JP6673073B2 - Yaw damper device for railway vehicles - Google Patents

Yaw damper device for railway vehicles Download PDF

Info

Publication number
JP6673073B2
JP6673073B2 JP2016141833A JP2016141833A JP6673073B2 JP 6673073 B2 JP6673073 B2 JP 6673073B2 JP 2016141833 A JP2016141833 A JP 2016141833A JP 2016141833 A JP2016141833 A JP 2016141833A JP 6673073 B2 JP6673073 B2 JP 6673073B2
Authority
JP
Japan
Prior art keywords
damping coefficient
yaw damper
bogie
railway vehicle
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016141833A
Other languages
Japanese (ja)
Other versions
JP2018012373A (en
Inventor
陽介 山崎
陽介 山崎
将明 水野
将明 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016141833A priority Critical patent/JP6673073B2/en
Publication of JP2018012373A publication Critical patent/JP2018012373A/en
Application granted granted Critical
Publication of JP6673073B2 publication Critical patent/JP6673073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Description

本発明は、鉄道車両に用いられるヨーダンパ装置に関する。   The present invention relates to a yaw damper device used for a railway vehicle.

従来、鉄道車両には、直線軌道を高速走行する際の台車の蛇行動を抑制するためにヨーダンパが用いられる場合がある。ヨーダンパは、鉄道車両の左右において車体と台車との間に取付けられ、軌道不整やレールの継ぎ目などの軌道からの加振によって発生するヨーイング(台車が車体に対して上下軸周りに回転振動する現象)を速やかに減衰させるために用いられている。このため、ヨーダンパの減衰力(減衰係数)は大きい方が高速走行の安定性の観点からは有効である。なお、一般に、ヨーダンパの減衰力は、車体と台車との速度差にヨーダンパの減衰係数を乗算して得られる。   2. Description of the Related Art Conventionally, a yaw damper is sometimes used in a railway vehicle in order to suppress a snake behavior of a bogie when traveling at a high speed on a straight track. The yaw damper is installed between the body and the bogie on the left and right sides of the railway vehicle. The yaw damper is a yaw caused by vibrations from the track such as irregular tracks and rail joints. ) Is used to attenuate quickly. For this reason, the larger the damping force (damping coefficient) of the yaw damper, the more effective it is from the viewpoint of high-speed running stability. In general, the damping force of the yaw damper is obtained by multiplying the speed difference between the vehicle body and the bogie by the damping coefficient of the yaw damper.

一方、車庫や駅及びそれに付帯する線区又は地下鉄路線等においては曲線半径の小さな曲線軌道が設置されていることが多く、このような曲線軌道を走行する場合には車体と台車との間には上下軸周りに相対的な回転変位が生じる。この際、車体と台車との間の相対的な回転角度は、走行する曲線軌道の曲線半径に応じて幾何学的に決まる角度となるのが望ましい。すなわち、車輪がレールの接線方向を向いて、いわゆるアタック角(輪軸が進行する向きと軌道の向きとの相対的な角度差)が0度となるまで台車が回転するのが、曲線軌道の走行性能上は最適な状態である。   On the other hand, in a garage, a station, a line section attached to it, a subway line, or the like, a curved track with a small curve radius is often installed, and when traveling on such a curved track, a space between the vehicle body and the bogie is used. Causes relative rotational displacement around the vertical axis. At this time, it is desirable that the relative rotation angle between the vehicle body and the bogie is an angle that is geometrically determined according to the radius of the curved track. That is, the bogie rotates until the so-called attack angle (the relative angle difference between the direction in which the axle advances and the direction of the track) is 0 degrees with the wheels facing the tangential direction of the rail, and the running on a curved track This is an optimal state in terms of performance.

しかしながら、実際には、車輪とレールとの間の摩擦力に起因して生じる接線力(車輪とレールとの間に作用する前後方向のクリープ力)と、空気ばねの回転抵抗及びヨーダンパの回転抵抗とのつりあい位置までしか台車は回転しない。すなわち、アタック角は0度にはならない。特に、直線区間と円曲線区間とを繋ぐ緩和曲線区間を鉄道車両が走行する際に、輪軸のアタック角が大きくなることで横圧が大きくなるのに加えて、軌道のねじれに伴い輪重が抜けやすいため、例えば乗り上がり脱線が生じる危険性が増すことが知られている。   However, actually, the tangential force (creep force acting in the front-rear direction acting between the wheel and the rail) generated due to the frictional force between the wheel and the rail, the rotational resistance of the air spring and the rotational resistance of the yaw damper. The bogie rotates only up to the balance position. That is, the attack angle does not become 0 degrees. In particular, when a railway vehicle travels on a transition curve section that connects a straight section and a circular curve section, the lateral pressure increases due to the increase in the attack angle of the wheel set, and the wheel load increases due to the torsion of the track. It is known that, for example, the risk of derailment due to getting on the vehicle increases because the vehicle easily falls off.

上記のような問題を解決するため、例えば、特許文献1に記載のヨーダンパ装置が提案されている。
特許文献1に記載のヨーダンパ装置は、直線軌道における高速走行の安定性と小曲線軌道の走行性能という相反する2つの問題を解決するために、ヨーダンパの減衰力を可変とし、高速走行時にはヨーダンパの減衰力を大きくし(有効にし)、小曲線軌道の走行時には減衰力を開放する(無効にする)ものである(例えば、特許文献1の段落0013)。
より具体的には、特許文献1に記載のヨーダンパ装置においては、鉄道車両が緩和曲線区間(入口側緩和曲線区間)に進入する際に、制御装置がヨーダンパに取り付けられた電磁弁に信号を与え、ヨーダンパの減衰力を開放する。一方、鉄道車両が緩和曲線区間(出口側緩和曲線区間)を脱出する際に、制御装置がヨーダンパに取り付けられた電磁弁に信号を与え、ヨーダンパの減衰力を回復させている(例えば、特許文献1の段落0016)。
換言すれば、特許文献1に記載のヨーダンパ装置においては、入口側緩和曲線区間、円曲線区間及び出口側緩和曲線区間ではヨーダンパの減衰力を無効にし、それ以外の直線区間ではヨーダンパの減衰力を有効にしているといえる。
In order to solve the above problems, for example, a yaw damper device described in Patent Document 1 has been proposed.
The yaw damper device described in Patent Literature 1 makes the damping force of the yaw damper variable in order to solve two contradictory problems of high-speed running stability on a straight track and running performance on a small curved track. The damping force is increased (validated), and the damping force is released (disabled) when traveling on a small curved track (for example, paragraph 0013 of Patent Document 1).
More specifically, in the yaw damper device described in Patent Literature 1, when a railway vehicle enters a transition curve section (entrance transition curve section), the control device sends a signal to an electromagnetic valve attached to the yaw damper. Release the damping force of the yaw damper. On the other hand, when the railway vehicle escapes from the transition curve section (exit transition curve section), the control device sends a signal to an electromagnetic valve attached to the yaw damper to recover the damping force of the yaw damper (for example, see Patent Document 1). 1 paragraph 0016).
In other words, in the yaw damper device described in Patent Literature 1, the damping force of the yaw damper is invalidated in the inlet side relaxation curve section, the circular curve section, and the exit side relaxation curve section, and the yaw damper damping force is reduced in the other straight section. It can be said that it is enabled.

特許文献1に記載のヨーダンパ装置によれば、鉄道車両が直線区間を走行する際にはヨーダンパの減衰力が有効であるため、高速走行の安定性を確保できる。また、特許文献1に記載のヨーダンパ装置のように、鉄道車両が円曲線区間を走行する際にヨーダンパの減衰力を無効にすることで、ヨーダンパの回転抵抗が無くなり、ヨーダンパの減衰力を有効にする場合よりも輪軸のアタック角を小さくできるので、円曲線区間で車輪に生じ得る横圧を低減可能であると考えられる。
しかしながら、本発明者らが見出した知見によれば、特許文献1に記載のヨーダンパ装置のように、鉄道車両が緩和曲線区間を走行する際にヨーダンパの減衰力を無効にしても、緩和曲線区間で車輪に生じる横圧は必ずしも十分に低減するわけではない。このため、乗り上がり脱線が生じる危険性を排除できないという問題がある。
According to the yaw damper device described in Patent Literature 1, when a railway vehicle travels in a straight section, the damping force of the yaw damper is effective, so that high-speed traveling stability can be ensured. Further, by disabling the damping force of the yaw damper when the railway vehicle travels in a circular curve section as in the yaw damper device described in Patent Document 1, the rotational resistance of the yaw damper is eliminated, and the damping force of the yaw damper is effectively used. It is considered that since the attack angle of the wheel set can be made smaller than that in the case where the lateral pressure can be generated in the circular curve section.
However, according to the findings found by the present inventors, as in the yaw damper device disclosed in Patent Document 1, even when the damping force of the yaw damper is invalidated when the railway vehicle travels on the transition curve section, the transition curve section is not used. Therefore, the lateral pressure generated on the wheels is not always sufficiently reduced. For this reason, there is a problem in that the risk of derailing after riding cannot be excluded.

特開2006−282059号公報JP 2006-282059 A

本発明は、上記のような従来技術の問題点を解決するためになされたものであり、鉄道車両が曲線軌道の緩和曲線区間を走行する際に車輪に生じる横圧を低減可能な鉄道車両用ヨーダンパ装置を提供することを課題とする。   The present invention has been made in order to solve the above-described problems of the related art, and is intended for a railway vehicle capable of reducing lateral pressure generated on wheels when the railway vehicle travels on a transitional curve section of a curved track. It is an object to provide a yaw damper device.

