JP6669915B1 - 非水系アルカリ金属蓄電素子の製造方法 - Google Patents

非水系アルカリ金属蓄電素子の製造方法 Download PDF

Info

Publication number
JP6669915B1
JP6669915B1 JP2019068803A JP2019068803A JP6669915B1 JP 6669915 B1 JP6669915 B1 JP 6669915B1 JP 2019068803 A JP2019068803 A JP 2019068803A JP 2019068803 A JP2019068803 A JP 2019068803A JP 6669915 B1 JP6669915 B1 JP 6669915B1
Authority
JP
Japan
Prior art keywords
alkali metal
positive electrode
storage element
voltage
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019068803A
Other languages
English (en)
Other versions
JP2020167343A (ja
Inventor
森田 均
均 森田
和照 梅津
和照 梅津
雄一朗 平川
雄一朗 平川
維摩 木村
維摩 木村
浩一 平岡
浩一 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2019068803A priority Critical patent/JP6669915B1/ja
Application granted granted Critical
Publication of JP6669915B1 publication Critical patent/JP6669915B1/ja
Priority to CN202080021475.2A priority patent/CN113597690A/zh
Priority to US17/439,874 priority patent/US20220190380A1/en
Priority to PCT/JP2020/012766 priority patent/WO2020203421A1/ja
Priority to EP20784304.6A priority patent/EP3951937A4/en
Priority to KR1020217028370A priority patent/KR102576896B1/ko
Publication of JP2020167343A publication Critical patent/JP2020167343A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】非水系アルカリ金属蓄電素子の微短絡を抑制し、入出力特性及び高温での高負荷充放電サイクルに対する耐久性に優れる非水系アルカリ金属蓄電素子の製造方法の提供。【解決手段】非水系アルカリ金属蓄電素子の製造方法が、正極活物質とアルカリ金属化合物とを含む正極前駆体、負極及びセパレータを外装体に収納する組立工程;非水系電解液を外装体に注液してアルカリ金属蓄電素子前駆体を得る注液工程;蓄電素子前駆体に電圧を掛ける電圧印加工程;蓄電素子前駆体から蓄電素子を形成する完成工程を含み、電圧印加工程前又は電圧印加工程中に、蓄電素子前駆体を外側から加圧し、かつ蓄電素子前駆体を加温し、電圧印加工程では定電流充電後に定電圧充電を行ない、定電流充電のCレートは完成工程後の蓄電素子の放電電気容量に対して特定され、かつ定電圧充電の電圧値は4.20V以上である。【選択図】なし

