでも、共重合体から得られる水素添加ニトリルゴムの結着力を高め、正極の機械的強度を高める観点からは、ニトリル基含有単量体としては、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルがより好ましい。これらは一種単独で、または、2種以上を組み合わせて用いることができる。
[[Nitrile group-containing monomer unit]]
Examples of the nitrile group-containing monomer capable of forming the nitrile group-containing monomer unit include α, β-ethylenically unsaturated nitrile monomers. The α, β-ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an α, β-ethylenically unsaturated compound having a nitrile group, for example, acrylonitrile; α-chloroacrylonitrile, α-bromo. And α-halogenoacrylonitrile such as acrylonitrile; α-alkylacrylonitrile such as methacrylonitrile and α-ethylacrylonitrile; and the like. Among them, from the viewpoint of increasing the binding force of the hydrogenated nitrile rubber obtained from the copolymer and increasing the mechanical strength of the positive electrode, acrylonitrile and methacrylonitrile are preferable as the nitrile group-containing monomer, and acrylonitrile is more preferable. preferable. These may be used alone or in combination of two or more.

そして、共重合体中でのニトリル基含有単量体単位の含有割合は、共重合体中の全繰り返し単位を100質量%とした場合に、5質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上が更に好ましく、60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下が更に好ましい。共重合体中でのニトリル基含有単量体単位の含有割合が上記範囲の下限値以上であれば、水素添加ニトリルゴムがスラリー組成物中で導電材などを良好に分散させて、二次電池の電池特性(サイクル特性等)を向上させることができる。また、共重合体中での共役ジエン単量体単位の含有割合が上記範囲の上限値以下であれば、共重合体から得られる水素添加ニトリルゴムを含むバインダー組成物を用いた正極の柔軟性を確保することができる。   And the content ratio of the nitrile group-containing monomer unit in the copolymer is preferably 5% by mass or more, and more preferably 15% by mass or more, when all the repeating units in the copolymer are 100% by mass. 20 mass% or more is more preferable, 60 mass% or less is preferable, 50 mass% or less is more preferable, and 40 mass% or less is further preferable. When the content ratio of the nitrile group-containing monomer unit in the copolymer is at least the lower limit value of the above range, the hydrogenated nitrile rubber satisfactorily disperses the conductive material and the like in the slurry composition to give a secondary battery. The battery characteristics (cycle characteristics, etc.) can be improved. Further, if the content ratio of the conjugated diene monomer unit in the copolymer is not more than the upper limit value of the above range, the flexibility of the positive electrode using the binder composition containing the hydrogenated nitrile rubber obtained from the copolymer Can be secured.

[[その他の繰り返し単位]]
また、その他の繰り返し単位を形成し得る単量体(以下、「その他の単量体」ということがある。)としては、特に限定されることなく、(メタ)アクリル酸エステル単量体、親水性基を有する重合可能な単量体、芳香族ビニル単量体などが挙げられる。
なお、これらの単量体は一種単独で、または、2種以上を組み合わせて用いることができる。また、本発明において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。
[[Other repeating units]]
Further, the monomer capable of forming other repeating units (hereinafter sometimes referred to as “other monomer”) is not particularly limited, and includes (meth) acrylic acid ester monomer, hydrophilic Examples thereof include polymerizable monomers having a functional group, aromatic vinyl monomers and the like.
In addition, these monomers can be used individually by 1 type or in combination of 2 or more types. Further, in the present invention, “(meth) acryl” means acryl and / or methacryl.

ここで、(メタ)アクリル酸エステル単量体としては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、t−ブチルアクリレート、イソブチルアクリレート、n−ペンチルアクリレート、イソペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n−テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、t−ブチルメタクリレート、イソブチルメタクリレート、n−ペンチルメタクリレート、イソペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2−エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n−テトラデシルメタクリレート、ステアリルメタクリレートなどのメタクリル酸アルキルエステル;などが挙げられる。これらの中でも、(メタ)アクリル酸エステル単量体としては、エチルアクリレート、n−ブチルアクリレートおよび2−エチルヘキシルアクリレートが好ましく、n−ブチルアクリレートがより好ましい。   Here, as the (meth) acrylic acid ester monomer, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, isobutyl acrylate, n-pentyl acrylate, isopentyl acrylate. , Acrylic acid alkyl esters such as hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, Isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, a Butyl methacrylate, n-pentyl methacrylate, isopentyl methacrylate, hexyl methacrylate, heptyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, lauryl methacrylate, n-tetradecyl methacrylate, stearyl methacrylate and the like alkyl methacrylates; And so on. Among these, as the (meth) acrylic acid ester monomer, ethyl acrylate, n-butyl acrylate and 2-ethylhexyl acrylate are preferable, and n-butyl acrylate is more preferable.

また、親水性基を有する重合可能な単量体としては、カルボン酸基を有する単量体、スルホン酸基を有する単量体、リン酸基を有する単量体、水酸基を有する単量体が挙げられる。なお、共重合体から得られる水素添加ニトリルゴムの結着力を高める観点からは、親水性基は、カルボン酸基またはスルホン酸基であることが好ましく、カルボン酸基であることがより好ましい。   Further, as the polymerizable monomer having a hydrophilic group, a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, a monomer having a phosphoric acid group, a monomer having a hydroxyl group Can be mentioned. From the viewpoint of increasing the binding strength of the hydrogenated nitrile rubber obtained from the copolymer, the hydrophilic group is preferably a carboxylic acid group or a sulfonic acid group, and more preferably a carboxylic acid group.

カルボン酸基を有する単量体としては、モノカルボン酸およびその誘導体や、ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。
モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
モノカルボン酸誘導体としては、2−エチルアクリル酸、イソクロトン酸、α−アセトキシアクリル酸、β−trans−アリールオキシアクリル酸、α−クロロ−β−E−メトキシアクリル酸、β−ジアミノアクリル酸などが挙げられる。
ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸エステルが挙げられる。
ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
また、カルボン酸基を有する単量体としては、加水分解によりカルボキシル基を生成する酸無水物も使用できる。
その他、マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノブチル、イタコン酸ジブチルなどのα,β−エチレン性不飽和多価カルボン酸のモノエステルおよびジエステルも挙げられる。
Examples of the monomer having a carboxylic acid group include monocarboxylic acid and its derivative, dicarboxylic acid and its acid anhydride, and their derivatives.
Examples of the monocarboxylic acid include acrylic acid, methacrylic acid and crotonic acid.
Examples of the monocarboxylic acid derivative include 2-ethylacrylic acid, isocrotonic acid, α-acetoxyacrylic acid, β-trans-aryloxyacrylic acid, α-chloro-β-E-methoxyacrylic acid and β-diaminoacrylic acid. Can be mentioned.
Examples of the dicarboxylic acid include maleic acid, fumaric acid and itaconic acid.
Examples of the dicarboxylic acid derivative include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, methylallyl maleate, diphenyl maleate, nonyl maleate, decyl maleate, dodecyl maleate. , Maleic acid esters such as octadecyl maleate and fluoroalkyl maleate.
Examples of the acid anhydride of dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride and the like.
Further, as the monomer having a carboxylic acid group, an acid anhydride that produces a carboxyl group by hydrolysis can also be used.
Others, monoethyl maleate, diethyl maleate, monobutyl maleate, dibutyl maleate, monoethyl fumarate, diethyl fumarate, monobutyl fumarate, dibutyl fumarate, monocyclohexyl fumarate, dicyclohexyl fumarate, monoethyl itaconate, diethyl itaconate And monoesters and diesters of α, β-ethylenically unsaturated polycarboxylic acids such as monobutyl itaconate and dibutyl itaconate.

スルホン酸基を有する単量体としては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸−2−スルホン酸エチル、2−アクリルアミド−2−メチルプロパンスルホン酸、3−アリロキシ−2−ヒドロキシプロパンスルホン酸などが挙げられる。
なお、本発明において「(メタ)アリル」とは、アリルおよび/またはメタリルを意味する。
Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, ethyl (meth) acrylic acid-2-sulfonate, and 2-acrylamido-2-methyl. Examples thereof include propane sulfonic acid and 3-allyloxy-2-hydroxypropane sulfonic acid.
In addition, in this invention, "(meth) allyl" means allyl and / or methallyl.

リン酸基を有する単量体としては、リン酸−2−(メタ)アクリロイルオキシエチル、リン酸メチル−2−(メタ)アクリロイルオキシエチル、リン酸エチル−(メタ)アクリロイルオキシエチルなどが挙げられる。
なお、本発明において「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
Examples of the monomer having a phosphate group include 2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, ethyl phosphate- (meth) acryloyloxyethyl, and the like. .
In addition, in this invention, "(meth) acryloyl" means acryloyl and / or methacryloyl.

水酸基を有する単量体としては、(メタ)アリルアルコール、3−ブテン−1−オール、5−ヘキセン−1−オールなどのエチレン性不飽和アルコール;アクリル酸−2−ヒドロキシエチル、アクリル酸−2−ヒドロキシプロピル、メタクリル酸−2−ヒドロキシエチル、メタクリル酸−2−ヒドロキシプロピル、マレイン酸ジ−2−ヒドロキシエチル、マレイン酸ジ−4−ヒドロキシブチル、イタコン酸ジ−2−ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式:CH=CR−COO−(C2nO)−H(式中、mは2〜9の整数、nは2〜4の整数、Rは水素またはメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;2−ヒドロキシエチル−2’−(メタ)アクリロイルオキシフタレート、2−ヒドロキシエチル−2’−(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2−ヒドロキシエチルビニルエーテル、2−ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル−2−ヒドロキシエチルエーテル、(メタ)アリル−2−ヒドロキシプロピルエーテル、(メタ)アリル−3−ヒドロキシプロピルエーテル、(メタ)アリル−2−ヒドロキシブチルエーテル、(メタ)アリル−3−ヒドロキシブチルエーテル、(メタ)アリル−4−ヒドロキシブチルエーテル、(メタ)アリル−6−ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコールモノ(メタ)アリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル−2−クロロ−3−ヒドロキシプロピルエーテル、(メタ)アリル−2−ヒドロキシ−3−クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲンおよびヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテルおよびそのハロゲン置換体;(メタ)アリル−2−ヒドロキシエチルチオエーテル、(メタ)アリル−2−ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;などが挙げられる。 Examples of the monomer having a hydroxyl group include ethylenically unsaturated alcohols such as (meth) allyl alcohol, 3-buten-1-ol, and 5-hexen-1-ol; 2-hydroxyethyl acrylate, acrylic acid-2 -Ethylenic such as hydroxypropyl, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, di-2-hydroxyethyl maleate, di-4-hydroxybutyl maleate, di-2-hydroxypropyl itaconic acid alkanol esters of unsaturated carboxylic acids; general formula: CH 2 = CR 1 -COO- ( C n H 2n O) m -H ( wherein, m is 2-9 integer, n represents an integer of 2 to 4, esters R 1 is a polyalkylene glycol and (meth) acrylic acid represented by hydrogen or a methyl group); 2- hydro Mono (meth) acrylic acid esters of dihydroxy esters of dicarboxylic acids such as cyethyl-2 '-(meth) acryloyloxyphthalate, 2-hydroxyethyl-2'-(meth) acryloyloxysuccinate; 2-hydroxyethyl vinyl ether, Vinyl ethers such as 2-hydroxypropyl vinyl ether; (meth) allyl-2-hydroxyethyl ether, (meth) allyl-2-hydroxypropyl ether, (meth) allyl-3-hydroxypropyl ether, (meth) allyl-2- Alkylene glycol mono (meth) allyl ethers such as hydroxybutyl ether, (meth) allyl-3-hydroxybutyl ether, (meth) allyl-4-hydroxybutyl ether, (meth) allyl-6-hydroxyhexyl ether Polyoxyalkylene glycol mono (meth) allyl ethers such as diethylene glycol mono (meth) allyl ether, dipropylene glycol mono (meth) allyl ether; glycerin mono (meth) allyl ether, (meth) allyl-2-chloro Halogen- and hydroxy-substituted mono (meth) allyl ethers of (poly) alkylene glycols such as 3-hydroxypropyl ether and (meth) allyl-2-hydroxy-3-chloropropyl ether; and eugenol and isoeugenol Mono (meth) allyl ethers of dihydric phenols and halogen-substituted products thereof; (meth) allyl ethers of alkylene glycols such as (meth) allyl-2-hydroxyethyl thioether and (meth) allyl-2-hydroxypropyl thioether. Thioether ethers; and the like.

そして、芳香族ビニル単量体としては、スチレン、α−メチルスチレン、ビニルトルエン、ジビニルベンゼンなどが挙げられる。   Examples of aromatic vinyl monomers include styrene, α-methylstyrene, vinyltoluene, divinylbenzene and the like.

なお、共重合体中でのその他の繰り返し単位の含有割合は、共重合体中の全繰り返し単位を100質量%とした場合に、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、0質量%であることが更に好ましい。   The content of the other repeating units in the copolymer is preferably 10% by mass or less, and 5% by mass or less, based on 100% by mass of all repeating units in the copolymer. It is more preferable that it is 0% by mass, and it is further preferable.

[[共重合体の調製方法]]
共役ジエン単量体単位およびニトリル基含有単量体単位を含む共重合体の製造方法は特に限定はされず、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。各重合法において、必要に応じて既知の乳化剤や重合開始剤を使用することができる。また、重合方法としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。
[[Copolymer Preparation Method]]
The method for producing a copolymer containing a conjugated diene monomer unit and a nitrile group-containing monomer unit is not particularly limited, and examples thereof include solution polymerization method, suspension polymerization method, bulk polymerization method and emulsion polymerization method. The method of can also be used. In each polymerization method, known emulsifiers and polymerization initiators can be used if necessary. As the polymerization method, addition polymerization such as ionic polymerization, radical polymerization and living radical polymerization can be used.

[共重合体への水素添加]
上述のようにして得られた共重合体(ニトリルゴム)に水素添加を行い、水素添加ニトリルゴムを調製することができる。ここで、水素添加の方法は、特に制限なく、触媒を用いる一般的な方法(例えば、国際公開第2012/165120号、国際公開第2013/080989号および特開2013−8485号公報参照)を使用することができる。
このようにして得られる水素添加ニトリルゴムは、共役ジエン単量体単位への水素添加により形成されるアルキレン構造単位と、ニトリル基含有単量体単位とを含む一方で、水素添加ニトリルゴムには、通常、一部の共役ジエン単量体単位が水素添加されずに残存する。即ち、水素添加ニトリルゴムは、通常、少なくとも、アルキレン構造単位と、ニトリル基含有単量体単位と、共役ジエン単量体単位とを含む。ここで、アルキレン構造単位は、一般式:−C2n−[但し、nは2以上の整数]で表わされるアルキレン構造のみで構成される繰り返し単位である。
[Hydrogen addition to copolymer]
Hydrogenation can be performed on the copolymer (nitrile rubber) obtained as described above to prepare a hydrogenated nitrile rubber. Here, the method of hydrogenation is not particularly limited, and a general method using a catalyst (see, for example, International Publication No. 2012/165120, International Publication No. 2013/080989 and JP2013-8485A) is used. can do.
The hydrogenated nitrile rubber thus obtained contains an alkylene structural unit formed by hydrogenation of a conjugated diene monomer unit and a nitrile group-containing monomer unit, while the hydrogenated nitrile rubber is Usually, some conjugated diene monomer units remain without being hydrogenated. That is, the hydrogenated nitrile rubber usually contains at least an alkylene structural unit, a nitrile group-containing monomer unit, and a conjugated diene monomer unit. Here, the alkylene structural unit is a repeating unit composed only of an alkylene structure represented by the general formula: —C n H 2n — [where n is an integer of 2 or more].