前記課題を解決するため、本発明者らは、車体と、車体に連結された前後一対の台車とを具備する鉄道車両において、車体と1対の台車のそれぞれとの間にヨーダンパが取り付けられている場合を想定し、この鉄道車両が、入口側直線区間、入口側緩和曲線区間、円曲線区間、出口側緩和曲線区間及び出口側直線区間からなる軌道を走行する際の運動解析を行って鋭意検討を重ねた結果、以下の知見を得た。
(1)鉄道車両が入口緩和曲線区間を走行する際に、後側の台車に取り付けられたヨーダンパの減衰力を無効又は小さくした場合(ヨーダンパの減衰係数を0又は小さくした場合)、後側の台車の向き(後側の台車が具備する車輪が進行する向き)が軌道の向き(レールの接線方向)に沿わない状態となるため、後側の台車が具備する前側の輪軸の外軌側の車輪に生じる横圧が低減しない。この横圧を低減するには、後側の台車に取り付けられたヨーダンパの減衰力(減衰係数)を直線区間を走行する場合と同じように大きくして、後側の台車の向きが軌道の向きに沿うような向きのモーメントを後側の台車に与えてやればよい。一方、前側の台車に取り付けられたヨーダンパの減衰力(減衰係数)は小さいままでよい。
(2)鉄道車両が出口緩和曲線区間を走行する際に、前側の台車に取り付けられたヨーダンパの減衰力を無効又は小さくした場合(ヨーダンパの減衰係数を0又は小さくした場合)、前側の台車の向き(前側の台車が具備する車輪が進行する向き)が軌道の向き(レールの接線方向)に沿わない状態となるため、前側の台車が具備する前側の輪軸の外軌側の車輪に生じる横圧が低減しない。この横圧を低減するには、前側の台車に取り付けられたヨーダンパの減衰力(減衰係数)を直線区間を走行する場合と同じように大きくして、前側の台車の向きが軌道の向きに沿うような向きのモーメントを前側の台車に与えてやればよい。一方、後側の台車に取り付けられたヨーダンパの減衰力(減衰係数)は小さいままでよい。
In order to solve the above-mentioned problem, the present inventors have disclosed a railway vehicle including a vehicle body and a pair of front and rear bogies connected to the vehicle body, wherein a yaw damper is attached between the vehicle body and each of the pair of bogies. Assuming that the railway vehicle is running, a dynamic analysis of this railway car when traveling on a track consisting of an entrance-side straight section, an entrance-side transition curve section, a circular curve section, an exit-side transition curve section, and an exit-side straight section is conducted. As a result of repeated studies, the following findings were obtained.
(1) If the damping force of the yaw damper attached to the rear bogie is invalidated or reduced (when the damping coefficient of the yaw damper is reduced to 0 or smaller) when the railroad vehicle travels on the entrance relaxation curve section, Since the direction of the bogie (the direction in which the wheels of the rear bogie travels) does not follow the direction of the track (the tangential direction of the rail), the outer bogie of the front wheel axle of the rear bogie is Lateral pressure generated at the wheel is not reduced. In order to reduce this lateral pressure, the damping force (attenuation coefficient) of the yaw damper attached to the rear bogie is increased in the same manner as when traveling in a straight section, and the direction of the rear bogie is the direction of the track. May be applied to the rear bogie. On the other hand, the damping force (damping coefficient) of the yaw damper attached to the front bogie may remain small.
(2) If the damping force of the yaw damper attached to the front bogie is invalidated or reduced (when the damping coefficient of the yaw damper is set to 0 or small) when the railway vehicle travels on the exit relaxation curve section, Since the direction (the direction in which the wheels of the front bogie travels) does not follow the direction of the track (the tangential direction of the rails), the lateral direction generated on the wheels on the outer rail of the front wheelset provided in the front bogies. Pressure does not decrease. In order to reduce the lateral pressure, the damping force (attenuation coefficient) of the yaw damper attached to the front bogie is increased in the same manner as when traveling in a straight section, and the direction of the front bogie follows the direction of the track. A moment in such a direction may be given to the bogie on the front side. On the other hand, the damping force (damping coefficient) of the yaw damper attached to the rear bogie may remain small.

本発明は、上記の本発明者らの知見に基づき完成したものである。
すなわち、前記課題を解決するため、本発明は、車体と、該車体に連結された前後1対の台車とを具備する鉄道車両に用いられるヨーダンパ装置であって、前記車体と前記1対の台車のそれぞれとの間に取り付けられたヨーダンパと、前記ヨーダンパの減衰係数を第1減衰係数と該第1減衰係数よりも小さく且つ0より大きい第2減衰係数との間で切り替え制御する制御手段とを備え、前記制御手段は、前記鉄道車両が曲線軌道の入口側緩和曲線区間を走行する際には、前側の前記台車に取り付けられた前記ヨーダンパの減衰係数を前記第2減衰係数にする一方、後側の前記台車に取り付けられた前記ヨーダンパの減衰係数を前記第1減衰係数にし、前記鉄道車両が曲線軌道の出口側緩和曲線区間を走行する際には、前側の前記台車に取り付けられた前記ヨーダンパの減衰係数を前記第1減衰係数にする一方、後側の前記台車に取り付けられた前記ヨーダンパの減衰係数を前記第2減衰係数にする、ことを特徴とする鉄道車両用ヨーダンパ装置を提供する。
The present invention has been completed based on the above findings of the present inventors.
That is, in order to solve the above-mentioned problems, the present invention relates to a yaw damper device used for a railway vehicle including a vehicle body and a pair of front and rear bogies connected to the vehicle body, wherein the vehicle body and the pair of bogies are provided. And a control means for controlling the switching of the damping coefficient of the yaw damper between a first damping coefficient and a second damping coefficient smaller than the first damping coefficient and larger than zero. The control means, when the railway vehicle travels on the entrance-side curved section of the curved track, sets the damping coefficient of the yaw damper attached to the bogie on the front side to the second damping coefficient, The damping coefficient of the yaw damper attached to the bogie on the side is set to the first damping coefficient, and the railcar is attached to the bogie on the front side when traveling on the exit-side curvilinear curve section of the curved track. A damping coefficient of the yaw damper thus obtained is set to the first damping coefficient, and a damping coefficient of the yaw damper attached to the rear bogie is set to the second damping coefficient. I will provide a.

本発明に係るヨーダンパ装置によれば、鉄道車両が曲線軌道の入口側緩和曲線区間を走行する際には、制御手段が、前側の台車に取り付けられたヨーダンパの減衰係数を第2減衰係数にする一方、後側の台車に取り付けられたヨーダンパの減衰係数を第1減衰係数にする。第1減衰係数は通常の減衰係数(直線軌道における台車の蛇行動を抑制するために作用させる減衰力を発生させるための減衰係数と同じ減衰係数であり、例えば、ヨーダンパが有する最大減衰係数)にすることができ、第2減衰係数は第1減衰係数よりも小さな減衰係数(ただし、0より大きい)である。すなわち、後側の台車には第1減衰係数によって発生する大きな減衰力が作用するため、後側の台車の向きが軌道の向きに沿うような向きのモーメントが後側の台車に与えられる結果、後側の台車が具備する前側の輪軸の外軌側の車輪に生じる横圧が低減する。
また、鉄道車両が曲線軌道の出口側緩和曲線区間を走行する際には、制御手段が、前側の台車に取り付けられたヨーダンパの減衰係数を第1減衰係数にする一方、後側の台車に取り付けられたヨーダンパの減衰係数を第2減衰係数にする。すなわち、前側の台車には第1減衰係数によって発生する大きな減衰力が作用するため、前側の台車の向きが軌道の向きに沿うような向きのモーメントが前側の台車に与えられる結果、前側の台車が具備する前側の輪軸の外軌側の車輪に生じる横圧が低減する。
以上のように、本発明に係るヨーダンパ装置によれば、鉄道車両が曲線軌道の緩和曲線区間を走行する際に車輪に生じる横圧を低減可能であるため、曲線軌道の走行性能を向上させることが可能である。
なお、ヨーダンパの減衰係数を第2減衰係数に切り替えた場合における当該ヨーダンパの回転抵抗を小さくするには、第1減衰係数に対して第2減衰係数をできるだけ小さくすることが好ましい。具体的には、第1減衰係数を基準値である1とした場合に、第2減衰係数はその3割の大きさである0.3以下に設定することが好ましく、0.2以下に設定することがより好ましく、0.1以下に設定することが最も好ましい。
According to the yaw damper device of the present invention, when the railway vehicle travels on the entrance-side transition curve section of the curved track, the control unit sets the damping coefficient of the yaw damper attached to the front bogie to the second damping coefficient. On the other hand, the damping coefficient of the yaw damper attached to the rear bogie is set as the first damping coefficient. The first damping coefficient is a normal damping coefficient (the same damping coefficient as that for generating a damping force acting to suppress the bogie movement of the bogie on a straight track, for example, the maximum damping coefficient of the yaw damper). Wherein the second damping coefficient is a smaller damping coefficient (but greater than 0) than the first damping coefficient. That is, since a large damping force generated by the first damping coefficient acts on the rear bogie, a moment is applied to the rear bogie such that the direction of the rear bogie follows the direction of the track. Lateral pressure generated on wheels on the outer rail side of the front wheel set included in the rear bogie is reduced.
When the railway vehicle travels along the exit-side curvilinear curve section of the curved track, the control means sets the damping coefficient of the yaw damper attached to the front bogie to the first damping coefficient while attaching the yaw damper to the rear bogie. The obtained damping coefficient of the yaw damper is set as a second damping coefficient. That is, since a large damping force generated by the first damping coefficient acts on the front bogie, a moment is applied to the front bogie so that the direction of the front bogie follows the direction of the track. The lateral pressure generated on the wheel on the outer rail side of the front wheel set provided in the vehicle is reduced.
As described above, according to the yaw damper device according to the present invention, it is possible to reduce the lateral pressure generated on the wheels when the railway vehicle travels on the transitional curve section of the curved track, thereby improving the traveling performance of the curved track. Is possible.
In order to reduce the rotational resistance of the yaw damper when the damping coefficient of the yaw damper is switched to the second damping coefficient, it is preferable to make the second damping coefficient as small as possible with respect to the first damping coefficient. Specifically, when the first damping coefficient is set to 1, which is the reference value, the second damping coefficient is preferably set to 0.3% or less, which is 30% of the value, and set to 0.2 or less. More preferably, it is most preferably set to 0.1 or less.

好ましくは、前記制御手段は、前記鉄道車両が曲線軌道の円曲線区間を走行する際には、前側の前記台車に取り付けられた前記ヨーダンパの減衰係数を前記第2減衰係数にすると共に、後側の前記台車に取り付けられた前記ヨーダンパの減衰係数も前記第2減衰係数にする。   Preferably, the control means sets the damping coefficient of the yaw damper attached to the bogie on the front side to the second damping coefficient and sets the rear The damping coefficient of the yaw damper attached to the carriage is also the second damping coefficient.