Description

本発明は、非水系アルカリ金属蓄電素子の製造方法に関する。
近年、地球環境の保全又は省資源を目指すエネルギーの有効利用の観点から、風力発電の電力平滑化システム又は深夜電力貯蔵システム、太陽光発電技術に基づく家庭用分散型蓄電システム、電気自動車用の蓄電システム等が注目を集めている。
これらの蓄電システムに用いられる電池の第一の要求事項は、エネルギー密度が高いことである。このような要求に対応可能な高エネルギー密度電池の有力候補として、リチウムイオン電池の開発が精力的に進められている。
第二の要求事項は、出力特性が高いことである。例えば、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)又は燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、加速時には蓄電システムにおける高出力放電特性が要求される。
現在、高出力蓄電デバイスとしては、電気二重層キャパシタ、ニッケル水素電池等が開発されている。
電気二重層キャパシタのうち、電極に活性炭を用いたものは、約0.5〜約1kW/Lの出力特性を有する。この電気二重層キャパシタは、耐久性(サイクル特性及び高温保存特性)も高く、高出力が要求される分野で最適のデバイスと考えられてきた。しかしながら、そのエネルギー密度は約1〜約5Wh/Lに過ぎない。そのため、更なるエネルギー密度の向上が必要である。
一方、現在ハイブリッド電気自動車で採用されているニッケル水素電池は、電気二重層キャパシタと同等の高出力を有し、かつ約160Wh/Lのエネルギー密度を有している。そのエネルギー密度及び出力をより一層高めるとともに、耐久性(特に、高温における安定性)を高めるための研究が精力的に進められている。
また、リチウムイオン電池においても、高出力化に向けての研究が進められている。例えば、放電深度(蓄電素子の放電容量の何%を放電した状態かを示す値)50%において3kW/Lを超える高出力が得られるリチウムイオン電池が開発されている。しかしながら、そのエネルギー密度は100Wh/L以下であり、リチウムイオン電池の最大の特徴である高エネルギー密度を敢えて抑制した設計となっている。また、その耐久性(サイクル特性及び高温保存特性)については、電気二重層キャパシタに比べ劣る。そのため、耐久性をより一層向上させるための研究が精力的に進められている。実用的な耐久性を持たせるためには、放電深度が0〜100%の範囲よりも狭い範囲での使用となる。実際に使用できる容量は更に小さくなる。
高エネルギー密度、高出力特性、及び耐久性を兼ね備えた蓄電素子の実用化が強く求められている。しかしながら、上述した既存の蓄電素子には、それぞれ一長一短がある。そのため、これらの技術的要求を充足する新たな蓄電素子が求められている。その有力な候補として、リチウムイオンキャパシタと呼ばれる蓄電素子が注目され、開発が盛んに行われている。
リチウムイオンキャパシタは、リチウム塩を含む非水系電解液を使用する蓄電素子(非水系アルカリ金属蓄電素子)の一種であって、正極においては約3V以上で電気二重層キャパシタと同様の陰イオンの吸着・脱着による非ファラデー反応、負極においてはリチウムイオン電池と同様のリチウムイオンの吸蔵・放出によるファラデー反応によって、充放電を行う蓄電素子である。
上述の電極材料とその特徴をまとめると、電極に活性炭等の材料を用い、活性炭表面のイオンの吸着・脱離(非ファラデー反応)により充放電を行う場合は、高出力かつ高耐久性を実現するが、エネルギー密度が低くなる(例えば1倍とする。)。一方、電極に酸化物又は炭素材料を用い、ファラデー反応により充放電を行う場合は、エネルギー密度が高くなる(例えば活性炭を用いた非ファラデー反応の10倍とする。)が、耐久性及び出力特性に課題が生じる。
これらの電極材料の組合せとして、電気二重層キャパシタは、正極及び負極に活性炭(エネルギー密度1倍)を用い、正負極共に非ファラデー反応により充放電を行うことを特徴とし、高出力かつ高耐久性を有するがエネルギー密度が低い(正極1倍×負極1倍=1)という特徴がある。
リチウムイオン二次電池は、正極にリチウム遷移金属酸化物(エネルギー密度10倍)、負極に炭素材料(エネルギー密度10倍)を用い、正負極共にファラデー反応により充放電を行うことを特徴とし、高エネルギー密度(正極10倍×負極10倍=100)だが、出力特性及び耐久性に課題がある。更に、ハイブリッド電気自動車等で要求される高耐久性を満足させるためには放電深度を制限しなければならず、リチウムイオン二次電池では、そのエネルギーの10〜50%しか使用できない。
リチウムイオンキャパシタは、正極に活性炭(エネルギー密度1倍)、負極に炭素材料(エネルギー密度10倍)を用い、正極では非ファラデー反応、負極ではファラデー反応により充放電を行うことを特徴とし、電気二重層キャパシタ及びリチウムイオン二次電池の特徴を兼ね備えた新規の非対称キャパシタである。そして、高出力かつ高耐久性でありながら、高エネルギー密度(正極1倍×負極10倍=10)を有し、リチウムイオン二次電池の様に放電深度を制限する必要がないことが特徴である。
リチウムイオンキャパシタを用いる用途としては、例えば鉄道、建機、自動車用蓄電等が挙げられる。これらの用途では、作動環境が過酷なため、使用されるキャパシタは優れた入出力特性とともに、高温における高い耐久性と、高負荷充放電サイクル特性とが同時に要求される。
このような要求への対策技術として、負極に黒鉛を用いた電気化学キャパシタにて、負極の利用範囲を第2ステージに限定させた作製方法により、キャパシタを低抵抗化し、急速充放電サイクル特性を向上させる技術が知られている(特許文献1)。また、特許文献2では、正極中のリチウム化合物表面を被覆するフッ素化合物の被覆率を制御することで、残存するリチウム化合物の過剰な分解を抑制し、高電圧下でのガス発生を抑制した非水系リチウム蓄電素子が提案されている。
特許文献1に記載の技術は、負極の利用範囲を限定することで、入出力の向上とサイクル特性を向上するものである。しかしながら、特許文献1に記載の技術には、高温下では負極に吸蔵させたリチウムイオンが失活し、負極電位が増大し、蓄電素子の抵抗増が顕著になるため、改善の余地があった。
特許文献2に記載の技術には、正極中にリチウム化合物が残存した状態では、表面に存在するリチウム化合物がセパレータを貫通し、製造過程で微短絡を生じてしまうため、製造上の歩留まりについても改善の余地があった。また、この技術は、正極中のリチウム化合物の分解抑制の効果があるが、リチウム化合物が正極中に残存し、抵抗成分として働いて、入出力の低下を招くため、入出力特性の改善の余地があった。
以上のように、正極又は負極の改良による高い入出力特性と高温下での高負荷充放電サイクルに対する耐久性、及び非水系アルカリ金属蓄電素子の製造時の微短絡抑制を全て兼ね備えた技術は、見出されていなかった。
特開2007−288017号公報 国際公開第2017/126689号
上記の背景に鑑みて、本発明が解決しようとする課題は、正極前駆体中に存在するアルカリ金属化合物を効率よく分解することで、非水系アルカリ金属蓄電素子の製造時の微短絡を抑制し、優れた入出力特性と高温下での高負荷充放電サイクルに対する耐久性を有する非水系アルカリ金属蓄電素子を製造する方法を提供することである。
本発明者らは、前記課題を解決すべく鋭意検討し、実験を重ねた。その結果、非水系アルカリ金属蓄電素子の製造において、ドープ工程前又はドープ工程中にセルを加圧、加温し、ドープ工程時の電圧と電流を制御することで、効率の良いアルカリ金属イオンの負極へのドープと微短絡発生の抑制とを達成し、入出力特性に優れ、かつ高温下での高負荷充放電サイクルに対する耐久性に優れた非水系アルカリ金属蓄電素子を提供できることを見出して、本発明を完成させた。すなわち、本発明は、以下のとおりのものである。
[1]
外装体と、前記外装体に収納された正極、負極、セパレータ、及び非水系電解液とを含む非水系アルカリ金属蓄電素子の製造方法であって、以下の工程:
正極前駆体、前記負極、及び前記セパレータを前記外装体に収納する収納工程;
前記非水系電解液を前記外装体に注液して、非水系アルカリ金属蓄電素子前駆体を得る注液工程;
前記非水系アルカリ金属蓄電素子前駆体に対して電圧を掛ける電圧印加工程;並びに
前記非水系アルカリ金属蓄電素子前駆体から非水系アルカリ金属蓄電素子を得る完成工程;
を含み、
前記正極前駆体は、正極集電体と、前記正極集電体の片面又は両面上に配置された正極活物質層とを有し、前記正極活物質層は、正極活物質と、正極活物質以外のアルカリ金属化合物とを含有し、
前記負極は、負極集電体と、前記負極集電体の片面又は両面上に配置された負極活物質層とを有し、前記負極活物質層は、アルカリ金属イオンを吸蔵及び放出できる負極活物質を含有し、
前記非水系電解液は、前記アルカリ金属イオンを含み、
前記アルカリ金属化合物は、前記電圧印加工程により酸化分解し、前記非水系電解液に前記アルカリ金属イオンを放出し、前記負極活物質は、前記電圧印加工程により前記アルカリ金属イオンを吸蔵し、かつ
(1)前記電圧印加工程前に、又は前記電圧印加工程中に、前記非水系アルカリ金属蓄電素子前駆体を外側から加圧する加圧工程が行われ、
(2)前記電圧印加工程前に、又は前記電圧印加工程中に、前記非水系アルカリ金属蓄電素子前駆体を加温する加温工程が行われ、
(3)前記電圧印加工程では、前記非水系アルカリ金属蓄電素子前駆体の定電流充電を行なった後に、前記非水系アルカリ金属蓄電素子前駆体の定電圧充電を行ない、
(4)前記定電流充電のCレートは、前記完成工程後の前記非水系アルカリ金属蓄電素子の放電電気容量(Ah)に対し、1.0倍〜100.0倍であり、かつ
(5)前記定電圧充電の電圧値は4.20V以上である、
非水系アルカリ金属蓄電素子の製造方法。
[2]
前記加圧工程の圧力が、0.1kgf/cm以上1000kgf/cm以下である、項目1に記載の非水系アルカリ金属蓄電素子の製造方法。
[3]
前記加圧工程の圧力が、1kgf/cm以上10kgf/cm以下である、項目1に記載の非水系アルカリ金属蓄電素子の製造方法。
[4]
前記加温工程において、前記外装体の温度を30℃以上70℃以下に調整する、項目1〜3のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
[5]
前記加温工程において、前記外装体の温度を30℃以上55℃以下に調整する、項目1〜3のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
[6]
前記定電流充電のCレートが、前記完成工程後の非水系アルカリ金属蓄電素子の放電電気容量(Ah)に対し、1倍〜30倍である、項目1〜5のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
[7]
前記定電圧充電の電圧値が、4.40V以上4.80V以下である、項目1〜6のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
[8]
前記定電圧充電に掛ける時間が、0.25時間以上24時間以下である、項目1〜7のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
[9]
前記定電圧充電に掛ける時間が、0.5時間以上4時間以下である、項目1〜8のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
[10]
前記アルカリ金属化合物が、アルカリ金属の炭酸塩、水酸化物又は酸化物である、項目1〜9のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
[11]
前記アルカリ金属が、リチウムである、項目10に記載の非水系アルカリ金属蓄電素子の製造方法。
[12]
前記加圧工程が、加圧冶具を用いることにより行われ、かつ前記加温工程が、恒温槽を用いることにより行われる、項目1〜11のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
[13]
前記電圧印加工程において前記正極前駆体から前記正極が形成される、項目1〜12のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
[14]
前記電圧印加工程後かつ前記完成工程前に、以下の工程:
前記非水系アルカリ金属蓄電素子前駆体をエージングに供するエージング工程;
前記非水系アルカリ金属蓄電素子前駆体からガスを抜くガス抜き工程;及び
前記非水系アルカリ金属蓄電素子前駆体を封止する封止工程;
を含む、項目1〜13のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
[15]
前記非水系アルカリ金属蓄電素子が、非水系リチウム蓄電素子である、項目1〜14のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
本発明によれば、非水系アルカリ金属蓄電素子の製造において微短絡の発生を抑制し、かつ優れた入出力特性と、高温下での高負荷充放電サイクルに対する耐久性とを有した非水系アルカリ金属蓄電素子を効率良く製造する方法を提供することができる。
以下、本発明の実施形態(以下、「本実施形態」という)につき詳細に説明する。本発明は、以下の本実施形態のみに限定されない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
本明細書において、ドープ工程を行う前の正極材料を「正極前駆体」と称し、ドープ工程を行った後の正極材料を「正極」と称する。
また、本明細書において、「ガス抜き及び封止工程」を行う前の蓄電素子材料を「蓄電素子前駆体」と称し、「ガス抜き及び封止工程」を行った後の蓄電素子材料を「蓄電素子」と称する。
また、本明細書において、数値範囲の上限値、及び下限値は任意に組み合わせることができる。
また、本明細書における「〜」とは、特に断りがない場合、その両端に記載される数値を上限値、及び下限値として含む意味である。
本実施形態では、正極前駆体を使用する。この正極前駆体を用いて得られる非水系アルカリ金属蓄電素子は一般に、正極、負極、セパレータ、非水系電解液、及び外装体を主な構成要素として備える。非水系電解液としては、例えば、リチウム塩を溶解させた有機溶媒が用いられる。
《正極》
正極は、正極集電体と、その片面又は両面に存在する正極活物質層とを有する。また、ドープ工程前の正極前駆体は、アルカリ金属化合物を含むことを特徴とする。後述のように、本実施形態では、負極にアルカリ金属イオンをプレドープすることが好ましい。そのプレドープ方法としては、アルカリ金属化合物を含む正極前駆体、負極、セパレータ、外装体、及び非水系電解液を用いて蓄電素子前駆体を組み立てた後に、正極前駆体と負極との間に電圧を印加することが好ましい。アルカリ金属化合物は正極前駆体の正極集電体上に形成された正極活物質層に含有されることが好ましい。
〈正極活物質層〉
正極活物質層は、正極活物質を含有する。また、正極前駆体の正極活物質層に、正極活物質以外のアルカリ金属化合物が含有されることを特徴とする。
[正極活物質]
正極活物質としては、炭素材料を含むことが好ましい。この炭素材料としては、カーボンナノチューブ、グラフェン、酸化グラフェン、導電性高分子、又は多孔性の炭素材料(例えば活性炭)を使用することがより好ましく、さらに好ましくは活性炭である。正極活物質には2種類以上の材料を混合して使用してもよく、炭素材料以外の材料、例えばリチウム(Li)と遷移金属との複合酸化物(リチウム遷移金属酸化物)等を使用してもよい。
正極活物質の総量に対する炭素材料の含有率が、好ましくは50質量%以上であり、より好ましくは60質量%以上である。炭素材料の含有率が100質量%であることができるが、他の材料の併用による効果を良好に得る観点から、例えば、95質量%以下であることが好ましく、90質量%以下であってもよい。
活性炭を正極活物質として用いる場合、活性炭の種類及びその原料には特に制限はない。高い入出力特性と、高いエネルギー密度とを両立させるために、活性炭の細孔を制御することが好ましい。具体的には、BJH法により算出した直径20Å以上500Å以下(2.0nm以上50nm以下)の細孔に由来するメソ孔量をV1(cm3/g)、MP法により算出した直径20Å未満(2.0nm未満)の細孔に由来するマイクロ孔量をV2(cm3/g)とするとき、
(1)高い入出力特性を得るためには、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m2/g以上3,000m2/g以下である活性炭(以下、活性炭1ともいう。)が好ましく、また、
(2)高いエネルギー密度を得るためには、0.8<V1≦2.5、及び0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m2/g以上4,000m2/g以下である活性炭(以下、活性炭2ともいう。)が好ましい。
以下、(1)活性炭1及び(2)活性炭2について、個別に順次説明していく。
(1)活性炭1
活性炭1のメソ孔量V1は、正極材料を蓄電素子に組み込んだときの入出力特性を大きくする観点から、0.3cm3/gより大きいことが好ましい。一方で、正極の嵩密度の低下を抑える観点から、0.8cm3/g以下であることが好ましい。V1は、より好ましくは0.35cm3/g以上0.7cm3/g以下、更に好ましくは0.4cm3/g以上0.6cm3/g以下である。
活性炭1のマイクロ孔量V2は、活性炭の比表面積を大きくし、容量を増加させるために、0.5cm3/g以上であることが好ましい。一方で、活性炭の嵩を抑え、電極としての密度を増加させ、単位体積当たりの容量を増加させるという観点から、1.0cm3/g以下であることが好ましい。V2は、より好ましくは0.6cm3/g以上1.0cm3/g以下、更に好ましくは0.8cm3/g以上1.0cm3/g以下である。
活性炭1において、マイクロ孔量V2に対するメソ孔量V1の比(V1/V2)は、0.3≦V1/V2≦0.9の範囲であることが好ましい。すなわち、高容量を維持しながら出力特性の低下を抑えることができる程度に、マイクロ孔量に対するメソ孔量の割合を大きくするという観点から、V1/V2が0.3以上であることが好ましい。一方で、高出力特性を維持しながら容量の低下を抑えることができる程度に、メソ孔量に対するマイクロ孔量の割合を大きくするという点から、V1/V2は0.9以下であることが好ましい。より好ましいV1/V2の範囲は0.4≦V1/V2≦0.7、更に好ましいV1/V2の範囲は0.55≦V1/V2≦0.7である。
活性炭1の平均細孔径は、得られる蓄電素子の出力を大きくする観点から、17Å以上(1.7nm以上)であることが好ましく、18Å以上(1.8nm以上)であることがより好ましく、20Å以上(2.0nm以上)であることが最も好ましい。また容量を大きくする点から、活性炭1の平均細孔径は25Å以下(2.5nm以下)であることが好ましい。
活性炭1のBET比表面積は、1,500m2/g以上3,000m2/g以下であることが好ましく、1,500m2/g以上2,500m2/g以下であることがより好ましい。BET比表面積が1,500m2/g以上の場合には、良好なエネルギー密度が得られ易い。一方、BET比表面積が3,000m2/g以下の場合には、電極の強度を保つためにバインダーを多量に入れる必要がないので、電極体積当たりの性能が高くなる。
活性炭1は、例えば、以下に説明する原料及び処理方法を用いて得ることができる。
本実施形態では、活性炭1の原料として用いられる炭素源は、例えば、木材、木粉、ヤシ殻、パルプ製造時の副産物、バガス、廃糖蜜等の植物系原料;泥炭、亜炭、褐炭、瀝青炭、無煙炭、石油蒸留残渣成分、石油ピッチ、コークス、コールタール等の化石系原料;フェノール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂、レゾルシノール樹脂、セルロイド、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂等の各種合成樹脂;ポリブチレン、ポリブタジエン、ポリクロロプレン等の合成ゴム;その他の合成木材、合成パルプ等、及びこれらの炭化物が挙げられる。これらの原料の中でも、量産対応及びコストの観点から、ヤシ殻、木粉等の植物系原料、及びそれらの炭化物が好ましく、ヤシ殻炭化物が特に好ましい。
これらの原料を用いて活性炭1を得るための炭化及び賦活の方式としては、例えば、固定床方式、移動床方式、流動床方式、スラリー方式、ロータリーキルン方式等の既知の方式を採用できる。
これらの原料の炭化方法としては、窒素、二酸化炭素、ヘリウム、アルゴン、キセノン、ネオン、一酸化炭素、燃焼排ガス等の不活性ガス、又はこれらの不活性ガスを主成分とした他のガスとの混合ガスを使用して、約400〜700℃(好ましくは450〜600℃)で、約30分〜約10時間に亘って、これらの原料を焼成する方法が挙げられる。
このような炭化方法により得られた炭化物の賦活方法としては、水蒸気、二酸化炭素、酸素等の賦活ガスを用いて炭化物を焼成するガス賦活法が好ましく用いられる。このうち、賦活ガスとして、水蒸気又は二酸化炭素を使用する方法が好ましい。
この賦活方法では、賦活ガスを0.5〜3.0kg/h(好ましくは0.7〜2.0kg/h)の割合で供給しながら、3〜12時間(好ましくは5〜11時間、より好ましくは6〜10時間)掛けて800〜1,000℃まで炭化物を昇温して賦活するのが好ましい。
更に、炭化物の賦活処理に先立ち、予め炭化物を1次賦活してもよい。この1次賦活では、通常、水蒸気、二酸化炭素、酸素等の賦活ガスを用いて、900℃未満の温度で炭素材料を焼成してガス賦活する方法が、好ましく採用できる。
炭化方法における焼成温度及び焼成時間と、賦活方法における賦活ガス供給量、昇温速度及び最高賦活温度とを適宜組み合わせることにより、活性炭1を製造するための条件を整えることができる。
活性炭1の平均粒子径は、2〜20μmであることが好ましい。平均粒子径が2μm以上であると、得られる正極活物質層の密度が高くなり易いために電極体積当たりの容量が高くなる傾向がある。ここで、平均粒子径が小さ過ぎると、得られる正極活物質層の耐久性が低くなるという欠点を招来する場合があるが、平均粒子径が2μm以上であればそのような欠点が生じ難い。一方で、平均粒子径が20μm以下であると、高速充放電に適合し易くなる傾向がある。平均粒子径は、より好ましくは2〜15μmであり、更に好ましくは3〜10μmである。
(2)活性炭2
活性炭2のメソ孔量V1は、正極材料を蓄電素子に組み込んだときの出力特性を大きくする観点から、0.8cm3/gより大きいことが好ましい。一方、蓄電素子の容量の低下を抑える観点から、2.5cm3/g以下であることが好ましい。V1は、より好ましくは1.00cm3/g以上2.0cm3/g以下、さらに好ましくは、1.2cm3/g以上1.8cm3/g以下である。
活性炭2のマイクロ孔量V2は、活性炭の比表面積を大きくし、容量を増加させるために、0.8cm3/gより大きいことが好ましい。一方、活性炭の電極としての密度を増加させ、単位体積当たりの容量を増加させるという観点から、3.0cm3/g以下であることが好ましい。V2は、より好ましくは1.0cm3/gより大きく2.5cm3/g以下、更に好ましくは1.5cm3/g以上2.5cm3/g以下である。
上述したメソ孔量及びマイクロ孔量を有する活性炭2は、従来の電気二重層キャパシタ又はリチウムイオンキャパシタに使用されていた活性炭よりもBET比表面積が高い。活性炭2のBET比表面積は、3,000m2/g以上4,000m2/g以下であることが好ましく、3,200m2/g以上3,800m2/g以下であることがより好ましい。BET比表面積が3,000m2/g以上の場合には、良好なエネルギー密度が得られ易い。一方、BET比表面積が4,000m2/g以下の場合には、電極の強度を保つためにバインダーを多量に入れる必要がないので、電極体積当たりの性能が高くなる。
活性炭2は、例えば以下に説明するような原料及び処理方法を用いて得ることができる。
活性炭2の原料として用いられる炭素源としては、例えば、木材、木粉、ヤシ殻等の植物系原料;石油ピッチ、コークス等の化石系原料;フェノール樹脂、フラン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂、レゾルシノール樹脂等の各種合成樹脂等が挙げられる。これらの原料の中でも、フェノール樹脂、及びフラン樹脂は、高比表面積の活性炭を作製するのに適しており特に好ましい。
これらの原料を用いて活性炭2を得るための炭化及び賦活の方法としては、例えば、固定床方式、移動床方式、流動床方式、スラリー方式、ロータリーキルン方式等の既知の方式が挙げられる。
これらの原料の炭化方法としては、窒素、二酸化炭素、ヘリウム、アルゴン等の不活性ガス、又はこれらの不活性ガスを主成分として、他のガスとの混合したガスが用いられる。そして、炭化温度は、約400〜700℃で、約0.5〜約10時間に亘って、これらの原料を焼成する方法が一般的である。
このような炭化方法により得られた炭化物の賦活方法としては、水蒸気、二酸化炭素、酸素等の賦活ガスを用いて炭化物を焼成するガス賦活法、又はアルカリ金属化合物と炭化物を混合した後にこれらの加熱処理を行うアルカリ金属賦活法があるが、高比表面積の活性炭を作製するためにはアルカリ金属賦活法が好ましい。
このアルカリ金属賦活方法では、炭化物とKOH、NaOH等のアルカリ金属化合物との質量比が1:1以上(アルカリ金属化合物の量が、炭化物の量と同じかこれよりも多い量)となるように混合した後に、不活性ガスの雰囲気下で600〜900℃で、0.5〜5時間に亘って加熱を行う。その後、アルカリ金属化合物を酸及び水により洗浄除去し、得られる炭化物の乾燥を行う。
マイクロ孔量を大きくし、かつメソ孔量を大きくしないためには、賦活する際に炭化物の量を多めにしてKOHと混合するとよい。マイクロ孔量及びメソ孔量の双方を大きくするためには、賦活する際にKOHの量を多めに使用するとよい。また、主としてメソ孔量を大きくするためには、アルカリ賦活処理を行った後に水蒸気賦活を行うことが好ましい。
活性炭2の平均粒子径は2μm以上20μm以下であることが好ましく、より好ましくは3μm以上10μm以下である。
活性炭の使用形態
活性炭1及び2は、それぞれ、1種の活性炭であってもよいし、2種以上の活性炭の混合物であって、かつ各々の上記の特性値を混合物全体として示すものであってもよい。
活性炭1及び2のいずれか一方を正極活物質として使用してもよいし、両者を混合したものを正極活物質として使用してもよい。
正極活物質は、活性炭1及び2以外の材料(例えば、上記の好ましい範囲内のV1及び/若しくはV2を有さない活性炭、又は活性炭以外の材料(例えば、リチウムと遷移金属との複合酸化物等))を含んでもよい。活性炭1の含有量、活性炭2の含有量、又は活性炭1及び2の合計含有量が、それぞれ、全正極活物質の50質量%より多いことが好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、100質量%であることが最も好ましい。
リチウム遷移金属酸化物
リチウム遷移金属酸化物は、リチウムを吸蔵及び放出可能な遷移金属酸化物を含む。正極活物質として必要により含まれる、遷移金属酸化物としては、例えば、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、バナジウム(V)、及びクロム(Cr)から成る群から選ばれる少なくとも1種の元素を含む酸化物が挙げられる。
遷移金属酸化物として具体的には、下記式:
LixCoO2{式中、xは0≦x≦1を満たす。}、
LixNiO2{式中、xは0≦x≦1を満たす。}、
LixNiy(1-y)2
{式中、Mは、Co、Mn、アルミニウム(Al)、Fe、Mg、及びチタン(Ti)からなる群より選ばれる少なくとも1種の元素であり、xは0≦x≦1を満たし、かつyは0.02<y<0.97を満たす。}、
LixNi1/3Co1/3Mn1/32{式中、xは0≦x≦1を満たす。}、
LixMnO2{式中、xは0≦x≦1を満たす。}、
α−LixFeO2{式中、xは0≦x≦1を満たす。}、
LixVO2{式中、xは0≦x≦1を満たす。}、
LixCrO2{式中、xは0≦x≦1を満たす。}、
LixFePO4{式中、xは0≦x≦1を満たす。}、
LixMnPO4{式中、xは0≦x≦1を満たす。}、
Lix2(PO43{式中、xは0≦x≦3を満たす。}、
LixMn24{式中、xは0≦x≦1を満たす。}、
LixyMn(2-y)4
{式中、Mは、Co、Mn、Al、Fe、Mg、及びTiからなる群より選ばれる少なくとも1種の元素であり、xは0≦x≦1を満たし、かつyは0.02<y<0.97を満たす。}、
LixNiaCobAl(1-a-b)2
{式中、xは0≦x≦1を満たし、かつa及びbは0.02<a<0.97と0.02<b<0.97を満たす。}、
LixNicCodMn(1-c-d)2
{式中、xは0≦x≦1を満たし、かつc及びdは0.02<c<0.97と0.02<d<0.97を満たす。}
で表される化合物等が挙げられる。これらの中でも、高容量、低抵抗、サイクル特性、アルカリ金属化合物の分解の促進、及びプレドープ時の正極活物質の欠落の抑制の観点から、上記式LixNiaCobAl(1-a-b)2、LixNicCodMn(1-c-d)2、LixCoO2、LixMn24、LixFePO4、LixMnPO4、又はLiz2(PO43で表される化合物が好ましい。
本実施形態では、正極活物質とは異なるアルカリ金属化合物が正極塗工液に含まれていれば、ドープ工程においてアルカリ金属化合物がアルカリ金属のドーパント源となり、負極にプレドープができるため、遷移金属化合物にあらかじめリチウムイオンが含まれていなくても(すなわち、上記式中、x=0であっても)、非水系アルカリ金属蓄電素子として電気化学的な充放電をすることができる。
リチウム遷移金属酸化物の平均粒子径は、好ましくは0.1〜20μm、より好ましくは0.5〜15μm、更に好ましくは1〜10μmである。リチウム遷移金属酸化物の平均粒子径が0.1μm以上であると、得られる正極活物質層の密度が高くなり易いために電極体積当たりの容量が高くなる傾向がある。ここで、平均粒子径が小さ過ぎると、得られる正極活物質層の耐久性が低くなるという欠点を招来する場合があるが、平均粒子径が0.1μm以上であればそのような欠点が生じ難い。一方で、リチウム遷移金属酸化物の平均粒子径が20μm以下であると、高速充放電に適合し易くなる傾向がある。
リチウム遷移金属酸化物の平均粒子径は、炭素材料の平均粒子径より小さいことが好ましい。リチウム遷移金属酸化物の平均粒子径が小さければ、相対的に平均粒子径の大きな炭素材料により形成される空隙にリチウム遷移金属酸化物が配置され、低抵抗化できる。