ここで、水素添加ニトリルゴムは、ヨウ素価が、5mg/100mg以上であることが好ましく、100mg/100mg以下であることが好ましい。水素添加ニトリルゴムのヨウ素価が上述の範囲内であれば、水素添加ニトリルゴムが正極合材層中で一層剛直な架橋ネットワークを形成し、二次電池のサイクル特性を更に向上させることができる。
なお、本発明において、「ヨウ素価」は、水素添加ニトリルゴムの水分散液100gを、メタノール1リットルで凝固した後、60℃で12時間真空乾燥して得られる乾燥重合体のヨウ素価を、JIS K6235(2006)に従って測定することで得ることができる。
Here, the hydrogenated nitrile rubber preferably has an iodine value of 5 mg / 100 mg or more, and preferably 100 mg / 100 mg or less. When the iodine value of the hydrogenated nitrile rubber is within the above range, the hydrogenated nitrile rubber forms a more rigid crosslinked network in the positive electrode mixture layer, and the cycle characteristics of the secondary battery can be further improved.
In the present invention, "iodine value" means the iodine value of a dried polymer obtained by coagulating 100 g of an aqueous dispersion of hydrogenated nitrile rubber with 1 liter of methanol and vacuum-drying at 60 ° C for 12 hours. It can be obtained by measuring according to JIS K6235 (2006).

<架橋剤>
架橋剤としては、特に限定されないが、有機過酸化物、アゾ化合物が挙げられる。有機過酸化物としては、例えば、ジクミルパーオキサイド、クメンハイドロパーオキサイド、t−ブチルクミルパーオキサイド、パラメンタンハイドロパーオキサイド、ジ−t−ブチルパーオキサイド、1,3−ビス(t−ブチルペルオキシイソプロピル)ベンゼン、1,4−ビス(t−ブチルペルオキシイソプロピル)ベンゼン、1,1−ジ−t-ヘキシルペルオキシ−シクロヘキサン、1,1−ジ−t−ブチルペルオキシ−3,3−トリメチルシクロヘキサン、4,4−ビス−(t−ブチル−ペルオキシ)−n−ブチルバレレート、2,5−ジメチル−2,5−ジ−t−ブチルペルオキシヘキサン、2,5−ジメチル−2,5−ジ−t−ブチルペルオキシヘキシン−3、1,1−ジ−t−ブチルペルオキシ−3,5,5−トリメチルシクロヘキサン、p−クロロベンゾイルパーオキサイド、t−ブチルペルオキシイソプロピルカーボネート、t−ブチルペルオキシベンゾエートが挙げられる。アゾ化合物としては、アゾビスイソブチロニトリル、ジメチル−2,2'−アゾビス(2−メチルプロピオネート)が挙げられる。中でも、正極のピール強度を高めて、二次電池のサイクル特性を更に向上させる観点から、有機過酸化物が好ましく、ジクミルパーオキサイド、クメンハイドロパーオキサイド、1,1−ジ−t-ヘキシルペルオキシ−シクロヘキサンがより好ましく、ジクミルパーオキサイドが更に好ましい。なお、架橋剤としてジクミルパーオキサイドを用いれば、バインダー組成物の保存安定性を高めることもできる。これらの架橋剤は一種単独で、または、2種以上を組み合わせて用いることができる。
<Crosslinking agent>
The crosslinking agent is not particularly limited, but examples thereof include organic peroxides and azo compounds. Examples of the organic peroxide include dicumyl peroxide, cumene hydroperoxide, t-butyl cumyl peroxide, paramenthane hydroperoxide, di-t-butyl peroxide, 1,3-bis (t-butylperoxy). Isopropyl) benzene, 1,4-bis (t-butylperoxyisopropyl) benzene, 1,1-di-t-hexylperoxy-cyclohexane, 1,1-di-t-butylperoxy-3,3-trimethylcyclohexane, 4 , 4-Bis- (t-butyl-peroxy) -n-butylvalerate, 2,5-dimethyl-2,5-di-t-butylperoxyhexane, 2,5-dimethyl-2,5-di-t -Butylperoxyhexyne-3,1,1-di-t-butylperoxy-3,5,5-trimethylcyclo Hexane, p-chlorobenzoyl peroxide, t-butyl peroxyisopropyl carbonate, t-butyl peroxybenzoate can be mentioned. Examples of the azo compound include azobisisobutyronitrile and dimethyl-2,2′-azobis (2-methylpropionate). Among them, organic peroxides are preferable from the viewpoint of enhancing the peel strength of the positive electrode and further improving the cycle characteristics of the secondary battery, and dicumyl peroxide, cumene hydroperoxide, 1,1-di-t-hexylperoxy are preferred. -Cyclohexane is more preferred, and dicumyl peroxide is even more preferred. If dicumyl peroxide is used as the crosslinking agent, the storage stability of the binder composition can be increased. These cross-linking agents can be used alone or in combination of two or more.

ここで、架橋剤の10時間半減期温度は、80℃以上であることが好ましく、90℃以上であることがより好ましく、95℃以上であることが更に好ましく、160℃以下であることが好ましく、150℃以下であることがより好ましく、130℃以下であることが更に好ましい。架橋剤の10時間半減期温度が上記範囲の下限値以上であれば、架橋剤が過度な反応性を有することもなく、バインダー組成物の保存安定性を確保することができる。また、架橋剤の10時間半減期温度が上記範囲の上限値以下であれば、正極合材層の形成の際に架橋反応を十分に進行させることができる。そのため、正極のピール強度を高め、また二次電池のサイクル特性を更に向上させることができる。
なお、架橋剤の10時間半減期温度は、以下のようにして求めることができる。
まずラジカルに対して比較的不活性な溶媒(例えばベンゼン)を用いて、架橋剤の濃度が0.1モル/リットルの架橋剤溶液を調製する。この架橋剤溶液を、窒素置換を行ったガラス管中に密封し、当該ガラス管を所定温度にセットした恒温槽に浸し、架橋剤溶液中の架橋剤を熱分解させる。
ここで、一般的に希薄溶液中の架橋剤の分解は近似的に一次反応として取り扱うことができる。そのため、分解架橋剤量x、分解速度定数k、時間t、架橋剤初期濃度aとすると、これらの間に以下の関係が成り立つ。
dx/dt=k(a−x)・・・(2)
ln{a/(a−x)}=kt・・・(3)
ここで、半減期は、分解により架橋剤の濃度が初期の半分に減ずるまでの時間であるから、半減期をt1/2で示し、(3)式のxにa/2を代入すると、以下の式(4)を導出することができる。
kt1/2=ln2 ・・・(4)
上述のように所定温度で架橋剤溶液中の架橋剤を熱分解させ、時間(t)とln{a/(a−x)}の関係を複数プロットし、得られた直線の傾きから分解速度定数kを算出する。そして、(4)式から所定温度における半減期t1/2を求めることができる。
一方、上記分解速度定数kは、頻度因子A(1/h)、活性化エネルギーΔE(J/モル)、気体定数R(=8.314J/モル・K)、絶対温度T(K)を用いて、以下の式で表すことができる。
k=Aexp(−ΔE/RT) ・・・(5)
lnk=lnA−ΔE/RT ・・・(6)
(4)式のln2の値をL(凡そ0.693)として、k=L/t1/2を(6)式に代入して計算すると、以下の(7)式が得られる。
lnt1/2=ΔE/RT+ln(L/A) ・・・(7)
そして複数の温度T(K)について半減期を求め、lnt1/2と1/Tの関係をプロットして得られる直線において、t1/2が10時間となる場合の1/Tの値を読み取り、このT(K)の値を摂氏(℃)に換算することで、10時間半減期温度を得ることができる。
Here, the 10-hour half-life temperature of the cross-linking agent is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, further preferably 95 ° C. or higher, and preferably 160 ° C. or lower. , 150 ° C. or lower, more preferably 130 ° C. or lower. When the 10-hour half-life temperature of the cross-linking agent is at least the lower limit value of the above range, the cross-linking agent does not have excessive reactivity and the storage stability of the binder composition can be secured. Further, when the 10-hour half-life temperature of the cross-linking agent is not more than the upper limit value of the above range, the cross-linking reaction can be sufficiently advanced during the formation of the positive electrode mixture layer. Therefore, the peel strength of the positive electrode can be increased and the cycle characteristics of the secondary battery can be further improved.
The 10-hour half-life temperature of the crosslinking agent can be determined as follows.
First, a solvent (for example, benzene) that is relatively inert to radicals is used to prepare a crosslinking agent solution having a concentration of the crosslinking agent of 0.1 mol / liter. This cross-linking agent solution is sealed in a glass tube that has been subjected to nitrogen substitution, and the glass tube is immersed in a constant temperature bath set at a predetermined temperature to thermally decompose the cross-linking agent in the cross-linking agent solution.
Here, in general, the decomposition of the cross-linking agent in a dilute solution can be treated approximately as a first-order reaction. Therefore, assuming that the amount x of the decomposition crosslinking agent, the decomposition rate constant k, the time t, and the initial concentration a of the crosslinking agent, the following relationships are established among them.
dx / dt = k (ax) ... (2)
ln {a / (ax)} = kt (3)
Here, the half-life is the time until the concentration of the cross-linking agent is reduced to half of the initial value due to decomposition, so the half-life is represented by t 1/2 and substituting a / 2 for x in equation (3) gives The following equation (4) can be derived.
kt 1/2 = ln2 (4)
As described above, the cross-linking agent in the cross-linking agent solution is pyrolyzed at a predetermined temperature, a plurality of relationships between time (t) and ln {a / (ax)} are plotted, and the decomposition rate is determined from the slope of the obtained straight line. Calculate the constant k. Then, the half-life t 1/2 at the predetermined temperature can be obtained from the equation (4).
On the other hand, for the decomposition rate constant k, the frequency factor A (1 / h), activation energy ΔE (J / mol), gas constant R (= 8.314 J / mol · K), and absolute temperature T (K) are used. Then, it can be expressed by the following formula.
k = Aexp (-ΔE / RT) (5)
lnk = lnA-ΔE / RT (6)
When the value of ln2 in the expression (4) is L (approximately 0.693) and k = L / t 1/2 is substituted into the expression (6), the following expression (7) is obtained.
lnt 1/2 = ΔE / RT + ln (L / A) (7)
Then, the half-life is calculated for a plurality of temperatures T (K), and the value of 1 / T when t 1/2 is 10 hours is calculated on the straight line obtained by plotting the relationship between lnt 1/2 and 1 / T. By reading and converting the value of T (K) into Celsius (° C.), the 10-hour half-life temperature can be obtained.

そして、架橋剤の配合量は、水素添加ニトリルゴム100質量部当たり、1質量部以上であることが好ましく、1.5質量部以上であることがより好ましく、3質量部以下であることが好ましく、2.5質量部以下であることがより好ましい。架橋剤の配合量が上記範囲の下限値以上であれば、正極合材層の形成の際に架橋反応を十分に進行させることができる。そのため、正極のピール強度を高め、また二次電池のサイクル特性を更に向上させることができる。一方、架橋剤の配合量が上記範囲の上限値以下であれば、バインダー組成物の保存安定性を確保しつつ、正極の柔軟性を高めることができる。   And, the compounding amount of the cross-linking agent is preferably 1 part by mass or more, more preferably 1.5 parts by mass or more, and preferably 3 parts by mass or less per 100 parts by mass of the hydrogenated nitrile rubber. More preferably 2.5 parts by mass or less. When the blending amount of the cross-linking agent is not less than the lower limit value of the above range, the cross-linking reaction can be sufficiently advanced when forming the positive electrode mixture layer. Therefore, the peel strength of the positive electrode can be increased and the cycle characteristics of the secondary battery can be further improved. On the other hand, when the blending amount of the crosslinking agent is not more than the upper limit value of the above range, it is possible to increase the flexibility of the positive electrode while ensuring the storage stability of the binder composition.

<共架橋剤>
本発明のバインダー組成物は、任意に、共架橋剤を含有することができる。上述した架橋剤と併せて共架橋剤を用いれば、バインダー組成物を用いて調製したスラリー組成物を乾燥等させて正極合材層を形成する際に、一層剛直な架橋ネットワークを形成して、正極のピール強度を高めつつ水素化ニトリルゴムの電解液中への溶出を十分に抑制することができる。そのため、共架橋剤を用いれば、二次電池のサイクル特性を更に向上させることができる。
ここで、共架橋剤としては、特に限定されないが、例えば、ジビニルベンゼンやジビニルナフタレンなどの多官能芳香族ビニル化合物;トリアリルイソシアヌレート、トリメタリルイソシアヌレートなどのイソシアヌレート類;トリアリルシアヌレートなどのシアヌレート類;N,N'‐m‐フェニレンジマレイミドなどのマレイミド類;ジアリルフタレート、ジアリルイソフタレート、ジアリルマレエート、ジアリルフマレート、ジアリルセバケート、トリアリルホスフェートなどの多価酸のアリルエステル;ジエチレングリコールビスアリルカーボネート;エチレングリコールジアリルエーテル、トリメチロールプロパンをアリル化してなるトリアリルエーテル、ペンタエリスリトールを部分的にアリル化してなるアリルエーテルなどのアリルエーテル類;トリメチロールプロパントリメタクリレートやトリメチロールプロパントリアクリレートなどの、3〜5官能のメタクリレート化合物およびアクリレート化合物;などが挙げられる。中でも、二次電池のサイクル特性を更に高める観点から、イソシアヌレート類が好ましく、トリアリルイソシアヌレートがより好ましい。これらは一種単独で、または、2種以上を組み合わせて用いることができる。
<Co-crosslinking agent>
The binder composition of the present invention may optionally contain a co-crosslinking agent. If a co-crosslinking agent is used in combination with the above-described crosslinking agent, when a slurry composition prepared using a binder composition is dried to form a positive electrode mixture layer, a more rigid crosslinked network is formed, It is possible to sufficiently suppress the elution of the hydrogenated nitrile rubber into the electrolytic solution while increasing the peel strength of the positive electrode. Therefore, the use of the co-crosslinking agent can further improve the cycle characteristics of the secondary battery.
Here, the co-crosslinking agent is not particularly limited, but examples thereof include polyfunctional aromatic vinyl compounds such as divinylbenzene and divinylnaphthalene; isocyanurates such as triallyl isocyanurate and trimetallyl isocyanurate; and triallyl cyanurate. Cyanurates; maleimides such as N, N'-m-phenylene dimaleimide; allyl esters of polyvalent acids such as diallyl phthalate, diallyl isophthalate, diallyl maleate, diallyl fumarate, diallyl sebacate, triallyl phosphate; Diethylene glycol bisallyl carbonate; ethylene glycol diallyl ether, triallyl ether obtained by allylating trimethylolpropane, and allyl ether obtained by partially allylating pentaerythritol. Examples thereof include ril ethers; tri- to 5-functional methacrylate compounds and acrylate compounds such as trimethylolpropane trimethacrylate and trimethylolpropane triacrylate. Among them, isocyanurates are preferable, and triallyl isocyanurate is more preferable, from the viewpoint of further improving the cycle characteristics of the secondary battery. These may be used alone or in combination of two or more.