上記の好ましい構成によれば、鉄道車両が曲線軌道の円曲線区間を走行する際には、制御手段が、前側及び後側の台車にそれぞれ取り付けられたヨーダンパの減衰係数を双方共に小さな第2減衰係数にするため、前側及び後側の台車の双方に第2減衰係数によって発生する小さな減衰力が作用することになる。このため、特許文献1に記載のヨーダンパ装置と同様に、1対の台車が具備する何れの車輪に生じ得る横圧も低減する。   According to the preferred configuration described above, when the railway vehicle travels along the circular curve section of the curved track, the control means reduces the damping coefficients of the yaw dampers attached to the front and rear bogies, respectively, to a small second damping coefficient. In order to obtain the coefficient, a small damping force generated by the second damping coefficient acts on both the front and rear bogies. Therefore, similarly to the yaw damper device described in Patent Document 1, the lateral pressure that can be generated on any of the wheels of the pair of bogies is reduced.

好ましくは、前記制御手段は、前記鉄道車両が直線軌道を走行する際には、前側の前記台車に取り付けられた前記ヨーダンパの減衰係数を前記第1減衰係数にすると共に、後側の前記台車に取り付けられた前記ヨーダンパの減衰係数も前記第1減衰係数にする。   Preferably, the control means sets the damping coefficient of the yaw damper attached to the front bogie to the first damping coefficient when the railway vehicle travels on a straight track, and sets the yaw damper to the rear bogie. The damping coefficient of the attached yaw damper is also the first damping coefficient.

上記の好ましい構成によれば、鉄道車両が直線軌道を走行する際には、前側及び後側の台車の双方に第1減衰係数によって発生する大きな減衰力が作用することになる。このため、大きな減衰力でヨーイングが減衰するため、鉄道車両の高速走行の安定性を確保することができる。   According to the preferred configuration, when the railway vehicle travels on the straight track, a large damping force generated by the first damping coefficient acts on both the front and rear bogies. For this reason, the yawing is attenuated by the large damping force, so that the stability of the high-speed running of the railway vehicle can be secured.

本発明に係るヨーダンパ装置が備えるヨーダンパの減衰係数を第1減衰係数と第2減衰係数との間で切り替えるためは、開度調整可能なオリフィスが設けられたヨーダンパを採用することが好ましい。
すなわち、好ましくは、前記ヨーダンパは、ピストンと、該ピストンが内部を移動するシリンダとを具備し、前記シリンダの内部は、前記ピストンの先端部によって第1室及び第2室に区画され、前記ピストンの先端部には、前記第1室と前記第2室とを連通させ、開度調整可能なオリフィスが設けられており、前記制御手段は、前記オリフィスの開度を調整することにより、前記ヨーダンパの減衰係数を前記第1減衰係数と前記第2減衰係数との間で切り替え制御する。
In order to switch the damping coefficient of the yaw damper included in the yaw damper device according to the present invention between the first damping coefficient and the second damping coefficient, it is preferable to employ a yaw damper provided with an orifice whose opening can be adjusted.
That is, preferably, the yaw damper includes a piston and a cylinder in which the piston moves, and the inside of the cylinder is partitioned into a first chamber and a second chamber by a tip of the piston, An orifice is provided at the tip of the orifice to allow the first chamber and the second chamber to communicate with each other and to adjust the opening. The control means adjusts the opening of the orifice to control the yaw damper. Is switched between the first damping coefficient and the second damping coefficient.

上記の好ましい構成によれば、比較的簡易な構成でヨーダンパの減衰係数を切り替え制御可能である。   According to the above preferred configuration, it is possible to switch and control the damping coefficient of the yaw damper with a relatively simple configuration.

本発明に係るヨーダンパ装置によれば、鉄道車両が曲線軌道の緩和曲線区間を走行する際に車輪に生じる横圧を低減可能であるため、曲線軌道の走行性能を向上させることが可能である。このため、鉄道車両に乗り上がり脱線が生じる危険性を排除することが可能である。   ADVANTAGE OF THE INVENTION According to the yaw damper apparatus which concerns on this invention, since a railroad vehicle can reduce the lateral pressure which generate | occur | produces in a wheel when running along the relaxation curve section of a curved track, it is possible to improve the running performance of a curved track. For this reason, it is possible to eliminate the danger of getting on a railway vehicle and causing derailment.

本発明の一実施形態に係る鉄道車両用ヨーダンパ装置の概略構成を説明する模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram explaining the schematic structure of the yaw damper apparatus for railway vehicles which concerns on one Embodiment of this invention. 本発明の一実施形態に係る鉄道車両用ヨーダンパ装置が取り付けられた鉄道車両の車体及び台車と曲線軌道との位置関係を模式的に説明する模式図である。1 is a schematic diagram schematically illustrating a positional relationship between a vehicle body and a bogie of a railway vehicle to which a yaw damper device for a railway vehicle according to an embodiment of the present invention is attached, and a curved track. 従来技術1のヨーダンパ装置が取り付けられた鉄道車両の車体及び台車と曲線軌道との位置関係を模式的に説明する模式図である。FIG. 9 is a schematic diagram schematically illustrating a positional relationship between a vehicle body and a bogie of a railway vehicle to which the yaw damper device of the related art 1 is attached and a curved track. 従来技術2のヨーダンパ装置が取り付けられた鉄道車両の車体及び台車と曲線軌道との位置関係を模式的に説明する模式図である。FIG. 9 is a schematic diagram schematically illustrating a positional relationship between a vehicle body and a bogie of a railway vehicle to which the yaw damper device of the related art 2 is attached and a curved track. 鉄道車両が走行する軌道を構成する各区間における、本発明の一実施形態に係るヨーダンパ装置、従来技術1のヨーダンパ装置及び従来技術2のヨーダンパ装置のそれぞれが備えるヨーダンパの減衰係数の状態を纏めたものである。The state of the damping coefficient of the yaw damper provided in each of the yaw damper device according to the embodiment of the present invention, the yaw damper device of the related art 1, and the yaw damper device of the related art 2 in each section constituting the track on which the railway vehicle travels is summarized. Things. 運動解析によって横圧を評価する際に用いた軌道条件及び走行条件を示す。The track conditions and running conditions used in evaluating the lateral pressure by motion analysis are shown. 本発明の一実施形態に係るヨーダンパ装置を用いた場合と、従来技術1のヨーダンパ装置を用いた場合とについて、運動解析によって得られた車輪に生じる横圧を対比した結果の一例を示す。An example of the result of comparing the lateral pressure generated in the wheel obtained by the motion analysis is compared between the case where the yaw damper device according to the embodiment of the present invention is used and the case where the yaw damper device of the related art 1 is used. 本発明の一実施形態に係るヨーダンパ装置を用いた場合と、従来技術2のヨーダンパ装置を用いた場合とについて、運動解析によって得られた車輪に生じる横圧(前側の台車が具備する前側の輪軸の外軌側の車輪に生じる横圧)を対比した結果の一例を示す。In the case where the yaw damper device according to the embodiment of the present invention is used and the case where the yaw damper device of the related art 2 is used, the lateral pressure generated on the wheels obtained by the motion analysis (the front wheel axle provided in the front bogie). An example of the result of comparing the lateral pressure generated on the wheel on the outer rail side of FIG. 本発明の一実施形態に係るヨーダンパ装置を用いた場合と、従来技術2のヨーダンパ装置を用いた場合とについて、運動解析によって得られた車輪に生じる横圧(後側の台車が具備する前側の輪軸の外軌側の車輪に生じる横圧)を対比した結果の一例を示す。In the case where the yaw damper device according to the embodiment of the present invention is used and the case where the yaw damper device of the related art 2 is used, the lateral pressure generated on the wheels obtained by the motion analysis (the front pressure of the rear bogie included in the rear bogie) is determined. An example of the result of comparing the lateral pressure generated on the wheel on the outer rail side of the wheel set is shown.

以下、添付図面を適宜参照しつつ、本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings as appropriate.

<本実施形態に係るヨーダンパ装置の構成及び動作>
図1は、本発明の一実施形態に係る鉄道車両用ヨーダンパ装置の概略構成を説明する模式図である。図1(a)は全体の概略構成を示す図であり、図1(b)はヨーダンパの概略構成を示す断面図である。
図1(a)に示すように、本実施形態に係る鉄道車両用ヨーダンパ装置(以下、適宜、単に「ヨーダンパ装置」という)100は、車体3と、車体3に連結された台車4とを具備する鉄道車両に用いられるものである。図1(a)では、便宜上、1台の台車4のみを図示しているが、実際には、車体3に前後(図1の紙面の左右)1対の台車4が連結されている。
台車4は、前後1対の輪軸4a、4bと、台車枠4cと、車体3と台車枠4cとを連結し車体3を支持する空気ばね4dとを具備する。台車4が具備する上記の構成要素及びその他の構成要素は、周知慣用の台車と同様であるため、その詳細な説明は省略する。
ヨーダンパ装置100は、車体3と1対の台車4(具体的には、台車枠4c)のそれぞれとの間に取り付けられたヨーダンパ1と、ヨーダンパ1の減衰係数を切り替え制御する制御手段2とを備えている。
<Configuration and operation of the yaw damper device according to the present embodiment>
FIG. 1 is a schematic diagram illustrating a schematic configuration of a yaw damper device for a railway vehicle according to an embodiment of the present invention. FIG. 1A is a diagram showing the overall schematic configuration, and FIG. 1B is a cross-sectional view showing the schematic configuration of the yaw damper.
As shown in FIG. 1A, a railway vehicle yaw damper device (hereinafter, simply referred to as a “yaw damper device”) 100 according to the present embodiment includes a vehicle body 3 and a bogie 4 connected to the vehicle body 3. It is used for rolling stock vehicles. In FIG. 1A, only one truck 4 is shown for convenience, but actually, a pair of front and rear (left and right sides of the paper surface of FIG. 1) pair is connected to the vehicle body 3.
The truck 4 includes a pair of front and rear wheel shafts 4a and 4b, a truck frame 4c, and an air spring 4d that connects the vehicle body 3 and the truck frame 4c and supports the vehicle body 3. The above-described components and other components included in the cart 4 are the same as those of a well-known and common cart, and thus detailed description thereof is omitted.
The yaw damper device 100 includes a yaw damper 1 mounted between the vehicle body 3 and each of the pair of bogies 4 (specifically, the bogie frame 4c), and a control means 2 for switching and controlling the damping coefficient of the yaw damper 1. Have.