リチウム遷移金属酸化物は、1種を単独で用いてもよく、2種以上の材料の混合物であって、かつ各々の上記の特性値を混合物全体として示すものであってもよい。
正極活物質は、上記リチウム遷移金属酸化物以外の材料、例えば、導電性高分子等を含んでもよい。
正極塗工液中の全固形分に占めるリチウム遷移金属酸化物の含有量がA2であるとき、A2は5質量%以上35質量%以下であることが好ましく、更に好ましくは10質量%以上30質量%以下である。
上記リチウム遷移金属酸化物の含有量A2と、上記炭素材料の含有量A1との比(A2/A1)は0.1以上10.0以下であることが好ましく、更に好ましくは0.2以上5.0以下である。A2/A1が0.1以上であれば、得られる正極活物質層の嵩密度を高めることができ、高容量化できる。A2/A1が10.0以下であれば、活性炭間の電子伝導が高まるために低抵抗化でき、かつ活性炭とアルカリ金属化合物の接触面積が増えるためにアルカリ金属化合物の分解を促進できる。
[アルカリ金属化合物]
本実施形態において、アルカリ金属化合物は、正極活物質以外の化合物である。アルカリ金属化合物としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム、酸化リチウム、及び水酸化リチウムから成る群から選択される少なくとも一つの化合物であってよい。正極前駆体中で分解されて陽イオンを放出し、負極で還元されることで負極にアルカリ金属イオンをプレドープすることが可能であることから、アルカリ金属化合物としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、及び炭酸セシウムから成る群から選択される少なくとも一つが好ましく、炭酸リチウム、炭酸ナトリウム、及び炭酸カリウムから成る群から選択される少なくとも一つがより好ましい。中でも、単位質量当たりの容量が高いという観点から、炭酸リチウムが好適に用いられる。正極塗工液中に含まれるアルカリ金属化合物は1種でもよく、2種以上のアルカリ金属化合物を含んでいてもよい。
また、本実施形態において、正極活物質層は、少なくとも1種のアルカリ金属化合物を含んでいればよく、MをLi、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、及びセシウム(Cs)から成る群から選ばれる1種以上として、M2O等の酸化物、MOH等の水酸化物、MF又はMCl等のハロゲン化物、RCOOM(式中、RはH、アルキル基、又はアリール基)等のカルボン酸塩の1種以上を含んでいてもよい。また、本実施形態において、正極活物質層は、BeCO3、MgCO3、CaCO3、SrCO3、及びBaCO3から成る群から選択される少なくとも一つのアルカリ土類金属炭酸塩を含んでいてもよい。また、本実施形態において、正極活物質層は、アルカリ土類金属酸化物、アルカリ土類金属水酸化物、アルカリ土類金属ハロゲン化物、アルカリ土類金属カルボン酸塩を1種以上含んでいてもよい。
正極前駆体の正極活物質層に占めるアルカリ金属化合物の質量比A3は、好ましくは10質量%以上50質量%以下である。A3が10質量%以上であれば負極に十分な量のアルカリ金属イオンをプレドープすることができ、非水系アルカリ金属蓄電素子の容量が高まる。A3が50質量%以下であれば、正極前駆体中の電子伝導を高めることができるので、アルカリ金属化合物の分解を効率よく行うことができる。
正極前駆体が、2種以上のアルカリ金属化合物、又はアルカリ土類金属化合物を含む場合は、アルカリ金属化合物、及びアルカリ土類金属化合物の総量が、正極前駆体の正極活物質層に対し、10質量%以上50質量%以下の割合で含まれるように正極前駆体を作製することが好ましい。
[正極活物質層の任意成分]
本発明における正極前駆体の正極活物質層は、必要に応じて、正極活物質及びアルカリ金属化合物の他に、導電性フィラー、結着剤、分散安定剤、pH調整剤等の任意成分を含んでいてもよい。
導電性フィラーとしては、正極活物質よりも導電性の高い導電性炭素質材料を挙げることができる。このような導電性フィラーとしては、例えば、ケッチェンブラック、アセチレンブラック、気相成長炭素繊維、黒鉛、鱗片状黒鉛、カーボンナノチューブ、グラフェン、酸化グラフェン、及びこれらの混合物等が好ましい。正極前駆体の正極活物質層への導電性フィラーの混合量は、正極活物質100質量部に対して、0〜20質量部が好ましく、1〜15質量部がより好ましい。導電性フィラーは、高入力の観点からは、正極活物質層に混合する方が好ましい。混合量が20質量部以下であれば、正極活物質層における正極活物質の含有割合が適切であるために、正極活物質層体積当たりのエネルギー密度が確保されるので好ましい。
結着剤としては、例えばPVdF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、ポリイミド、ラテックス、スチレン−ブタジエン共重合体、フッ素ゴム、アクリル共重合体、ポリアクリル酸、ポリグルタミン酸等を用いることができる。結着剤の使用量は、正極活物質100質量部に対して、好ましくは1質量部以上30質量部以下であり、より好ましくは3質量部以上27質量部以下、さらに好ましくは5質量部以上25質量部以下である。結着剤の量が1質量部以上であれば、十分な電極強度が発現される。一方で結着剤の量が30質量部以下であれば、正極活物質へのイオンの出入り及び拡散を阻害せず、高い入出力特性が発現される。
分散安定剤としては、例えばPVP(ポリビニルピロリドン)、PVA(ポリビニルアルコール)、セルロース誘導体等を用いることができる。分散安定剤の使用量は、正極活物質100質量部に対して、好ましくは0質量部以上10質量部以下である。分散安定剤の量が10質量部以下であれば、正極活物質へのイオンの出入り及び拡散を阻害せず、高い入出力特性が発現される。
塗工液の溶媒に水を使用する場合には、アルカリ金属化合物を加えることで塗工液の液性がアルカリ性に変化することがあるため、必要に応じてpH調整剤を正極塗工液に添加してもよい。pH調整剤としては、例えばフッ化水素、塩化水素、臭化水素等のハロゲン化水素、次亜塩素酸、亜塩素酸、塩素酸等のハロゲンオキソ酸、蟻酸、酢酸、クエン酸、シュウ酸、乳酸、マレイン酸、フマル酸等のカルボン酸、メタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸等のスルホン酸、硝酸、硫酸、リン酸、ホウ酸、二酸化炭素等の酸を用いることができる。
〈正極集電体〉
本実施形態に係る正極集電体を構成する材料としては、電子伝導性が高く、非水系電解液への溶出及び電解質又はイオンとの反応等による劣化が起こらない材料が挙げられる。非水系アルカリ金属蓄電素子における正極集電体としては、金属箔が好ましく、アルミニウム箔がより好ましい。金属箔は、凹凸又は貫通孔を持たない通常の金属箔でもよいし、エンボス加工、ケミカルエッチング、電解析出法、ブラスト加工等を施した凹凸を有する金属箔でもよいし、エキスパンドメタル、パンチングメタル、エッチング箔等の貫通孔を有する金属箔でもよい。後述されるドープ処理の観点からは、無孔状のアルミニウム箔が更に好ましく、また、アルミニウム箔の表面が粗面化されていることが特に好ましい。
正極集電体の厚みは、正極の形状及び強度を十分に保持できる厚み、例えば、1〜100μmが好ましい。
また金属箔の表面(例えば両面)に、例えば黒鉛、鱗片状黒鉛、カーボンナノチューブ、グラフェン、ケッチェンブラック、アセチレンブラック、気相成長炭素繊維等の導電性材料を含むアンカー層を設けることが好ましい。アンカー層を設けることで正極集電体と正極活物質層間の電気伝導が向上し、低抵抗化できる。アンカー層の厚みは、正極集電体の片面当たり0.1μm以上5μm以下であることが好ましい。
《正極前駆体の製造方法》
本実施形態において、正極前駆体は、既知のアルカリ金属電池、例えばリチウムイオン電池、電気二重層キャパシタ等における電極の製造技術によって製造することが可能である。例えば、正極活物質及びアルカリ金属化合物、並びに必要に応じて使用されるその他の任意成分を溶媒(水又は有機溶媒)中に分散又は溶解してスラリー状の塗工液(正極塗工液)を調製し、この塗工液を正極集電体上の片面又は両面に塗工して塗膜を形成し、これを乾燥することにより正極前駆体を得ることができる。得られた正極前駆体にプレスを施して、正極活物質層の膜厚又は嵩密度を調整してもよい。代替的には、溶剤を使用せずに、正極活物質及びアルカリ金属化合物、並びに必要に応じて使用されるその他の任意成分をドライブレンドし、得られた混合物をプレス成型した後、導電性接着剤を用いて正極集電体に貼り付ける方法、又は得られた混合物を正極集電体上に加熱プレスして正極活物質層を形成する方法も可能である。
正極前駆体の塗工液は、正極活物質を含む各種材料粉末の一部若しくは全部をドライブレンドし、次いで水若しくは有機溶媒、及び/又はそれらに結着剤、分散安定剤若しくはpH調整剤が溶解又は分散した液状又はスラリー状の物質を追加して調製してもよい。また、水又は有機溶媒に結着剤、分散安定剤若しくはpH調整剤が溶解又は分散した液状又はスラリー状の物質の中に、正極活物質を含む各種材料粉末を追加して調製してもよい。ドライブレンド法として、例えばボールミル等を使用して正極活物質及びアルカリ金属化合物、並びに必要に応じて導電性フィラーを予備混合して、導電性の低いアルカリ金属化合物に導電材をコーティングさせる予備混合をしてもよい。これにより、後述のドープ工程において正極前駆体でアルカリ金属化合物が分解し易くなる。
正極前駆体の塗工液を調製するとき、好適にはホモディスパー又は多軸分散機、プラネタリーミキサー、薄膜旋回型高速ミキサー等の分散機等を用いることができる。良好な分散状態の塗工液を得るためには、塗工液を周速1m/s以上50m/s以下で分散することが好ましい。周速1m/s以上であれば、各種材料が良好に溶解又は分散するため好ましい。また、周速50m/s以下であれば、分散による熱又はせん断力により各種材料が破壊されることなく、再凝集が生じることがないため好ましい。
塗工液の分散度は、粒ゲージで測定した粒度が0.1μm以上100μm以下であることが好ましい。分散度の上限としては、より好ましくは粒度が80μm以下、さらに好ましくは粒度が50μm以下である。粒度が0.1μm以上では、正極活物質を含む各種材料粉末の粒径以上のサイズとなり、塗工液作製時に材料の破砕を抑制できるため好ましい。また、粒度が100μm以下であれば、塗工液吐出時の詰まり又は塗膜のスジ発生等が生じず安定に塗工ができる。
正極前駆体の塗工液の粘度(ηb)は、100mPa・s以上10,000mPa・s以下が好ましく、より好ましくは500mPa・s以上7,000mPa・s以下、さらに好ましくは1,000mPa・s以上4,000mPa・s以下である。粘度(ηb)が100mPa・s以上であれば、塗膜形成時の液ダレが抑制され、塗膜の幅及び厚みが良好に制御できる。また、粘度が10,000mPa・s以下であれば、塗工機を用いた際の塗工液の流路における圧力損失が少なく安定に塗工でき、また所望の塗膜厚み以下に制御できる。
また、塗工液のTI値(チクソトロピーインデックス値)は、1.1以上が好ましく、より好ましくは1.2以上、さらに好ましくは1.5以上である。TI値が1.1以上であれば、塗膜の幅及び厚みが良好に制御できる。
正極前駆体の塗膜の形成には、好適にはダイコーター又はコンマコーター、ナイフコーター、グラビア塗工機等の塗工機を用いることができる。塗膜は単層塗工で形成してもよいし、多層塗工して形成してもよい。多層塗工の場合には、塗膜各層内のアルカリ金属化合物の含有量が異なるように塗工液の組成を調整してもよい。正極集電体に塗膜を塗工する際、多条塗工してもよいし、間欠塗工してもよいし、多条間欠塗工してもよい。また、正極集電体の片面に塗工、乾燥し、その後もう一方の面に塗工、乾燥する逐次塗工を行ってもよいし、正極集電体の両面に同時に塗工液を塗工、乾燥する両面同時塗工を行ってもよい。
塗工速度は0.1m/分以上100m/分以下であることが好ましく、より好ましくは0.5m/分以上70m/分以下、さらに好ましくは1m/分以上50m/分以下である。塗工速度が0.1m/分以上であれば、安定に塗工できる。一方、100m/分以下であれば、塗工精度を十分に確保できる。
正極前駆体の塗膜の乾燥は、好ましくは熱風乾燥、赤外線(IR)乾燥等の乾燥方法を用いて、好ましくは遠赤外線近赤外線、又は80℃以上の熱風で行なわれる。塗膜は、単一の温度で乾燥させてもよいし、多段的に温度を変えて乾燥させてもよい。また、複数の乾燥方法を組み合わせて乾燥させてもよい。乾燥温度は、25℃以上200℃以下であることが好ましく、より好ましくは40℃以上180℃以下、さらに好ましくは50℃以上160℃以下である。乾燥温度が25℃以上であれば、塗膜中の溶媒を十分に揮発させることができる。一方、200℃以下であれば、急激な溶媒の揮発による塗膜のヒビ割れ又はマイグレーションによる結着剤の偏在、正極集電体又は正極活物質層の酸化を抑制できる。
正極前駆体のプレスには、好適には油圧プレス機、真空プレス機等のプレス機を用いることができる。正極活物質層の膜厚、嵩密度及び電極強度は、後述するプレス圧力、プレスロール間の隙間、プレス部の表面温度により調整できる。プレス圧力は0.5kN/cm以上20kN/cm以下が好ましく、より好ましくは1kN/cm以上10kN/cm以下、さらに好ましくは2kN/cm以上7kN/cm以下である。プレス圧力が0.5kN/cm以上であれば、電極強度を十分に高くできる。一方、プレス圧力が20kN/cm以下であれば、正極前駆体に撓み又はシワが生じることがなく、正極活物質層を所望の膜厚又は嵩密度に調整できる。また、プレスロール同士の隙間は、所望の正極活物質層の膜厚又は嵩密度が得られるように、乾燥後の正極前駆体の膜厚に応じて任意の値を設定できる。さらに、プレス速度は正極前駆体に撓み又はシワが生じない任意の速度に設定できる。
また、プレス部の表面温度は室温でもよいし、必要により加熱してもよい。加熱する場合のプレス部の表面温度の下限は、使用する結着剤の融点マイナス60℃(融点−60℃)以上が好ましく、より好ましくは結着剤の融点マイナス45℃以上、さらに好ましくは結着剤の融点マイナス30℃以上である。一方、加熱する場合のプレス部の表面温度の上限は、使用する結着剤の融点プラス50℃(融点+50℃)以下が好ましく、より好ましくは結着剤の融点プラス30℃以下、さらに好ましくは結着剤の融点プラス20℃以下である。例えば、結着剤にPVdF(ポリフッ化ビニリデン:融点150℃)を用いた場合、プレス部の表面温度を、90℃以上200℃以下に加温することが好ましく、より好ましく105℃以上180℃以下、さらに好ましくは120℃以上170℃以下に加熱することができる。また、結着剤にスチレン−ブタジエン共重合体(融点100℃)を用いた場合、プレス部の表面温度を、40℃以上150℃以下に加温することが好ましく、より好ましくは55℃以上130℃以下、さらに好ましくは70℃以上120℃以下に加温することができる。
結着剤の融点は、DSC(Differential Scanning Calorimetry、示差走査熱量分析)の吸熱ピーク位置で求めることができる。例えば、パーキンエルマー社製の示差走査熱量計「DSC7」を用いて、試料樹脂10mgを測定セルにセットし、窒素ガス雰囲気中で、温度30℃から10℃/分の昇温速度で250℃まで昇温したときに、昇温過程における吸熱ピーク温度が融点として得られる。
また、プレス圧力、隙間、速度、プレス部の表面温度の条件を変えながら複数回、プレスを実施してもよい。
正極前駆体を多条塗工した場合には、プレスの前にスリットすることが好ましい。多条塗工された正極前駆体をスリットした後にプレスすれば、正極活物質層が塗布されていない集電体部分に応力が掛かりることを防止でき、シワの発生を防止できる。また、プレス後に再度、正極前駆体をスリットすることもできる。
本実施形態に係る正極活物質層の厚みは、正極集電体の片面当たり10μm以上200μm以下であることが好ましい。正極活物質層の厚さは、より好ましくは片面当たり20μm以上100μm以下であり、更に好ましくは30μm以上80μm以下である。この厚さが10μm以上であれば、十分な充放電容量を発現することができる。一方、この厚さが200μm以下であれば、電極内のイオン拡散抵抗を低く維持することができる。そのため、十分な出力特性が得られるとともに、セル体積を縮小することができ、従ってエネルギー密度を高めることができる。なお、正極集電体が貫通孔又は凹凸を有する場合における正極活物質層の厚さとは、正極集電体の貫通孔又は凹凸を有していない部分の片面当たりの厚さの平均値をいう。
《負極》
負極は、負極集電体と、その片面又は両面に存在する負極活物質層とを有する。
〈負極活物質層〉
負極活物質層は、アルカリ金属イオンを吸蔵・放出できる負極活物質を含み、これ以外に、必要に応じて、導電性フィラー、バインダー、分散剤等の任意成分を含んでよい。
[負極活物質]
負極活物質は、具体的には、炭素材料、チタン酸化物、ケイ素、ケイ素酸化物、ケイ素合金、ケイ素化合物、錫及び錫化合物等が例示される。好ましくは負極活物質の総量に対する炭素材料の含有率が50質量%以上であり、より好ましくは70質量%以上である。炭素材料の含有率が100質量%であることができるが、他の材料の併用による効果を良好に得る観点から、例えば、90質量%以下であることが好ましく、80質量%以下でもよい。炭素材料の含有率の範囲の上限と下限は、任意に組み合わせることができる。
炭素材料としては、例えば、難黒鉛化性炭素材料;易黒鉛化性炭素材料;カーボンブラック;カーボンナノ粒子;活性炭;人造黒鉛;天然黒鉛;黒鉛化メソフェーズカーボン小球体;黒鉛ウイスカ;ポリアセン系物質等のアモルファス炭素質材料;石油系のピッチ、石炭系のピッチ、メソカーボンマイクロビーズ、コークス、合成樹脂(例えばフェノール樹脂等)等の炭素前駆体を熱処理して得られる炭素質材料;フルフリルアルコール樹脂又はノボラック樹脂の熱分解物;フラーレン;カーボンナノフォーン;及びこれらの複合炭素材料を挙げることができる。
複合炭素材料
複合炭素材料のBET比表面積は、100m2/g以上350m2/g以下であることが好ましく、より好ましくは150m2/g以上300m2/g以下である。BET比表面積が100m2/g以上であれば、アルカリ金属イオンのプレドープ量を十分大きくできるため、負極活物質層を薄膜化することができる。また、BET比表面積が350m2/g以下であれば、負極活物質層を形成するための負極塗工液の塗工性に優れる。
複合炭素材料は、リチウム金属を対極に用いて、測定温度25℃において、電流値0.5mA/cm2で電圧値が0.01Vになるまで定電流充電を行った後、電流値が0.01mA/cm2になるまで定電圧充電を行った時の初回の充電容量が、複合炭素材料単位質量当たり300mAh/g以上1,600mAh/g以下であることが好ましく、より好ましくは、400mAh/g以上1,500mAh/g以下であり、更に好ましくは、500mAh/g以上1,450mAh/g以下である。初回の充電容量が300mAh/g以上であれば、アルカリ金属イオンのプレドープ量を十分大きくできるため、負極活物質層を薄膜化した場合であっても、高い出力特性を有することができる。また、初回の充電容量が1,600mAh/g以下であれば、複合炭素材料にアルカリ金属イオンをドープ・脱ドープさせる際の複合炭素材料の膨潤・収縮が小さくなり、負極の強度が保たれる。
上述した負極活物質は、良好な内部抵抗値を得る観点から、下記の条件(1)及び(2)を満たす複合多孔質材料であることが特に好ましい。
(1)前述のBJH法で算出されたメソ孔量(直径が2nm以上50nm以下である細孔の量)Vm1(cm3/g)が、0.01≦Vm1<0.10の条件を満たす。
(2)前述のMP法で算出されたマイクロ孔量(直径が2nm未満である細孔の量)Vm2(cm3/g)が、0.01≦Vm2<0.30の条件を満たす。
負極活物質は粒子状であることが好ましい。負極活物質としての、ケイ素、ケイ素酸化物、ケイ素合金及びケイ素化合物、並びに錫及び錫化合物の平均粒子径は、0.1μm以上30μm以下であることが好ましい。この平均粒子径が0.1μm以上であれば、電解液との接触面積が増えるために非水系アルカリ金属蓄電素子の抵抗を下げることができる。また、この平均粒子径が30μm以下であれば、充放電に伴う負極へのアルカリ金属イオンのドープ・脱ドープに起因する負極の膨潤・収縮が小さくなり、負極の強度が保たれる。
ケイ素、ケイ素酸化物、ケイ素合金及びケイ素化合物、並びに錫及び錫化合物は、分級機内臓のジェットミル、撹拌型ボールミル等を用いて粉砕することにより、微粒子化することができる。粉砕機は遠心力分級機を備えており、窒素、アルゴン等の不活性ガス環境下で粉砕された微粒子はサイクロン又は集塵機で捕集することができる。
負極活物質層における負極活物質の含有割合は、負極活物質層の全質量を基準として、70質量%以上であることが好ましく、80質量%以上であることがより好ましい。
[負極活物質層のその他の任意成分]
本実施形態に係る負極活物質層は、必要に応じて、負極活物質の他に、バインダー、導電性フィラー、分散剤等の任意成分を含んでよい。
バインダーとしては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリイミド、フッ素ゴム、ラテックス、スチレン−ブタジエン共重合体、フッ素ゴム、アクリル共重合体等を使用することができる。負極活物質層におけるバインダーの使用量は、負極活物質100質量部に対して、1〜30質量部が好ましく、2〜25質量部がより好ましい。バインダーの使用量が負極活物質100質量部に対して1質量部以上の場合、負極(前駆体)における集電体と負極活物質層との間に十分な密着性を確保でき、集電体と活物質層間との界面抵抗が上昇することを防止できる。一方、バインダーの使用量が負極活物質100質量部に対して30質量部以下の場合には、負極(前駆体)の活物質表面をバインダーが過剰に覆ってしまう事態を回避でき、活物質細孔内のイオンの拡散抵抗が上昇することを防止できる。
導電性フィラーは、負極活物質よりも導電性の高い導電性炭素質材料から成ることが好ましい。このような導電性フィラーとしては、例えば、ケッチェンブラック、アセチレンブラック、気相成長炭素繊維、黒鉛、鱗片状黒鉛、カーボンナノチューブ、グラフェン、酸化グラフェン、これらの混合物等が好ましい。負極活物質層における導電性フィラーの混合量は、負極活物質100質量部に対して、20質量部以下が好ましく、1〜15質量部がより好ましい。導電性フィラーは、高入力の観点からは負極活物質層に混合した方が好ましい。混合量が20質量部以下の場合、負極活物質層における負極活物質の含有量を確保でき、体積当たりのエネルギー密度が低下することを防止できるので好ましい。
分散安定剤としては、例えばPVP(ポリビニルピロリドン)、PVA(ポリビニルアルコール)、セルロース誘導体等を用いることができる。分散安定剤の使用量は、負極活物質100質量部に対して、好ましくは0質量部以上10質量部以下である。分散安定剤の量が10質量部以下であれば、負極活物質へのイオンの出入り及び拡散を阻害せず、高い入出力特性が発現される。
〈負極集電体〉
本実施形態に係る負極集電体を構成する材料としては、電子伝導性が高く、電解液への溶出及び電解質又はイオンとの反応等による劣化が起こらない金属箔であることが好ましい。このような金属箔としては、例えば、アルミニウム箔、銅箔、ニッケル箔、ステンレス鋼箔等が挙げられる。非水系アルカリ金属蓄電素子における負極集電体としては、銅箔が好ましい。金属箔は凹凸又は貫通孔を持たない通常の金属箔でもよいし、エンボス加工、ケミカルエッチング、電解析出法、ブラスト加工等を施した凹凸を有する金属箔でもよいし、エキスパンドメタル、パンチングメタル、エッチング箔等の貫通孔を有する金属箔でもよい。
負極集電体の厚みは、負極の形状及び強度を十分に保持できればよく、例えば、1〜100μmである。
《負極の製造方法》
負極は、負極集電体の片面上又は両面上に負極活物質層を有する。典型的な態様において負極活物質層は負極集電体に固着している。
負極は、既知のアルカリ金属電池、例えばリチウムイオン電池、電気二重層キャパシタ等における電極の製造技術によって製造することが可能である。例えば、負極活物質を含む各種材料を溶媒(水又は有機溶媒)中に分散又は溶解してスラリー状の塗工液(負極塗工液)を調製し、この塗工液を負極集電体上の片面又は両面に塗工して塗膜を形成し、これを乾燥することにより負極を得ることができる。得られた負極にプレスを施して、負極活物質層の膜厚又は嵩密度を調整してもよい。
塗工液は、負極活物質を含む各種材料粉末の一部若しくは全部をドライブレンドし、次いで水若しくは有機溶媒、及び/又はそれらに結着剤若しくは分散安定剤が溶解又は分散した液状又はスラリー状の物質を追加して調整してもよい。また、水又は有機溶媒に結着剤若しくは分散安定剤が溶解又は分散した液状又はスラリー状の物質の中に、負極活物質を含む各種材料粉末を追加して調整してもよい。塗工液を調整するとき、好適にはホモディスパーや多軸分散機、プラネタリーミキサー、薄膜旋回型高速ミキサー等の分散機等を用いることができる。良好な分散状態の塗工液を得るためには、周速1m/s以上50m/s以下で分散することが好ましい。周速1m/s以上であれば、各種材料が良好に溶解又は分散するため好ましい。また、50m/s以下であれば、分散による熱やせん断力により各種材料が破壊されることなく、再凝集が生じることがないため好ましい。
塗工液の粘度(ηb)は、500mPa・s以上20,000mPa・s以下が好ましい。より好ましくは1,000mPa・s以上10,000mPa・s以下、さらに好ましくは1,500mPa・s以上5,000mPa・s以下である。粘度(ηb)が500mPa・s以上であれば、塗膜形成時の液ダレが抑制され、塗膜の幅及び膜厚が良好に制御できる。また、20,000mPa・s以下であれば、塗工機を用いた際の塗工液の流路における圧力損失が少なく安定に塗工でき、また所望の塗膜厚み以下に制御できる。
また、塗工液のTI値(チクソトロピーインデックス値)は、1.1以上が好ましく、より好ましくは1.2以上、さらに好ましくは1.5以上である。TI値が1.1以上であれば、塗膜の幅及び膜厚が良好に制御できる。
塗膜の形成には、好適にはダイコーター、コンマコーター、ナイフコーター、グラビア塗工機等の塗工機を用いることができる。塗膜は単層塗工で形成してもよいし、多層塗工して形成してもよい。また、塗工速度は0.1m/min以上100m/min以下であることが好ましく、より好ましくは0.5m/分以上70m/min以下、さらに好ましくは1m/min以上50m/min以下である。塗工速度が0.1m/分以上であれば、安定に塗工できる。一方、100m/min以下であれば、塗工精度を十分に確保できる。
塗膜の乾燥には、好適には熱風乾燥又は赤外線(IR)乾燥等の乾燥方法を用いることができる。塗膜の乾燥は、単一の温度で乾燥させてもよいし、多段的に温度を変えて乾燥させてもよい。また、複数の乾燥方法を組み合わせて乾燥させてもよい。乾燥温度は、25℃以上200℃以下であることが好ましく、より好ましくは40℃以上180℃以下、さらに好ましくは50℃以上160℃以下である。乾燥温度が25℃以上であれば、塗膜中の溶媒を十分に揮発させることができる。一方、200℃以下であれば、急激な溶媒の揮発による塗膜のヒビ割れやマイグレーションによる結着剤の偏在、負極集電体又は負極活物質層の酸化を抑制できる。
負極のプレスには、好適には油圧プレス機、真空プレス機等のプレス機を用いることができる。負極活物質層の膜厚、嵩密度及び電極強度は後述するプレス圧力、隙間、プレス部の表面温度により調整できる。プレス圧力は0.5kN/cm以上20kN/cm以下が好ましく、より好ましくは1kN/cm以上10kN/cm以下、さらに好ましくは2kN/cm以上7kN/cm以下である。プレス圧力が0.5kN/cm以上であれば、電極強度を十分に高くできる。一方、20kN/cm以下であれば、負極に撓みやシワが生じることがなく、負極活物質層を所望の膜厚又は嵩密度に調整できる。また、プレスロール同士の隙間は所望の負極活物質層の膜厚又は嵩密度となるように、乾燥後の負極膜厚に応じて任意の値を設定できる。さらに、プレス速度は負極に撓み又はシワが生じない、任意の速度に設定できる。また、プレス部の表面温度は室温でもよいし、必要により加熱してもよい。加熱する場合のプレス部の表面温度の下限は、使用する結着剤の融点マイナス60℃(融点−60℃)以上が好ましく、より好ましくは結着剤の融点マイナス45℃以上、さらに好ましくは結着剤の融点マイナス30℃以上である。一方、加熱する場合のプレス部の表面温度の上限は、使用する結着剤の融点プラス50℃(融点+50℃)以下が好ましく、より好ましくは結着剤の融点プラス30℃以下、さらに好ましくは結着剤の融点プラス20℃以下である。例えば、結着剤にPVdF(ポリフッ化ビニリデン:融点150℃)を用いた場合、90℃以上200℃以下に加温することが好ましく、より好ましく105℃以上180℃以下、さらに好ましくは120℃以上170℃以下に加熱することができる。また、結着剤にスチレン−ブタジエン共重合体(融点100℃)を用いた場合、40℃以上150℃以下に加温することが好ましく、より好ましくは55℃以上130℃以下、さらに好ましくは70℃以上120℃以下に加熱することができる。
負極活物質層の厚さは、好ましくは片面当たり5μm以上100μm以下であり、より好ましくは10μm以上60μm以下である。この厚さが5μm以上であれば、良好な充放電容量を発現することができる。一方、この厚さが100μm以下であれば、セル体積を縮小することができるから、エネルギー密度を高めることができる。集電体に孔がある場合には、負極活物質層の厚さとは、それぞれ、負極集電体の孔を有していない部分の片面当たりの厚さの平均値をいう。また、固形分(質量%)/材料真密度(g/cm3)で表される真密度(cm3/g)と、1/電極嵩密度(g/cm3)で表される実体積(cm3/g)とから算出される空孔率(%)(空孔率=(1−真密度/実体積)×100)が、50%以上であることが好ましい。
《非水系電解液》
本実施形態の電解液は、非水系電解液である。すなわち、この電解液は、後述する非水溶媒を含む。非水系電解液は、該非水系電解液の総量を基準として、0.5mol/L以上のアルカリ金属塩を含有することが好ましい。すなわち、非水系電解液は、アルカリ金属イオンを電解質として含むことが好ましい。アルカリ金属塩は、好ましくはリチウム塩である。
〈リチウム塩〉