そして、共架橋剤の配合量は、水素添加ニトリルゴム100質量部当たり、1質量部以上であることが好ましく、2質量部以上であることがより好ましく、5質量部以下であることが好ましく、4質量部以下であることがより好ましい。共架橋剤の配合量が上記範囲の下限値以上であれば、正極合材層の形成の際に架橋反応を十分に進行させることができる。そのため、正極のピール強度を更に高め、また二次電池のサイクル特性をより一層向上させることができる。一方、共架橋剤の配合量が上記範囲の上限値以下であれば、バインダー組成物の保存安定性を確保しつつ、正極の柔軟性を高めることができる。   And, the compounding amount of the co-crosslinking agent is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and further preferably 5 parts by mass or less, per 100 parts by mass of the hydrogenated nitrile rubber. It is more preferably 4 parts by mass or less. When the blending amount of the co-crosslinking agent is at least the lower limit value of the above range, the crosslinking reaction can be sufficiently advanced during the formation of the positive electrode mixture layer. Therefore, the peel strength of the positive electrode can be further increased, and the cycle characteristics of the secondary battery can be further improved. On the other hand, when the blending amount of the co-crosslinking agent is not more than the upper limit of the above range, the flexibility of the positive electrode can be increased while ensuring the storage stability of the binder composition.

<溶媒>
本発明のバインダー組成物の溶媒としては、有機溶媒が好ましい。有機溶媒としては、特に限定されることなく、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、t−ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、アミルアルコールなどのアルコール類;アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類;酢酸エチル、酢酸ブチルなどのエステル類;ジエチルエーテル、ジオキサン、テトラヒドロフランなどのエーテル類;N,N−ジメチルホルムアミド、N−メチルピロリドン(NMP)などのアミド系極性有機溶媒;トルエン、キシレン、クロロベンゼン、オルトジクロロベンゼン、パラジクロロベンゼンなどの芳香族炭化水素類;などが挙げられる。これらは、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。中でも、溶媒としては、NMPがより好ましい。
<Solvent>
The solvent of the binder composition of the present invention is preferably an organic solvent. The organic solvent is not particularly limited and includes, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, amyl alcohol. Alcohols such as; ketones such as acetone, methyl ethyl ketone, cyclohexanone; esters such as ethyl acetate, butyl acetate; ethers such as diethyl ether, dioxane, tetrahydrofuran; N, N-dimethylformamide, N-methylpyrrolidone (NMP) And the like; aromatic hydrocarbons such as toluene, xylene, chlorobenzene, orthodichlorobenzene, and paradichlorobenzene; and the like. These may be used alone or in combination of two or more. Among them, NMP is more preferable as the solvent.

<その他の成分>
バインダー組成物は、上記成分の他に、水素添加ニトリルゴム以外の結着材(ポリフッ化ビニリデン、ポリアクリロニトリル、ポリメチルメタクリレート等)、補強材、レベリング剤、粘度調整剤、電解液添加剤等の成分を含有していてもよい。これらは、電池反応に影響を及ぼさないものであれば特に限られず、公知のもの、例えば国際公開第2012/115096号に記載のものを使用することができる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
なお、バインダー組成物が水素添加ニトリルゴム以外の結着材(その他の結着材)を含む場合、水素添加ニトリルゴムとその他の結着材の合計量中のその他の結着材の量の割合は、40.0質量%以上であることが好ましく、50.0質量%以上であることがより好ましく、99.9質量%以下であることが好ましく、90.0質量%以下であることがより好ましい。その他の結着材の量の割合が上記範囲の下限値以上であれば、二次電池の内部抵抗を低減し、またサイクル特性を確保することができる。一方、その他の結着材の量の割合が上記範囲の上限値以下であれば、正極の柔軟性を確保することができる。
<Other ingredients>
In addition to the above components, the binder composition may be a binder other than hydrogenated nitrile rubber (polyvinylidene fluoride, polyacrylonitrile, polymethylmethacrylate, etc.), a reinforcing material, a leveling agent, a viscosity modifier, an electrolyte additive, etc. You may contain the component. These are not particularly limited as long as they do not affect the battery reaction, and known ones such as those described in International Publication No. 2012/115096 can be used. Moreover, these components may be used individually by 1 type, and may be used in combination of 2 or more types in arbitrary ratios.
When the binder composition contains a binder (other binder) other than hydrogenated nitrile rubber, the ratio of the amount of the other binder in the total amount of the hydrogenated nitrile rubber and the other binder. Is preferably 40.0 mass% or more, more preferably 50.0 mass% or more, preferably 99.9 mass% or less, and more preferably 90.0 mass% or less. preferable. When the ratio of the amount of the other binder is at least the lower limit value of the above range, the internal resistance of the secondary battery can be reduced and the cycle characteristics can be secured. On the other hand, when the ratio of the amount of the other binder is equal to or less than the upper limit value of the above range, the flexibility of the positive electrode can be secured.

<バインダー組成物の調製>
そして、バインダー組成物は、水素添加ニトリルゴムと、架橋剤と、任意に添加しうる共架橋剤およびその他の成分とを、有機溶媒などの溶媒中に溶解または分散させることにより調製することができる。具体的な混合方法としては、特に限定されないが、容器自体が振とう、回転、または振動することで内容物を混合する、ロッキングミキサー、タンブラーミキサー等を用いた容器攪拌法;容器内に配置される回転軸(例えば、容器壁面に対し水平又は垂直に延在する)に撹拌のための羽根、回転盤、またはスクリュー等が取り付けられた混合機(水平円筒型混合機、V型混合機、回転円盤型混合機および高速回転羽根混合機等)を用いた機械式撹拌法、等が挙げられる。
なお、水素添加ニトリルゴムが水分散体として調製された場合には、水分散体と溶媒とを混合した後に水を除去してバインダー組成物の調製に使用することが好ましい。
このようにして調製されるバインダー組成物の固形分濃度は、特に限定されないが、5質量%以上であることが好ましく、20質量%以下であることが好ましい。
<Preparation of binder composition>
Then, the binder composition can be prepared by dissolving or dispersing a hydrogenated nitrile rubber, a crosslinking agent, and optionally a co-crosslinking agent and other components in a solvent such as an organic solvent. . The mixing method is not particularly limited, but the container itself is shaken, rotated, or vibrated to mix the contents, and a container stirring method using a rocking mixer, a tumbler mixer, or the like; A mixer (horizontal cylinder type mixer, V type mixer, rotation) in which a stirring shaft, a rotating disk, or a screw is attached to a rotating shaft (for example, extending horizontally or vertically to the wall surface of the container). Mechanical stirring method using a disk-type mixer and a high-speed rotary blade mixer, etc., and the like.
When the hydrogenated nitrile rubber is prepared as an aqueous dispersion, it is preferable to mix the aqueous dispersion and the solvent and then remove water to use for preparing the binder composition.
The solid content concentration of the binder composition thus prepared is not particularly limited, but is preferably 5% by mass or more, and preferably 20% by mass or less.

<溶出率比>
上述のようにして得られる本発明のバインダー組成物の溶出率比(=溶出率A/溶出率B)は、0.45以下であることが必要であり、0.20以下であることが好ましく、0.10以下であることがより好ましい。溶出率比が0.45を超えると、正極合材層の形成の際に架橋反応を十分に進行させることができない。そのため、正極の膨れによる導電パスの切断を抑制することができず、二次電池のサイクル特性等の電池特性が低下する。なお、本発明のバインダー組成物の溶出率比の下限値は特に限定されないが、バインダー組成物の保存安定性および正極の柔軟性を確保する観点から、0.03以上であることが好ましく、0.04以上であることがより好ましい。
<Elution rate ratio>
The dissolution rate ratio (= dissolution rate A / dissolution rate B) of the binder composition of the present invention obtained as described above needs to be 0.45 or less, preferably 0.20 or less. , 0.10 or less is more preferable. If the elution rate ratio exceeds 0.45, the crosslinking reaction cannot be sufficiently promoted when the positive electrode mixture layer is formed. Therefore, the disconnection of the conductive path due to the swelling of the positive electrode cannot be suppressed, and the battery characteristics such as the cycle characteristics of the secondary battery deteriorate. The lower limit of the dissolution rate ratio of the binder composition of the present invention is not particularly limited, but is preferably 0.03 or more from the viewpoint of ensuring storage stability of the binder composition and flexibility of the positive electrode, and 0 It is more preferably at least 0.04.

ここで、溶出率Aおよび溶出率Bの値は、溶出率比が上記の上限値以下となれば特に限定されない。例えば、溶出率Aは、3.0質量%以上であることが好ましく、4.0質量%以上であることがより好ましく、40質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。また溶出率Bは、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、100質量%以下であり、95質量%以下であることが好ましい。なお、溶出率Bが80質量%を下回る場合は、バインダー組成物中の固形分がNMP等の溶媒に溶解し難くなり、バインダー組成物の調製自体が困難となる虞がある。   Here, the values of the dissolution rate A and the dissolution rate B are not particularly limited as long as the dissolution rate ratio is equal to or less than the above upper limit value. For example, the elution rate A is preferably 3.0% by mass or more, more preferably 4.0% by mass or more, preferably 40% by mass or less, and 20% by mass or less. More preferably, it is still more preferably 10 mass% or less. The elution rate B is preferably 80% by mass or more, more preferably 85% by mass or more, 100% by mass or less, and preferably 95% by mass or less. When the elution rate B is less than 80% by mass, the solid content in the binder composition becomes difficult to dissolve in a solvent such as NMP, which may make the preparation of the binder composition itself difficult.

(非水系二次電池正極用スラリー組成物)
本発明の非水系二次電池正極用スラリー組成物は、正極活物質と、上述したバインダー組成物とを含み、任意に、導電材と、その他の成分を更に含有する。即ち、本発明のスラリー組成物は、正極活物質と、水素添加ニトリルゴムと、架橋剤と、溶媒とを含有し、任意に、共架橋剤と、導電材と、その他の成分を更に含有する。そして、本発明のスラリー組成物は、上述したバインダー組成物を含んでいるので、本発明のスラリー組成物を用いて形成した正極合材層は、二次電池に優れたサイクル特性を発揮させることができる。
(Slurry composition for non-aqueous secondary battery positive electrode)
The slurry composition for a non-aqueous secondary battery positive electrode of the present invention contains the positive electrode active material and the binder composition described above, and optionally further contains a conductive material and other components. That is, the slurry composition of the present invention contains a positive electrode active material, a hydrogenated nitrile rubber, a crosslinking agent, and a solvent, and optionally further contains a co-crosslinking agent, a conductive material, and other components. . And since the slurry composition of the present invention contains the above-mentioned binder composition, the positive electrode mixture layer formed using the slurry composition of the present invention should exhibit excellent cycle characteristics in a secondary battery. You can

<正極活物質>
正極活物質は、二次電池の正極において電子の受け渡しをする物質である。そして、例えばリチウムイオン二次電池用の正極活物質としては、通常は、リチウムを吸蔵および放出し得る物質を用いる。
なお、以下では、一例として非水系二次電池がリチウムイオン二次電池である場合の正極活物質について説明するが、本発明は下記の一例に限定されるものではない。
<Cathode active material>
The positive electrode active material is a substance that transfers electrons in the positive electrode of the secondary battery. Then, for example, as a positive electrode active material for a lithium ion secondary battery, a material capable of inserting and extracting lithium is usually used.
The positive electrode active material in the case where the non-aqueous secondary battery is a lithium ion secondary battery will be described below as an example, but the present invention is not limited to the following example.

具体的には、リチウムイオン二次電池用の正極活物質としては、遷移金属を含有する化合物、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属との複合金属酸化物などを用いることができる。なお、遷移金属としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。   Specifically, as the positive electrode active material for a lithium ion secondary battery, a compound containing a transition metal, for example, a transition metal oxide, a transition metal sulfide, a composite metal oxide of lithium and a transition metal, or the like is used. be able to. Examples of transition metals include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, and the like.

ここで、遷移金属酸化物としては、例えばMnO、MnO、V、V13、TiO、Cu、非晶質VO−P、非晶質MoO、非晶質V、非晶質V13等が挙げられる。
遷移金属硫化物としては、TiS、TiS、非晶質MoS、FeSなどが挙げられる。
リチウムと遷移金属との複合金属酸化物としては、層状構造を有するリチウム含有複合金属酸化物、スピネル型構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
Examples of the transition metal oxides, for example MnO, MnO 2, V 2 O 5, V 6 O 13, TiO 2, Cu 2 V 2 O 3, amorphous V 2 O-P 2 O 5 , amorphous Examples thereof include quality MoO 3 , amorphous V 2 O 5 , and amorphous V 6 O 13 .
Examples of the transition metal sulfide include TiS 2 , TiS 3 , amorphous MoS 2 , FeS and the like.
Examples of the composite metal oxide of lithium and a transition metal include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, a lithium-containing composite metal oxide having an olivine structure, and the like. To be

層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コバルト酸化物(LiCoO(コバルト酸リチウム))、リチウム含有ニッケル酸化物(LiNiO)、Co−Ni−Mnのリチウム含有複合酸化物(Li(Co Mn Ni)O)、Ni−Mn−Alのリチウム含有複合酸化物、Ni−Co−Alのリチウム含有複合酸化物、LiMaOとLiMbOとの固溶体などが挙げられる。なお、Co−Ni−Mnのリチウム含有複合酸化物としては、Li[Ni0.5Co0.2Mn0.3]O、Li[Ni1/3Co1/3Mn1/3]Oなどが挙げられる。また、LiMaOとLiMbOとの固溶体としては、例えば、xLiMaO・(1−x)LiMbOなどが挙げられる。ここで、xは0<x<1を満たす数を表し、Maは平均酸化状態が3+である1種類以上の遷移金属を表し、Mbは平均酸化状態が4+である1種類以上の遷移金属を表す。このような固溶体としては、Li[Ni0.17Li0.2Co0.07Mn0.56]Oなどが挙げられる。
なお、本明細書において、「平均酸化状態」とは、前記「1種類以上の遷移金属」の平均の酸化状態を示し、遷移金属のモル量と原子価とから算出される。例えば、「1種類以上の遷移金属」が、50mol%のNi2+と50mol%のMn4+から構成される場合には、「1種類以上の遷移金属」の平均酸化状態は、(0.5)×(2+)+(0.5)×(4+)=3+となる。
Examples of the lithium-containing composite metal oxide having a layered structure include lithium-containing cobalt oxide (LiCoO 2 (lithium cobalt oxide)), lithium-containing nickel oxide (LiNiO 2 ), and Co—Ni—Mn lithium-containing composite oxide. (Li (Co Mn Ni) O 2 ), a lithium-containing composite oxide of Ni—Mn—Al, a lithium-containing composite oxide of Ni—Co—Al, a solid solution of LiMaO 2 and Li 2 MbO 3, and the like. . The lithium-containing composite oxide of Co—Ni—Mn includes Li [Ni 0.5 Co 0.2 Mn 0.3 ] O 2 and Li [Ni 1/3 Co 1/3 Mn 1/3 ] O. 2 and the like. Moreover, as a solid solution of LiMaO 2 and Li 2 MbO 3 , for example, xLiMaO 2 · (1-x) Li 2 MbO 3 and the like can be mentioned. Here, x represents a number satisfying 0 <x <1, Ma represents one or more kinds of transition metals having an average oxidation state of 3+, and Mb represents one or more kinds of transition metals having an average oxidation state of 4+. Represent Examples of such a solid solution include Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2 and the like.
In the present specification, the “average oxidation state” refers to the average oxidation state of the “one or more kinds of transition metals” and is calculated from the molar amount of transition metal and the valence. For example, when the “one or more transition metals” is composed of 50 mol% Ni 2+ and 50 mol% Mn 4+ , the average oxidation state of the “one or more transition metals” is (0.5). × (2 +) + (0.5) × (4 +) = 3+.