ヨーダンパ1は、各台車4の左右(図1の紙面の手前側及び奥側)にそれぞれ1つずつ取り付けられている。図1(b)に示すように、本実施形態のヨーダンパ1は、ピストン11と、ピストン11が内部を移動する(前後方向に移動する)シリンダ12とを具備する。シリンダ12の内部は、ピストン11の先端部(シリンダ12側の端部)によって第1室12a及び第2室12bに区画されており、第1室12a及び第2室12bにはそれぞれオイル等の粘性流体13が封入されている。ピストン11の先端部には、第1室12aと第2室12bとを連通させるオリフィス14が設けられている。ヨーダンパ1が図1(b)の上図に示す状態から収縮(ピストン11が第1室12a側に移動)して図1(b)の下図に示す状態に変化する過程において、第1室12a内の粘性流体13の圧力が上昇し、第1室12a内の粘性流体13は、オリフィス14を矢符13aの方向に通過して第2室12b内に移動する。この際、オリフィス14を通過する粘性流体13の粘性抵抗により、ピストン11には、粘性流体13の移動方向13aと同方向の抵抗力(減衰力)Fが付与される。逆に、ヨーダンパ1が伸長(ピストン11が第2室12b側に移動)する過程においては、ピストン11には、上記の抵抗力Fとは逆方向の抵抗力(減衰力)が付与されることになる。   One yaw damper 1 is attached to each of the right and left sides (front and back sides of the paper surface of FIG. 1) of each carriage 4. As shown in FIG. 1B, the yaw damper 1 of the present embodiment includes a piston 11 and a cylinder 12 in which the piston 11 moves (moves in the front-rear direction). The inside of the cylinder 12 is partitioned into a first chamber 12a and a second chamber 12b by a tip end (an end on the cylinder 12 side) of the piston 11, and the first chamber 12a and the second chamber 12b are respectively filled with oil or the like. A viscous fluid 13 is enclosed. An orifice 14 for communicating the first chamber 12a and the second chamber 12b is provided at the tip of the piston 11. In the process in which the yaw damper 1 contracts from the state shown in the upper part of FIG. 1B (piston 11 moves to the first chamber 12a side) and changes to the state shown in the lower part of FIG. 1B, the first chamber 12a The pressure of the viscous fluid 13 inside rises, and the viscous fluid 13 in the first chamber 12a moves through the orifice 14 in the direction of the arrow 13a into the second chamber 12b. At this time, due to the viscous resistance of the viscous fluid 13 passing through the orifice 14, a resistance force (damping force) F in the same direction as the moving direction 13a of the viscous fluid 13 is applied to the piston 11. Conversely, in the process of extending the yaw damper 1 (piston 11 moves to the second chamber 12b side), a resistance (damping force) in a direction opposite to the above-described resistance F is applied to the piston 11. become.

本実施形態のヨーダンパ1としては、減衰係数可変型のヨーダンパが用いられている。具体的には、ヨーダンパ1が具備するピストン11に設けられたオリフィス14が、開度が調整可能な可変オリフィス(流量調整弁)になっており、オリフィス14の開度を調整することで減衰係数を調整し、ピストン11に付与される減衰力を調整可能である。すなわち、オリフィス14の開度を相対的に小さくすることで、オリフィス14を通過する粘性流体13の粘性抵抗が増加するため、減衰係数は相対的に大きくなり、ピストン11に付与される減衰力が相対的に大きくなる。一方、オリフィス14の開度を相対的に大きくすることで、オリフィス14を通過する粘性流体13の粘性抵抗が減少するため、減衰係数は相対的に小さくなり、ピストン11に付与される減衰力が相対的に小さくなる。   As the yaw damper 1 of the present embodiment, a variable damping coefficient type yaw damper is used. More specifically, the orifice 14 provided in the piston 11 of the yaw damper 1 is a variable orifice (flow control valve) whose opening can be adjusted, and the damping coefficient is adjusted by adjusting the opening of the orifice 14. And the damping force applied to the piston 11 can be adjusted. That is, by making the opening degree of the orifice 14 relatively small, the viscous resistance of the viscous fluid 13 passing through the orifice 14 increases, so that the damping coefficient becomes relatively large, and the damping force applied to the piston 11 decreases. Relatively large. On the other hand, by increasing the opening degree of the orifice 14 relatively, the viscous resistance of the viscous fluid 13 passing through the orifice 14 decreases, so that the damping coefficient becomes relatively small, and the damping force applied to the piston 11 decreases. Relatively small.

制御手段2は、車体3に取り付けられたシーケンサ等から構成される。制御手段2は、ヨーダンパ1が具備するオリフィス14(流量調整弁)に対して制御信号を送信する。オリフィス14の開度は、制御手段2から受信した制御信号によって調整される。
本実施形態の制御手段2は、ヨーダンパ1の減衰係数を通常の減衰係数(直線軌道における台車4の蛇行動を抑制するために作用させる減衰力を発生させるための減衰係数と同じ減衰係数)である第1減衰係数と該第1減衰係数よりも小さく且つ0より大きい第2減衰係数との間で切り替え制御する。本実施形態では、オリフィス14の開度がその調整範囲の最小値である場合に生じる減衰係数(すなわち、ヨーダンパ1が有する最大減衰係数)が第1減衰係数として設定され、オリフィス14の開度が最小値よりも大きな所定値である場合に付与される減衰係数が第2減衰係数として設定されている。そして、制御手段2は、ヨーダンパ1の減衰係数を第1減衰係数にする場合には、オリフィス14の開度を最小値にするための制御信号を送信し、ヨーダンパ1の減衰係数を第2減衰係数にする場合には、オリフィス14の開度を最小値よりも大きな予め決められた所定値にするための制御信号を送信する。
The control means 2 includes a sequencer attached to the vehicle body 3 and the like. The control means 2 transmits a control signal to an orifice 14 (flow regulating valve) provided in the yaw damper 1. The opening of the orifice 14 is adjusted by a control signal received from the control means 2.
The control means 2 of the present embodiment sets the damping coefficient of the yaw damper 1 to a normal damping coefficient (the same damping coefficient as that for generating a damping force acting to suppress the snake behavior of the bogie 4 in a straight track). Switching control is performed between a certain first damping coefficient and a second damping coefficient smaller than the first damping coefficient and larger than zero. In the present embodiment, the damping coefficient (that is, the maximum damping coefficient of the yaw damper 1) generated when the opening degree of the orifice 14 is the minimum value of the adjustment range is set as the first damping coefficient. The damping coefficient given when the predetermined value is larger than the minimum value is set as the second damping coefficient. Then, when the damping coefficient of the yaw damper 1 is set to the first damping coefficient, the control means 2 transmits a control signal for minimizing the opening degree of the orifice 14 to reduce the damping coefficient of the yaw damper 1 to the second damping coefficient. In the case of using the coefficient, a control signal for setting the opening of the orifice 14 to a predetermined value larger than the minimum value is transmitted.

図2は、本実施形態に係るヨーダンパ装置100が取り付けられた鉄道車両の車体3及び台車4と曲線軌道Rとの位置関係を模式的に説明する模式図である。図2(a)は鉄道車両が曲線軌道Rの入口側緩和曲線区間を走行する場合の位置関係を、図2(b)は鉄道車両が曲線軌道Rの出口側緩和曲線区間を走行する場合の位置関係を示す。なお、図2において、ハッチングを施しているヨーダンパ1は減衰係数が第1減衰係数であることを、ハッチングを施していないヨーダンパ1は減衰係数が第2減衰係数であることを意味する。後述の図3についても同様である。後述の図4においては、ハッチングを施していないヨーダンパ1は減衰力が無効(実質的に減衰力が作用しない状態、すなわち減衰係数=0)であることを意味する。
図2(a)に示すように、鉄道車両が曲線軌道R(外軌R1、内軌R2)の入口側緩和曲線区間を走行する際、制御手段2(図2(a)には図示せず)は、前側の台車4Aに取り付けられたヨーダンパ1の減衰係数を第2減衰係数にする一方、後側の台車4Bに取り付けられたヨーダンパ1の減衰係数を第1減衰係数にする。具体的には、公知の手段(図示せず)によって検知された鉄道車両が現在走行している軌道情報が制御手段2に入力され、鉄道車両が入口側緩和曲線区間に進入した時点で、制御手段2から前側の台車4Aに取り付けられたヨーダンパ1が具備するオリフィス14に対して、その開度を予め決められた所定値にするための制御信号を送信し、当該ヨーダンパ1の減衰係数を第2減衰係数にする。一方、制御手段2から後側の台車4Bに取り付けられたヨーダンパ1が具備するオリフィス14に対して、その開度を最小値にするための制御信号を送信し、当該ヨーダンパ1の減衰係数を第1減衰係数にする。後側の台車4Bに取り付けられたヨーダンパ1の減衰係数を第1減衰係数にするため、後側の台車4Bの向き(図2(a)において矢符4Dで示す向き)が軌道Rの向き(図2(a)において矢符RDで示す向き)に沿うような向きのモーメント(図2(a)において白抜き矢符で示す向きのモーメント)が後側の台車4Bに与えられる結果、後側の台車4Bが具備する前側の輪軸4aの外軌R1側の車輪40Bに生じる横圧が低減する。
FIG. 2 is a schematic diagram schematically illustrating the positional relationship between the vehicle body 3 and the bogie 4 of the railway vehicle to which the yaw damper device 100 according to the present embodiment is attached, and the curved track R. FIG. 2A shows the positional relationship when the railway vehicle travels on the entrance-side transition curve section of the curved track R, and FIG. 2B shows the positional relationship when the railway vehicle travels on the exit-side transition curve section of the curve track R. This shows the positional relationship. In FIG. 2, the hatched yaw damper 1 means that the damping coefficient is the first damping coefficient, and the non-hatched yaw damper 1 means that the damping coefficient is the second damping coefficient. The same applies to FIG. 3 described later. In FIG. 4 to be described later, the unshaded yaw damper 1 means that the damping force is invalid (the state where substantially no damping force is applied, that is, the damping coefficient = 0).
As shown in FIG. 2 (a), when the railway vehicle travels on the entrance-side transition curve section of the curved track R (outer rail R1, inner rail R2), the control means 2 (not shown in FIG. 2 (a)). ) Makes the damping coefficient of the yaw damper 1 attached to the front bogie 4A the second damping coefficient, while setting the damping coefficient of the yaw damper 1 attached to the rear bogie 4B to the first damping coefficient. Specifically, the information of the track on which the railway vehicle is currently traveling, which is detected by a known means (not shown), is input to the control means 2 and the control is performed when the railway vehicle enters the entrance-side transition curve section. A control signal is transmitted from the means 2 to the orifice 14 of the yaw damper 1 attached to the front bogie 4A so as to set the opening to a predetermined value, and the damping coefficient of the yaw damper 1 is reduced 2. Set the attenuation coefficient. On the other hand, a control signal for minimizing the opening is transmitted from the control means 2 to the orifice 14 of the yaw damper 1 attached to the rear bogie 4B, and the damping coefficient of the yaw damper 1 is reduced by the Set to 1 attenuation coefficient. In order to set the damping coefficient of the yaw damper 1 attached to the rear bogie 4B to the first damping coefficient, the direction of the rear bogie 4B (the direction indicated by the arrow 4D in FIG. 2A) is the direction of the track R ( As a result of the moment (the moment in the direction indicated by the white arrow in FIG. 2A) being applied to the rear bogie 4B, the moment along the direction along the direction indicated by the arrow RD in FIG. Lateral pressure generated on the wheels 40B on the outer rail R1 side of the front wheel set 4a of the truck 4B is reduced.