本実施形態の非水系電解液は、リチウム塩として、例えば、(LiN(SO2F)2)、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO225)、LiN(SO2CF3)(SO224H)、LiC(SO2F)3、LiC(SO2CF33、LiC(SO2253、LiCF3SO3、LiC49SO3、LiPF6、LiBF4等を単独で用いることができ、2種以上を混合して用いてもよい。高い伝導度を発現できることから、非水系電解液は、LiPF6、LiN(SO2F)2及びLiBF4から成る群から選択される少なくとも1つを含むことが好ましく、LiPF6及び/又はLiBF4とLiN(SO2F)2とを含むことがより好ましい。
非水系電解液中のアルカリ金属塩濃度は、非水系電解液の総量を基準として、0.5mol/L以上であることが好ましく、0.5mol/L以上2.0mol/L以下の範囲がより好ましい。アルカリ金属塩濃度が0.5mol/L以上であれば、陰イオンが十分に存在するので蓄電素子の容量を十分高くできる。また、アルカリ金属塩濃度が2.0mol/L以下である場合、未溶解のアルカリ金属塩が非水系電解液中に析出すること、及び非水系電解液の粘度が高くなり過ぎることを防止でき、伝導度が低下せず、出力特性も低下しないため好ましい。
本実施形態の非水系電解液は、非水系電解液の総量を基準として、0.1mol/L以上1.5mol/L以下の濃度のLiN(SO2F)2を含むことが好ましく、LiN(SO2F)2の濃度は、より好ましくは0.4mol/L以上1.2mol/L以下である。LiN(SO2F)2濃度が0.1mol/L以上であれば、非水系電解液のイオン伝導度を高めるとともに、負極界面に電解質被膜が適量堆積し、これにより非水系電解液が分解することによるガス発生を抑えることができる。一方、この濃度が1.5mol/L以下であれば、充放電の時に電解質塩の析出が起きず、かつ長期間経過後であっても非水系電解液の粘度が増加を引き起こすことがない。
〈非水溶媒〉
本実施形態の非水系電解液は、非水溶媒として、好ましくは、環状カーボネートを含有する。非水系電解液が環状カーボネートを含有することは、所望の濃度のアルカリ金属塩を溶解させる観点、及び正極活物質層にアルカリ金属化合物を適量堆積させる観点で有利である。環状カーボネートとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート等が挙げられる。
環状カーボネートの合計含有量は、非水系電解液の総量基準で、好ましくは15質量%以上、より好ましくは20質量%以上である。合計含有量が15質量%以上であれば、所望の濃度のアルカリ金属塩を溶解させることが可能となり、高いアルカリ金属イオン伝導度を発現することができる。さらに、正極活物質層にアルカリ金属化合物を適量堆積させることが可能となり、非水系電解液の酸化分解を抑制することができる。
本実施形態の非水系電解液は、非水溶媒として、鎖状カーボネートであるジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)を含有することが好ましい。エチルメチルカーボネートに対するジメチルカーボネートの体積比率(DMC/EMC)が0.5以上8.0以下であることが好ましく、0.8以上6.0以下であることがより好ましく、1.0以上4.0以下であることがさらに好ましい。DMC/EMCが0.5以上であれば、非水系電解液の低粘度化が可能であり、高いアルカリ金属イオン伝導度を発現することができる。DMC/EMCが8.0以下であれば、混合溶媒の融点を低く保つことが可能となり、低温環境下でも高い入出力特性を発揮することができる。
また、本実施形態の非水系電解液は、非水溶媒として、その他の鎖状カーボネートを含んでいてもよい。その他の鎖状カーボネートとしては、ジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート等に代表されるジアルキルカーボネート化合物が挙げられる。ジアルキルカーボネート化合物は典型的には非置換である。
鎖状カーボネートの合計含有量は、非水系電解液の総量基準で、好ましくは30質量%以上、より好ましくは35質量%以上であり、好ましくは95質量%以下、より好ましくは90質量%以下である。鎖状カーボネートの含有量が30質量%以上であれば、非水系電解液の低粘度化が可能であり、高いアルカリ金属イオン伝導度を発現することができる。その合計量が95質量%以下であれば、非水系電解液が、後述する添加剤をさらに含有することができる。
〈添加剤〉
本実施形態の非水系電解液は、更に添加剤を含有していてもよい。添加剤としては、例えば、含硫黄化合物、リン酸エステル化合物、非環状含フッ素エーテル、環状ホスファゼン、含フッ素環状カーボネート、環状炭酸エステル、環状カルボン酸エステル、及び環状酸無水物等を単独で用いることができ、また、2種以上を混合して用いてもよい。
この中でも、下記化学式(1−2)〜(1−6)で表される化合物から選択される含硫黄化合物、下記化学式(2)で表される化合物から選択されるリン酸エステル化合物、下記一般式(3)で表される非環状含フッ素エーテルの中から選択される化合物を、添加剤として含有することが好ましい。
例えば、下記一般式(1−2)〜(1−6):
Figure 0006669915
{式中、R1〜R4は、それぞれ独立に、水素原子、ハロゲン原子、ホルミル基、アセチル基、ニトリル基、アセチル基、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、及び炭素数1〜6のアルキルエステルから成る群から選択される少なくとも1つを表す。}
Figure 0006669915
{式中、R9〜R14は、水素原子、ハロゲン原子、炭素数1〜12のアルキル基、及び炭素数1〜12のハロゲン化アルキル基から成る群から選ばれるいずれかを表し、互いに同一であっても異なっていてもよく、そしてnは0〜3の整数である。}
Figure 0006669915
{式中、R15〜R20は、水素原子、ハロゲン原子、炭素数1〜12のアルキル基、及び炭素数1〜12のハロゲン化アルキル基から成る群から選ばれるいずれかを表し、互いに同一であっても異なっていてもよく、そしてnは0〜3の整数である。}
Figure 0006669915
{式中、R21〜R26は、水素原子、ハロゲン原子、炭素数1〜12のアルキル基、及び炭素数1〜12のハロゲン化アルキル基から成る群から選ばれるいずれかを表し、そして互いに同一であっても異なっていてもよい。}
Figure 0006669915
{式中、R27〜R30は、水素原子、ハロゲン原子、炭素数1〜12のアルキル基、及び炭素数1〜12のハロゲン化アルキル基から成る群から選ばれるいずれかを表し、互いに同一であっても異なっていてもよく、そしてnは0〜3の整数である}
で表される化合物の中から選択される含硫黄化合物を非水系電解液に含有させるのが好ましい。例えば、式(1−2)で表される化合物が、チオフェン、2−メチルチオフェン、3−メチルチオフェン、2−シアノチオフェン、3−シアノチオフェン、2,5−ジメチルチオフェン、2−メトキシチオフェン、3−メトキシチオフェン、2−クロロチオフェン、3−クロロチオフェン、2−アセチルチオフェン、又は、3−アセチルチオフェンであり、式(1−3)で表されるスルトン化合物が、1,3−プロパンスルトン、2,4−ブタンスルトン、1,4−ブタンスルトン、1,3−ブタンスルトン又は2,4−ペンタンスルトンであり、式(1−4)で表されるスルトン化合物が、1,3−プロペンスルトン又は1,4−ブテンスルトンであり、式(1−5)で表される化合物が、3−スルフォレンであり、式(1−6)で表される環状亜硫酸化合物が亜硫酸エチレン、1,2−亜硫酸プロピレン、1,3−亜硫酸プロピレンであり、これらの中から選択される化合物を1種以上非水系電解液に含有させるのが更に好ましい。
非水系アルカリ金属蓄電素子の非水系電解液中の含硫黄化合物の総含有量は、非水系電解液の総量を基準として、0.1質量%以上5質量%以下であることが好ましい。非水系電解液中の含硫黄化合物の総含有量が0.1質量%以上であれば、高温における非水系電解液の分解を抑制してガス発生を抑えることが可能となる。一方で、この総含有量が5質量%以下であれば、非水系電解液のイオン伝導度の低下を抑えることができ、高い入出力特性を保持することができる。また、非水系アルカリ金属蓄電素子の非水系電解液に存在する含硫黄化合物の含有量は、高い入出力特性と耐久性を両立する観点から、好ましくは0.3質量%以上4質量%以下であり、より好ましくは0.5質量%以上3質量%以下である。
〈リン酸エステル化合物〉
下記一般式(2):
Figure 0006669915
{式中、X〜Xは、それぞれ独立に、一価の有機基を表す。}
で表される化合物の中から選択されるリン酸エステル化合物を非水系電解液に含有させるのが好ましい。式(2)で表される化合物としては、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、リン酸トリス(トリメチルシリル)、トリトリルホスフェート、トリフェニルホスフェート、ジオクチルホスフェート、トリオクチルホスフェート、リン酸トリス(4−ニトロフェニル)等を挙げることができ、これらのうちから選択される1種以上が好ましい。
リン酸エステル化合物の含有量は、非水系電解液の総量を基準として、0.1質量%以上3質量%以下が好ましく、0.3質量%以上2.5質量%以下であることが更に好ましい。リン酸エステル化合物の含有量が0.1質量%以上であれば、非水系電解液の酸化分解に対する安定性が高まり、高温時の容量劣化を抑制できる。一方、リン酸エステル化合物の含有量が3質量%以下であれば、正極と非水系電解液との界面の反応抵抗を低く保つことができるため、高度の入出力特性を発現することが可能となる。尚、リン酸エステル化合物は、単独で使用しても、2種以上を混合して使用してもよい。
〈非環状含フッ素エーテル〉
下記一般式(3):
Figure 0006669915
{式中、R1は、ハロゲン原子又は炭素数1〜12のハロゲン化アルキル基であり、R2は、水素原子、ハロゲン原子、炭素数1〜12のアルキル基、又は炭素数1〜12のハロゲン化アルキル基である。}
で表される化合物の中から選択される非環状含フッ素エーテルを非水系電解液に含有させるのが好ましい。式(3)で表される化合物としては、例えば、C25OC25、C37OC37、C49OC49、C613OC613、C25OCH3、C37OCH3、C49OCH3、C613OCH3、C25OCH5、C37OCH5、C49OC25、C25CF(OCH3)C37、CF3CH2OCF2CF2H、CHF2CF2OCH2CF3、CHF2CF2CH2OCF2CF2H、CF3CF2CH2OCF2CHF2、CF3CH2OCF2CHFCF3、及びC3HF6CH(CH3)OC3HF6等を挙げることができ、これらのうちから選択される1種以上が好ましい。
非環状含フッ素エーテルの含有量は、非水系電解液の総量を基準として、0.1質量%以上3質量%以下が好ましく、0.3質量%以上2.5質量%以下であることが更に好ましい。非環状含フッ素エーテルの含有量が0.1質量%以上であれば、非水系電解液の酸化分解に対する安定性が高まり、高温時の容量劣化を抑制できる。また、非水系アルカリ蓄電素子の正極集電体としてアルミニウム箔を用いた場合、正極集電体表面に耐腐食性の高い含フッ素保護被膜が形成され、アルミニウムの非水系電解液中への溶出を防ぐことで非水系電解液の劣化を抑制することができる。一方、非環状含フッ素エーテルの含有量が3質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。尚、非環状含フッ素エーテルは、単独で使用しても、2種以上を混合して使用してもよい。
〈環状ホスファゼン〉
環状ホスファゼンとしては、例えばエトキシペンタフルオロシクロトリホスファゼン、ジエトキシテトラフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン等を挙げることができ、これらのうちから選択される1種以上が好ましい。
非水系電解液中の環状ホスファゼンの含有率は、非水系電解液の総量を基準として、0.5質量%以上20質量%以下であることが好ましい。この値が0.5質量%以上であれば、高温における非水系電解液の分解を抑制してガス発生を抑えることが可能となる。一方、この値が20質量%以下であれば、非水系電解液のイオン伝導度の低下を抑えることができ、高い入出力特性を保持することができる。環状ホスファゼンの含有率は、より好ましくは2質量%以上15質量%以下であり、更に好ましくは4質量%以上12質量%以下である。尚、これらの環状ホスファゼンは、単独で用いてもよく、又は2種以上を混合して用いてもよい。
〈含フッ素環状カーボネート〉
含フッ素環状カーボネート(フッ素原子を含有する環状カーボネート)については、他の非水溶媒との相溶性の観点から、フルオロエチレンカーボネート(FEC)及びジフルオロエチレンカーボネート(dFEC)から選択して使用されることが好ましい。
含フッ素環状カーボネートの含有量は、非水系電解液の総量を基準として、0.5質量%以上10質量%以下が好ましく、1質量%以上5質量%以下であることがより好ましい。含フッ素環状カーボネートの含有量が0.5質量%以上であれば、負極上に良質な被膜を形成することができ、負極上における非水系電解液の還元分解を抑制することによって、高温における耐久性が高い蓄電素子が得られる。また、非水系アルカリ蓄電素子の正極集電体としてアルミニウム箔を用いた場合、正極集電体表面に耐腐食性の高い含フッ素保護被膜が形成され、アルミニウムの非水系電解液中への溶出を防ぐことで非水系電解液の劣化を抑制することができる。一方、含フッ素環状カーボネートの含有量が10質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。尚、上記の含フッ素環状カーボネートは、単独で使用しても、2種以上を混合して使用してもよい。
〈環状炭酸エステル〉
環状炭酸エステルについては、ビニレンカーボネートが好ましい。
環状炭酸エステルの含有量は、非水系電解液の総量を基準として、0.5質量%以上10質量%以下が好ましく、1質量%以上5質量%以下であることが更に好ましい。環状炭酸エステルの含有量が0.5質量%以上であれば、負極上に良質な被膜を形成することができ、負極上での非水系電解液の還元分解を抑制することにより、高温における耐久性が高い蓄電素子が得られる。一方、環状炭酸エステルの含有量が10質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。
〈環状カルボン酸エステル〉
環状カルボン酸エステルとしては、例えば、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等を挙げることができ、これらのうちから選択される1種以上を使用することが好ましい。中でも、ガンマブチロラクトンが、アルカリ金属イオン解離度の向上に由来する電池特性向上の観点から、より好ましい。
環状カルボン酸エステルの含有量は、非水系電解液の総量を基準として、0.5質量%以上15質量%以下が好ましく、1質量%以上5質量%以下であることがより好ましい。環状カルボン酸エステルの含有量が0.5質量%以上であれば、負極上に良質な被膜を形成することができ、負極上での非水系電解液の還元分解を抑制することにより、高温時耐久性が高い蓄電素子が得られる。一方、環状カルボン酸エステルの含有量が15質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。尚、上記の環状カルボン酸エステルは、単独で使用しても、2種以上を混合して使用してもよい。
〈環状酸無水物〉
環状酸無水物については、無水コハク酸、無水マレイン酸、無水シトラコン酸、及び無水イタコン酸から選択される1種以上が好ましい。中でも工業的な入手のし易さによって非水系電解液の製造コストが抑えられる観点、非水系電解液中に溶解し易い観点等から、無水コハク酸及び無水マレイン酸から選択することが好ましい。
環状酸無水物の含有量は、非水系電解液の総量を基準として、0.5質量%以上15質量%以下が好ましく、1質量%以上10質量%以下であることがより好ましい。環状酸無水物の含有量が0.5質量%以上であれば、負極上に良質な被膜を形成することができ、負極上における非水系電解液の還元分解を抑制することにより、高温時耐久性が高い蓄電素子が得られる。一方、環状酸無水物の含有量が15質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ非水系電解液のイオン伝導度を高く維持することができ、従って高度の入出力特性を発現することが可能となる。尚、上記の環状酸無水物は、単独で使用しても、2種以上を混合して使用してもよい。
《セパレータ》
正極前駆体及び負極は、セパレータを介して積層され、又は積層及び捲回され、正極前駆体、セパレータ、及び負極を有する電極積層体又は電極捲回体が形成される。
本実施形態におけるセパレータは、アルカリ金属電池、例えばリチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタ等に用いられるセパレータとして、好適に用いることができる。
本実施形態におけるセパレータとして、好ましくは、ポリオレフィン、セルロース、及びアラミド樹脂から成る群から選択される少なくとも1種を含むセパレータである。本実施形態におけるセパレータとして、例えば、ポリオレフィン製微多孔膜を含むセパレータ、ポリオレフィン製微多孔膜の少なくとも一方の面に無機微粒子からなる膜を有する積層体であるセパレータ、ポリオレフィン製微多孔膜の少なくとも一方の面にアラミド樹脂を含むコート層を有する積層体であるセパレータ、セルロース製の不織紙を含むセパレータ等を例示できる。ポリオレフィン製微多孔膜に含まれるポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン等が挙げられる。セパレータの内部に有機又は無機の微粒子が含まれていてもよい。
《非水系アルカリ金属蓄電素子の製造方法》
非水系アルカリ金属蓄電素子の製造方法は、後述する電極積層体又は電極捲回体が、非水系電解液とともに外装体内に収納されて構成される非水系アルカリ金属蓄電素子に関する。
〈電極の二次乾燥〉
正極前駆体及び負極は、二次乾燥をすることによって残存溶媒を更に低減することができる。二次乾燥は、好ましくは熱風乾燥、赤外線(IR)乾燥、減圧乾燥等の方法で行われ、より好ましくは遠赤外線乾燥、熱風乾燥、真空乾燥の方法で行われる。また、二次乾燥では、複数の乾燥方法を組み合わせて乾燥させてもよいし、単一の温度で乾燥させてもよいし、多段的に温度を変えて乾燥させてもよい。熱風乾燥や赤外線(IR)乾燥であれば、ロールtoロール方式で乾燥することで、長尺の電極を個別に搬送する手間を省略し、量産性が向上する。また、赤外線(IR)乾燥は、対流のように大気を通じた伝熱ではなく、熱源から放射されたエネルギーが直接、被乾燥物に向かうため短時間で効率よく乾燥することが可能である。また、乾燥炉内は、大気を充填させる必要はなく、不活性気体を充填させて被乾燥物の酸化を防ぐことも容易である。乾燥炉内は、酸化防止と引火爆発の要素除去との観点から、不活性気体を給気かつ排気することで、乾燥炉内の酸素濃度を20%未満に保つことが好ましい。また、減圧乾燥であれば、減圧環境下で溶媒の沸点が低下し蒸発速度が加速される。減圧の程度は、10-5Pa以上1000Pa以下が好ましく、0.1Pa以上10Pa以下がより好ましい。10-5Pa以上であれば、装置コストを抑えることができる。一方、1000Pa以下であれば、溶媒の沸点が低下し蒸発速度が十分に加速されるため、効率よく乾燥できる。
正極前駆体の二次乾燥温度は、60℃以上250℃以下であることが好ましく、より好ましくは65℃以上240℃以下、さらに好ましくは70℃以上235℃以下である。乾燥温度が60℃以上であれば、正極活物質層に残存する溶媒を効率よく低減できる。一方、乾燥温度が250℃以下であれば、結着剤の脆化による正極活物質層の滑落を抑制できる。
負極の二次乾燥温度は、60℃以上200℃以下であることが好ましく、より好ましくは65℃以上190℃以下、さらに好ましくは70℃以上180℃以下である。乾燥温度が60℃以上であれば、負極活物質層に残存する溶媒を効率よく低減できる。一方、乾燥温度が200℃以下であれば、結着剤の脆化による負極活物質層の滑落及び負極集電箔の酸化を抑制できる。
二次乾燥後の正極前駆体及び負極は、大気中の水分の吸着を避けるために露点が−30℃以下のドライ環境に保管されることが好ましい。
残存溶媒量は、溶媒が水の場合は0.0010質量%以上7.0質量%以下であることが好ましく、0.005質量%以上3.0質量%以下であればより好ましい。0.0010質量%以上であれば正極活物質層が剥がれることなく適度な強度を保つことができる。一方、7.0質量%以下であれば、良好なエネルギー密度が得られる。また、溶媒が有機溶媒を含む場合は、残存溶媒量は、0.1質量%以上10質量%以下であることが好ましく、0.5質量%以上6質量%以下であればより好ましい。0.1質量%以上であれば正極活物質層が剥がれることなく適度な強度を保つことができる。一方、10質量%以下であれば、良好なエネルギー密度が得られる。
〈組立工程〉
組立工程では、典型的には、枚葉の形状にカットした正極前駆体及び負極を、セパレータを介して積層して電極積層体を得て、電極積層体に正極端子及び負極端子を接続する。又は、正極前駆体及び負極を、セパレータを介して積層及び捲回して電極捲回体を得て、電極捲回体に正極端子及び負極端子を接続する。電極捲回体の形状は円筒型であっても、扁平型であってもよい。
正極端子と負極端子の接続は、抵抗溶接や超音波溶接などの方法で行う。
〈外装体への収納工程〉
電極積層体又は電極捲回体は、金属缶又はラミネート包材に代表される外装体の中に収納し、開口部を1方だけ残した状態で封止することが好ましい。外装体の封止方法としては、ラミネート包材を用いる場合は、ヒートシール、インパルスシール等の方法を用いることができる。
〈乾燥工程〉
外装体へ収納した電極積層体又は電極捲回体は、乾燥することで残存溶媒を除去することが好ましい。乾燥方法としては、真空乾燥等を挙げることができる。残存溶媒は、正極活物質層又は負極活物質層の質量当たり、1.5質量%以下が好ましい。残存溶媒が1.5質量%以下であれば、自己放電特性又はサイクル特性が低下し難いため好ましい。
〈加圧工程〉
乾燥された電極積層体又は電極捲回体が収納された外装体の外側から、電極の面に対して垂直方向に、両側から圧力を掛けることが好ましい。圧力は0.01kgf/cm2以上1000kgf/cm2以下が好ましく、0.01kgf/cm2以上100kgf/cm2以下がより好ましく、0.01kgf/cm2以上30kgf/cm2以下がさらに好ましい。圧力が0.01kgf/cm2以上であると、正極前駆体および負極の歪みが圧力により矯正され、対向した正極前駆体と負極の距離が面内で均一になるため、アルカリ金属ドープ工程において面内でドープが均一に行われ、耐久性が向上するため好ましい。
乾燥された電極積層体又は電極捲回体が収納された外装体の外側から圧力を掛ける手段としては、圧力を掛けることができる冶具であればどのようなものでもよい。一例として、一対の平坦な金属製の板を準備し、電極積層体の面に合わせて電極積層体を挟持し、金属製の板の四隅をネジ止め拘束して圧力を掛けることができる。
[圧力の測定方法]
圧力の測定には、面圧分布測定システムI−SCAN(ニッタ株式会社製)を用いる。面圧測定のためのセンサーシートは、加圧面全体を覆う面積であることが好ましい。例えば、加圧面が縦60mm×横100mmであれば、I−SCAN100センサー(測定面の寸法:112mm×112mm)を用いることができる。
センサーシートは、外装体の主面と、一対の冶具が有する加圧面との間に配置する。
センサーシートの最大測定圧力は、外装体に掛ける最大加圧力以上であり、最大加圧力の3倍以下であることが好ましい。例えば、外装体に掛ける最大加圧力が5kgf/cm2であれば、センサーシートの最大測定圧力は5kgf/cm2以上、15kgf/cm2以下が好ましいため、例えばセンサーシートとしてはI−SCAN100(R)(最大測定圧力:13kgf/cm2)を用いることが好ましい。センサーシートの最大測定圧力が、外装体に掛ける最大加圧力以上、最大加圧力の3倍以下であれば、外装体に掛ける面内の加圧力を精度よく測定することができるため、好ましい。
センサーシートのセンサー点数は、400ポイント(縦20×横20ポイント)以上であることが好ましく、900ポイント以上(縦30×横30ポイント)であることが更に好ましい。例えば、加圧面積S1が縦60mm×横100mm(60cm2)の場合、I−SCAN100センサー(測定面積Ss:112mm×112mm=125.44cm2、センサー点数1936ポイント)を適応することで、加圧面全体に用いられるセンサー点数が(S1/Ss)×1936ポイント=926ポイントとなるため、好ましい。
本明細書では、圧力の単位としてkgf/cm2を例として用いるが、単位は圧力を示すものであればどのようなものでもよく、例えばPa、mmHg、Bar、atmなどであってもよい。
上記で得られたI−SCANにより取得したデータは、冶具の端の辺又は隅においては、冶具のバリなどの影響で、実体の加圧力とは関係のない過剰な圧力を検出し易いため、面内の圧力斑を評価するためのデータとして活用しない。具体的には、測定した加圧面内の全圧力データについて、4辺のデータそれぞれの、最初と最後の3ポイント分については、データとして活用しない。例えば、加圧面内のデータが縦44ポイント×横30ポイントであった場合、縦44ポイントのうち、最初の3ポイント分の行および最後の3ポイント分の行を削除し、横30ポイントのうち、最初の3ポイント分の列と最後の3ポイント分の列を削除したデータを用いて、面内の圧力分布を取得する。得られた圧力分布の平均値Pavg.を下記式:
Figure 0006669915
{式中、x,yは圧力分布の座標を意味し、m及びnは、x及びyそれぞれの最大ポイント数を示す。}
により得て、得られた平均値を、外装体に加える圧力として記録する。
〈注液工程、含浸工程、封止工程〉
組立工程の終了後に、外装体の中に収納された電極積層体又は電極捲回体に、非水系電解液を注液する。注液の方法としては、電極積層体又は電極捲回体を大気圧下、又は減圧下において注液する方法があり、減圧下で注液することが好ましい。減圧下で注液することにより、注液工程の時間を短縮でき、生産効率が向上する。また、正極前駆体、負極、及びセパレータに均一に非水系電解液を浸すことができる。
正極前駆体、負極、及びセパレータのうちの少なくとも一部に非水系電解液が浸っていない状態では、後述するリチウムドープ工程において、非水系電解液が浸っていない正極前駆体の一部、または非水系電解液が浸っていない負極、及びセパレータと対向する正極前駆体の一部に存在するリチウム化合物が分解せずに残る。その結果、正極、負極、及びセパレータの細孔内部にまで十分に非水系電解液が行き渡った蓄電素子を高温・高電圧に曝した際にリチウム化合物の分解反応が起こってガスが発生する。また、ドープが不均一に進むため、面内のドープ斑又は局所的なリチウム(Li)の析出が発生し、得られる非水系アルカリ金属蓄電素子の抵抗上昇、耐久性低下、歩留まり低下などを引き起こすことがある。正極、負極、及びセパレータの細孔内部にまで十分に非水系電解液が行き渡った蓄電素子とは、例えば、上記で定義された完成後の非水系アルカリ金属蓄電素子、又は長期間使用した非水系アルカリ金属蓄電素子である。
注液工程では、外装体の内部を、大気圧(常圧)を基準として、−10kPa〜−101.33kPaに減圧した状態で、外装体に非水系電解液を注液することが好ましく、−30kPa〜−101.10kPaで注液することがより好ましく、−50kPa〜−100.00kPaで注液することがさらに好ましい。常圧を基準として−10kPa以下の環境で注液することで、正極前駆体、負極、及びセパレータに非水系電解液を均一に浸すことができる。一方、常圧を基準として、−101.33kPa以上の環境であれば、注液時に非水系電解液中の非水溶媒が蒸発することを抑制し、非水系電解液の組成変化を防ぐことで、得られる非水系アルカリ金属蓄電素子の特性を安定化することができる。
注液時の非水系電解液の温度は、5℃〜60℃であることが好ましく、より好ましくは15℃〜45℃である。注液時の非水系電解液の温度が5℃以上であれば、非水系電解液の高粘度化を抑制し、正極前駆体、負極、及びセパレータに非水系電解液を均一に浸すことができる。一方、注液時の非水系電解液の温度が60℃以下であれば、注液時に非水系電解液中の非水溶媒が蒸発することを抑制し、非水系電解液の組成変化を防ぐことで、得られる非水系アルカリ金属蓄電素子の特性を安定化することができる。
注液工程の終了後に、更に、含浸工程を行い、正極前駆体、負極、及びセパレータを非水系電解液で十分に浸すことが望ましい。含浸の方法としては、例えば、注液後の電極積層体又は電極捲回体を、外装体が開口した状態で、減圧チャンバー内に設置し、真空ポンプを用いてチャンバー内を減圧状態にし、再度大気圧に戻す方法等を用いることができる。このような観点から、本実施形態では、注液工程の後に、さらに以下の工程:
(a1)開口した状態の外装体の内圧を、大気圧を基準として、−50kPa〜−100.00kPaに調整する再減圧工程と、
(a2)開口した状態の外装体の内圧を大気圧に戻す復元工程と、
を行うことが好ましい。注液工程、及び含浸工程終了後、封止工程を行うことができる。封止工程において、ラミネート包材を用いる場合は、外装体が開口した状態の電極積層体又は電極捲回体を減圧しながら封止することで密閉する。金属缶を用いる場合は、溶接又はカシメ等の封口手段を用いる。
〈再加圧工程〉
注液工程後に、外装体の外側から掛ける圧力を強めることが好ましい。本明細書では、注液工程後に外装体の外側から加圧する工程は、収納工程後かつ注液工程前に上記で説明された加圧工程を少なくとも1回行なった場合には「再加圧工程」と称され、収納工程後かつ注液工程前に上記で説明された加圧工程を行っていない場合には単に「加圧工程」と称される。圧力は、0.1kgf/cm2以上1000kgf/cm2以下が好ましく、0.5kgf/cm2以上100kgf/cm2以下がより好ましく、1kgf/cm2以上10kgf/cm2以下がさらに好ましい。圧力が0.1kgf/cm2以上であると、正極前駆体および負極の歪みが圧力により矯正され、対向した正極前駆体と負極と距離が面内で均一になるため、アルカリ金属ドープ工程にて面内でドープが均一に行われ、耐久性が向上するため好ましい。圧力が1000kgf/cm2以下であれば、電極積層体又は電極捲回体に過度な圧力が掛からず、構成材料である正極前駆体、負極及びセパレータにダメージを与えないため、好ましい。加圧工程又は再加圧工程は、後述されるドープ工程中に継続して行われることができる。