スピネル型構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム(LiMn)や、マンガン酸リチウム(LiMn)のMnの一部を他の遷移金属で置換した化合物が挙げられる。具体例としては、LiNi0.5Mn1.5などのLi[Mn2−tMc]Oが挙げられる。ここで、Mcは平均酸化状態が4+である1種類以上の遷移金属を表す。Mcの具体例としては、Ni、Co、Fe、Cu、Cr等が挙げられる。また、tは0<t<1を満たす数を表し、sは0≦s≦1を満たす数を表す。なお、正極活物質としては、Li1+xMn2−x(0<X<2)で表されるリチウム過剰のスピネル化合物なども用いることができる。 Examples of the lithium-containing composite metal oxide having a spinel structure include lithium manganate (LiMn 2 O 4 ) and compounds obtained by substituting a part of Mn of lithium manganate (LiMn 2 O 4 ) with another transition metal. Is mentioned. Specific examples include Li s [Mn 2-t Mc t] O 4 , such as LiNi 0.5 Mn 1.5 O 4. Here, Mc represents one or more kinds of transition metals having an average oxidation state of 4+. Specific examples of Mc include Ni, Co, Fe, Cu, Cr and the like. Further, t represents a number satisfying 0 <t <1, and s represents a number satisfying 0 ≦ s ≦ 1. As the positive electrode active material, a lithium-excess spinel compound represented by Li 1 + x Mn 2-x O 4 (0 <X <2) can also be used.

オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、オリビン型リン酸鉄リチウム(LiFePO)、オリビン型リン酸マンガンリチウム(LiMnPO)などのLiMdPOで表されるオリビン型リン酸リチウム化合物が挙げられる。ここで、Mdは平均酸化状態が3+である1種類以上の遷移金属を表し、例えばMn、Fe、Co等が挙げられる。また、yは0≦y≦2を満たす数を表す。さらに、LiMdPOで表されるオリビン型リン酸リチウム化合物は、Mdが他の金属で一部置換されていてもよい。置換しうる金属としては、例えば、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、BおよびMoなどが挙げられる。 Examples of the lithium-containing mixed metal oxide having an olivine type structure include olivine type phosphorus represented by Li y MdPO 4 such as olivine type lithium iron phosphate (LiFePO 4 ), olivine type lithium manganese phosphate (LiMnPO 4 ). Examples thereof include lithium acid compounds. Here, Md represents one or more kinds of transition metals having an average oxidation state of 3+, and examples thereof include Mn, Fe, and Co. Further, y represents a number satisfying 0 ≦ y ≦ 2. Furthermore, in the olivine-type lithium phosphate compound represented by Li y MdPO 4 , Md may be partially substituted with another metal. Examples of the replaceable metal include Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Si, B and Mo.

上述した中でも、リチウムイオン二次電池の高電位化を可能にする観点からは、正極活物質としては、リチウム含有コバルト酸化物(LiCoO)、Co−Ni−Mnのリチウム含有複合酸化物(Li(Co Mn Ni)O)、LiMaOとLiMbOとの固溶体、Li[Ni0.5Co0.2Mn0.3]O、Li[Ni1/3Co1/3Mn1/3]O、LiNi0.5Mn1.5などが好ましい。
なお、正極活物質の配合量や粒子径は、特に限定されることなく、従来使用されている正極活物質と同様とすることができる。
Among the above, from the viewpoint of enabling the lithium-ion secondary battery to have a higher potential, the positive electrode active material may be a lithium-containing cobalt oxide (LiCoO 2 ), or a lithium-containing composite oxide of Co—Ni—Mn (Li. (Co Mn Ni) O 2 ), a solid solution of LiMaO 2 and Li 2 MbO 3 , Li [Ni 0.5 Co 0.2 Mn 0.3 ] O 2 , Li [Ni 1/3 Co 1/3 Mn 1 / 3] such as O 2, LiNi 0.5 Mn 1.5 O 4 are preferred.
The amount and particle size of the positive electrode active material blended are not particularly limited and may be the same as those of conventionally used positive electrode active materials.

<バインダー組成物>
バインダー組成物としては、少なくとも、水素添加ニトリルゴム、架橋剤、および溶媒を含む上述した本発明の非水系二次電池正極用バインダー組成物を用いる。
<Binder composition>
As the binder composition, the above-mentioned binder composition for a non-aqueous secondary battery positive electrode of the present invention containing hydrogenated nitrile rubber, a crosslinking agent, and a solvent is used.

ここで、非水系二次電池電極用スラリー組成物中のバインダー組成物の含有割合は、正極活物質100質量部当たり、水素添加ニトリルゴムの量が0.1質量部以上となる量であることが好ましく、0.3質量部以上となる量であることがより好ましく、3質量部以下となる量であることが好ましく、1.5質量部以下となる量であることがより好ましい。スラリー組成物に、水素添加ニトリルゴムの量が上記範囲内となる量でバインダー組成物を含有させれば、正極のピール強度および柔軟性をバランス良く向上させつつ、二次電池のサイクル特性を更に高めることができる。   Here, the content ratio of the binder composition in the non-aqueous secondary battery electrode slurry composition is such that the amount of hydrogenated nitrile rubber is 0.1 parts by mass or more per 100 parts by mass of the positive electrode active material. Is preferable, the amount is preferably 0.3 parts by mass or more, more preferably 3 parts by mass or less, and further preferably 1.5 parts by mass or less. If the binder composition is contained in the slurry composition in an amount such that the amount of hydrogenated nitrile rubber falls within the above range, while improving the peel strength and flexibility of the positive electrode in a well-balanced manner, the cycle characteristics of the secondary battery are further improved. Can be increased.

<導電材>
導電材は、正極活物質同士の電気的接触を確保するためのものである。そして、導電材としては、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラックなど)、グラファイト、炭素繊維、カーボンフレーク、炭素超短繊維(例えば、カーボンナノチューブや気相成長炭素繊維など)等の導電性炭素材料;各種金属のファイバー、箔などを用いることができる。
これらは一種単独で、または、2種以上を組み合わせて用いることができる。
<Conductive material>
The conductive material is for ensuring electrical contact between the positive electrode active materials. Then, as the conductive material, carbon black (for example, acetylene black, Ketjen Black (registered trademark), furnace black, etc.), graphite, carbon fiber, carbon flake, carbon ultrashort fiber (for example, carbon nanotube or vapor grown carbon). Conductive carbon materials such as fibers); fibers and foils of various metals can be used.
These may be used alone or in combination of two or more.

そして、導電材の配合量は、正極活物質100質量部当たり、0.5質量部以上であることが好ましく、1.0質量部以上であることがより好ましく、5.0質量部以下であることが好ましく、4.5質量部以下であることがより好ましい。導電材の量が上記範囲内であれば、正極活物質同士の電気的接触を良好に確保して、二次電池に優れた電池特性(サイクル特性および出力特性等)を発揮させることができる。   And, the compounding amount of the conductive material is preferably 0.5 part by mass or more, more preferably 1.0 part by mass or more, and 5.0 parts by mass or less per 100 parts by mass of the positive electrode active material. The amount is preferably 4.5 parts by mass or less, and more preferably 4.5 parts by mass or less. When the amount of the conductive material is within the above range, good electrical contact between the positive electrode active materials can be ensured and the secondary battery can exhibit excellent battery characteristics (cycle characteristics, output characteristics, etc.).

<その他の成分>
非水系二次電池正極用スラリー組成物に配合し得るその他の成分としては、特に限定することなく、上述したバインダー組成物に配合し得るその他の成分と同様のものが挙げられる。また、その他の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<Other ingredients>
Other components that can be blended with the slurry composition for a non-aqueous secondary battery positive electrode are not particularly limited, and include the same components as the other components that can be blended with the binder composition described above. Further, other components may be used alone or in combination of two or more at an arbitrary ratio.

<スラリー組成物の調製>
上述したスラリー組成物は、上記各成分を有機溶媒などの溶媒中に溶解または分散させることにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記各成分と溶媒とを混合することにより、スラリー組成物を調製することができる。なお、スラリー組成物の調製に用いる溶媒としては、バインダー組成物に含まれている溶媒を使用してもよい。
<Preparation of slurry composition>
The above-mentioned slurry composition can be prepared by dissolving or dispersing each of the above components in a solvent such as an organic solvent. Specifically, a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a mix such as a fill mix is used to mix the above components and the solvent. , A slurry composition can be prepared. The solvent used in the preparation of the slurry composition may be the solvent contained in the binder composition.

(非水系二次電池用正極)
本発明の非水系二次電池用正極は、通常、集電体と、集電体上に形成された正極合材層とを備え、正極合材層は上記非水系二次電池正極用スラリー組成物を用いて形成されている。ここで、スラリー組成物中の架橋剤および任意に用いられる共架橋剤(以下、これらを纏めて「架橋剤等」と称する場合がある。)は、通常、正極合材層を形成する際の架橋反応により消費されるが、架橋剤等は、正極合材層中に残存していてもよい。即ち、正極合材層には、少なくとも、正極活物質と、水素添加ニトリルゴムおよび/又は水素添加ニトリルゴムの架橋物とが含有されており、未反応の架橋剤等が含有されていてもよい。
そして、本発明の非水系二次電池用正極では、本発明の非水系二次電池正極用バインダー組成物を含むスラリー組成物を使用しているので、架橋ネットワークが良好に形成された正極合材層を集電体上に良好に形成することができる。従って、当該正極を使用すれば、サイクル特性を等の電池特性に優れる二次電池が得られる。
(Cathode for non-aqueous secondary battery)
The positive electrode for a non-aqueous secondary battery of the present invention usually comprises a current collector and a positive electrode mixture layer formed on the current collector, and the positive electrode mixture layer is a slurry composition for the non-aqueous secondary battery positive electrode. It is formed by using things. Here, the cross-linking agent and the optionally used co-cross-linking agent in the slurry composition (hereinafter, these may be collectively referred to as “cross-linking agent etc.”) are usually used in forming the positive electrode mixture layer. Although consumed by the crosslinking reaction, the crosslinking agent and the like may remain in the positive electrode mixture layer. That is, the positive electrode mixture layer contains at least a positive electrode active material and a hydrogenated nitrile rubber and / or a crosslinked product of hydrogenated nitrile rubber, and may contain an unreacted crosslinking agent or the like. .
And, in the positive electrode for a non-aqueous secondary battery of the present invention, since the slurry composition containing the binder composition for a non-aqueous secondary battery positive electrode of the present invention is used, a positive electrode mixture material in which a crosslinked network is well formed. The layer can be well formed on the current collector. Therefore, when the positive electrode is used, a secondary battery having excellent battery characteristics such as cycle characteristics can be obtained.

<正極の製造方法>
なお、本発明の非水系二次電池用正極は、例えば、上述したスラリー組成物を集電体上に塗布する工程(塗布工程)と、集電体上に塗布されたスラリー組成物を乾燥して集電体上に正極合材層を形成する工程(乾燥工程)とを経て製造される。
<Production method of positive electrode>
The positive electrode for a non-aqueous secondary battery of the present invention includes, for example, a step of applying the above-mentioned slurry composition on a current collector (application step), and drying the slurry composition applied on the current collector. And a step of forming a positive electrode mixture layer on the current collector (drying step).

[塗布工程]
上記スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる正極合材層の厚みに応じて適宜に設定しうる。
[Coating process]
The method for applying the slurry composition onto the current collector is not particularly limited, and a known method can be used. Specifically, as a coating method, a doctor blade method, a dipping method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method or the like can be used. At this time, the slurry composition may be applied to only one surface of the current collector, or may be applied to both surfaces. The thickness of the slurry film on the current collector after coating and before drying can be appropriately set according to the thickness of the positive electrode mixture layer obtained by drying.

ここで、スラリー組成物を塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Here, as the current collector for applying the slurry composition, a material having electrical conductivity and electrochemical durability is used. Specifically, as the current collector, for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used. In addition, the said material may be used individually by 1 type and may be used in combination of 2 or more types by arbitrary ratios.

[乾燥工程]
集電体上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥法、真空乾燥法、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上のスラリー組成物を乾燥することで、集電体上に正極合材層を形成し、集電体と正極合材層とを備える非水系二次電池用正極を得ることができる。
[Drying process]
The method for drying the slurry composition on the current collector is not particularly limited, and known methods can be used, for example, hot air, hot air, low-humid air drying methods, vacuum drying methods, infrared rays, electron beams, and the like. A drying method by irradiation can be mentioned. By thus drying the slurry composition on the current collector, a positive electrode mixture layer is formed on the current collector, and a positive electrode for a non-aqueous secondary battery including the current collector and the positive electrode mixture layer is obtained. be able to.

なお、乾燥工程は、集電体上の非水系二次電池正極用スラリー組成物を温度110℃以上で乾燥する操作を含むことが好ましい。乾燥温度を110℃以上とすれば、架橋剤等による架橋反応を進行させて、二次電池のサイクル特性を一層高めることができる。   The drying step preferably includes an operation of drying the slurry composition for a non-aqueous secondary battery positive electrode on the current collector at a temperature of 110 ° C or higher. When the drying temperature is 110 ° C. or higher, the crosslinking reaction with a crosslinking agent or the like can proceed, and the cycle characteristics of the secondary battery can be further improved.