一方、図2(b)に示すように、鉄道車両が曲線軌道Rの出口側緩和曲線区間を走行する際、制御手段2(図2(b)には図示せず)は、前側の台車4Aに取り付けられたヨーダンパ1の減衰係数を第1減衰係数にする一方、後側の台車4Bに取り付けられたヨーダンパ1の減衰係数を第2減衰係数にする。具体的には、公知の手段(図示せず)によって検知された鉄道車両が現在走行している軌道情報が制御手段2に入力され、鉄道車両が出口側緩和曲線区間に進入した時点で、制御手段2から前側の台車4Aに取り付けられたヨーダンパ1が具備するオリフィス14に対して、その開度を最小値にするための制御信号を送信し、当該ヨーダンパ1の減衰係数を第1減衰係数にする。一方、制御手段2から後側の台車4Bに取り付けられたヨーダンパ1が具備するオリフィス14に対して、その開度を予め決められた所定値にするための制御信号を送信し、当該ヨーダンパ1の減衰係数を第2減衰係数にする。前側の台車4Aに取り付けられたヨーダンパ1の減衰係数を第1減衰係数にするため、前側の台車4Aの向き(図2(b)において矢符4Dで示す向き)が軌道Rの向き(図2(b)において矢符RDで示す向き)に沿うような向きのモーメント(図2(b)において白抜き矢符で示す向きのモーメント)が前側の台車4Aに与えられる結果、前側の台車4Aが具備する前側の輪軸4aの外軌R1側の車輪40Aに生じる横圧が低減する。   On the other hand, as shown in FIG. 2 (b), when the railway vehicle travels along the exit-side relaxation curve section of the curved track R, the control means 2 (not shown in FIG. 2 (b)) uses the front bogie 4A. Is set as the first damping coefficient, while the damping coefficient of the yaw damper 1 mounted on the rear bogie 4B is set as the second damping coefficient. Specifically, information on the track on which the railway vehicle is currently traveling, which is detected by a known means (not shown), is input to the control means 2, and the control is performed when the railway vehicle enters the exit-side transition curve section. A control signal for minimizing the opening is transmitted from the means 2 to the orifice 14 of the yaw damper 1 attached to the front bogie 4A, and the damping coefficient of the yaw damper 1 is set to the first damping coefficient. I do. On the other hand, a control signal is transmitted from the control means 2 to the orifice 14 of the yaw damper 1 attached to the rear bogie 4B so as to set the opening to a predetermined value, and the yaw damper 1 The damping coefficient is set to the second damping coefficient. In order to make the damping coefficient of the yaw damper 1 attached to the front bogie 4A the first damping coefficient, the direction of the front bogie 4A (the direction indicated by the arrow 4D in FIG. 2B) is the direction of the track R (FIG. 2). As a result of applying a moment (a moment indicated by an outline arrow in FIG. 2B) along the direction along the direction indicated by an arrow RD in (b) to the front truck 4A, the front truck 4A is Lateral pressure generated on the wheel 40A on the outer rail R1 side of the front wheel shaft 4a provided is reduced.

また、図示は省略するが、鉄道車両が曲線軌道Rの円曲線区間を走行する際、制御手段2は、前側の台車4Aに取り付けられたヨーダンパ1の減衰係数を第2減衰係数にすると共に、後側の台車4Bに取り付けられたヨーダンパ1の減衰係数も第2減衰係数にする。これにより、ヨーダンパ1の回転抵抗力が小さくなり、ヨーダンパ1の減衰係数を第1減衰係数にする場合よりも輪軸のアタック角を小さくできるので、鉄道車両が円曲線区間を走行する際に1対の台車4A、4Bが具備する何れの車輪に生じ得る横圧も低減可能である。
さらに、鉄道車両が直線軌道を走行する際、制御手段2は、前側の台車4Aに取り付けられたヨーダンパ1の減衰係数を第1減衰係数にすると共に、後側の台車4Bに取り付けられたヨーダンパ1の減衰係数も第1減衰係数にする。これにより、鉄道車両が直線軌道を走行する際にヨーダンパ1の大きな第1減衰係数によって発生する減衰力でヨーイングが減衰するため、鉄道車両の高速走行の安定性を確保することができる。
Although not shown, when the railway vehicle travels along the circular curve section of the curved track R, the control means 2 sets the damping coefficient of the yaw damper 1 attached to the front bogie 4A to the second damping coefficient, The damping coefficient of the yaw damper 1 attached to the rear bogie 4B is also set to the second damping coefficient. As a result, the rotational resistance of the yaw damper 1 is reduced, and the attack angle of the wheel set can be reduced as compared with the case where the damping coefficient of the yaw damper 1 is set to the first damping coefficient. Lateral pressure that can occur on any of the wheels of the carts 4A and 4B can be reduced.
Further, when the railway vehicle travels on a straight track, the control means 2 sets the damping coefficient of the yaw damper 1 attached to the front bogie 4A to the first damping coefficient, and sets the yaw damper 1 attached to the rear bogie 4B. Is also the first damping coefficient. Accordingly, when the railway vehicle travels on the straight track, the yawing is attenuated by the damping force generated by the large first damping coefficient of the yaw damper 1, so that the stability of the railway vehicle at high speed traveling can be ensured.

以下、本実施形態に係るヨーダンパ装置100の効果をより具体的に説明するため、比較対象とする従来技術1及び従来技術2のヨーダンパ装置について説明する。   Hereinafter, in order to more specifically describe the effects of the yaw damper device 100 according to the present embodiment, the yaw damper devices of the related art 1 and the related art 2 to be compared will be described.

<従来技術1のヨーダンパ装置の動作>
図3は、従来技術1のヨーダンパ装置が取り付けられた鉄道車両の車体3及び台車4と曲線軌道Rとの位置関係を模式的に説明する模式図である。図3(a)は鉄道車両が曲線軌道Rの入口側緩和曲線区間を走行する場合の位置関係を、図3(b)は鉄道車両が曲線軌道Rの出口側緩和曲線区間を走行する場合の位置関係を示す。従来技術1のヨーダンパ装置としては、構成自体は本実施形態に係るヨーダンパ装置100の構成と同様(減衰係数を切り替え可能な構成)であるが、その動作が異なるものを採用可能である。或いは、ヨーダンパ1の減衰係数が第1減衰係数で固定されているもの(減衰係数の切り替え不可)を採用可能である。
図3(a)及び図3(b)に示すように、従来技術1においては、鉄道車両が曲線軌道Rの入口側緩和曲線区間を走行する際、及び、出口側緩和曲線区間を走行する際の双方において、前側の台車4Aに取り付けられたヨーダンパ1の減衰係数が第1減衰係数であると共に、後側の台車4Bに取り付けられたヨーダンパ1の減衰係数も第1減衰係数である。また、図示は省略するが、鉄道車両が曲線軌道Rの円曲線区間を走行する際にも、前側の台車4Aに取り付けられたヨーダンパ1の減衰係数が第1減衰係数であると共に、後側の台車4Bに取り付けられたヨーダンパ1の減衰係数も第1減衰係数である。さらに、鉄道車両が直線軌道を走行する際にも、前側の台車4Aに取り付けられたヨーダンパ1の減衰係数が第1減衰係数であると共に、後側の台車4Bに取り付けられたヨーダンパ1の減衰係数も第1減衰係数である。すなわち、従来技術1においては、全ての軌道において、前側の台車4A及び後側の台車4Bに取り付けられたヨーダンパ1の減衰係数が常に第1減衰係数である。
<Operation of Yaw damper device of prior art 1>
FIG. 3 is a schematic diagram schematically illustrating the positional relationship between the vehicle body 3 and the bogie 4 of the railway vehicle to which the yaw damper device of the related art 1 is attached and the curved track R. FIG. 3A shows the positional relationship when the railway vehicle travels on the entrance-side transition curve section of the curved track R, and FIG. 3B shows the positional relationship when the railway vehicle travels on the exit-side transition curve section of the curve track R. This shows the positional relationship. As the yaw damper device of the prior art 1, the configuration itself is the same as the configuration of the yaw damper device 100 according to the present embodiment (a configuration in which the attenuation coefficient can be switched), but a device having a different operation can be adopted. Alternatively, the one in which the damping coefficient of the yaw damper 1 is fixed at the first damping coefficient (the switching of the damping coefficient is not possible) can be adopted.
As shown in FIGS. 3A and 3B, in the related art 1, when the railway vehicle travels on the entrance-side transition curve section of the curved track R and on the exit-side transition curve section. In both cases, the damping coefficient of the yaw damper 1 attached to the front bogie 4A is the first damping coefficient, and the damping coefficient of the yaw damper 1 mounted to the rear bogie 4B is also the first damping coefficient. Although not shown, when the railway vehicle travels along the circular curve section of the curved track R, the damping coefficient of the yaw damper 1 attached to the front bogie 4A is the first damping coefficient, and The damping coefficient of the yaw damper 1 attached to the carriage 4B is also the first damping coefficient. Further, even when the railway vehicle travels on a straight track, the damping coefficient of the yaw damper 1 attached to the front bogie 4A is the first damping coefficient, and the damping coefficient of the yaw damper 1 attached to the rear bogie 4B. Is also the first damping coefficient. That is, in the prior art 1, in all the tracks, the damping coefficient of the yaw damper 1 attached to the front bogie 4A and the rear bogie 4B is always the first damping coefficient.