〈ドープ工程(電圧印加工程)〉
アルカリ金属ドープの好ましい操作としては、正極前駆体と負極との間に電圧を印加して、正極前駆体中のアルカリ金属化合物を分解してアルカリ金属イオンを放出し、負極でアルカリ金属イオンを還元することにより負極活物質層にアルカリ金属イオン(例えばリチウムイオン等)をプレドープする方法が挙げられる。本明細書では、正極前駆体と負極とセパレータと非水系電解液と外装体とを含む非水系アルカリ金属蓄電素子前駆体に対して電圧を掛けて、負極にアルカリ金属イオンをドープする工程は、「ドープ工程」、「プレドープ工程」又は「電圧印加工程」と称される。本実施形態では、微短絡の発生を抑制するという観点から、電圧印加工程では、非水系アルカリ金属蓄電素子前駆体に対して、定電流充電を行なった後に、定電圧充電を行なう。このような観点から、アルカリ金属ドープの好ましい操作として、具体的には、アルカリ金属ドープの初期段階では定電流を蓄電素子前駆体に印加することで電圧を上昇させ、所定の電圧に到達した後に定電圧を蓄電素子前駆体に印加することができる。
アルカリ金属ドープで印加する定電圧時の電圧は、微短絡の発生を抑制するという観点から、4.20V以上である。定電圧充電時の電圧値としては、4.21V以上4.82V以下が好ましく、4.40V以上4.80V以下がより好ましく、4.40V以上4.60V以下がさらに好ましい。アルカリ金属ドープで印加する電圧が4.21V以上であれば、正極前駆体に含まれるアルカリ金属化合物が効率よく分解し、アルカリ金属イオンを非水系電解液中に放出できるため、好ましい。電圧が4.82V以下であれば、セパレータの耐電圧が正負極間の電位差に勝り、アルカリ金属ドープで微短絡を抑制できるため、好ましい。
アルカリ金属ドープで正負極に与える定電流時の電流値(A)は、微短絡の発生を抑制するという観点から、Cレートで換算して、完成した非水系アルカリ金属蓄電素子の放電電気容量(Ah)に対して、1.0C〜100.0C(つまり、1.0倍〜100.0倍)である。定電流充電のCレートは、1C以上30C以下が好ましく、1C以上10C以下がより好ましい。電流値が1.0C以上であれば、アルカリ金属ドープを速やかに行うことができ、作業性が向上することができる。電流値が100.0C以下であれば、正極前駆体に過電圧が掛からず、正極集電体の腐食を抑制することができる。
アルカリ金属ドープ時は、外装体の温度は、30℃以上70℃以下であることが好ましく、30℃以上55℃以下であることがより好ましい。外装体の温度が30℃以上であれば、正極前駆体に含まれるアルカリ金属化合物が効率よく分解し、アルカリ金属イオンを非水系電解液中に放出できるため、好ましい。外装体の温度が70℃以下であれば、非水系電解液の分解が抑制でき、非水系アルカリ金属蓄電素子の抵抗を低くすることができるため、好ましい。本明細書では、非水系アルカリ金属蓄電素子前駆体を加温する工程は、「加温工程」と称される。加温工程は、例えば、非水系アルカリ金属蓄電素子前駆体を恒温槽にセットして、外装体の温度を30℃以上に調整することにより行われることができる。また、加温工程は、ドープ工程前に行われることもできる。
アルカリ金属ドープを行う時間は、0.5時間以上30時間以下が好ましく、1時間以上5時間以下がさらに好ましい。アルカリ金属ドープを行う時間が0.5時間以上であれば、アルカリ金属ドープを速やかに行うことができ、作業性が向上するため好ましい。アルカリ金属ドープを行う時間が30時間以下であれば、非水系電解液の分解が抑制でき、非水系アルカリ金属蓄電素子の抵抗を低くすることができるため、好ましい。同様の観点から、上記で説明された定電圧充電は、好ましくは0.25時間以上24時間以下の期間に亘って、より好ましくは0.5時間以上4時間以下の期間に亘って行われる。
アルカリ金属ドープ工程において、正極前駆体中のアルカリ金属化合物の酸化分解に伴い、CO2等のガスが発生する。そのため、電圧を印加する際には、発生したガスを外装体の外部に放出する手段を講ずることが好ましい。この手段としては、例えば、外装体の一部を開口させた状態で電圧を印加する方法;外装体の一部に予めガス抜き弁、ガス透過フィルム等の適宜のガス放出手段を設置した状態で電圧を印加する方法;等を挙げることができる。
〈充放電サイクル工程〉
電極積層体又は電極捲回体に、充放電を繰り返す、サイクル工程(本明細書では「充放電サイクル工程」ともいう。)を施すことが好ましい。サイクル工程の効果としては、(1)充放電を繰り返すことにより、活性炭の細孔に、非水系電解液中のカチオン、アニオン、アニオンに配位した溶媒が出入りするため、特に正極活物質である活性炭表面の不安定な官能基が安定化し、サイクル耐久性を向上する効果;(2)正極を高電位に曝すことで、ドープ工程で分解しきれなかったアルカリ金属化合物を完全に分解し、高温耐久性を向上する効果;(3)ドープ工程で生成したアルカリ金属化合物の酸化分解反応の副生成物を消費することで、高温耐久性を向上する効果がある。必要以上の負荷でサイクル工程を実施すると、非水系アルカリ金属蓄電素子の抵抗が上昇してしまうため、適切な条件(温度、電圧、充放電回数など)で充放電サイクル工程を行う必要がある。
充放電サイクル工程の方法としては、非水系アルカリ金属蓄電素子前駆体の電圧を、定電流充電、定電流定電圧充電、パルス充電などに代表される充電方法によって、または定電流放電、定電流定電圧放電、パルス放電に代表される放電方法によって、目標の電圧範囲内で充放電を繰り返す方法が挙げられる。
定電流充放電、パルス充放電の際の電流レートに関しては、後述する4.2Vにおける容量を基準として、0.2C以上50C以下が好ましい。0.2C以上であれば、充放電に必要な時間を短くできるため、設備負荷を抑制でき、生産効率が向上する。50C以下であれば、電流分布が均一になるため、サイクル工程の上記効果が顕著に得られる。
定電流定電圧充放電の際の定電圧の保持時間に関しては、0.5分以上120分以下が好ましい。0.5分以上であれば、サイクル工程の上記効果が顕著に得られる。120分以下であれば、充放電に必要な時間を短くできるため、設備負荷を抑制でき、生産効率が向上する。
充放電サイクル工程では、次に述べる上限電圧と下限電圧の範囲内で充放電することが好ましい。上限電圧としては、3.8V以上4.8V以下が好ましく、4.0V以上4.7V以下がより好ましく、4.1V以上4.6V以下が特に好ましい。上限電圧が3.8V以上であれば、高温高負荷サイクル試験後の抵抗上昇率を抑制できる。上限電圧が4.8V以下であれば、非水系アルカリ金属蓄電素子を低抵抗に保つことができる。下限電圧としては、1.5V以上3.5V以下が好ましく、1.6V以上3.4V以下がより好ましく、1.7V以上3.3V以下が特に好ましく、1.75V以上3.0V以下が最も好ましい。下限電圧が1.5V以上であれば、負極の集電体である銅の溶出を抑制でき、非水系アルカリ金属蓄電素子を低抵抗に保てる。下限電圧が3.5V以下であれば、高温高負荷サイクル試験後の抵抗上昇率を抑制できる。
充放電サイクル工程の温度としては、30℃以上100℃以下が好ましく、35℃以上85℃以下がより好ましく、35℃以上75℃以下が特に好ましい。充放電サイクル工程の温度が30℃以上であれば、高温高負荷サイクル試験後の抵抗上昇率を抑制できる。充放電サイクル工程の温度が100℃以下であれば、非水系アルカリ金属蓄電素子を低抵抗に保つことができ、また昇温に必要な設備負荷を抑制できるため、生産効率が向上する。
充放電サイクル工程のサイクルの回数としては、1回以上10回以下が好ましく、2回以上8回以下がより好ましい。充放電サイクルを1回以上実施すれば、高温高負荷サイクル試験後の抵抗上昇率を抑制する効果がある。10回以下であれば、非水系アルカリ金属蓄電素子を低抵抗に保つことができる。また、10回以下であれば、必要な充放電設備の負荷を抑制できるため、生産効率の観点からも好ましい。
前記充放電サイクル工程では、外装体の外側から圧力を掛けることが好ましい。圧力は0.1kgf/cm以上1000kgf/cm以下が好ましく、0.5kgf/cm以上100kgf/cm以下がより好ましく、1kgf/cm以上10kgf/cm以下がさらに好ましい。
圧力が0.1kgf/cm以上であると、正極前駆体および負極の歪みが圧力により矯正され、対向した正極前駆体と負極との距離が面内で均一になり、充放電サイクル工程における反応が均一に進み、高温高負荷サイクル耐久性が向上するため好ましい。圧力が1000kgf/cm以下であれば、電極積層体又は電極捲回体に非水系電解液が浸透する空間が確保され、高温高負荷サイクル耐久性が向上するため好ましい。
〈高温エージング工程〉
電極積層体又は電極捲回体を加温する、高温エージング工程(本願明細書では、「エージング工程」ともいう。)を施すことが好ましい。エージング工程の効果としては、(1)非水系電解液中の溶媒又は添加剤が分解し、正極又は負極の表面に有機被膜又は無機被膜が形成されることによる耐久性を向上する効果;(2)正極活物質である活性炭表面の不安定な官能基、正極・負極・セパレータ・電解液中に含まれる不純物が、化学的に反応し、安定化することによるサイクル耐久性の向上効果;が挙げられる。有機被膜又は無機被膜は、高温耐久性を向上する効果があるが、必要以上の被膜が生成すると、非水系アルカリ金属蓄電素子の抵抗が上昇してしまうため、適切な条件(温度、電圧、時間など)で高温エージング工程を行う必要がある。
高温エージング工程の方法としては、例えば、非水系アルカリ金属蓄電素子前駆体の電圧を、定電流充電、定電流定電圧充電、パルス充電などに代表される充電方法によって、または定電流放電、定電流定電圧放電、パルス放電に代表される放電方法によって、目標電圧に調整した後、充放電を止めて、高温環境下で一定時間、保存する方法が挙げられる。
高温エージング工程は、例えば、次の工程(1)であることができる:
(1)高電圧保管工程;非水系アルカリ金属蓄電素子前駆体の電圧を高電圧に調整したのち、非水系アルカリ金属蓄電素子前駆体を45℃以上100℃以下で、保管する工程を有する。電圧としては、4.03V以上5.0V以下が好ましく、4.05V以上4.8V以下がより好ましく、4.1V以上4.5V以下が特に好ましい。4.03V以上であれば、高温高負荷サイクル試験後の抵抗上昇率を抑制することができる。5.0V以下であれば、必要以上に被膜が形成されることを防げるため、非水系アルカリ金属蓄電素子を低抵抗に保つことができる。
また、高温エージング工程では、(1)高電圧保管工程に加えて(2)低電圧保管工程をさらに備えてもよい。
(2)低電圧保管工程;非水系アルカリ金属蓄電素子前駆体の電圧を低電圧に調整したのち、非水系アルカリ金属蓄電素子前駆体を45℃以上100℃以下で、保管する工程を有する。電圧としては、1.5V以上2.8V以下が好ましく、1.6V以上2.7V以下がより好ましく、1.7V以上2.5V以下が特に好ましい。2.8V以下であれば、高温高負荷サイクル試験後の容量維持率を向上することができる。1.5V以上であれば、負極の集電体である銅の溶出を抑制でき、低抵抗に保てる。
高電圧保管工程と、低電圧保管工程の順序は特に制限されない。
高電圧保管工程、低電圧保管工程での、非水系アルカリ金属蓄電素子前駆体の温度としては、45℃以上100℃以下であり、50℃以上85℃以下が好ましく、55℃以上75℃以下がより好ましい。45℃以上であれば、高温高負荷サイクル試験後の抵抗上昇率を抑制する効果、又は高温高負荷サイクル試験後の容量維持率を向上させる効果がある。100℃以下であれば、非水系アルカリ金属蓄電素子を低抵抗に保つことができ、また昇温に必要な設備負荷を抑制できるため、生産効率が向上する。温度はエージング工程中、一定であってもよいし、段階的に被膜を生成するため、または均一に被膜を形成するために、多段階に変動させてもかまわない。
エージング工程の時間としては、0.25時間以上340時間以下が好ましく、0.5時間以上100時間以下がより好ましく、1時間以上50時間以下がさらに好ましい。0.25時間以上であれば、高温高負荷サイクル試験後の抵抗上昇率を抑制する効果、又は高温高負荷サイクル試験後の容量維持率を向上させる効果がある。340時間以下であれば、非水系アルカリ金属蓄電素子を低抵抗に保つことができ、またエージングに要する時間、設備数を抑えられるため、生産効率が向上する。
前記エージング工程では、外装体の外側から圧力を掛けることが好ましい。圧力は0.1kgf/cm以上1000kgf/cm以下が好ましく、0.5kgf/cm以上100kgf/cm以下がより好ましく、1kgf/cm以上10kgf/cm以下がさらに好ましい。
圧力が0.1kgf/cm以上であると、正極前駆体および負極の歪みが圧力により矯正され、対向した正極前駆体と負極と距離が面内で均一になり、高温エージング工程における反応が均一に進み、高温高負荷サイクル耐久性が向上するため好ましい。圧力が1000kgf/cm以下であれば、電極積層体又は電極捲回体に非水系電解液が浸透する空間が確保され、高温高負荷サイクル耐久性が向上するため好ましい。
〈ドープ工程、サイクル工程、エージング工程の順序〉
また、ドープ工程、サイクル工程、エージング工程を行う順序としては、第一にドープ工程を行うのが望ましい。そののちに、サイクル工程又はエージング工程を行う順序、回数は特に制限されない。また、ドープ工程を複数回行ってもよい。
〈ガス抜き及び封止工程〉
ドープ工程、サイクル工程、及びエージング工程の終了後に、ガス抜き工程を行い、非水系電解液、正極、及び負極中に残存しているガスを確実に除去してもよい。ガス抜きを行うことで、耐久性が向上する。ガス抜きの方法としては、例えば、外装体を開口した状態で電極積層体又は電極捲回体を減圧チャンバー内に設置し、真空ポンプを用いてチャンバー内を減圧状態にする方法等を用いることができる。ガス抜き工程の後、外装体の開口部分を封止する。
〈微短絡率改善〉
アルカリ金属蓄電素子前駆体として、正極活物質と、正極活物質以外のアルカリ金属化合物を含有する正極前駆体を有している、アルカリ金属蓄電素子は、微短絡率が高く、製品歩留まりが低下するという課題があるが、注液工程で外装体内部を大気圧以下にして非水系電解液を注液することによって、この課題が解決される。
理由は定かではないが、正極前駆体が、正極活物質以外のアルカリ金属化合物を有している場合、正極、負極、及びセパレータのうちの少なくとも一部に非水系電解液が浸っていない状態ではドープ工程におけるアルカリ金属化合物の酸化分解反応が進まず、負極活物質層へのドープむらが生じ易くなる。その結果、負極電位にむらが生じ、負極の一部で電位が下がりすぎた結果、リチウムが析出し、正極と負極の微短絡に至るものと考えられる。注液工程で外装体内部を大気圧以下にして非水系電解液を注液することによって、正極、負極、及びセパレータの細孔内部にまで非水系電解液を行き渡らせることが出来るため、ドープむらが解消され、負極のリチウム析出が抑制されるので微短絡率が低下すると考えられる。
一方で、アルカリ金属蓄電素子前駆体として、正極活物質以外のアルカリ金属化合物を含有しない正極前駆体を用いる、アルカリ金属蓄電素子で微短絡が生じる要因は、上記アルカリ金属化合物を有する正極前駆体とは異なる要因、例えば、正極や負極の活物質崩落による正極負極間の短絡などが原因と考えられる。このため、前記注液工程を導入しても微短絡率改善効果は発現しない。
以下に、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。
《測定及び評価方法》
〈BET比表面積及び平均細孔径、メソ孔量、マイクロ孔量〉
本実施形態におけるBET比表面積及び平均細孔径、メソ孔量、マイクロ孔量は、それぞれ以下の方法によって求められる値である。試料を200℃で一昼夜に亘って真空乾燥し、窒素を吸着質として吸脱着の等温線の測定を行なう。ここで得られる吸着側の等温線を用いて、BET比表面積はBET多点法又はBET1点法により、平均細孔径は質量当たりの全細孔容積をBET比表面積で除すことにより、メソ孔量はBJH法により、マイクロ孔量はMP法により、それぞれ算出される。
BJH法は一般的にメソ孔の解析に用いられる計算方法で、Barrett, Joyner, Halendaらにより提唱された(E. P. Barrett, L. G. Joyner and P. Halenda, J. Am. Chem. Soc., 73, 373(1951))。
また、MP法とは、「t−プロット法」(B.C.Lippens,J.H.de Boer,J.Catalysis,4319(1965))を利用して、マイクロ孔容積、マイクロ孔面積、及びマイクロ孔の分布を求める方法を意味し、M.Mikhail, Brunauer, Bodorにより考案された(R.S.Mikhail,S.Brunauer,E.E.Bodor,J.Colloid Interface Sci.,26,45 (1968))。
〈平均粒子径〉
本実施形態における平均粒子径は、粒度分布測定装置を用いて粒度分布を測定した際、全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒子径(すなわち、50%径(Median径))を指す。この平均粒子径は市販のレーザー回折式粒度分布測定装置を用いて測定することができる。
〈負極におけるアルカリ金属イオンのドープ量〉
本実施形態における、出荷時及び使用後の非水系アルカリ金属蓄電素子における負極活物質のアルカリ金属イオンのドープ量は、例えば、以下の手法により知ることができる。
先ず、本実施形態における負極活物質層をエチルメチルカーボネート又はジメチルカーボネートで洗浄し風乾した後、メタノール及びイソプロパノールから成る混合溶媒により抽出した抽出液と、抽出後の負極活物質層と、を得る。この抽出は、典型的にはArボックス内にて、環境温度23℃で行われる。
上記のようにして得られた抽出液と、抽出後の負極活物質層と、に含まれるアルカリ金属量を、それぞれ、例えばICP−MS(誘導結合プラズマ質量分析計)等を用いて定量し、その合計を求めることによって、負極活物質におけるアルカリ金属イオンのドープ量を知ることができる。そして、得られた値を抽出に供した負極活物質量で割り付けて、上記単位の数値を算出すればよい。
本実施形態における1次粒子径は、粉体を電子顕微鏡で数視野撮影し、それらの視野中の粒子の粒子径を、全自動画像処理装置等を用いて約2,000〜約3,000個計測し、これらを算術平均する方法により得ることができる。
〈分散度〉
本明細書中、分散度は、JIS K5600に規定された粒ゲージによる分散度評価試験により求められる値である。すなわち、粒のサイズに応じた所望の深さの溝を有する粒ゲージに対して、溝の深い方の先端に十分な量の試料を流し込み,溝から試料を僅かに溢れさせる。次いで、スクレーパーの長辺がゲージの幅方向と平行になり、粒ゲージの溝の深い先端に刃先が接触するようにスクレーパーをゲージの表面に置き、スクレーパーがゲージの表面に接するように保持しながら、ゲージの表面を均等な速度で、溝の深さ0まで1〜2秒間かけてスクレーパーを引き、引き終わってから3秒以内に20°以上30°以下の角度で光を当てて観察し、粒ゲージの溝に粒が現れる深さを読み取る。
〈粘度(ηb)及びTI値〉
本実施形態における粘度(ηb)及びTI値は、それぞれ以下の方法により求められる値である。まず、E型粘度計を用いて温度25℃、ずり速度2s-1の条件で2分以上測定した後の安定した粘度(ηa)を取得する。次いで、ずり速度を20s-1に変更した他は上記と同様の条件で測定した粘度(ηb)を取得する。上記で得た粘度の値を用いて、TI値は、TI値=ηa/ηbの式により算出される。ずり速度を2s-1から20s-1へ上昇させる際は、1段階で上昇させてもよいし、上記の範囲で多段的にずり速度を上昇させ、適宜そのずり速度における粘度を取得しながら上昇させてもよい。
〈正極活物質層中の、炭素材料、リチウム遷移金属酸化物、アルカリ金属化合物の定量〉
正極活物質層中に含まれる、炭素材料の含有量A1、リチウム遷移金属酸化物の含有量A2、及びアルカリ金属化合物の質量比A3は、例えば下記の方法により定量することができる。
測定する正極前駆体の面積は、測定のばらつきを軽減するという観点から5cm2以上200cm2以下であることが好ましく、より好ましくは25cm2以上150cm2以下である。面積が5cm2以上あれば測定の再現性が確保される。面積が200cm2以下であれば測定用サンプルの取扱い性に優れる。
まず、正極前駆体を上記面積に切断し、真空乾燥する。真空乾燥の条件としては、例えば、温度:100〜200℃、圧力:0〜10kPa、時間:5〜20時間の範囲であり、正極前駆体中の残存水分量を1質量%以下まで低下させることが好ましい。水分の残存量は、カールフィッシャー法により定量することができる。
真空乾燥後に得られた正極前駆体について、質量(M0)を測定する。続いて、正極前駆体の質量の100〜150倍の蒸留水に、正極前駆体を3日間以上浸漬させ、アルカリ金属化合物を水中に溶出させる。浸漬の間、蒸留水が揮発しないよう容器に蓋をすることが好ましい。3日間以上浸漬させた後、蒸留水から正極前駆体を取り出し、上記と同様に真空乾燥する。得られた正極前駆体の質量(M1)を測定する。続いて、スパチュラ、ブラシ、刷毛等を用いて正極集電体の片面、または両面に塗布された正極活物質層を取り除く。残った正極集電体の質量(M2)を測定し、下記式でアルカリ金属化合物の質量比A3を算出する。
3=(M0−M1)/(M0−M2)×100
続いて、A1、A2を算出するため、上記アルカリ金属化合物を取り除いて得られた正極活物質層について、以下の条件にてTG曲線を測定する。
・試料パン:白金
・ガス:大気雰囲気下、又は圧縮空気
・昇温速度:0.5℃/min以下
・温度範囲:25℃〜500℃以上、リチウム遷移金属酸化物の融点マイナス50℃(融点−50℃)の温度以下
得られるTG曲線の25℃の質量をM3とし、500℃以上の温度にて質量減少速度がM3×0.01/min以下となった最初の温度における質量をM4として得る。
炭素材料は、酸素含有雰囲気(例えば、大気雰囲気)下では500℃以下の温度で加熱することですべて酸化・燃焼する。一方、リチウム遷移金属酸化物は酸素含有雰囲気下でもリチウム遷移金属酸化物の融点マイナス50℃の温度までは質量減少することがない。
そのため、正極活物質層におけるリチウム遷移金属酸化物の含有量A2は下記式で算出できる。
2=(M4/M3)×{1−(M0−M1)/(M0−M2)}×100
また、正極活物質層における炭素材料の含有量A1は下記式で算出できる。
1={(M3−M4)/M3}×{1−(M0−M1)/(M0−M2)}×100
なお、複数のアルカリ金属化合物が正極活物質層に含まれる場合;アルカリ金属化合物の他に、下記式におけるMをNa、K、Rb、及びCsから成る群から選ばれる1種以上として、M2O等の酸化物、MOH等の水酸化物、MF又はMCl等のハロゲン化物、M2(CO22等のシュウ酸塩、RCOOM(式中、RはH、アルキル基、又はアリール基である)等のカルボン酸塩を含む場合;並びに正極活物質層が、BeCO3、MgCO3、CaCO3、SrCO3、及びBaCO3から成る群から選ばれる1種以上を含む場合には、これらの総量をアルカリ金属化合物量として算出する。
正極活物質層中に導電材、結着剤、増粘剤等が含まれる場合、炭素材料とこれらの材料の合計量をA1として算出する。
〈正極中のアルカリ金属の同定方法〉
正極中に含まれるアルカリ金属化合物は、例えば下記の方法により同定することができる。アルカリ金属化合物を同定するときには、以下に記載する複数の解析手法を組み合わせて同定することが好ましい。
所定の解析手法ではアルカリ金属化合物を同定できなかった場合、その他の解析手法、例えば、7Li−固体NMR、XRD(X線回折)、TOF−SIMS(飛行時間型二次イオン質量分析)、AES(オージェ電子分光)、TPD/MS(加熱発生ガス質量分析)、DSC(示差走査熱量分析)等を用いることもできる。
[走査型電子顕微鏡−エネルギー分散型X線分析(SEM−EDX)]
正極活物質層が正極活物質としてリチウム遷移金属酸化物を含まない場合、アルカリ金属化合物及び正極活物質は、観察倍率を1000倍〜4000倍にして測定した正極表面のSEM−EDX画像による酸素マッピングにより判別されることができる。SEM−EDX画像の測定例として、加速電圧を10kV、エミッション電流を10μA、測定画素数を256×256ピクセル、積算回数を50回という条件にして測定できる。試料の帯電を防止するために、金、白金、オスミウム等を真空蒸着又はスパッタリング等の方法により表面処理することもできる。SEM−EDX画像の測定方法については、マッピング像において最大輝度値に達する画素がなく、輝度値の平均値が最大輝度値の40%〜60%の範囲に入るように輝度及びコントラストを調整することが好ましい。得られた酸素マッピングに対し、輝度値の平均値を基準に二値化した明部を面積50%以上含む粒子をアルカリ金属化合物と判別する。
[顕微ラマン分光]
アルカリ金属化合物及び正極活物質は、観察倍率を1000倍〜4000倍にして測定した正極表面の炭酸イオンのラマンイメージングにより判別されることができる。測定条件の例として、励起光を532nm、励起光強度を1%、対物レンズの長作動を50倍、回折格子を1800gr/mm、マッピング方式を点走査(スリット65mm、ビニング5pix)、1mmステップ、1点当たりの露光時間を3秒、積算回数を1回、ノイズフィルター有りの条件にて測定することができる。測定したラマンスペクトルについて、1071〜1104cm-1の範囲で直線のベースラインを設定し、ベースラインより正の値を炭酸イオンのピークとして面積を算出し、頻度を積算する。この時にノイズ成分をガウス型関数で近似した炭酸イオンピーク面積に対する頻度を、炭酸イオンの頻度分布から差し引く。
[X線光電分光法(XPS)]
正極前駆体の電子状態をXPSにより解析することにより、正極前駆体中に含まれる化合物の結合状態を判別することができる。測定条件の例として、X線源を単色化AlKα、X線ビーム径を100μmφ(25W、15kV)、パスエネルギーをナロースキャン:58.70eV、帯電中和を有り、スイープ数をナロースキャン:10回(炭素、酸素)20回(フッ素)30回(リン)40回(アルカリ金属)50回(ケイ素)、エネルギーステップをナロースキャン:0.25eVの条件にて測定できる。XPSの測定前に正極の表面をスパッタリングによりクリーニングすることが好ましい。スパッタリングの条件として例えば、加速電圧1.0kV、2mm×2mmの範囲を1分間(SiO2換算で1.25nm/min)の条件にて正極の表面をクリーニングすることができる。得られたXPSスペクトルについて、Li1sの結合エネルギー50〜54eVのピークをLiO2またはLi−C結合、55〜60eVのピークをLiF、Li2CO3、LixPOyz(式中、x、y、zは1〜6の整数)、C1sの結合エネルギー285eVのピークをC−C結合、286eVのピークをC−O結合、288eVのピークをCOO、290〜292eVのピークをCO3 2-、C−F結合、O1sの結合エネルギー527〜530eVのピークをO2-(Li2O)、531〜532eVのピークをCO、CO3、OH、POx(式中、xは1〜4の整数)、SiOx(式中、xは1〜4の整数)、533eVのピークをC−O、SiOx(式中、xは1〜4の整数)、F1sの結合エネルギー685eVのピークをLiF、687eVのピークをC−F結合、LixPOyz(x、y、zは1〜6の整数)、PF6 -、P2pの結合エネルギーについて、133eVのピークをPOx(式中、xは1〜4の整数)、134〜136eVのピークをPFx(xは1〜6の整数)、Si2pの結合エネルギー99eVのピークをSi、シリサイド、101〜107eVのピークをSixy(式中、x、yは任意の整数)として帰属することができる。得られたスペクトルについて、ピークが重なる場合には、ガウス関数又はローレンツ関数を仮定してピーク分離し、スペクトルを帰属することが好ましい。上記の手法で得られた電子状態の測定結果及び存在元素比の結果から、存在するアルカリ金属化合物を同定することができる。
[イオンクロマトグラフィー]
正極の蒸留水洗浄液をイオンクロマトグラフィーで解析することにより、水中に溶出したアニオン種を同定することができる。使用するカラムとしては、イオン交換型、イオン排除型、逆相イオン対型を使用することができる。検出器としては、電気伝導度検出器、紫外可視吸光光度検出器、電気化学検出器等を使用することができ、検出器の前にサプレッサーを設置するサプレッサー方式、またはサプレッサーを配置せずに電気伝導度の低い溶液を溶離液に用いるノンサプレッサー方式を用いることができる。また、質量分析計又は荷電化粒子検出器を組み合わせて測定することもできる。
サンプルの保持時間は、使用するカラム又は溶離液等の条件が決まれば、イオン種成分毎に一定である。またピークのレスポンスの大きさはイオン種毎に異なるが濃度に比例する。トレーサビリティーが確保された既知濃度の標準液を予め測定しておくことでイオン種成分の定性と定量が可能となる。
[アルカリ金属元素の定量方法 ICP−MS]
正極前駆体について、濃硝酸、濃塩酸、王水等の強酸を用いて酸分解し、得られた溶液を2%〜3%の酸濃度になるように純水で希釈する。酸分解については、適宜加熱、加圧し分解することもできる。得られた希釈液をICP−MSにより解析する。この際に内部標準として既知量の元素を加えておくことが好ましい。測定対象のアルカリ金属元素が測定上限濃度以上になる場合には、酸濃度を維持したまま希釈液を更に希釈することが好ましい。得られた測定結果に対し、化学分析用の標準液を用いて予め作成した検量線を基に、各元素を定量することができる。
〈残存溶媒量の測定〉
正極活物質層中の残存溶媒量は以下の方法によって求められる値である。正極前駆体及び集電体を80mm×80mmに切り出し、電子天秤を用いて質量測定を実施し、得られた測定値をそれぞれ質量W1(g)、質量W2(g)として記録する。次いで、加熱乾燥式水分計を用いて、170℃の温度で表面を5分間、加熱乾燥する。また、正極活物質層が両面に塗布されている場合は、裏面も同様に170℃の温度で5分間、加熱乾燥する。加熱乾燥後の正極前駆体を電子天秤に移し、加熱乾燥終了時点から10秒経過後の質量W3(g)を記録する。以下の式によって、残存溶媒量は算出される。
残存溶媒量={(W1−W3)/(W1−W2)}×100 (%)
負極活物質層中の残存溶媒量の測定方法も同様にして行う。