ここで、乾燥工程の後、金型プレスまたはロールプレスなどを用い、正極合材層に加圧処理を施してもよい。加圧処理により、正極合材層と集電体との密着性を向上させることができる。また、正極合材層が硬化性の重合体を含む場合は、正極合材層の形成後に前記重合体を硬化させることが好ましい。
また、乾燥工程の後、架橋工程として、集電体上の正極合材層を温度140℃以上で真空乾燥する操作を含むことが好ましい。正極合材層を140℃以上で真空乾燥すれば、架橋剤等による架橋反応を十分に進行させて、二次電池のサイクル特性をより一層高めることができる。
Here, after the drying step, the positive electrode mixture layer may be subjected to a pressure treatment using a die press or a roll press. The pressure treatment can improve the adhesion between the positive electrode mixture layer and the current collector. When the positive electrode mixture layer contains a curable polymer, it is preferable to cure the polymer after forming the positive electrode mixture layer.
In addition, after the drying step, it is preferable that the crosslinking step includes an operation of vacuum drying the positive electrode mixture layer on the current collector at a temperature of 140 ° C. or higher. By vacuum-drying the positive electrode mixture layer at 140 ° C. or higher, the cross-linking reaction with the cross-linking agent or the like can be sufficiently advanced, and the cycle characteristics of the secondary battery can be further improved.

なお、集電体上に形成される正極合材層のかさ密度(=正極合材層の目付量/正極合材層の厚み)は、特に限定されないが、3.6g/cm以上であることが好ましく、3.8g/cm以上であることがより好ましく4.2g/cm以下であることが好ましく、4.0g/cm以下であることがより好ましい。本発明の非水系二次電池用正極は、正極合材層の調製に本発明のバインダー組成物を含むスラリー組成物を用いているため、水素添加ニトリルゴムが電解液中に溶出し難い。そのため、正極合材層のかさ密度を上述の範囲内のように比較的高い値としつつ粘度の低い電解液を用いた場合であっても、正極の膨れによる導電パスの切断を抑制することができる。従って、正極合材層の高密度化によるエネルギー密度の上昇等の利益を享受しつつ、二次電池に十分に優れたサイクル特性を発揮させることができる。
なお、水素添加ニトリルゴムおよび架橋剤を含むが、実質的に溶媒を含有しないゴム組成物に、正極活物質、並びに、任意に共架橋剤および導電材等を添加してなる粉体混合物を加熱圧縮することで、集電体上に正極合材層を形成することもできる。しかしながら、このように溶媒の不存在下で正極合材層を形成しても、正極合材層の厚みのバラツキが大きくなる。そしてこのような正極合材層の厚みのバラツキが大きい正極を用いても、二次電池に優れた電池特性(サイクル特性等)を発揮させることができない。
The bulk density of the positive electrode mixture layer (= basis weight of the positive electrode mixture layer / thickness of the positive electrode mixture layer) formed on the current collector is not particularly limited, but is 3.6 g / cm 3 or more. it is preferred, more preferably preferably it is at 3.8 g / cm 3 or more is more or less preferably 4.2 g / cm 3, is 4.0 g / cm 3 or less. The nonaqueous secondary battery positive electrode of the present invention uses the slurry composition containing the binder composition of the present invention for the preparation of the positive electrode mixture layer, and therefore the hydrogenated nitrile rubber is difficult to elute in the electrolytic solution. Therefore, even when the bulk density of the positive electrode mixture layer is set to a relatively high value within the above range and a low-viscosity electrolytic solution is used, it is possible to suppress disconnection of the conductive path due to swelling of the positive electrode. it can. Therefore, the secondary battery can exhibit sufficiently excellent cycle characteristics while receiving benefits such as an increase in energy density due to the higher density of the positive electrode mixture layer.
A rubber composition containing hydrogenated nitrile rubber and a cross-linking agent, but containing substantially no solvent, the positive electrode active material, and optionally a powder mixture obtained by adding a co-cross-linking agent, a conductive material and the like are heated. By compressing, the positive electrode mixture layer can be formed on the current collector. However, even if the positive electrode mixture layer is formed in the absence of a solvent as described above, the variation in the thickness of the positive electrode mixture layer increases. Even if such a positive electrode having a large variation in the thickness of the positive electrode mixture layer is used, the secondary battery cannot exhibit excellent battery characteristics (cycle characteristics, etc.).

(非水系二次電池)
本発明の非水系二次電池は、正極と、負極と、電解液と、セパレータとを備え、正極として本発明の非水系二次電池用正極を用いたものである。そして、本発明の非水系二次電池は、本発明の非水系二次電池用正極を備えているので、サイクル特性等の電池特性に優れる。
なお、以下では、一例として非水系二次電池がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。
(Non-aqueous secondary battery)
The non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and uses the positive electrode for a non-aqueous secondary battery of the present invention as the positive electrode. Since the non-aqueous secondary battery of the present invention includes the positive electrode for a non-aqueous secondary battery of the present invention, it has excellent battery characteristics such as cycle characteristics.
In addition, although the case where the non-aqueous secondary battery is a lithium ion secondary battery will be described below as an example, the present invention is not limited to the following example.

<負極>
負極としては、既知の負極を用いることができる。具体的には、負極としては、例えば、金属リチウムの薄板よりなる負極や、負極合材層を集電体上に形成してなる負極を用いることができる。
なお、集電体としては、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金等の金属材料からなるものを用いることができる。また、負極合材層としては、負極活物質と結着材とを含む層を用いることができる。更に、結着材としては、特に限定されず、任意の既知の材料を用いうる。
<Negative electrode>
A known negative electrode can be used as the negative electrode. Specifically, as the negative electrode, for example, a negative electrode formed of a thin plate of metallic lithium or a negative electrode formed by forming a negative electrode mixture layer on a current collector can be used.
As the current collector, one made of a metal material such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold or platinum can be used. As the negative electrode mixture layer, a layer containing a negative electrode active material and a binder can be used. Furthermore, the binder is not particularly limited, and any known material can be used.

<電解液>
電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。リチウムイオン二次電池の支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましく、LiPFが特に好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
<Electrolyte>
As the electrolytic solution, an organic electrolytic solution prepared by dissolving a supporting electrolyte in an organic solvent is usually used. For example, a lithium salt is used as the supporting electrolyte of the lithium ion secondary battery. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like. Among them, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable, because it is easily dissolved in a solvent and exhibits a high dissociation degree. The electrolytes may be used alone or in combination of two or more at an arbitrary ratio. Generally, the higher the dissociation degree of the supporting electrolyte, the higher the lithium ion conductivity tends to be, so the lithium ion conductivity can be adjusted by the type of the supporting electrolyte.

電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)等のカーボネート類;n−プロピルプロピオネート(PP)、γ−ブチロラクトン、ギ酸メチル等のエステル類;1,2−ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類を用いることが好ましい。
なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加することができる。
The organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte, and examples thereof include dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), Carbonates such as butylene carbonate (BC) and ethylmethyl carbonate (EMC); esters such as n-propylpropionate (PP), γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran Sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; and the like are preferably used. Moreover, you may use the mixed liquid of these solvents. Of these, carbonates are preferably used because they have a high dielectric constant and a wide stable potential region.
The concentration of the electrolyte in the electrolytic solution can be adjusted appropriately. Further, known additives can be added to the electrolytic solution.

ここで、電解液のSP値は22.0以上23.0以下であることが好ましい。上述の範囲内のSP値を有する電解液は、通常、粘度が低く、高密度化した正極合材層にも良好に浸透することができる。一方で、SP値が22.0以上23.0以下である電解液は、通常、水素添加ニトリルゴムに対して高い溶解能を有する。しかしながら、本発明の二次電池は、正極として本発明の非水系二次電池用正極を用いているため、上述のSP値を有する電解液を用いた場合であっても、水素添加ニトリルゴムの溶出を抑えて、正極合材層中の導電パスを保持することができる。従って、上述の範囲内のSP値を有する電解液を用いれば、二次電池の電池特性(サイクル特性等)を一層高めることができる。   Here, the SP value of the electrolytic solution is preferably 22.0 or more and 23.0 or less. An electrolyte solution having an SP value within the above range usually has a low viscosity and can well penetrate into a densified positive electrode mixture layer. On the other hand, an electrolytic solution having an SP value of 22.0 or more and 23.0 or less usually has a high solubility for hydrogenated nitrile rubber. However, since the secondary battery of the present invention uses the positive electrode for a non-aqueous secondary battery of the present invention as the positive electrode, even when the electrolytic solution having the above SP value is used, the hydrogenated nitrile rubber Elution can be suppressed and the conductive path in the positive electrode mixture layer can be retained. Therefore, by using an electrolytic solution having an SP value within the above range, the battery characteristics (cycle characteristics, etc.) of the secondary battery can be further improved.

<セパレータ>
セパレータとしては、特に限定されることなく、例えば特開2012−204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
<Separator>
The separator is not particularly limited, and for example, those described in JP 2012-204303 A can be used. Among them, the film thickness of the entire separator can be reduced, whereby the ratio of the electrode active material in the secondary battery can be increased and the capacity per volume can be increased. A microporous membrane made of a resin of polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferable.

<二次電池の製造方法>
本発明の二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
<Method of manufacturing secondary battery>
The secondary battery of the present invention includes, for example, a positive electrode and a negative electrode, which are superposed with a separator interposed therebetween, and which are wound or folded according to the shape of the battery, if necessary, and put into a battery container to be electrolyzed into the battery container. It can be manufactured by injecting a liquid and sealing. If necessary, a fuse, an overcurrent preventing element such as a PTC element, an expanded metal, a lead plate, or the like may be provided in order to prevent an increase in pressure inside the secondary battery, an occurrence of overcharge, and the like. The shape of the secondary battery may be, for example, a coin type, a button type, a sheet type, a cylindrical type, a prismatic type, a flat type or the like.

以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される単量体単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
実施例および比較例において、バインダー組成物の溶出率比および保存安定性、正極の柔軟性およびピール強度、並びに二次電池のサイクル特性は、それぞれ以下の方法を使用して評価した。
Hereinafter, the present invention will be specifically described based on Examples, but the present invention is not limited to these Examples. In the following description, “%” and “part” representing the amount are based on mass unless otherwise specified.
Further, in a polymer produced by copolymerizing a plurality of kinds of monomers, the ratio of the monomer unit formed by polymerizing a certain monomer in the polymer is usually unless otherwise specified. This is the same as the ratio (feeding ratio) of the certain monomer to all the monomers used for the polymerization of the polymer.
In the examples and comparative examples, the elution ratio and storage stability of the binder composition, the flexibility and peel strength of the positive electrode, and the cycle characteristics of the secondary battery were evaluated using the following methods, respectively.

<溶出率比>
固形分濃度8質量%に調整したバインダー組成物約1gを100℃のオーブン中で1時間乾燥させ、厚さ約120μmのバインダーフィルムAを得た。このバインダーフィルムAの初期重量WA0を測定した。
バインダーフィルムAを150℃で6時間真空乾燥(0.6kPa)し、次いで、測定用電解液(EC:PC:EMC:PP=2:1:1:6(質量基準)の混合溶媒にLiPFを1.0モル/リットルの濃度で溶解させてなる)中に、60℃72時間浸漬させた。電解液から引き上げたバインダーフィルムAをメタノールで洗浄し、25℃のオーブン中で24時間乾燥後、バインダーフィルムAの浸漬後重量WA1を測定した。そして以下の式から溶出率Aを算出した。
溶出率A=(WA0−WA1)/WA0
別途、固形分濃度8質量%に調整したバインダー組成物約1gを100℃のオーブン中で1時間乾燥させ、厚さ約120μmのバインダーフィルムBを得た。このバインダーフィルムBの初期重量WB0を測定した。
バインダーフィルムBを25℃で6時間真空乾燥(0.6kPa)し、次いで、上記と同様の組成を有する測定用電解液中に、60℃72時間浸漬させた。電解液から引き上げたバインダーフィルムBをメタノールで洗浄し、25℃のオーブン中で24時間乾燥後、バインダーフィルムBの浸漬後重量WB1を測定した。そして以下の式から溶出率Bを算出した。
溶出率B=(WB0−WB1)/WB0
得られた溶出率Aと溶出率Bの値から、溶出率比(=溶出率A/溶出率B)を算出した。
<保存安定性>
バインダー組成物の調製直後の粘度Mと、40℃で7日間保存した後の粘度Mを測定した。なお、粘度の測定は、B型粘度計を使用し、温度:25℃、ローター:No.4、ローター回転数:60rpmの条件下で行った。
そして、粘度変化率ΔM(=M/M×100(%))を算出し、下記の基準で評価した。粘度変化率ΔMの値が小さいほど、バインダー組成物の粘度安定性が高いことを示す。
A:粘度変化率ΔMが110%未満
B:粘度変化率ΔMが110%以上120%未満
C:粘度変化率ΔMが120%以上
<柔軟性>
作製した正極を用い、JIS K 5600(マンドレル試験)に従い耐屈曲性試験を行った。正極を、正極合材層が外側となるようにマンドレル(直径:3mm)に巻きつけ、正極合材層の割れの有無をデジタルマイクロスコープ(倍率:30倍)で観察した。この操作を10枚の正極に対して行い、下記の基準で評価した。
A:10枚の正極何れにも割れが観察されなかった。
B:10枚の正極中1枚以上3枚以下に割れが観察された。
C:10枚の正極中4枚以上9枚以下に割れが観察された。
D:10枚の正極全てに割れが観察された。
<ピール強度>
作製した正極を、幅1.0cm×長さ10cmの矩形に切って試験片とした。そして、試験片の正極合材層側の表面にセロハンテープを張り付けた。この際、セロハンテープはJIS Z1522に規定されるものを用いた。その後、セロハンテープを試験台に固定した状態で試験片を一端側から50mm/分の速度で他端側に向けて引き剥がしたときの応力を測定した。測定を10回行い、応力の平均値を求めて、これをピール強度とし、以下の基準で評価した。ピール強度が大きいほど集電体に対する正極合材層の密着性が優れていることを示す。
A:ピール強度が50N/m以上
B:ピール強度が10N/m以上50N/m未満
C:ピール強度が10N/m未満
<サイクル特性>
作製した二次電池を25℃の環境下で5時間静置させた。その後、25℃の環境下で、充電レート0.2Cの定電流法により、4.4Vになるまで定電流で充電を行ない、更に4.4Vで充電電流が0.02Cになるまで定電圧充電を行った。さらに、放電レート0.2Cで3.0Vまで放電した。その後、45℃の環境下で、1.0Cの定電流法にて4.4Vまで充電し、3.0Vまで放電する充放電の操作を行い、初期容量C0を測定した。さらに、このリチウムイオン二次電池を、前記と同様の充放電を199回繰り返し、合計200サイクル後の容量C1を測定した。
サイクル特性(高温サイクル特性)は、ΔC=(C1/C0)×100(%)で示す容量維持率ΔCを算出し、以下の基準により評価した。この容量維持率ΔCの値が高いほど、サイクル特性に優れることを示す。
A:容量維持率ΔCが85%以上
B:容量維持率ΔCが80%以上85%未満
C:容量維持率ΔCが75%以上80%未満
D:容量維持率ΔCが75%未満
<Elution rate ratio>
About 1 g of the binder composition adjusted to a solid content concentration of 8% by mass was dried in an oven at 100 ° C. for 1 hour to obtain a binder film A having a thickness of about 120 μm. The initial weight W A0 of this binder film A was measured.
The binder film A was vacuum dried (0.6 kPa) at 150 ° C. for 6 hours, and then LiPF 6 was added to a mixed solvent of the measurement electrolytic solution (EC: PC: EMC: PP = 2: 1: 1: 6 (mass standard)). Was dissolved at a concentration of 1.0 mol / liter) at 60 ° C. for 72 hours. The binder film A pulled up from the electrolytic solution was washed with methanol, dried in an oven at 25 ° C. for 24 hours, and the weight W A1 of the binder film A after immersion was measured. Then, the dissolution rate A was calculated from the following formula.
Dissolution rate A = (W A0 -W A1) / W A0
Separately, about 1 g of the binder composition adjusted to have a solid content concentration of 8% by mass was dried in an oven at 100 ° C. for 1 hour to obtain a binder film B having a thickness of about 120 μm. The initial weight W B0 of this binder film B was measured.
Binder film B was vacuum dried (0.6 kPa) at 25 ° C. for 6 hours, and then immersed in a measuring electrolyte solution having the same composition as above at 60 ° C. for 72 hours. The binder film B pulled up from the electrolytic solution was washed with methanol, dried in an oven at 25 ° C. for 24 hours, and the weight W B1 of the binder film B after immersion was measured. Then, the dissolution rate B was calculated from the following formula.
Dissolution rate B = (W B0 -W B1) / W B0
From the values of the obtained dissolution rate A and dissolution rate B, the dissolution rate ratio (= dissolution rate A / dissolution rate B) was calculated.
<Storage stability>
The viscosity M 0 immediately after preparation of the binder composition and the viscosity M 1 after storage at 40 ° C. for 7 days were measured. The viscosity was measured using a B-type viscometer, temperature: 25 ° C., rotor: No. 4. Rotational speed of rotor: 60 rpm.
Then, the rate of viscosity change ΔM (= M 1 / M 0 × 100 (%)) was calculated and evaluated according to the following criteria. The smaller the value of the rate of change in viscosity ΔM, the higher the viscosity stability of the binder composition.
A: Viscosity change rate ΔM is less than 110% B: Viscosity change rate ΔM is 110% or more and less than 120% C: Viscosity change rate ΔM is 120% or more <Flexibility>
Using the produced positive electrode, a bending resistance test was performed according to JIS K 5600 (mandrel test). The positive electrode was wound around a mandrel (diameter: 3 mm) so that the positive electrode mixture layer was on the outside, and the presence or absence of cracks in the positive electrode mixture layer was observed with a digital microscope (magnification: 30 times). This operation was performed on 10 positive electrodes and evaluated according to the following criteria.
A: No crack was observed on any of the 10 positive electrodes.
B: Cracks were observed in 1 to 3 sheets of 10 sheets of positive electrode.
C: Cracks were observed in 4 or more and 9 or less of 10 positive electrodes.
D: Cracks were observed on all 10 positive electrodes.
<Peel strength>
The produced positive electrode was cut into a rectangular piece having a width of 1.0 cm and a length of 10 cm to obtain a test piece. Then, cellophane tape was attached to the surface of the test piece on the positive electrode mixture layer side. At this time, the cellophane tape used was specified in JIS Z1522. Then, the stress when the test piece was peeled off from the one end side toward the other end side at a speed of 50 mm / min while the cellophane tape was fixed to the test table was measured. The measurement was performed 10 times, the average value of stress was calculated | required, this was made into peel strength, and it evaluated by the following criteria. The higher the peel strength, the better the adhesion of the positive electrode mixture layer to the current collector.
A: Peel strength is 50 N / m or more B: Peel strength is 10 N / m or more and less than 50 N / m C: Peel strength is less than 10 N / m <Cycle characteristics>
The produced secondary battery was allowed to stand for 5 hours in an environment of 25 ° C. After that, in a 25 ° C environment, the constant current method with a charging rate of 0.2C is used to charge the battery at a constant current until it reaches 4.4V, and at 4.4V, a constant voltage is charged until the charging current reaches 0.02C. I went. Furthermore, it was discharged to 3.0 V at a discharge rate of 0.2 C. After that, in an environment of 45 ° C., charging / discharging operation of charging to 4.4 V and discharging to 3.0 V was performed by a constant current method of 1.0 C, and an initial capacity C0 was measured. Furthermore, the same charge and discharge as the above was repeated 199 times for this lithium ion secondary battery, and the capacity C1 after 200 cycles in total was measured.
Regarding the cycle characteristics (high temperature cycle characteristics), the capacity retention rate ΔC represented by ΔC = (C1 / C0) × 100 (%) was calculated and evaluated according to the following criteria. The higher the value of the capacity retention ratio ΔC, the better the cycle characteristics.
A: Capacity maintenance ratio ΔC is 85% or more B: Capacity maintenance ratio ΔC is 80% or more and less than 85% C: Capacity maintenance ratio ΔC is 75% or more and less than 80% D: Capacity maintenance ratio ΔC is less than 75%