従来技術1のヨーダンパ装置によれば、図3(a)に示すように、鉄道車両が曲線軌道Rの入口側緩和曲線区間を走行する際、前側の台車4Aの向き(図3(a)において矢符4Dで示す向き)が軌道Rの向き(図3(a)において矢符RDで示す向き)から離れるような向きのモーメント(図3(a)において白抜き矢符で示す向きのモーメント)が前側の台車4Aに与えられる結果、前側の台車4Aのアタック角が大きくなり、前側の台車4Aが具備する前側の輪軸4aの外軌R1側の車輪40Aに生じる横圧が大きくなる。
また、図3(b)に示すように、鉄道車両が曲線軌道Rの出口側緩和曲線区間を走行する際、後側の台車4Bの向き(図3(b)において矢符4Dで示す向き)が軌道Rの向き(図3(b)において矢符RDで示す向き)から離れるような向きのモーメント(図3(b)において白抜き矢符で示す向きのモーメント)が後側の台車4Bに与えられる結果、後側の台車4Bのアタック角が大きくなり、後側の台車4Bが具備する前側の輪軸4aの外軌R1側の車輪40Bに生じる横圧が大きくなる。
このため、従来技術1のヨーダンパ装置によれば、例えば乗り上がり脱線が生じる危険性が増すことになる。
According to the yaw damper device of the prior art 1, as shown in FIG. 3A, when the railway vehicle travels on the entrance-side transition curve section of the curved track R, the direction of the front bogie 4A (in FIG. 3A). A moment (a moment indicated by a white arrow in FIG. 3A) such that the direction indicated by an arrow 4D departs from a direction of the orbit R (a direction indicated by an arrow RD in FIG. 3A). Is given to the front bogie 4A, the attack angle of the front bogie 4A increases, and the lateral pressure generated on the wheel 40A on the outer rail R1 side of the front wheel axle 4a of the front bogie 4A increases.
Further, as shown in FIG. 3B, when the railway vehicle travels along the exit-side relaxation curve section of the curved track R, the direction of the rear bogie 4B (the direction shown by the arrow 4D in FIG. 3B). (In the direction indicated by the arrow RD in FIG. 3B), a moment (the moment indicated by the white arrow in FIG. 3B) is applied to the rear bogie 4B. As a result, the attack angle of the rear bogie 4B increases, and the lateral pressure generated on the wheel 40B of the front wheel axle 4a of the rear bogie 4B on the outer rail R1 side increases.
For this reason, according to the yaw damper device of the prior art 1, the risk of, for example, getting on and derailment increases.

<従来技術2のヨーダンパ装置の動作>
図4は、従来技術2(特許文献1)のヨーダンパ装置が取り付けられた鉄道車両の車体3及び台車4と曲線軌道Rとの位置関係を模式的に説明する模式図である。図4(a)は鉄道車両が曲線軌道Rの入口側緩和曲線区間を走行する場合の位置関係を、図4(b)は鉄道車両が曲線軌道Rの出口側緩和曲線区間を走行する場合の位置関係を示す。従来技術2のヨーダンパ装置としては、構成自体は本実施形態に係るヨーダンパ装置100の構成と同様(減衰係数を切り替え可能な構成)であるが、その動作が異なるものを採用可能である。
図4(a)及び図4(b)に示すように、従来技術2においては、鉄道車両が曲線軌道Rの入口側緩和曲線区間を走行する際、及び、出口側緩和曲線区間を走行する際の双方において、前側の台車4Aに取り付けられたヨーダンパ1の減衰係数を0(減衰力を無効)にすると共に、後側の台車4Bに取り付けられたヨーダンパ1の減衰係数も0にする。また、図示は省略するが、鉄道車両が曲線軌道Rの円曲線区間を走行する際にも、前側の台車4Aに取り付けられたヨーダンパ1の減衰係数を0にすると共に、後側の台車4Bに取り付けられたヨーダンパ1の減衰係数も0にする。すなわち、従来技術2においては、全ての曲線軌道Rにおいて、前側の台車4A及び後側の台車4Bに取り付けられたヨーダンパ1の減衰係数が0である。なお、鉄道車両が直線軌道を走行する際には、前側の台車4Aに取り付けられたヨーダンパ1の減衰係数を第1減衰係数にすると共に、後側の台車4Bに取り付けられたヨーダンパ1の減衰係数も第1減衰係数にする。
<Operation of Yaw damper device of prior art 2>
FIG. 4 is a schematic diagram schematically illustrating a positional relationship between the vehicle body 3 and the bogie 4 of the railway vehicle to which the yaw damper device of the related art 2 (Patent Document 1) is attached and the curved track R. FIG. 4A shows the positional relationship when the railway vehicle travels on the entrance-side curvilinear curve section of the curved track R, and FIG. 4B shows the positional relationship when the railway vehicle travels on the exit-side curvilinear curve section of the curved track R. This shows the positional relationship. As the yaw damper device of the prior art 2, the configuration itself is the same as the configuration of the yaw damper device 100 according to the present embodiment (a configuration in which the attenuation coefficient can be switched), but a different operation can be adopted.
As shown in FIGS. 4A and 4B, in the related art 2, when the railway vehicle travels on the entrance-side transition curve section of the curved track R and on the exit-side transition curve section. In both cases, the damping coefficient of the yaw damper 1 attached to the front bogie 4A is set to 0 (damping force is invalidated), and the damping coefficient of the yaw damper 1 attached to the rear bogie 4B is also set to 0. Although not shown, when the railway vehicle travels along the circular curve section of the curved track R, the damping coefficient of the yaw damper 1 attached to the front bogie 4A is set to 0 and the rear bogie 4B is The damping coefficient of the attached yaw damper 1 is also set to zero. That is, in Conventional Technique 2, the damping coefficient of the yaw damper 1 attached to the front bogie 4A and the rear bogie 4B is zero in all the curved trajectories R. When the railway vehicle travels on a straight track, the damping coefficient of the yaw damper 1 attached to the front bogie 4A is set to the first damping coefficient, and the damping coefficient of the yaw damper 1 attached to the rear bogie 4B. Is also the first attenuation coefficient.

従来技術2のヨーダンパ装置によれば、図4(a)に示すように、鉄道車両が曲線軌道Rの入口側緩和曲線区間を走行する際、後側の台車4Bの向き(図4(a)において矢符4Dで示す向き)が軌道Rの向き(図4(a)において矢符RDで示す向き)に沿わない状態となって後側の台車4Bのアタック角が大きくなる結果、後側の台車4Bが具備する前側の輪軸4aの外軌R1側の車輪40Bに生じる横圧が低減しない。
また、図4(b)に示すように、鉄道車両が曲線軌道Rの出口側緩和曲線区間を走行する際、前側の台車4Aの向き(図4(b)において矢符4Dで示す向き)が軌道Rの向き(図4(b)において矢符RDで示す向き)に沿わない状態となって前側の台車4Aのアタック角が大きくなる結果、前側の台車4Aが具備する前側の輪軸4aの外軌R1側の車輪40Aに生じる横圧が低減しない。
このため、従来技術2のヨーダンパ装置によれば、例えば乗り上がり脱線が生じる危険性を排除できない。
According to the yaw damper device of the prior art 2, as shown in FIG. 4A, when the railway vehicle travels on the entrance-side transition curve section of the curved track R, the direction of the rear bogie 4B (FIG. 4A) 4D) does not follow the direction of the trajectory R (the direction indicated by the arrow RD in FIG. 4 (a)), and the attack angle of the rear bogie 4B is increased, so that The lateral pressure generated on the wheel 40B on the outer rail R1 side of the front wheel shaft 4a of the bogie 4B does not decrease.
Further, as shown in FIG. 4B, when the railway vehicle travels on the exit side relaxation curve section of the curved track R, the direction of the front bogie 4A (the direction shown by the arrow 4D in FIG. 4B) is changed. As a result, the front bogie 4A has an increased attack angle because it does not follow the direction of the track R (the direction indicated by the arrow RD in FIG. 4B), and as a result, the outer side of the front wheel set 4a included in the front bogie 4A. Lateral pressure generated in the wheel 40A on the rail R1 side does not decrease.
For this reason, according to the yaw damper device of the prior art 2, it is not possible to eliminate, for example, the risk of derailing while riding.

<本実施形態に係るヨーダンパ装置の評価>
以上に説明したように、各ヨーダンパ装置に応じてその動作が異なる。
図5は、鉄道車両が走行する軌道を構成する各区間における、本実施形態に係るヨーダンパ装置(図5では「本発明」と記載)、従来技術1のヨーダンパ装置及び従来技術2のヨーダンパ装置のそれぞれが備えるヨーダンパ1の減衰係数の状態(相対的な減衰係数の大きさ)を纏めたものである。図5に示す例では、各ヨーダンパ装置において、第1減衰係数を基準値である1とした場合に、第2減衰係数はその1割の大きさである0.1に設定している。
図5から分かるように、鉄道車両が直線軌道(入口側直線区間及び出口側直線区間)を走行する際には、いずれのヨーダンパ装置のヨーダンパ1も全て減衰係数が第1減衰係数であり、差が無い。鉄道車両が曲線軌道R(入口側緩和曲線区間、円曲線区間及び出口側緩和曲線区間)を走行する際に、各ヨーダンパ装置に応じてヨーダンパ1の減衰係数の状態が異なる。
<Evaluation of the yaw damper device according to the present embodiment>
As described above, the operation differs depending on each yaw damper device.
FIG. 5 shows a yaw damper device according to the present embodiment (described as “the present invention” in FIG. 5), a yaw damper device according to prior art 1 and a yaw damper device according to prior art 2 in each section constituting a track on which a railway vehicle travels. The table summarizes the state of the damping coefficient (relative magnitude of the damping coefficient) of the yaw damper 1 provided in each of them. In the example shown in FIG. 5, in each yaw damper device, when the first damping coefficient is set to 1, which is the reference value, the second damping coefficient is set to 0.1, which is 10% of the first damping coefficient.
As can be seen from FIG. 5, when the railway vehicle travels on the straight track (the straight section on the entrance side and the straight section on the exit side), the damping coefficients of all the yaw dampers 1 of any of the yaw damper devices are the first damping coefficient. There is no. When a railroad vehicle travels on a curved track R (entrance curve section, circular curve section and exit curve section), the state of the damping coefficient of the yaw damper 1 differs depending on each yaw damper device.