〈非水系アルカリ金属蓄電素子の特性評価〉
[静電容量]
本明細書中、静電容量F(F)とは、以下の方法によって得られる値である:
先ず、非水系アルカリ金属蓄電素子と対応するセルを25℃に設定した恒温槽内で、20Cの電流値で4.0Vに到達するまで定電流充電を行い、次いで、4.0Vの定電圧を印加する定電圧充電を、合計で30分行う。その後、2.0Vまで2Cの電流値で定電流放電を施した際の容量をQとする。ここで得られたQを用いて、F=Q/(4.0−2.0)により算出される値をいう。
[電力量]
本明細書中、電力量E(Wh)とは、以下の方法によって得られる値である:
先に述べた方法で算出された静電容量F(F)を用いて、[{F×(4.02−2.02)}/2]/3600により算出される値をいう。
[体積]
非水系アルカリ金属蓄電素子の体積は、電極積層体又は電極捲回体のうち、正極活物質層及び負極活物質層が積重された領域が、外装体によって収納された部分の体積を指す。
例えば、ラミネートフィルムによって収納された電極積層体又は電極捲回体の場合は、電極積層体又は電極捲回体のうち、正極活物質層および負極活物質層が存在する領域が、カップ成形されたラミネートフィルムの中に収納される。この非水系アルカリ金属蓄電素子の体積(V1)は、このカップ成形部分の外寸長さ(l1)、外寸幅(w1)、及びラミネートフィルムを含めた非水系アルカリ金属蓄電素子の厚み(t1)により、V1=l1×w1×t1で計算される。
角型の金属缶に収納された電極積層体又は電極捲回体の場合は、非水系アルカリ金属蓄電素子の体積としては、単にその金属缶の外寸での体積を用いる。すなわち、この非水系アルカリ金属蓄電素子の体積(V2)は、角型の金属缶の外寸長さ(l2)と外寸幅(w2)、外寸厚み(t2)により、V2=l2×w2×t2で計算される。
また、円筒型の金属缶に収納された電極捲回体の場合においても、非水系アルカリ金属蓄電素子の体積としては、その金属缶の外寸での体積を用いる。すなわち、この非水系アルカリ金属蓄電素子の体積(V3)は、円筒型の金属缶の底面または上面の外寸半径(r)、外寸長さ(l3)により、V3=3.14×r×r×l3で計算される。
[エネルギー密度]
本明細書中、エネルギー密度とは、電気量Eと体積Vi(Vi=V1、V2、又はV3)を用いてE/Vi(Wh/L)の式により得られる値である。
エネルギー密度は、十分な充電容量と放電容量とを発現させる観点から、15以上であることが好ましく、より好ましくは18以上であり、更に好ましくは20以上である。エネルギー密度が上記の下限値以上であれば、優れた体積エネルギー密度を有する蓄電素子を得ることができる。そのため、蓄電素子を用いた蓄電システムを、例えば、自動車のエンジンと組み合わせて使用する場合に、自動車内の限られた狭いスペースに蓄電システムを設置することが可能となり、好ましい。
[常温放電内部抵抗]
本明細書では、常温放電内部抵抗Ra(Ω)とは、以下の方法によって得られる値である:
先ず、非水系アルカリ金属蓄電素子と対応するセルを25℃に設定した恒温槽内で、20Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を、合計で30分間行う。続いて、20Cの電流値で2.0Vまで定電流放電を行って、放電カーブ(時間−電圧)を得る。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとしたときに、降下電圧ΔE=4.0−Eo、及びRa=ΔE/(20C(電流値A))により算出される値である。
RaとFとの積Ra・F(Ω・F)は、大電流に対して十分な充電容量と放電容量とを発現させる観点から、3.0以下であることが好ましく、より好ましくは2.6以下であり、更に好ましくは2.4以下である。Ra・Fが上記の上限値以下であれば、優れた入出力特性を有する非水系アルカリ金属蓄電素子を得ることができる。そのため、非水系アルカリ金属蓄電素子を用いた蓄電システムと、例えば高効率エンジンと、を組み合わせること等によって該非水系アルカリ金属蓄電素子に印加される高負荷にも十分に耐え得ることとなり、好ましい。
[低温放電内部抵抗]
本明細書では、低温放電内部抵抗Rb(Ω)とは、以下の方法によって得られる値である:
先ず、非水系アルカリ金属蓄電素子と対応するセルを−30℃に設定した恒温槽内に2時間放置する。その後、恒温槽を−30℃に保ったまま、1.0Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を、合計で2時間行う。続いて、10Cの電流値で2.0Vまで定電流放電を行って、放電カーブ(時間−電圧)を得る。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとしたときに、降下電圧ΔE=4.0−Eo、及びRb=ΔE/(10C(電流値A))により算出される値である。
RbとFとの積Rb・F(Ω・F)は、−30℃という低温環境下においても十分な充電容量と放電容量とを発現させる観点から、30以下であることが好ましく、より好ましくは26以下であり、更に好ましくは22以下である。Rb・Fが上記の上限値以下であれば、低温環境下においても優れた出力特性を有する蓄電素子を得ることができる。そのため、低温環境下での自動車・バイク等のエンジン始動時に、モーターを駆動するための十分な電力を与える蓄電素子を得ることが可能となる。
[高温高電圧フロート試験]
本明細書では、高温保存試験時のガス発生量、及び高温保存試験後の常温放電内部抵抗上昇率は、以下の方法によって測定する:
先ず、非水系アルカリ金属蓄電素子と対応するセルを85℃に設定した恒温槽内で、20Cの電流値で4.2Vに到達するまで定電流充電し、続いて4.2Vの定電圧充電を300時間行う。試験開始前のセル体積Va、及び300時間の試験終了後のセル体積Vbをアルキメデス法によって測定する。Vb−Vaを高温高電圧フロート試験で発生するガス量とする。
高温高電圧フロート試験後のセルに対して、常温放電内部抵抗と同様の測定方法を用いて得られる抵抗値を高温保存試験後の常温放電内部抵抗Rdとしたとき、試験開始前の常温放電内部抵抗Raに対する300時間の試験後の常温放電内部抵抗上昇率は、Rd/Raにより算出される。
Rd/Raは、高温環境下に長時間曝された場合に、大電流に対して十分な充電容量と放電容量とを発現させる観点から、3.0以下であることが好ましく、より好ましくは2.0以下であり、更に好ましくは1.5以下である。Rb/Raが上記の上限値以下であれば、長期間安定して優れた出力特性を得ることができるため、デバイスの長寿命化につながる。
高温高電圧フロート試験でのガス量は、発生したガスにより素子の特性を低下させないとの観点から、発生ガス量を25℃において測定した値として、30×10-3cm3/F以下であることが好ましく、より好ましくは20×10-3cm3/F以下であり、更に好ましくは15×10-3cm3/F以下である。上記の条件下で発生するガス量が上記の上限値以下であれば、デバイスが長期間高温に曝された場合であっても、ガス発生によってセルが膨張するおそれがない。そのため、十分な安全性及び耐久性を有する蓄電素子を得ることができる。
[高温高負荷充放電サイクル試験後の常温放電内部抵抗上昇率]
本明細書中、高温高負荷充放電サイクル試験後の常温放電内部抵抗上昇率は、以下の方法によって測定する:
先ず、非水系アルカリ金属蓄電素子と対応するセルを60℃に設定した恒温槽内で、300Cの電流値で4.1Vに到達するまで定電流充電し、続いて300Cの電流値で1.9Vに到達するまで定電流放電を行う。前記充放電工程を60000回繰り返し、試験開始前と、試験終了後に常温放電内部抵抗測定を行い、試験開始前の常温放電内部抵抗をRa(Ω)、試験終了後の常温放電内部抵抗をRe(Ω)としたとき、試験開始前に対する高負荷充放電サイクル試験後の抵抗上昇率はRe/Raにより算出される。
なお、Re/Raは、高温環境下に長時間曝された場合に、大電流に対して十分な充電容量と放電容量とを発現させる観点から、3.0以下であることが好ましく、より好ましくは2.0以下であり、更に好ましくは1.5以下である。Re/Raが上記の上限値以下であれば、長期間安定して優れた出力特性を得ることができるため、デバイスの長寿命化につながる。
[微短絡検査試験]
本明細書では、非水系アルカリ金属蓄電素子の微短絡の発生は、以下の手法により判断する。
先ず、1Cの電流値で2.5Vまで定電流放電し、その後1Cの電流値で電圧4.0Vまで定電流充電した後に続けて4.0V定電圧充電を1時間継続する手法により、電圧を4.0Vに調整する。続いて45℃に設定した恒温槽内で、電極体を100kPaの圧力で加圧した状態で1週間静置し、電圧が3.8V以下に低下したものを微短絡と判断する。加温、加圧することにより、微短絡している非水系アルカリ金属蓄電素子を高感度に検出することが可能となる。
《非水系リチウム蓄電素子の製造》
以下、非水系アルカリ金属蓄電素子の一態様である、非水系リチウム蓄電素子を作製した。
〈正極前駆体の製造〉
[活性炭1の調製]
破砕されたヤシ殻炭化物を小型炭化炉内へ入れ、窒素雰囲気下、500℃で3時間炭化処理して炭化物を得た。得られた炭化物を賦活炉内へ入れ、予熱炉で加温した水蒸気を1kg/hで賦活炉内へ導入し、900℃まで8時間かけて昇温して賦活した。賦活後の炭化物を取り出し、窒素雰囲気下で冷却して、賦活された活性炭を得た。得られた賦活された活性炭を10時間通水洗浄した後に水切りし、115℃に保持された電気乾燥機内で10時間乾燥した後に、ボールミルで1時間粉砕を行うことにより、活性炭1を得た。
島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて、活性炭1の平均粒子径を測定した結果、5.5μmであった。また、ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて、活性炭1の細孔分布を測定した。その結果、BET比表面積が2360m2/g、メソ孔量(V1)が0.52cm3/g、マイクロ孔量(V2)が0.88cm3/g、V1/V2=0.59であった。
[活性炭2の調製]
フェノール樹脂を、焼成炉内へ入れ、窒素雰囲気下、600℃で2時間炭化処理を行った後、ボールミルで粉砕し、分級して平均粒子径7μmの炭化物を得た。得られた炭化物とKOHとを、質量比1:5で混合し、焼成炉内へ入れ、窒素雰囲下、800℃で1時間加熱して賦活した。賦活後の炭化物を取り出し、濃度2mol/Lに調整した希塩酸中で1時間撹拌洗浄し、蒸留水でpH5〜6の間で安定するまで煮沸洗浄した後に乾燥することにより、活性炭2を得た。
島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて、活性炭2の平均粒子径を測定した結果、7.0μmであった。また、ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて、活性炭2の細孔分布を測定した。その結果、BET比表面積が3627m2/g、メソ孔量(V1)が1.50cm3/g、マイクロ孔量(V2)が2.28cm3/g、V1/V2=0.66であった。
〈正極前駆体の製造〉
[正極前駆体1の製造]
活性炭1を正極活物質として用いて正極前駆体を製造した。
活性炭1を58.0質量部、炭酸リチウムを32.0質量部、アセチレンブラックを4.0質量部、アクリルラテックスを3.5質量部、CMC(カルボキシメチルセルロース)を1.5質量部、PVP(ポリビニルピロリドン)を1.0質量部、並びに固形分の質量割合が43.0%になるように蒸留水を混合し、その混合物をPRIMIX社製の薄膜旋回型高速ミキサー「フィルミックス(登録商標)」を用いて、周速10m/sの条件で2分間分散して正極塗工液1を得た。
得られた正極塗工液1の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,030mPa・s、TI値は4.2であった。また、得られた正極塗工液1の分散度をヨシミツ精機社製の粒ゲージを用いて測定した。その結果、粒度は22μmであった。
東レエンジニアリング社製の両面ダイコーターを用いて、厚さ15μmのアルミニウム箔の両面に正極塗工液1を塗工速度1m/sの条件で塗工し、乾燥して正極前駆体1を得た。得られた正極前駆体1を、ロールプレス機を用いて圧力6kN/cm、プレス部の表面温度25℃の条件でプレスした。正極前駆体1の全厚を、小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、正極前駆体1の任意の10か所で測定した。得られた測定結果より、正極前駆体1の正極活物質層の片面当たり膜厚は61μmであった。
[正極前駆体2の製造]
活性炭1を正極活物質として用いて正極前駆体を製造した。
活性炭1を42.0質量部、リチウム遷移金属酸化物として平均粒子径が3.5μmのLiFePO4を14.0質量部、炭酸リチウムを32.0質量部、アセチレンブラックを4.0質量部、アクリルラテックスを3.5質量部、CMC(カルボキシメチルセルロース)を1.5質量部、PVP(ポリビニルピロリドン)を1.0質量部、並びに固形分の質量割合が43.0%になるように蒸留水を混合し、その混合物をPRIMIX社製の薄膜旋回型高速ミキサー「フィルミックス(登録商標)」を用いて、周速10m/sの条件で2分間分散して正極塗工液2を得た。
得られた正極塗工液2の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,330mPa・s、TI値は4.5であった。また、得られた正極塗工液2の分散度をヨシミツ精機社製の粒ゲージを用いて測定した。その結果、粒度は22μmであった。
東レエンジニアリング社製の両面ダイコーターを用いて、厚さ15μmのアルミニウム箔の両面に正極塗工液2を塗工速度1m/sの条件で塗工し、乾燥して正極前駆体2を得た。得られた正極前駆体2を、ロールプレス機を用いて圧力6kN/cm、プレス部の表面温度25℃の条件でプレスした。正極前駆体2の全厚を、小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、正極前駆体2の任意の10か所で測定した。得られた測定結果より、正極前駆体2の正極活物質層の片面当たり膜厚は48μmであった。
[正極前駆体3の製造]
活性炭1を正極活物質として用いて正極前駆体を製造した。
活性炭1を90.0質量部、アセチレンブラックを4.0質量部、アクリルラテックスを3.5質量部、CMC(カルボキシメチルセルロース)を1.5質量部、PVP(ポリビニルピロリドン)を1.0質量部、並びに固形分の質量割合が35.0%になるように蒸留水を混合し、その混合物をPRIMIX社製の薄膜旋回型高速ミキサー「フィルミックス(登録商標)」を用いて、周速10m/sの条件で2分間分散して正極塗工液3を得た。
得られた正極塗工液3の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,150mPa・s、TI値は5.2であった。また、得られた正極塗工液3の分散度をヨシミツ精機社製の粒ゲージを用いて測定した。その結果、粒度は25μmであった。
東レエンジニアリング社製の両面ダイコーターを用いて、厚さ15μmのアルミニウム箔の両面に正極塗工液3を塗工速度1m/sの条件で塗工し、乾燥して正極前駆体3を得た。得られた正極前駆体3を、ロールプレス機を用いて圧力6kN/cm、プレス部の表面温度25℃の条件でプレスした。正極前駆体3の全厚を、小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、正極前駆体3の任意の10か所で測定した。得られた測定結果より、正極前駆体3の正極活物質層の片面当たり膜厚は67μmであった。
[正極前駆体4の製造]
活性炭1を正極活物質として用いて正極前駆体を製造した。
活性炭1を60.0質量部、リチウム遷移金属酸化物として平均粒子径が3.5μmのLiFePO4を30.0質量部、アセチレンブラックを4.0質量部、アクリルラテックスを3.5質量部、CMC(カルボキシメチルセルロース)を1.5質量部、PVP(ポリビニルピロリドン)を1.0質量部、並びに固形分の質量割合が38.0%になるように蒸留水を混合し、その混合物をPRIMIX社製の薄膜旋回型高速ミキサー「フィルミックス(登録商標)」を用いて、周速10m/sの条件で2分間分散して正極塗工液4を得た。
得られた正極塗工液4の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,020mPa・s、TI値は5.6であった。また、得られた正極塗工液4の分散度をヨシミツ精機社製の粒ゲージを用いて測定した。その結果、粒度は23μmであった。
東レエンジニアリング社製の両面ダイコーターを用いて、厚さ15μmのアルミニウム箔の両面に正極塗工液4を塗工速度1m/sの条件で塗工し、乾燥して正極前駆体4を得た。得られた正極前駆体4を、ロールプレス機を用いて圧力6kN/cm、プレス部の表面温度25℃の条件でプレスした。正極前駆体4の全厚を、小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、正極前駆体4の任意の10か所で測定した。得られた測定結果より、正極前駆体4の正極活物質層の片面当たり膜厚は57μmであった。
〈負極の製造〉
[負極1の製造]
平均粒子径4.5μmの人造黒鉛を83質量部、複合炭素材料を4質量部、アセチレンブラックを9質量部、粉末状態でプラネタリーミキサーにてドライブレンドし、そこに、スチレン−ブタジエン共重合体を2質量部、CMC(カルボキシメチルセルロース)水溶液を添加し、固形分を徐々に下げながら分散させた。最終的にはCMCが2質量部になるように添加し、固形分の質量割合が39%になるように水を混合溶液へ添加し、負極塗工液を得た。
得られた負極塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は3,221mPa・s、TI値は2.1であった。
東レエンジニアリング社製のダイコーターを用いて厚さ10μmの電解銅箔の両面に負極塗工液を塗工速度1m/sの条件で塗工し、乾燥温度60℃で乾燥して負極1を得た。ロールプレス機を用いて圧力5kN/cm、プレス部の表面温度25℃の条件でプレスした。プレスされた負極1の全厚を、小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、負極1の任意の10か所で測定した。得られた測定結果より、負極1の負極活物質層の膜厚は片面当たり30μmであった。
〈電解液の調製〉
有機溶媒として、エチレンカーボネート(EC):ジメチルカーボネート(DMC):メチルエチルカーボネート(EMC)=34:44:22(体積比)の混合溶媒を用い、全非水系電解液に対してLiN(SO2F)2及びLiPF6の濃度比が25:75(モル比)であり、かつLiN(SO2F)2及びLiPF6の濃度の和が1.2mol/Lとなるようにそれぞれの電解質塩を溶解した。
ここで調製した非水系電解液におけるLiN(SO2F)2及びLiPF6の濃度は、それぞれ、0.3mol/L及び0.9mol/Lであった。
〈実施例1、2〉
[非水系リチウム蓄電素子の製造]
正極前駆体として、実施例1では正極前駆体1を、実施例2では正極前駆体2をそれぞれ使用した。
[電極の二次乾燥]
正極前駆体を、80℃の温度で5分間、赤外線加熱による乾燥を行い、0.8N/mmの巻取張力でロールtoロールにより巻き取った。
[組立工程]
得られた正極前駆体を、正極活物質層が10.0cm×10.0cm(100cm)の大きさに正極前駆体(両面)を20枚切り出した。続いて負極1を、負極活物質層が10.1cm×10.1cm(102cm)の大きさに21枚切り出し、10.3cm×10.3cm(106cm)のポリエチレン製のセパレータ(旭化成製、厚み10μm)40枚を用意した。これらを、最外層が負極1になるように、正極前駆体、セパレータ、負極の順にセパレータを挟んで正極活物質層と負極活物質層が対向するように積層し、電極積層体を得た。得られた電極積層体に正極端子及び負極端子を超音波溶接し、アルミラミネート包材で形成された容器に入れ、電極端子部を含む3辺をヒートシールによりシールした。
[加圧工程]
アルミラミネート包材の外側から、一対の金属製の板(高さ150mm×幅150mm×厚み5mm)で挟み、金属製の板の四隅をネジ止めすることで、圧力を加えた。面圧分布測定システムI−SCAN(ニッタ株式会社製)及びI−SCAN100センサー(測定面の寸法:112mm×112mm)を用い、圧力を測定したところ、拘束圧力は0.08kgf/cmであった。
[注液・含浸・封止工程]
温度25℃、露点−40℃以下のドライエアー環境下にて、アルミラミネート包材の中に収納された電極積層体を減圧チャンバーの中に入れ、常圧から−100kPaまで減圧した後、液温25℃の上記非水系電解液を約80g注入した。その後、常圧に戻して、60分間静置した。続いて、非水系リチウム蓄電素子前駆体を減圧シール機に入れ、−95kPaに減圧した状態で、180℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
[再加圧工程]
注液後の非水系リチウム蓄電素子前駆体を拘束した金属製の板のネジをさらに締め付けることで、圧力を1.2kgf/cmにした。
[リチウムドープ工程]
得られた非水系リチウム蓄電素子前駆体に対して、アスカ電子株式会社製の充放電試験装置(ACD−10APS(01))を用いて、45℃環境下、電流値6Aで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を1時間継続する手法により初期充電を行い、負極にリチウムドープを行った。リチウムドープで掛かったトータルの時間は、2時間であった。
[充放電サイクル工程]
加圧力を1.2kgf/cmのまま、ドープ後の非水系リチウム蓄電素子前駆体を、温度50℃の環境下に置いた。
(1)10.0Aで電圧4.3Vに到達するまで定電流充電を行った後、4.3V定電圧充電を5分間行った。
(2)10.0Aで電圧2.0Vに到達するまで定電流放電を行った後、2.0V定電圧放電を5分間行った。
(1)及び(2)を1サイクルとして、合計5サイクルを実施した。
[高温エージング工程]
(1)高電圧保管工程:加圧力を1.2kgf/cmのまま、充放電サイクル工程後の非水系リチウム蓄電素子前駆体を、温度25℃の環境下、10.0Aで電圧4.2Vに到達するまで定電流放電を行った後、4.2V定電流充電を30分間行うことにより電圧を4.2Vに調整した。その後、非水系リチウム蓄電素子前駆体を60℃の恒温槽に10時間保管した。
[ガス抜き・封止工程]
エージング後の非水系リチウム蓄電素子前駆体を、温度25℃、露点−40℃のドライエアー環境下でアルミラミネート包材の一部を開封した。次いで、減圧チャンバーの中に非水系リチウム蓄電素子前駆体を入れ、KNF社製のダイヤフラムポンプ(N816.3KT.45.18)を用いて大気圧から−80kPaまで3分間掛けて減圧した後、3分間掛けて大気圧に戻す工程を合計3回繰り返した。その後、減圧シール機に非水系リチウム蓄電素子前駆体を入れ、−90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
以上の工程により、非水系リチウム蓄電素子が完成した。
[蓄電素子の評価]
[静電容量の測定]
得られた蓄電素子について、温度を25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で4.0Vに到達するまで定電流充電を行い、次いで、4.0Vの定電圧を印加する定電圧充電を合計で30分行った。2.0Vまで2Cの電流値で定電流放電を施した際の容量をQとし、F=Q/(4.0−2.0)により算出した実施例1の静電容量Fは、1500Fであった。
[Ra・Fの算出]
得られた蓄電素子について、温度を25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で4.0Vに到達するまで定電流充電し、次いで、4.0Vの定電圧を印加する定電圧充電を合計で30分間行い、次いで、20Cの電流値で2.0Vまで定電流放電を行って、放電カーブ(時間−電圧)を得た。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとし、降下電圧ΔE=3.8−Eo、及びR=ΔE/(20C(電流値A))により常温放電内部抵抗Raを算出した。
実施例1の、静電容量Fと常温放電内部抵抗Raとの積Ra・Fは1.83ΩFであった。
[高温高負荷充放電サイクル試験後の抵抗上昇率]
得られた蓄電素子について、60℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、300Cの電流値で4.1Vに到達するまで定電流充電し、続いて300Cの電流値で1.9Vに到達するまで定電流放電を行う充放電工程を60000回繰り返した。高負荷充放電サイクル試験後に前記[Ra・Fの算出]と同様にして高負荷充放電サイクル試験後の抵抗Reを算出した。このRe(Ω)を、前記[Ra・Fの算出]で求めた高負荷充放電サイクル試験前の内部抵抗Ra(Ω)で除して算出した比Re/Raは、実施例1については1.18であった。実施例2については、Re/Raは1.19であった。
[微短絡検査工程]
非水系リチウム蓄電素子を100個作製し、上述の微短絡検査試験を行ったところ、実施例1において微短絡数は1個であった。よって、実施例1の微短絡率は1%であった。
また、上記評価における実施例2の結果を、表1に示す。
〈実施例3〜53〉
正極前駆体の種類、注液含侵後の再加圧工程で非水系リチウム蓄電素子前駆体に加える圧力、非水系リチウム素子前駆体の温度、ドープ工程での定電流(cc:Constant Current)充電時のCレート、定電圧(cv:Constant Voltage)充電時の電圧、及びcv充電の時間を、表1、表2、表3又は表5に記載するとおりとしたこと以外は、実施例1と同様にして、非水系リチウム蓄電素子を製造し、評価を行った。その結果を表1、表2、表3又は表5に示す。
〈比較例1〜2〉
正極前駆体の種類を表4に示すように変更し、そして電極の二次乾燥を実施しなかった。
次に、実施例1と同様に組立工程を実施した。
実施例1と同様に加圧工程を実施した。
さらに、注液・含浸・封止工程では、温度25℃、露点−40℃以下のドライエアー環境下にて、アルミラミネート包材の中に収納された電極積層体を減圧チャンバーの中に入れたが、常圧で、上記非水系電解液を約80g注入した。その後、常圧のまま60分間静置した。続いて、非水系リチウム蓄電素子前駆体を減圧シール機に入れ、−95kPaに減圧した状態で、180℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
再加圧工程では、注液後の非水系リチウム蓄電素子前駆体を拘束した金属製の板を取り外し、圧力を0kgf/cmに調整した。
リチウムドープ工程では、得られた非水系リチウム蓄電素子前駆体に対して、アスカ電子株式会社製の充放電試験装置(ACD−10APS(01))を用いて、25℃環境下、電流値0.1Aで電圧4.1Vに到達するまで定電流充電を行った後、続けて4.1V定電圧充電を1時間継続する手法により初期充電を行い、負極にリチウムドープを行った。リチウムドープで掛かったトータルの時間は、9時間であった。
比較例1〜2の充放電サイクル工程として、ドープ後の非水系リチウム蓄電素子前駆体を、温度25℃の環境下に置いた。
(1)10.0Aで電圧3.7Vに到達するまで定電流充電を行った後、3.7V定電圧充電を5分間行った。
(2)10.0Aで電圧1.4Vに到達するまで定電流放電を行った後、1.4V定電圧放電を5分間行った。
(1)及び(2)を1サイクルとして、合計5サイクルを実施した。
比較例1〜2のエージング工程の詳細は以下のとおりである:
(1)高電圧工程;加圧力を0kgf/cmのまま、充放電サイクル工程後の非水系リチウム蓄電素子前駆体を、温度25℃の環境下、10.0Aで電圧4.0Vに到達するまで定電流放電を行った後、4.0V定電流充電を30分間行うことにより電圧を4.0Vに調整した。その後、非水系リチウム蓄電素子前駆体を温度60℃の恒温槽に10時間保管した。
(2)低電圧工程;実施しなかった。
ガス抜き・封止工程及びそれら以降の工程については実施例1と同様にして行なって、非水系リチウム蓄電素子を製造し、得られた非水系リチウム蓄電素子の評価を実施例1と同様に行った。その結果を表4に示す。
〈比較例3〜9、比較例11〜15〉
正極前駆体の種類、注液含侵後の再加圧工程で非水系アルカリ金属蓄電素子前駆体に加える圧力、非水系アルカリ金属素子前駆体の温度、ドープ工程でのcc充電時のCレート、cv充電時の電圧、cv充電の時間を、表1および表2に記載する通りとしたこと以外は、実施例1と同様に非水系アルカリ金属蓄電素子を製造し、以降の評価を実施例1と同様に行った。その結果を表4および表5に示す。
〈比較例10、比較例16〉
[非水系アルカリ金属蓄電素子の製造]
正極前駆体の種類を表4又は表5に示すとおりに変更し、かつ組立工程、及びリチウムドープ工程を後述するとおりに変更した以外は、実施例1と同様に非水系リチウム蓄電素子を製造し、得られた非水系リチウム蓄電素子の評価を実施例1と同様に行った。その結果を表4および表5に示す。
[組立工程]
正極前駆体と、負極活物質の単位質量当たり350mAh/gに相当する金属リチウム箔を負極1の負極活物質層表面に貼り付けた負極とを用いたこと以外は実施例1と同様に組立工程を行った。
[リチウムドープ工程]
リチウムドープ工程として、非水系リチウム蓄電素子前駆体を環境温度45℃の恒温槽の中で72時間保管し、金属リチウムをイオン化させて負極1にドープした。
Figure 0006669915
Figure 0006669915
Figure 0006669915
Figure 0006669915
Figure 0006669915
以上の実施例により、本実施形態に係る非水系アルカリ金属蓄電素子及びその前駆体の製造方法により、蓄電素子の製造時の微短絡が抑制され、優れた入出力特性と、高温下での高負荷充放電サイクルに対する耐久性とを有した非水系アルカリ金属蓄電素子を製造できることが検証された。
本発明に係る非水系アルカリ金属蓄電素子の製造方法により得られる非水系アルカリ金属蓄電素子は、製造時の微短絡が抑制され、優れた入出力特性と高温下での高負荷充放電サイクルに対する耐久性を有するため、例えば、自動車において、内燃機関又は燃料電池、モーターなど、及び複数の蓄電素子を組み合わせたハイブリット駆動システムの分野、更には瞬間電力ピークのアシスト用途等で好適に利用できる。