(実施例1)
<水素添加ニトリルゴムの調製>
撹拌機付きのオートクレーブに、イオン交換水240部、乳化剤としてアルキルベンゼンスルホン酸ナトリウム2.5部、ニトリル基含有単量体としてアクリロニトリル35部、連鎖移動剤としてのt−ドデシルメルカプタン0.25部をこの順で入れ、ボトル内を窒素で置換した後、共役ジエン単量体として1,3−ブタジエン65部を圧入し、重合開始剤として過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、共役ジエン単量体単位およびニトリル基含有単量体単位を含んでなる重合体(ニトリルゴム)を得た。重合転化率は85%であった。
(Example 1)
<Preparation of hydrogenated nitrile rubber>
In an autoclave equipped with a stirrer, 240 parts of ion-exchanged water, 2.5 parts of sodium alkylbenzenesulfonate as an emulsifier, 35 parts of acrylonitrile as a nitrile group-containing monomer, and 0.25 parts of t-dodecyl mercaptan as a chain transfer agent are added. After sequentially charging the inside of the bottle with nitrogen, 65 parts of 1,3-butadiene as a conjugated diene monomer was press-fitted, 0.25 part of ammonium persulfate was added as a polymerization initiator, and polymerization was carried out at a reaction temperature of 40 ° C. The reaction was carried out to obtain a polymer (nitrile rubber) containing a conjugated diene monomer unit and a nitrile group-containing monomer unit. The polymerization conversion rate was 85%.

得られた重合体に対してイオン交換水を添加して全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して溶液中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム50mgを、パラジウム(Pd)に対して4倍モルの硝酸を添加したイオン交換水180mLに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(第一段階の水素添加反応)させた。   Ion-exchanged water was added to the obtained polymer to adjust the total solid content concentration to 12% by mass, and 400 ml (total solid content 48 g) of the solution was charged into a 1-liter autoclave equipped with a stirrer. After nitrogen gas was flowed for 10 minutes to remove dissolved oxygen in the solution, 50 mg of palladium acetate was dissolved as a hydrogenation reaction catalyst in 180 mL of ion-exchanged water containing 4-fold molar nitric acid with respect to palladium (Pd). And added. After the system was replaced with hydrogen gas twice, the content of the autoclave was heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and hydrogenation reaction (hydrogenation reaction of the first step) was performed for 6 hours. .

次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加したイオン交換水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(第二段階の水素添加反応)させた。   Then, the autoclave was returned to atmospheric pressure, and further 25 mg of palladium acetate was dissolved in 60 ml of ion-exchanged water containing 4 times mol of nitric acid with respect to Pd as a hydrogenation reaction catalyst and added. After the system was replaced with hydrogen gas twice, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and a hydrogenation reaction (second-stage hydrogenation reaction) was performed for 6 hours. .

その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮して水素添加ニトリルゴムの水分散液を得た。この水分散液に溶媒としてのNMPを水素添加ニトリルゴムの固形分濃度が7%になるよう添加した。そして、90℃にて減圧蒸留を実施して水および過剰なNMPを除去し、固形分濃度8%の水素添加ニトリルゴムのNMP溶液を得た。なお、得られた水素添加ニトリルゴムのヨウ素価は、50mg/100mgであった。   Then, the contents were returned to room temperature, the system was made a nitrogen atmosphere, and then concentrated using an evaporator until the solid content concentration became 40% to obtain an aqueous dispersion of hydrogenated nitrile rubber. NMP as a solvent was added to this aqueous dispersion so that the solid content concentration of the hydrogenated nitrile rubber was 7%. Then, vacuum distillation was carried out at 90 ° C. to remove water and excess NMP to obtain an NMP solution of hydrogenated nitrile rubber having a solid content concentration of 8%. The iodine value of the obtained hydrogenated nitrile rubber was 50 mg / 100 mg.

<正極用バインダー組成物の調製>
得られた水素添加ニトリルゴムのNMP溶液100部(固形分換算)に対して、架橋剤としてのジクミルパーオキサイド(10時間半減期温度:116.4℃)2部、共架橋剤としてのトリアリルイソシアヌレート(日本化成社製、商品名「TAIC」)3部、および適量のNMPを加えて、室温下、容器攪拌法にて攪拌混合することで固形分濃度が8質量%の正極用バインダー組成物を得た。この正極用バインダー組成物を用いて、保存安定性の評価を行った。結果を表1に示す。
<Preparation of binder composition for positive electrode>
2 parts of dicumyl peroxide (10-hour half-life temperature: 116.4 ° C.) as a crosslinking agent and 100 parts of a co-crosslinking agent with respect to 100 parts (solid content conversion) of the obtained hydrogenated nitrile rubber in NMP. 3 parts of allyl isocyanurate (manufactured by Nippon Kasei Co., Ltd., trade name “TAIC”) and an appropriate amount of NMP are added, and the mixture is agitated and mixed at room temperature by a container agitation method so that the solid content concentration is 8% by mass for the positive electrode binder A composition was obtained. Using this positive electrode binder composition, storage stability was evaluated. The results are shown in Table 1.

<正極用スラリー組成物の調製>
正極活物質としてのコバルト酸リチウムLCO(LiCoO)96部と、導電材としてのアセチレンブラック(BET比表面積:39m/g)2部と、水素添加ニトリルゴム、架橋剤および共架橋剤の量の合計が0.4部(固形分換算)となる量の正極用バインダー組成物と、結着材としてのポリフッ化ビニリデン(PVDF)のNMP溶液1.52部(固形分換算)と、追加の溶媒としてのNMPをプラネタリーミキサーにて混合することにより、正極用スラリー組成物を調製した。なお追加のNMPの量は、得られる正極用スラリー組成物の粘度(B型粘度計を使用。温度:25℃、ローター:No.4、ローター回転数:60rpm)が4000±200mPa・sの範囲内となるように調整した。
<二次電池用正極の作製>
得られた正極用スラリー組成物を、集電体としてのアルミニウム箔(厚さ:20μm)の片面に、ドクターブレード法によって乾燥後の塗布量が25mg/cmになるように塗布し、60℃で20分、120℃で20分間乾燥して正極原反を得た。次いで2軸のロールプレスで圧縮し、シート状正極を作製した。このシート状正極を150℃で10時間真空乾燥(0.6kPa)して、かさ密度が4.0g/cmの正極合材層をアルミニウム箔(集電体)上に備えてなる二次電池用正極を得た。この二次電池用正極を用いて、柔軟性およびピール強度の評価を行った。結果を表1に示す。
<二次電池用負極の作製>
ディスパー付きのプラネタリーミキサーに、負極活物質としての人造黒鉛(体積平均粒子径:24.5μm、比表面積:4m/g)100部と、分散剤としてのカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製、BSH−12)1部(固形分換算)とを加え、イオン交換水で固形分濃度55%に調整した後、25℃で60分混合した。次いで、イオン交換水で固形分濃度52%に調整した後、25℃で15分間混合して混合液を得た。得られた混合液に、結着材としてのスチレン−ブタジエン共重合体(ガラス転移温度が−15℃)の40%水分散液を1.0部(固形分換算)と、イオン交換水とを添加し、最終固形分濃度が50%となるように調整し、10分間混合した。これを減圧下で脱泡処理して、流動性の良い負極用のスラリー組成物を得た。
得られた負極用のスラリー組成物を、コンマコーターで、集電体としての銅箔(厚さ:18μm)の片面に、乾燥後の塗布量が14.7mg/cm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延して、かさ密度が1.6g/cmの負極合材層を銅箔(集電体)上に備えてなる二次電池用負極を得た。
<二次電池用セパレータの準備>
単層のポリプロピレン製セパレータ(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を、5cm×5cmの正方形に切り抜いた。
<二次電池の製造>
電池の外装として、アルミニウム包材外装を用意した。そして、上記で得られた正極を、4cm×4cmの正方形に切り出し、集電体側の表面がアルミニウム包材外装に接するように配置した。正極の正極合材層の上に、上記で得られた正方形のセパレータを配置した。さらに、上記で得られた負極を、4.2cm×4.2cmの正方形に切り出し、これをセパレータ上に、負極合材層側の表面がセパレータに向かい合うように配置した。更に、電解液を充填し、その後、アルミニウム包材外装の開口を密封するために、150℃のヒートシールをしてアルミニウム包材外装を閉口し、リチウムイオン二次電池を得た。なお、電解液としては、EC、PC、EMC、およびPPを質量比EC:PC:EMC:PP=2:1:1:6で混合してなる混合溶媒に、LiPFを1.0モル/リットルの濃度で溶解させ、さらに添加剤としてビニレンカーボネート1.5体積%を添加したものを用いた。電解液のSP値は22.20であった。
そして、得られたリチウムイオン二次電池を用いてサイクル特性の評価を行った。結果を表1に示す。
<Preparation of slurry composition for positive electrode>
96 parts of lithium cobalt oxide LCO (LiCoO 2 ) as a positive electrode active material, 2 parts of acetylene black (BET specific surface area: 39 m 2 / g) as a conductive material, and amounts of hydrogenated nitrile rubber, a crosslinking agent and a co-crosslinking agent Of 0.4 parts (solid content) of the positive electrode binder composition, and polyvinylidene fluoride (PVDF) NMP solution 1.52 parts (solid content) as a binder, and A slurry composition for a positive electrode was prepared by mixing NMP as a solvent with a planetary mixer. The amount of additional NMP is in the range of 4000 ± 200 mPa · s in the viscosity of the obtained positive electrode slurry composition (using a B-type viscometer. Temperature: 25 ° C., rotor: No. 4, rotor rotation speed: 60 rpm). Adjusted to be within.
<Production of positive electrode for secondary battery>
The obtained positive electrode slurry composition was applied to one side of an aluminum foil (thickness: 20 μm) as a current collector by a doctor blade method so that the applied amount after drying was 25 mg / cm 2 , and the temperature was 60 ° C. 20 minutes and dried at 120 ° C. for 20 minutes to obtain a positive electrode raw material. Then, it was compressed with a biaxial roll press to produce a sheet-shaped positive electrode. A secondary battery in which this sheet-shaped positive electrode is vacuum-dried (0.6 kPa) at 150 ° C. for 10 hours, and a positive electrode mixture layer having a bulk density of 4.0 g / cm 3 is provided on an aluminum foil (current collector). A positive electrode for use was obtained. Using this positive electrode for secondary battery, flexibility and peel strength were evaluated. The results are shown in Table 1.
<Preparation of negative electrode for secondary battery>
In a planetary mixer equipped with a disperser, 100 parts of artificial graphite (volume average particle diameter: 24.5 μm, specific surface area: 4 m 2 / g) as a negative electrode active material, and a 1% aqueous solution of carboxymethyl cellulose as a dispersant (first 1 part (in terms of solid content) (manufactured by Kogyo Seiyaku Co., Ltd., BSH-12) was added, and the solid content concentration was adjusted to 55% with ion-exchanged water, and then mixed at 25 ° C. for 60 minutes. Then, the solid content concentration was adjusted to 52% with ion-exchanged water, and then the mixture was mixed at 25 ° C. for 15 minutes to obtain a mixed liquid. To the obtained mixed liquid, 1.0 part (solid content conversion) of 40% aqueous dispersion of styrene-butadiene copolymer (glass transition temperature of -15 ° C) as a binder and ion-exchanged water were added. The mixture was added and adjusted so that the final solid content concentration was 50%, and mixed for 10 minutes. This was defoamed under reduced pressure to obtain a negative electrode slurry composition having good fluidity.
The obtained negative electrode slurry composition was applied with a comma coater to one side of a copper foil (thickness: 18 μm) as a current collector so that the applied amount after drying was about 14.7 mg / cm 2. And dried. This drying was performed by transporting the copper foil at a rate of 0.5 m / min in an oven at 60 ° C. for 2 minutes. Then, it heat-processed at 120 degreeC for 2 minutes, and obtained the negative electrode original fabric. The negative electrode raw material was rolled by a roll press to obtain a negative electrode for a secondary battery in which a negative electrode mixture layer having a bulk density of 1.6 g / cm 3 was provided on a copper foil (current collector).
<Preparation of secondary battery separator>
A single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 μm, manufactured by dry method, porosity 55%) was cut out into a square of 5 cm × 5 cm.
<Manufacture of secondary battery>
An aluminum packaging material exterior was prepared as the exterior of the battery. Then, the positive electrode obtained above was cut into a square of 4 cm × 4 cm, and arranged so that the surface of the current collector side was in contact with the aluminum packaging material exterior. The square separator obtained above was placed on the positive electrode mixture layer of the positive electrode. Further, the negative electrode obtained above was cut into a square of 4.2 cm × 4.2 cm, and the square was placed on a separator so that the surface of the negative electrode mixture layer side faced the separator. Furthermore, in order to seal the opening of the aluminum packaging material exterior | packing after filling with electrolyte solution, 150 degreeC heat sealing was performed and the aluminum packaging exterior was closed, and the lithium ion secondary battery was obtained. As the electrolytic solution, LiPF 6 was mixed in a mixed solvent of EC, PC, EMC, and PP in a mass ratio of EC: PC: EMC: PP = 2: 1: 1: 6 with 1.0 mol / mol. The solution was dissolved at a concentration of 1 liter, and 1.5% by volume of vinylene carbonate was added as an additive. The SP value of the electrolytic solution was 22.20.
Then, the obtained lithium ion secondary battery was used to evaluate the cycle characteristics. The results are shown in Table 1.