以下、各ヨーダンパ装置を用いた場合に車輪に生じる横圧を実際に運動解析によって評価した結果について説明する。運動解析を行う鉄道車両のモデルとしては、いずれのヨーダンパ装置を用いる場合であっても、車体3に前後1対の台車4(4A、4B)が連結されたモデルを用いた。なお、運動解析は、汎用機構解析ソフトを利用して実施可能であり、例えば、シムパックジャパン(株)製マルチボディダイナミクス解析ツール「SIMPACK」を利用することが可能である。
図6は、運動解析によって横圧を評価する際に用いた軌道条件及び走行条件を示す。図6に示す「曲線半径」は、円曲線区間における曲線半径を示す。図6に示す「条件1」では、円曲線区間における曲線半径を200mに固定するものの、入口側緩和曲線区間の長さと出口側緩和曲線区間の長さを18〜45mの範囲で各種の値に変更すると共に、均衡速度を40km/hとし、30〜60km/hの範囲で走行速度を各種の値に変更して運動解析を行った。また、図6に示す「条件2」では、円曲線区間における曲線半径を400mに固定するものの、入口側緩和曲線区間の長さと出口側緩和曲線区間の長さを9〜22.5mの範囲で各種の値に変更すると共に、均衡速度を40km/hとし、30〜60km/hの範囲で走行速度を各種の値に変更して運動解析を行った。さらに、図6に示す「条件3」では、円曲線区間における曲線半径を800mに固定するものの、入口側緩和曲線区間の長さと出口側緩和曲線区間の長さを4.6〜11.5mの範囲で各種の値に変更すると共に、均衡速度を40km/hとし、30〜60km/hの範囲で走行速度を各種の値に変更して運動解析を行った。
Hereinafter, a description will be given of the result of actually evaluating the lateral pressure generated on the wheel by the motion analysis when each yaw damper device is used. Regardless of which yaw damper device is used, a model in which a pair of front and rear bogies 4 (4A, 4B) are connected to the vehicle body 3 is used as a model of the railway vehicle for which the motion analysis is performed. The motion analysis can be performed using general-purpose mechanism analysis software, and for example, a multi-body dynamics analysis tool “SIMPACK” manufactured by Simpack Japan Co., Ltd. can be used.
FIG. 6 shows track conditions and running conditions used when evaluating the lateral pressure by the motion analysis. “Curve radius” shown in FIG. 6 indicates a curve radius in a circular curve section. In the "condition 1" shown in FIG. 6, the radius of the curve in the circular curve section is fixed to 200 m, but the length of the inlet side transition curve section and the length of the exit side transition curve section are various values within the range of 18 to 45 m. At the same time, the motion analysis was performed by changing the running speed to various values within the range of 30 to 60 km / h while setting the equilibrium speed to 40 km / h. In “condition 2” shown in FIG. 6, the radius of the curve in the circular curve section is fixed to 400 m, but the length of the entrance-side transition curve section and the length of the exit-side transition curve section are in the range of 9 to 22.5 m. The motion analysis was performed by changing the running speed to various values in the range of 30 to 60 km / h while changing the equilibrium speed to 40 km / h while changing to various values. Further, in “condition 3” shown in FIG. 6, the radius of the curve in the circular curve section is fixed to 800 m, but the length of the entrance side transition curve section and the length of the exit side transition curve section are 4.6 to 11.5 m. The motion analysis was performed by changing various values in the range, changing the equilibrium speed to 40 km / h, and changing the traveling speed in the range of 30 to 60 km / h to various values.

図7は、本実施形態に係るヨーダンパ装置100を用いた場合と、従来技術1のヨーダンパ装置を用いた場合とについて、運動解析によって得られた車輪に生じる横圧を対比した結果の一例を示す。図7(a)は前側の台車4Aが具備する前側の輪軸4aの外軌R1側の車輪40Aに生じる横圧の一例を、図7(b)は後側の台車4Bが具備する前側の輪軸4aの外軌R1側の車輪40Bに生じる横圧の一例を示す。図7に示す結果は、図6に示す条件のうち、最も横圧が大きくなる条件(条件1のうち、入口側緩和曲線区間の長さと出口側緩和曲線区間の長さを18mとし、走行速度を60km/h(均衡速度+20km/h)にした条件)で得られた結果である。
図7(a)から分かるように、従来技術1のヨーダンパ装置を用いた場合には、鉄道車両が曲線軌道Rの入口側緩和曲線区間を走行する際(走行距離が100〜118mの間)に、前側の台車4Aが具備する前側の輪軸4aの外軌R1側の車輪40Aに生じる横圧が増大しているのに対し、本実施形態に係るヨーダンパ装置100を用いた場合には従来技術1に比べて低減している。
また、図7(b)から分かるように、従来技術1のヨーダンパ装置を用いた場合には、鉄道車両が曲線軌道Rの出口側緩和曲線区間を走行する際(走行距離が318〜336mの間)に、後側の台車4Bが具備する前側の輪軸4aの外軌R1側の車輪40Bに生じる横圧が増大しているのに対し、本実施形態に係るヨーダンパ装置100を用いた場合には従来技術1に比べて低減している。
FIG. 7 shows an example of a result of comparing the lateral pressure generated on the wheel obtained by the motion analysis between the case where the yaw damper device 100 according to the present embodiment is used and the case where the yaw damper device of the related art 1 is used. . FIG. 7A shows an example of a lateral pressure generated on a wheel 40A on the outer rail R1 side of the front wheel axle 4a provided on the front bogie 4A, and FIG. 7B shows a front wheel axle provided on the rear bogie 4B. An example of the lateral pressure generated in the wheel 40B on the outer rail R1 side of 4a is shown. The results shown in FIG. 7 are obtained from the conditions shown in FIG. 6 in which the lateral pressure is maximized (in Condition 1, the length of the inlet-side transition curve section and the length of the exit-side transition curve section are 18 m, and the traveling speed is At 60 km / h (equilibrium speed + 20 km / h).
As can be seen from FIG. 7A, when the yaw damper device of the related art 1 is used, when the railway vehicle travels on the entrance-side transition curve section of the curved track R (the traveling distance is between 100 and 118 m). On the other hand, while the lateral pressure generated on the wheel 40A on the outer rail R1 side of the front wheel axle 4a of the front bogie 4A is increased, when the yaw damper device 100 according to the present embodiment is used, the prior art 1 It is reduced compared to.
Also, as can be seen from FIG. 7B, when the yaw damper device of the prior art 1 is used, when the railway vehicle travels on the exit-side transition curve section of the curved track R (the traveling distance is between 318 and 336 m). In the case where the yaw damper device 100 according to the present embodiment is used, while the lateral pressure generated on the wheel 40B on the outer rail R1 side of the front wheel set 4a of the rear bogie 4B is increased. It is reduced as compared with the prior art 1.

図8は、本実施形態に係るヨーダンパ装置100を用いた場合と、従来技術2(特許文献1)のヨーダンパ装置を用いた場合とについて、運動解析によって得られた車輪に生じる横圧(前側の台車4Aが具備する前側の輪軸4aの外軌R1側の車輪40Aに生じる横圧)を対比した結果の一例を示す。図8(a)は軌道全体において生じる横圧を、図8(b)は出口側緩和曲線区間を走行する際に生じる横圧(図8(a)において破線で囲んだ箇所)を拡大して示す。図8に示す結果は、図6に示す条件のうち、最も横圧が大きくなる条件(条件1のうち、入口側緩和曲線区間の長さと出口側緩和曲線区間の長さを18mとし、走行速度を60km/h(均衡速度+20km/h)にした条件)で得られた結果である。
図8から分かるように、本実施形態に係るヨーダンパ装置100を用いた場合には、鉄道車両が曲線軌道Rの出口側緩和曲線区間を走行する際(走行距離が318〜336mの間)に、前側の台車4Aが具備する前側の輪軸4aの外軌R1側の車輪40Aに生じる横圧が、従来技術2のヨーダンパ装置を用いた場合に比べて低減する。
FIG. 8 shows the lateral pressure (front side) generated on the wheels obtained by the motion analysis when the yaw damper device 100 according to the present embodiment is used and when the yaw damper device according to the related art 2 (Patent Document 1) is used. An example of a result of comparing the front wheelset 4a of the bogie 4A with the lateral pressure generated on the wheel 40A on the outer rail R1 side of the front wheel set 4a is shown. FIG. 8A is an enlarged view of the lateral pressure generated in the entire track, and FIG. 8B is an enlarged view of the lateral pressure generated when the vehicle travels along the exit-side relaxation curve section (a portion surrounded by a broken line in FIG. 8A). Show. The results shown in FIG. 8 are obtained from the conditions shown in FIG. 6 in which the lateral pressure is maximized (in Condition 1, the length of the inlet-side transition curve section and the length of the exit-side transition curve section are 18 m, and the traveling speed is At 60 km / h (equilibrium speed + 20 km / h).
As can be seen from FIG. 8, when the yaw damper device 100 according to the present embodiment is used, when the railway vehicle travels on the exit-side transition curve section of the curved track R (the traveling distance is between 318 and 336 m), Lateral pressure generated on the wheel 40A on the outer rail R1 side of the front wheel axle 4a of the front bogie 4A is reduced as compared with the case where the yaw damper device of the prior art 2 is used.