Claims (12)

  1. 外装体と、前記外装体に収納された正極、負極、セパレータ、及び非水系電解液とを含む非水系アルカリ金属蓄電素子の製造方法であって、以下の工程:
    正極前駆体、前記負極、及び前記セパレータを前記外装体に収納する収納工程;
    前記非水系電解液を前記外装体に注液して、非水系アルカリ金属蓄電素子前駆体を得る注液工程;
    前記非水系アルカリ金属蓄電素子前駆体に対して電圧を掛ける電圧印加工程;並びに
    前記非水系アルカリ金属蓄電素子前駆体から非水系アルカリ金属蓄電素子を得る完成工程;
    を含み、
    前記正極前駆体は、正極集電体と、前記正極集電体の片面又は両面上に配置された正極活物質層とを有し、前記正極活物質層は、正極活物質と、前記正極活物質以外のアルカリ金属化合物とを含有し、
    前記負極は、負極集電体と、前記負極集電体の片面又は両面上に配置された負極活物質層とを有し、前記負極活物質層は、アルカリ金属イオンを吸蔵及び放出できる負極活物質を含有し、
    前記非水系電解液は、前記アルカリ金属イオンを含み、
    前記アルカリ金属化合物は、前記電圧印加工程により酸化分解し、前記非水系電解液に前記アルカリ金属イオンを放出し、前記負極活物質は、前記電圧印加工程により前記アルカリ金属イオンを吸蔵し、前記アルカリ金属化合物は、炭酸リチウムであり、かつ
    (1)前記電圧印加工程前に、又は前記電圧印加工程中に、前記非水系アルカリ金属蓄電素子前駆体を外側から0.1kgf/cm 以上1000kgf/cm 以下で加圧する加圧工程が行われ、
    (2)前記電圧印加工程前に、又は前記電圧印加工程中に、前記非水系アルカリ金属蓄電素子前駆体を加温して、前記外装体の温度を30℃以上70℃以下に調整する加温工程が行われ、
    (3)前記電圧印加工程では、前記非水系アルカリ金属蓄電素子前駆体の定電流充電を行なった後に、前記非水系アルカリ金属蓄電素子前駆体の定電圧充電を行ない、
    (4)前記定電流充電のCレートは、前記完成工程後の非水系アルカリ金属蓄電素子の放電電気容量(Ah)に対し、1.0倍〜100.0倍であり、かつ
    (5)前記定電圧充電の電圧値は4.20V以上である、
    非水系アルカリ金属蓄電素子の製造方法。
  2. 前記定電流充電のCレートが、前記完成工程後の前記非水系アルカリ金属蓄電素子の放電電気容量(Ah)に対し、1倍〜30倍である、請求項1に記載の非水系アルカリ金属蓄電素子の製造方法。
  3. 前記定電圧充電の電圧値が、4.40V以上4.80V以下である、請求項1又は2に記載の非水系アルカリ金属蓄電素子の製造方法。
  4. 前記定電圧充電に掛ける時間が、0.25時間以上24時間以下である、請求項1〜のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
  5. 前記定電圧充電に掛ける時間が、0.5時間以上4時間以下である、請求項1〜のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
  6. 前記加圧工程が、加圧冶具を用いることにより行われ、かつ前記加温工程が、恒温槽を用いることにより行われる、請求項1〜のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
  7. 前記電圧印加工程において前記正極前駆体から前記正極が形成される、請求項1〜のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
  8. 前記電圧印加工程後かつ前記完成工程前に、以下の工程:
    前記非水系アルカリ金属蓄電素子前駆体をエージングに供するエージング工程;
    前記非水系アルカリ金属蓄電素子前駆体からガスを抜くガス抜き工程;及び
    前記非水系アルカリ金属蓄電素子前駆体を封止する封止工程;
    を含む、請求項1〜のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
  9. 前記エージング工程が、
    高電圧保管工程;前記非水系アルカリ金属蓄電素子前駆体の電圧を4.03V以上5.0V以下に調整したのち、45℃以上100℃以下の温度で前記非水系アルカリ金属蓄電素子前駆体を保管する工程
    である、請求項8に記載の非水系アルカリ金属蓄電素子の製造方法
  10. 前記非水系アルカリ金属蓄電素子前駆体に対して充放電を実施する充放電サイクル工程をさらに含み、そして前記充放電サイクル工程は:
    前記非水系アルカリ金属蓄電素子前駆体の温度を30℃以上100℃以下に加温し、
    上限電圧と下限電圧の範囲内で前記充放電し、
    前記上限電圧は、3.8V以上4.8V以下であり、かつ
    前記下限電圧は、1.5V以上3.5V以下である、
    請求項1〜9のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
  11. 前記注液工程は、前記外装体の内部を、大気圧を基準として、−10kPa〜−101.33kPaに減圧した状態で行われる、請求項1〜10のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
  12. 前記非水系アルカリ金属蓄電素子が、非水系リチウム蓄電素子である、請求項1〜11のいずれか1項に記載の非水系アルカリ金属蓄電素子の製造方法。
JP2019068803A 2019-03-29 2019-03-29 非水系アルカリ金属蓄電素子の製造方法 Active JP6669915B1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019068803A JP6669915B1 (ja) 2019-03-29 2019-03-29 非水系アルカリ金属蓄電素子の製造方法
CN202080021475.2A CN113597690A (zh) 2019-03-29 2020-03-23 非水系碱金属蓄电元件的制造方法
US17/439,874 US20220190380A1 (en) 2019-03-29 2020-03-23 Method for Producing Non-Aqueous Alkali Metal Electricity Storage Element
PCT/JP2020/012766 WO2020203421A1 (ja) 2019-03-29 2020-03-23 非水系アルカリ金属蓄電素子の製造方法
EP20784304.6A EP3951937A4 (en) 2019-03-29 2020-03-23 PROCESS FOR MAKING A NON-AQUEOUS ALKALI METAL ELECTRICITY STORAGE ELEMENT
KR1020217028370A KR102576896B1 (ko) 2019-03-29 2020-03-23 비수계 알칼리 금속 축전 소자의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019068803A JP6669915B1 (ja) 2019-03-29 2019-03-29 非水系アルカリ金属蓄電素子の製造方法