(実施例2)
正極用バインダー組成物の調製時に、共架橋剤としてのトリアリルイソシアヌレートを添加しなかった以外は、実施例1と同様にして、水素添加ニトリルゴム、正極用バインダー組成物、正極用スラリー組成物、二次電池用正極、二次電池用負極および二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 2)
Hydrogenated nitrile rubber, a positive electrode binder composition, and a positive electrode slurry composition were prepared in the same manner as in Example 1 except that triallyl isocyanurate as a co-crosslinking agent was not added during preparation of the positive electrode binder composition. , A secondary battery positive electrode, a secondary battery negative electrode, and a secondary battery were produced. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例3,4)
正極用バインダー組成物の調製時に、架橋剤としてのジクミルパーオキサイドに替えて、それぞれ1,1−ジ−t-ヘキシルペルオキシ−シクロヘキサン(10時間半減期温度:87.1℃)、クメンハイドロパーオキサイド(10時間半減期温度:157.9℃)を使用した以外は、実施例1と同様にして、水素添加ニトリルゴム、正極用バインダー組成物、正極用スラリー組成物、二次電池用正極、二次電池用負極および二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Examples 3 and 4)
When preparing the binder composition for the positive electrode, 1,1-di-t-hexylperoxy-cyclohexane (10-hour half-life temperature: 87.1 ° C.) and cumene hydroper were used instead of dicumyl peroxide as the cross-linking agent. Hydrogenated nitrile rubber, a positive electrode binder composition, a positive electrode slurry composition, a positive electrode for a secondary battery, in the same manner as in Example 1 except that oxide (10-hour half-life temperature: 157.9 ° C.) was used. A negative electrode for a secondary battery and a secondary battery were produced. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例5)
正極用バインダー組成物の調製時に、共架橋剤としてのトリアリルイソシアヌレートに替えて、トリメチロールプロパントリアクリレートを使用した以外は、実施例1と同様にして、水素添加ニトリルゴム、正極用バインダー組成物、正極用スラリー組成物、二次電池用正極、二次電池用負極および二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 5)
Hydrogenated nitrile rubber and positive electrode binder composition were prepared in the same manner as in Example 1 except that trimethylolpropane triacrylate was used instead of triallyl isocyanurate as a co-crosslinking agent when preparing the positive electrode binder composition. And a slurry composition for a positive electrode, a positive electrode for a secondary battery, a negative electrode for a secondary battery, and a secondary battery. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例6,7)
正極用バインダー組成物の調製時に、架橋剤および共架橋剤の配合量を表1のように変更した以外は、実施例1と同様にして、水素添加ニトリルゴム、正極用バインダー組成物、正極用スラリー組成物、二次電池用正極、二次電池用負極および二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Examples 6 and 7)
At the time of preparing the binder composition for a positive electrode, the hydrogenated nitrile rubber, the binder composition for a positive electrode, the positive electrode for a positive electrode were prepared in the same manner as in Example 1 except that the amounts of the crosslinking agent and the co-crosslinking agent were changed as shown in Table 1. A slurry composition, a secondary battery positive electrode, a secondary battery negative electrode and a secondary battery were produced. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例8)
二次電池の作製時に、電解液として、SP値が24.18の電解液(ECおよびEMCを質量比EC:EMC=3:7で混合してなる混合溶媒に、LiPFを1.0モル/リットルの濃度で溶解させ、さらに添加剤としてビニレンカーボネート1.5体積%を添加したもの)を用いた以外は、実施例1と同様にして、水素添加ニトリルゴム、正極用バインダー組成物、正極用スラリー組成物、二次電池用正極、二次電池用負極および二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 8)
At the time of producing the secondary battery, as an electrolytic solution, an electrolytic solution having an SP value of 24.18 (a mixed solvent obtained by mixing EC and EMC at a mass ratio EC: EMC = 3: 7, was added with 1.0 mol of LiPF 6 ). / L and dissolved in vinylene carbonate 1.5% by volume), and hydrogenated nitrile rubber, binder composition for positive electrode, positive electrode were prepared in the same manner as in Example 1. A slurry composition, a secondary battery positive electrode, a secondary battery negative electrode, and a secondary battery were produced. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例1)
正極用バインダー組成物の調製時に、架橋剤としてのジクミルパーオキサイドおよび共架橋剤としてのトリアリルイソシアヌレートの何れも添加しなかった以外は、実施例1と同様にして、水素添加ニトリルゴム、正極用バインダー組成物、正極用スラリー組成物、二次電池用正極、二次電池用負極および二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative Example 1)
Hydrogenated nitrile rubber was prepared in the same manner as in Example 1 except that neither dicumyl peroxide as a crosslinking agent nor triallyl isocyanurate as a co-crosslinking agent was added during the preparation of the binder composition for a positive electrode. A binder composition for a positive electrode, a slurry composition for a positive electrode, a positive electrode for a secondary battery, a negative electrode for a secondary battery and a secondary battery were produced. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例2)
水素添加ニトリルゴムのNMP溶液をメタノール中に注いで、水素添加ニトリルゴムを析出・凝固させた。次いで、析出物をメタノールで洗浄してNMPを除去した後、更にメタノールを乾燥により除去して、水素添加ニトリルゴムの固形物を得た。得られた水素添加ニトリルゴムの固形物100部と、架橋剤としての1,3−ビス(t−ブチルペルオキシイソプロピル)ベンゼン40%品(アルケマ社製、商品名「Vul-Cup40KE」)5部(架橋剤有効成分が2部)と、共架橋剤としてのトリアリルイソシアヌレート(日本化成社製、商品名「TAIC」)3部を、オープンロールを用いて50℃で5分間混練することにより、架橋したゴム組成物を得た。
この架橋したゴム組成物をNMPに溶解させてバインダー組成物の調製を試みたが、架橋したゴム組成物はNMPに溶解せず、バインダー組成物を調製することができなかった。
なお、架橋したゴム組成物(顆粒状)を測定試料とし、この測定試料をバインダーフィルム(A,B)として取り扱った以外は、実施例1と同様にして溶出率A,Bおよび求め、溶出率比を算出した。結果を表1に示す。
(Comparative example 2)
The NMP solution of hydrogenated nitrile rubber was poured into methanol to precipitate and solidify the hydrogenated nitrile rubber. Next, the precipitate was washed with methanol to remove NMP, and then methanol was further removed by drying to obtain a solid product of hydrogenated nitrile rubber. 100 parts of the obtained hydrogenated nitrile rubber solid matter and 5 parts of 40% 1,3-bis (t-butylperoxyisopropyl) benzene as a cross-linking agent (Arkema, trade name "Vul-Cup40KE") ( By kneading 2 parts of the active ingredient of the crosslinking agent) and 3 parts of triallyl isocyanurate (manufactured by Nippon Kasei Co., Ltd., trade name “TAIC”) as a co-crosslinking agent at 50 ° C. for 5 minutes using an open roll, A crosslinked rubber composition was obtained.
An attempt was made to dissolve the crosslinked rubber composition in NMP to prepare a binder composition, but the crosslinked rubber composition was not dissolved in NMP, and the binder composition could not be prepared.
In addition, except that the crosslinked rubber composition (granular) was used as a measurement sample, and this measurement sample was handled as a binder film (A, B), the elution rates A and B were determined and the elution rate was obtained in the same manner as in Example 1. The ratio was calculated. The results are shown in Table 1.

(比較例3)
正極用バインダー組成物の調製時に、水素添加ニトリルゴムに替えて、以下のように調製したアクリル系重合体を使用した以外は、実施例1と同様にして、正極用バインダー組成物、正極用スラリー組成物、二次電池用正極、二次電池用負極および二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
<アクリル系重合体の調製>
メカニカルスターラー及びコンデンサを装着した反応器Aに、窒素雰囲気下、イオン交換水210部と、乳化剤として濃度30%のアルキルジフェニルオキシドジスルホネート(ダウ・ケミカル社製、商品名「ダウファックス(登録商標)2A1」)を0.5部(固形分換算)仕込み、その後撹拌しながら70℃に加熱し、1.96%過硫酸カリウム水溶液25.5部を反応器Aに添加した。次いで、反応器Aとは別の容器Bに、窒素雰囲気下、(メタ)アクリル酸エステル単量体としての2−エチルヘキシルアクリレート20部、芳香族ビニル単量体としてのスチレン70部、ニトリル基含有単量体としてのアクリロニトリル10部、乳化剤としての濃度30%のアルキルジフェニルオキシドジスルホネート(ダウ・ケミカル社製、「ダウファックス(登録商標)2A1」)を0.5部(固形分換算)、およびイオン交換水22.7部を添加し、これを攪拌乳化させて単量体混合液を調製した。そして、この単量体混合液を攪拌乳化させた状態にて、2.5時間かけて一定の速度で、イオン交換水210部及び過硫酸カリウム水溶液を仕込んだ反応器Aに添加した。重合転化率が95%になるまで反応させて、アクリル系重合体の水分散液を得た。この水分散液に溶媒としてのNMPをアクリル系重合体の固形分濃度が7%になるよう添加した。そして、90℃にて減圧蒸留を実施して水および過剰なNMPを除去し、固形分濃度8%のアクリル系重合体のNMP溶液を得た。
(Comparative example 3)
When preparing the binder composition for a positive electrode, the binder composition for a positive electrode and the slurry for a positive electrode were prepared in the same manner as in Example 1 except that the acrylic polymer prepared as described below was used instead of the hydrogenated nitrile rubber. A composition, a positive electrode for secondary battery, a negative electrode for secondary battery, and a secondary battery were produced. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
<Preparation of acrylic polymer>
In a reactor A equipped with a mechanical stirrer and a condenser, 210 parts of ion-exchanged water and a 30% concentration of alkyldiphenyl oxide disulfonate as an emulsifier (Dow Fax (registered trademark) manufactured by Dow Chemical Co., Ltd.) were used as an emulsifier in a reactor. 2A1 ″) was charged in an amount of 0.5 part (as solid content), and then heated to 70 ° C. with stirring, and 25.5 parts of a 1.96% potassium persulfate aqueous solution was added to the reactor A. Then, in a container B separate from the reactor A, under a nitrogen atmosphere, 20 parts of 2-ethylhexyl acrylate as a (meth) acrylic acid ester monomer, 70 parts of styrene as an aromatic vinyl monomer, and a nitrile group-containing 10 parts of acrylonitrile as a monomer, 0.5 parts of a 30% concentration of alkyldiphenyl oxide disulfonate (“Dowfax (registered trademark) 2A1” manufactured by Dow Chemical Co.) as an emulsifier (solid content conversion), and 22.7 parts of ion-exchanged water was added, and this was emulsified with stirring to prepare a monomer mixture liquid. Then, in a state in which this monomer mixed liquid was emulsified with stirring, it was added to a reactor A charged with 210 parts of ion-exchanged water and an aqueous potassium persulfate solution at a constant rate over 2.5 hours. The reaction was carried out until the conversion of polymerization reached 95% to obtain an aqueous dispersion of an acrylic polymer. NMP as a solvent was added to this aqueous dispersion so that the solid content concentration of the acrylic polymer was 7%. Then, vacuum distillation was carried out at 90 ° C. to remove water and excess NMP to obtain an NMP solution of an acrylic polymer having a solid content concentration of 8%.