図9は、本実施形態に係るヨーダンパ装置100を用いた場合と、従来技術2(特許文献1)のヨーダンパ装置を用いた場合とについて、運動解析によって得られた車輪に生じる横圧(後側の台車4Bが具備する前側の輪軸4aの外軌R1側の車輪40Bに生じる横圧)を対比した結果の一例を示す。図9(a)は軌道全体において生じる横圧を、図9(b)は入口側緩和曲線区間を走行する際に生じる横圧(図9(a)において破線で囲んだ箇所)を拡大して示す。図9に示す結果は、図6に示す条件のうち、最も横圧が大きくなる条件(条件1のうち、入口側緩和曲線区間の長さと出口側緩和曲線区間の長さを18mとし、走行速度を60km/h(均衡速度+20km/h)にした条件)で得られた結果である。
図9から分かるように、本実施形態に係るヨーダンパ装置100を用いた場合には、鉄道車両が曲線軌道Rの入口側緩和曲線区間を走行する際(走行距離が100〜118mの間)に、後側の台車4Bが具備する前側の輪軸4aの外軌R1側の車輪40Bに生じる横圧が、従来技術2のヨーダンパ装置を用いた場合に比べて低減する。
FIG. 9 shows the lateral pressure (rear side) generated on the wheels obtained by the motion analysis when the yaw damper device 100 according to the present embodiment is used and when the yaw damper device according to the related art 2 (Patent Document 1) is used. Of the front wheel set 4B provided on the outer wheel R1 side of the front wheel set 4a). FIG. 9A is an enlarged view of the lateral pressure generated over the entire track, and FIG. 9B is an enlarged view of the lateral pressure generated at the time of traveling on the entrance-side relaxation curve section (a portion surrounded by a broken line in FIG. 9A). Show. The results shown in FIG. 9 show that the condition where the lateral pressure is the largest among the conditions shown in FIG. 6 (in condition 1, the length of the inlet-side transition curve section and the length of the exit-side transition curve section are 18 m, and the traveling speed is At 60 km / h (equilibrium speed + 20 km / h).
As can be seen from FIG. 9, when the yaw damper device 100 according to the present embodiment is used, when the railway vehicle travels on the entrance-side transition curve section of the curved track R (the traveling distance is between 100 and 118 m), Lateral pressure generated on the wheel 40B on the outer rail R1 side of the front wheel axle 4a of the rear bogie 4B is reduced as compared with the case where the yaw damper device of the prior art 2 is used.

1・・・ヨーダンパ
2・・・制御手段
3・・・車体
4・・・台車
100・・・ヨーダンパ装置
DESCRIPTION OF SYMBOLS 1 ... Yaw damper 2 ... Control means 3 ... Body 4 ... Bogie 100 ... Yaw damper device

Claims (4)

車体と、該車体に連結された前後1対の台車とを具備する鉄道車両に用いられるヨーダンパ装置であって、
前記車体と前記1対の台車のそれぞれとの間に取り付けられたヨーダンパと、
前記ヨーダンパの減衰係数を第1減衰係数と該第1減衰係数よりも小さく且つ0より大きい第2減衰係数との間で切り替え制御する制御手段とを備え、
前記制御手段は、
前記鉄道車両が曲線軌道の入口側緩和曲線区間を走行する際には、前側の前記台車に取り付けられた前記ヨーダンパの減衰係数を前記第2減衰係数にする一方、後側の前記台車に取り付けられた前記ヨーダンパの減衰係数を前記第1減衰係数にし、
前記鉄道車両が曲線軌道の出口側緩和曲線区間を走行する際には、前側の前記台車に取り付けられた前記ヨーダンパの減衰係数を前記第1減衰係数にする一方、後側の前記台車に取り付けられた前記ヨーダンパの減衰係数を前記第2減衰係数にする、
ことを特徴とする鉄道車両用ヨーダンパ装置。
A yaw damper device used for a railway vehicle including a vehicle body and a pair of front and rear bogies connected to the vehicle body,
A yaw damper mounted between the vehicle body and each of the pair of trolleys;
Control means for switching control of the damping coefficient of the yaw damper between a first damping coefficient and a second damping coefficient smaller than the first damping coefficient and larger than 0,
The control means includes:
When the railway vehicle travels on the entrance-side relaxation curve section of the curved track, the damping coefficient of the yaw damper attached to the front bogie is set to the second damping coefficient, and the yaw damper is attached to the rear bogie. The damping coefficient of the yaw damper is the first damping coefficient,
When the railway vehicle travels on the exit-side curvilinear curve section of the curved track, the damping coefficient of the yaw damper attached to the front bogie is set to the first damping coefficient, while the yaw damper is attached to the rear bogie. Setting the damping coefficient of the yaw damper to the second damping coefficient,
A yaw damper device for a railway vehicle, characterized in that:
前記制御手段は、前記鉄道車両が曲線軌道の円曲線区間を走行する際には、前側の前記台車に取り付けられた前記ヨーダンパの減衰係数を前記第2減衰係数にすると共に、後側の前記台車に取り付けられた前記ヨーダンパの減衰係数も前記第2減衰係数にする、
ことを特徴とする請求項1に記載の鉄道車両用ヨーダンパ装置。
The control means sets the damping coefficient of the yaw damper attached to the bogie on the front side to the second damping coefficient and sets the bogie on the rear side when the railway vehicle travels along a circular curve section of a curved track. The damping coefficient of the yaw damper attached to the second damping coefficient is also the second damping coefficient,
The yaw damper device for a railway vehicle according to claim 1, wherein:
前記制御手段は、前記鉄道車両が直線軌道を走行する際には、前側の前記台車に取り付けられた前記ヨーダンパの減衰係数を前記第1減衰係数にすると共に、後側の前記台車に取り付けられた前記ヨーダンパの減衰係数も前記第1減衰係数にする、
ことを特徴とする請求項1又は2に記載の鉄道車両用ヨーダンパ装置。
When the railway vehicle travels on a straight track, the control means sets the damping coefficient of the yaw damper attached to the front bogie to the first damping coefficient and is attached to the rear bogie. The damping coefficient of the yaw damper is also set to the first damping coefficient,
The yaw damper device for a railway vehicle according to claim 1 or 2, wherein:
前記ヨーダンパは、ピストンと、該ピストンが内部を移動するシリンダとを具備し、
前記シリンダの内部は、前記ピストンの先端部によって第1室及び第2室に区画され、
前記ピストンの先端部には、前記第1室と前記第2室とを連通させ、開度調整可能なオリフィスが設けられており、
前記制御手段は、前記オリフィスの開度を調整することにより、前記ヨーダンパの減衰係数を前記第1減衰係数と前記第2減衰係数との間で切り替え制御する、
ことを特徴とする請求項1から3の何れかに記載の鉄道車両用ヨーダンパ装置。
The yaw damper includes a piston and a cylinder in which the piston moves,
The interior of the cylinder is partitioned into a first chamber and a second chamber by the tip of the piston,
At the tip of the piston, an orifice is provided which allows the first chamber and the second chamber to communicate with each other and whose opening can be adjusted,
The control means controls the switching of the damping coefficient of the yaw damper between the first damping coefficient and the second damping coefficient by adjusting an opening degree of the orifice.
The yaw damper device for a railway vehicle according to any one of claims 1 to 3, characterized in that:
JP2016141833A 2016-07-19 2016-07-19 Yaw damper device for railway vehicles Active JP6673073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016141833A JP6673073B2 (en) 2016-07-19 2016-07-19 Yaw damper device for railway vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016141833A JP6673073B2 (en) 2016-07-19 2016-07-19 Yaw damper device for railway vehicles

Publications (2)

Publication Number Publication Date
JP2018012373A JP2018012373A (en) 2018-01-25
JP6673073B2 true JP6673073B2 (en) 2020-03-25

Family

ID=61020877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016141833A Active JP6673073B2 (en) 2016-07-19 2016-07-19 Yaw damper device for railway vehicles

Country Status (1)

Country Link
JP (1) JP6673073B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110667630B (en) * 2019-09-18 2020-11-17 西南交通大学 Device and method for controlling abnormal shaking of vehicle body based on vertical shock absorber
CN110667632B (en) * 2019-11-27 2020-11-24 西南交通大学 Device and method for controlling abnormal shaking of vehicle body based on anti-snaking shock absorber

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9015109D0 (en) * 1990-07-09 1990-08-29 Gec Alsthom Ltd Damping arrangements
JPH0516544U (en) * 1991-08-21 1993-03-02 近畿車輌株式会社 Railcar buffer control device
JP2003261024A (en) * 2002-03-12 2003-09-16 Kayaba Ind Co Ltd Suspension of rolling stock
JP2006282059A (en) * 2005-04-01 2006-10-19 Hitachi Ltd Damping force variable type yaw damper device for rolling stock
JP5564523B2 (en) * 2012-03-14 2014-07-30 カヤバ工業株式会社 Vibration control device for railway vehicles
JP6031025B2 (en) * 2013-12-24 2016-11-24 Kyb株式会社 Damper control device
JP6414500B2 (en) * 2015-03-27 2018-10-31 新日鐵住金株式会社 Yaw damper equipment for railway vehicles

Also Published As

Publication number Publication date
JP2018012373A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6673074B2 (en) Yaw damper device for railway vehicles
RU2654429C1 (en) Undercarriage of a railway vehicle
JP6673073B2 (en) Yaw damper device for railway vehicles
JP4048391B2 (en) Railway vehicle vibration control method
JP4979360B2 (en) Railway vehicle
JP4305210B2 (en) Anti-rolling equipment for railway vehicles
JP2006282059A (en) Damping force variable type yaw damper device for rolling stock
JP2012184000A (en) Vibration control device for rolling stock
JP6671106B2 (en) Yaw damper device for railway vehicles
JP2004161115A (en) Rolling stock having truck frame turning device
JP6414500B2 (en) Yaw damper equipment for railway vehicles
KR100936822B1 (en) The steering bogie with variable damper for railway vehicle
JP6780496B2 (en) Yaw damper device for railway vehicles
JP4160741B2 (en) Bogie steered rail vehicle
JP4070677B2 (en) Railway vehicle
KR20130004242U (en) wheel-axle steering angle control systems
JPH08142862A (en) Bogie for rolling stock
JP6862938B2 (en) Yaw damper device for railway vehicles
JPH0781563A (en) Vibration damping for railroad rolling stock
JP2021079857A (en) Truck for railway vehicle
JP7172761B2 (en) Yaw damper device for railway vehicle
KR20130046538A (en) Steering apparatus for railway vehicle using mr damper
JP2715968B2 (en) Railcar bogie
JPH06247299A (en) Rolling stock vibration controlling device
JP7295428B2 (en) Yaw damper device for railway vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R151 Written notification of patent or utility model registration

Ref document number: 6673073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151