Publications (2)

Publication Number Publication Date
JP6669915B1 true JP6669915B1 (ja) 2020-03-18
JP2020167343A JP2020167343A (ja) 2020-10-08

Family

ID=70000747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019068803A Active JP6669915B1 (ja) 2019-03-29 2019-03-29 非水系アルカリ金属蓄電素子の製造方法

Country Status (1)

Country Link
JP (1) JP6669915B1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022178150A (ja) 2021-05-19 2022-12-02 孝章 赤池 感染症のバイオマーカ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225291A (ja) * 2009-03-19 2010-10-07 Toyota Motor Corp リチウムイオン二次電池及びその製造方法
JP5541502B2 (ja) * 2010-03-30 2014-07-09 株式会社デンソー リチウム二次電池及びその製造方法
JP6967901B2 (ja) * 2017-07-26 2021-11-17 旭化成株式会社 非水系リチウム型蓄電素子の製造方法
JP2019029110A (ja) * 2017-07-26 2019-02-21 旭化成株式会社 非水系リチウム型蓄電素子用のリチウム化合物
JP6976097B2 (ja) * 2017-07-26 2021-12-08 旭化成株式会社 アルカリ金属イオンのドープ方法

Also Published As

Publication number Publication date
JP2020167343A (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
KR101984452B1 (ko) 비수계 리튬 축전 소자
KR102333849B1 (ko) 비수계 리튬 축전 소자
JP2018061037A (ja) 非水系リチウム型蓄電素子
KR102576896B1 (ko) 비수계 알칼리 금속 축전 소자의 제조 방법
JP2020013881A (ja) 非水系リチウム型蓄電素子
JP6262402B2 (ja) 非水系リチウム蓄電素子
JP6786335B2 (ja) 非水系リチウム蓄電素子
JP6997208B2 (ja) 非水系リチウム型蓄電素子
JP2020167350A (ja) 非水系アルカリ金属蓄電素子の製造方法
JP6669915B1 (ja) 非水系アルカリ金属蓄電素子の製造方法
JP6669914B1 (ja) 非水系アルカリ金属蓄電素子の製造方法
JP2020167353A (ja) 非水系アルカリ金属蓄電素子の製造方法
JP6912337B2 (ja) 非水系リチウム蓄電素子
JP6698493B2 (ja) 非水系リチウム蓄電素子
JP6675508B1 (ja) 非水系アルカリ金属蓄電素子の正極前駆体の製造方法
JP6675507B1 (ja) 非水系アルカリ金属蓄電素子の正極前駆体の製造方法
JP6829572B2 (ja) 捲回式非水系リチウム型蓄電素子
JP7343304B2 (ja) 正極前駆体
JP2018056438A (ja) 捲回式非水系リチウム型蓄電素子
JP2018056429A (ja) 非水系リチウム型蓄電素子
JP6815151B2 (ja) 非水系リチウム型蓄電素子
JP2022127296A (ja) 非水系リチウム型蓄電素子の製造方法
JP2023141221A (ja) 炭素材料と炭酸リチウムとを含む複合粉体材料
JP2018056408A (ja) 非水系リチウム型蓄電素子
JP2019029380A (ja) 非水系リチウム蓄電素子用の捲回電極体の乾燥方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200227

R150 Certificate of patent or registration of utility model

Ref document number: 6669915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150