(比較例4)
二次電池の作製時に、電解液として、SP値が24.18の電解液(ECおよびEMCを質量比EC:EMC=3:7で混合してなる混合溶媒に、LiPFを1.0モル/リットルの濃度で溶解させ、さらに添加剤としてビニレンカーボネート1.5体積%を添加したもの)を用いた以外は、比較例1と同様にして、水素添加ニトリルゴム、正極用バインダー組成物、正極用スラリー組成物、二次電池用正極、二次電池用負極および二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative example 4)
At the time of producing the secondary battery, as an electrolytic solution, an electrolytic solution having an SP value of 24.18 (a mixed solvent obtained by mixing EC and EMC at a mass ratio EC: EMC = 3: 7, was added with 1.0 mol of LiPF 6 ). / L concentration, and vinylene carbonate (1.5% by volume) was added as an additive), in the same manner as in Comparative Example 1 except that hydrogenated nitrile rubber, positive electrode binder composition, and positive electrode were used. A slurry composition, a secondary battery positive electrode, a secondary battery negative electrode, and a secondary battery were produced. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

なお、表1中
「HNBR」は、水素添加ニトリルムゴムを示し、
「ACL」は、アクリル系重合体を示し、
「DPO」は、ジクミルパーオキサイドを示し、
「DHPC」は、1,1−ジ−t-ヘキシルペルオキシ−シクロヘキサンを示し、
「CHP」は、クメンハイドロパーオキサイドを示し、
「TAIC」は、トリアリルイソシアヌレートを示し、
「TMPT」は、トリメチロールプロパントリアクリレートを示し、
「PVDF」は、ポリフッ化ビニリデンを示す。
In addition, "HNBR" in Table 1 represents hydrogenated nitric rubber,
“ACL” indicates an acrylic polymer,
“DPO” indicates dicumyl peroxide,
“DHPC” refers to 1,1-di-t-hexylperoxy-cyclohexane,
“CHP” indicates cumene hydroperoxide,
"TAIC" indicates triallyl isocyanurate,
"TMPT" means trimethylolpropane triacrylate,
“PVDF” refers to polyvinylidene fluoride.

Figure 0006686605
Figure 0006686605

表1より、水素添加ニトリルゴムと、架橋剤と、溶媒とを含み、且つ、溶出率比が0.45以下であるバインダー組成物を用いた実施例1〜8では、バインダー組成物が粘度安定性に優れており、また、柔軟性およびピール強度が確保された正極、並びにサイクル特性に優れる二次電池を製造できることが分かる。
また、表1より、架橋剤を含まず、且つ、溶出率比が0.45を超えるバインダー組成物を用いた比較例1および4では、正極のピール強度が低下し、また、二次電池のサイクル特性が低下してしまうことが分かる。更に、表1より、水素添加ニトリルゴムに変えてアクリル系重合体を用いた比較例3では、導電材の分散状態が悪化するためと推察されるが、二次電池のサイクル特性が低下してしまうことが分かる。加えて、SP値が22.20の電解液を使用する実施例1とSP値が24.18の電解液を使用する実施例8とを比較すると、実施例1の方がサイクル特性に優れている。これは、SP値が22.20の電解液が、SP値が24.18の電解液に比して低粘度であるため、正極合材層により良好に浸透するためと考えられる。しかしながら一方で、SP値が22.20である電解液を使用する比較例1とSP値が24.18の電解液を使用する比較例4とを比較すると、比較例1の方がサイクル特性は低下している。これは、比較例1および4では架橋剤を使用していないため、比較例1のようにSP値が22.20の電解液を使用すると、電解液が正極合材層に良好に浸透するものの、水素添加ニトリルゴムの電解液中への溶出が顕著となるためと考えられる。
From Table 1, in Examples 1 to 8 using a binder composition containing a hydrogenated nitrile rubber, a cross-linking agent, and a solvent, and having an elution rate ratio of 0.45 or less, the binder composition had a stable viscosity. It can be seen that it is possible to manufacture a positive electrode which is excellent in durability, and which has flexibility and peel strength secured, and a secondary battery which is excellent in cycle characteristics.
Further, from Table 1, in Comparative Examples 1 and 4 using the binder composition containing no crosslinking agent and having an elution rate ratio of more than 0.45, the peel strength of the positive electrode was decreased, and It can be seen that the cycle characteristics deteriorate. Further, from Table 1, it is speculated that Comparative Example 3 using an acrylic polymer instead of hydrogenated nitrile rubber deteriorates the dispersed state of the conductive material, but the cycle characteristics of the secondary battery deteriorate. You can see that In addition, comparing Example 1 using an electrolytic solution having an SP value of 22.20 and Example 8 using an electrolytic solution having an SP value of 24.18, Example 1 is superior in cycle characteristics. There is. It is considered that this is because the electrolytic solution having an SP value of 22.20 has a lower viscosity than the electrolytic solution having an SP value of 24.18, and thus penetrates better into the positive electrode mixture layer. On the other hand, on the other hand, comparing Comparative Example 1 using an electrolytic solution having an SP value of 22.20 with Comparative Example 4 using an electrolytic solution having an SP value of 24.18, Comparative Example 1 has a cycle characteristic. It is falling. This is because Comparative Examples 1 and 4 do not use a cross-linking agent, and therefore, when an electrolytic solution having an SP value of 22.20 is used as in Comparative Example 1, the electrolytic solution satisfactorily penetrates into the positive electrode mixture layer. It is considered that the elution of the hydrogenated nitrile rubber into the electrolytic solution becomes remarkable.

本発明によれば、非水系二次電池に優れたサイクル特性を発揮させることが可能な非水系二次電池正極用バインダー組成物および非水系二次電池正極用スラリー組成物を提供することができる。
また、本発明によれば、非水系二次電池に優れたサイクル特性を発揮させることが可能な非水系二次電池用正極を提供することができる。
更に、本発明によれば、優れたサイクル特性を有する非水系二次電池を提供することができる。
According to the present invention, it is possible to provide a binder composition for a non-aqueous secondary battery positive electrode and a slurry composition for a non-aqueous secondary battery positive electrode capable of exhibiting excellent cycle characteristics in the non-aqueous secondary battery. .
Further, according to the present invention, it is possible to provide a positive electrode for a non-aqueous secondary battery, which is capable of exhibiting excellent cycle characteristics in the non-aqueous secondary battery.
Furthermore, according to the present invention, a non-aqueous secondary battery having excellent cycle characteristics can be provided.

Claims (9)

水素添加ニトリルゴム、架橋剤、および溶媒を含み、
以下の式(1)によって算出される溶出率比が0.45以下である、非水系二次電池正極用バインダー組成物。
溶出率比=溶出率A/溶出率B・・・(1)
式(1)中、
溶出率Aは、前記非水系二次電池正極用バインダー組成物から形成されるバインダーフィルムを150℃で6時間真空乾燥し、真空乾燥後のバインダーフィルムを、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、エチルメチルカーボネート(EMC)、およびn−プロピルプロピオネート(PP)を質量比EC:PC:EMC:PP=2:1:1:6で混合して得られる溶媒にLiPF6を1.0モル/リットルの濃度で溶解させた測定用電解液中に、60℃で72時間浸漬させた際の溶出率を表し、
溶出率Bは、前記非水系二次電池正極用バインダー組成物から形成されるバインダーフィルムを25℃で6時間真空乾燥し、真空乾燥後のバインダーフィルムを、前記測定用電解液中に、60℃で72時間浸漬させた際の溶出率を表す。
Including hydrogenated nitrile rubber, cross-linking agent, and solvent,
A binder composition for a non-aqueous secondary battery positive electrode having an elution rate ratio of 0.45 or less calculated by the following formula (1).
Dissolution rate ratio = Dissolution rate A / Dissolution rate B (1)
In formula (1),
The elution rate A was determined by vacuum-drying a binder film formed from the binder composition for a non-aqueous secondary battery positive electrode at 150 ° C. for 6 hours, and then subjecting the binder film after vacuum drying to ethylene carbonate (EC) and propylene carbonate (PC). ), Ethylmethyl carbonate (EMC), and n-propylpropionate (PP) in a mass ratio of EC: PC: EMC: PP = 2: 1: 1: 6, and LiPF 6 is added to a solvent obtained by adding 1. It represents the dissolution rate when immersed in a measuring electrolyte solution having a concentration of 0 mol / liter for 72 hours at 60 ° C.,
The elution rate B was determined by vacuum-drying a binder film formed from the binder composition for a non-aqueous secondary battery positive electrode at 25 ° C. for 6 hours, and applying the vacuum-dried binder film to the measuring electrolyte at 60 ° C. Represents the dissolution rate when immersed for 72 hours.
前記架橋剤の10時間半減期温度が、80℃以上160℃以下である、請求項1に記載の非水系二次電池正極用バインダー組成物。   The binder composition for a non-aqueous secondary battery positive electrode according to claim 1, wherein the 10-hour half-life temperature of the cross-linking agent is 80 ° C or higher and 160 ° C or lower. 前記架橋剤が有機過酸化物である、請求項1又は2に記載の非水系二次電池正極用バインダー組成物。   The binder composition for a non-aqueous secondary battery positive electrode according to claim 1, wherein the cross-linking agent is an organic peroxide. 前記水素添加ニトリルゴム100質量部当たり、前記架橋剤を1質量部以上3質量部以下含む、請求項1〜3の何れかに記載の非水系二次電池正極用バインダー組成物。   The binder composition for a non-aqueous secondary battery positive electrode according to claim 1, wherein the crosslinking agent is contained in an amount of 1 part by mass or more and 3 parts by mass or less per 100 parts by mass of the hydrogenated nitrile rubber. 更に共架橋剤を含む、請求項1〜4の何れかに記載の非水系二次電池正極用バインダー組成物。   The binder composition for a non-aqueous secondary battery positive electrode according to claim 1, further comprising a co-crosslinking agent. 前記水素添加ニトリルゴム100質量部当たり、前記共架橋剤を1質量部以上5質量部以下含む、請求項5に記載の非水系二次電池正極用バインダー組成物。   The binder composition for a non-aqueous secondary battery positive electrode according to claim 5, comprising 1 part by mass or more and 5 parts by mass or less of the co-crosslinking agent per 100 parts by mass of the hydrogenated nitrile rubber. 正極活物質と、請求項1〜6の何れかに記載の非水系二次電池正極用バインダー組成物とを含む、非水系二次電池正極用スラリー組成物。   A slurry composition for a non-aqueous secondary battery positive electrode, comprising a positive electrode active material and the binder composition for a non-aqueous secondary battery positive electrode according to any one of claims 1 to 6. 請求項7に記載の非水系二次電池正極用スラリー組成物を用いて形成した正極合材層を備える、非水系二次電池用正極。   A positive electrode for a non-aqueous secondary battery, comprising a positive electrode mixture layer formed by using the slurry composition for a non-aqueous secondary battery positive electrode according to claim 7. 請求項8に記載の非水系二次電池用正極と、負極と、電解液と、セパレータとを備える、非水系二次電池。   A non-aqueous secondary battery comprising the positive electrode for a non-aqueous secondary battery according to claim 8, a negative electrode, an electrolytic solution, and a separator.
JP2016062500A 2016-03-25 2016-03-25 Binder composition for non-aqueous secondary battery positive electrode, slurry composition for non-aqueous secondary battery positive electrode, non-aqueous secondary battery positive electrode, and non-aqueous secondary battery Active JP6686605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016062500A JP6686605B2 (en) 2016-03-25 2016-03-25 Binder composition for non-aqueous secondary battery positive electrode, slurry composition for non-aqueous secondary battery positive electrode, non-aqueous secondary battery positive electrode, and non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016062500A JP6686605B2 (en) 2016-03-25 2016-03-25 Binder composition for non-aqueous secondary battery positive electrode, slurry composition for non-aqueous secondary battery positive electrode, non-aqueous secondary battery positive electrode, and non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2017174764A JP2017174764A (en) 2017-09-28
JP6686605B2 true JP6686605B2 (en) 2020-04-22

Family

ID=59973339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016062500A Active JP6686605B2 (en) 2016-03-25 2016-03-25 Binder composition for non-aqueous secondary battery positive electrode, slurry composition for non-aqueous secondary battery positive electrode, non-aqueous secondary battery positive electrode, and non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP6686605B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11742489B2 (en) * 2017-12-28 2023-08-29 Zeon Corporation Binder composition for secondary battery positive electrode, slurry composition for secondary battery positive electrode and method of producing same, positive electrode for secondary battery, and secondary battery
EP4287332A1 (en) * 2021-01-29 2023-12-06 Zeon Corporation Non-aqueous electrochemical element
CN115842095A (en) * 2022-07-06 2023-03-24 宁德时代新能源科技股份有限公司 Binder, electrode plate, battery and electric device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033698B2 (en) * 2002-11-08 2006-04-25 The Gillette Company Flexible cathodes
WO2013187522A1 (en) * 2012-06-15 2013-12-19 Jsr株式会社 Binder composition for electrodes

Also Published As

Publication number Publication date
JP2017174764A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
KR102494519B1 (en) Binder composition for secondary battery electrodes, conductive material paste composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary batteries, and secondary battery
JP6848862B2 (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery and secondary battery
JP6638658B2 (en) Non-aqueous secondary battery positive electrode binder composition, non-aqueous secondary battery positive electrode composition, non-aqueous secondary battery positive electrode and non-aqueous secondary battery, and non-aqueous secondary battery positive electrode composition, non-aqueous secondary battery For producing positive electrode for secondary battery and non-aqueous secondary battery
JP6589857B2 (en) Method for producing positive electrode for lithium ion secondary battery provided with electrolytic solution
CN110088947B (en) Slurry composition for nonaqueous secondary battery negative electrode, method for producing same, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP6798545B2 (en) Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrodes for non-aqueous secondary batteries and non-aqueous secondary batteries
JP6702302B2 (en) Binder composition for secondary battery positive electrode, slurry composition for secondary battery positive electrode, positive electrode for secondary battery and secondary battery
JP6760074B2 (en) Binder composition for lithium ion secondary battery positive electrode, slurry composition for lithium ion secondary battery positive electrode, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JPWO2019131210A1 (en) Binder composition for secondary battery positive electrode, slurry composition for secondary battery positive electrode and its manufacturing method, positive electrode for secondary battery, and secondary battery
JP2023184608A (en) Binder composition for secondary batteries, conductive material paste for secondary battery electrodes, slurry composition for secondary battery electrodes, method for manufacturing slurry composition for secondary battery electrodes, electrode for secondary batteries, and secondary battery
JP6996504B2 (en) Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrodes for non-aqueous secondary batteries and non-aqueous secondary batteries
JP7359145B2 (en) Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes and manufacturing method thereof, electrode for non-aqueous secondary batteries, and non-aqueous secondary battery
JP6686605B2 (en) Binder composition for non-aqueous secondary battery positive electrode, slurry composition for non-aqueous secondary battery positive electrode, non-aqueous secondary battery positive electrode, and non-aqueous secondary battery
WO2018003636A1 (en) Binder composition for non-aqueous secondary cell electrode, slurry composition for non-aqueous secondary cell electrode, electrode for non-aqueous secondary cell, and non-aqueous secondary cell
WO2020213721A1 (en) Binder composition for non-aqueous secondary cell electrode, slurry composition for non-aqueous secondary cell positive electrode, positive electrode for non-aqueous secondary cell, and non-aqueous secondary cell
WO2020137591A1 (en) Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, secondary battery electrode, and secondary battery
WO2020213722A1 (en) Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery positive electrode, positive electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2020241384A1 (en) Method for producing slurry composition for secondary battery positive electrodes, method for producing positive electrode for secondary batteries, and method for producing secondary battery
CN111492516A (en) Binder composition for secondary battery positive electrode, slurry composition for secondary battery positive electrode, method for producing same, secondary battery positive electrode, and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6686605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250