JP6667030B2 - Water treatment method - Google Patents

Water treatment method Download PDF

Info

Publication number
JP6667030B2
JP6667030B2 JP2019080199A JP2019080199A JP6667030B2 JP 6667030 B2 JP6667030 B2 JP 6667030B2 JP 2019080199 A JP2019080199 A JP 2019080199A JP 2019080199 A JP2019080199 A JP 2019080199A JP 6667030 B2 JP6667030 B2 JP 6667030B2
Authority
JP
Japan
Prior art keywords
water
denitrification
nitrification
treated
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019080199A
Other languages
Japanese (ja)
Other versions
JP2020001033A (en
Inventor
將貴 三宅
將貴 三宅
長谷部 吉昭
吉昭 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2019080199A priority Critical patent/JP6667030B2/en
Priority to US17/253,512 priority patent/US11603327B2/en
Priority to CN201980041656.9A priority patent/CN112292355B/en
Priority to PCT/JP2019/024421 priority patent/WO2019244964A1/en
Priority to TW108121694A priority patent/TWI846706B/en
Publication of JP2020001033A publication Critical patent/JP2020001033A/en
Application granted granted Critical
Publication of JP6667030B2 publication Critical patent/JP6667030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、被処理水中に含まれるアンモニア態窒素を生物学的に窒素ガスにまで酸化、還元する水処理方法および水処理装置に関する。   The present invention relates to a water treatment method and a water treatment apparatus for biologically oxidizing and reducing ammonia nitrogen contained in water to be treated to nitrogen gas.

排水中に含まれる窒素成分は、湖沼や閉鎖性海域等における富栄養化の原因物質の一つであるため、特に排水中に窒素成分が高濃度で含まれる場合は、排水処理工程で除去する必要がある。一般的には、微生物活性汚泥を用いた生物学的処理が適用されることが多く、例えば、アンモニア態窒素や有機態窒素を含んだ被処理水において、好気条件においてアンモニア態窒素を亜硝酸または硝酸態窒素にまで酸化する硝化工程、無酸素条件下、水素供与体存在下で亜硝酸、硝酸態窒素を窒素ガスにまで還元する脱窒工程、という2工程により硝化脱窒処理が行われる。また、被処理水中に多量の有機物を含む場合、被処理水を脱窒槽に供給するとともに、硝化槽で生成した亜硝酸、硝酸態窒素を含む混合液を脱窒槽へと循環し、被処理水中の有機物を水素供与体として利用して脱窒する循環型硝化脱窒法により処理が行われることもある。   Nitrogen components in wastewater are one of the causes of eutrophication in lakes and marshes and enclosed sea areas, etc., especially if the wastewater contains high concentrations of nitrogen components, remove it in the wastewater treatment process There is a need. Generally, biological treatment using microbial activated sludge is often applied.For example, in treated water containing ammonium nitrogen or organic nitrogen, ammonia nitrogen is converted into nitrite under aerobic conditions. Alternatively, nitrification and denitrification are performed in two steps: a nitrification step of oxidizing to nitrate nitrogen, and a denitrification step of reducing nitrite and nitrate nitrogen to nitrogen gas in the presence of a hydrogen donor under oxygen-free conditions. . If the water to be treated contains a large amount of organic matter, the water to be treated is supplied to the denitrification tank, and the mixture containing nitrous acid and nitrate nitrogen generated in the nitrification tank is circulated to the denitrification tank, and In some cases, the treatment is performed by a circulating nitrification denitrification method in which denitrification is performed using the organic substance as a hydrogen donor.

いずれの処理方法においても、微生物活性汚泥中の硝化菌および脱窒菌を利用するものであるが、脱窒菌は有機物を資化可能な従属栄養性細菌であるのに対し、硝化菌は無機炭素を炭素源とする独立栄養性細菌であるため、脱窒菌と比較して増殖速度が非常に遅い。微生物活性汚泥を用いた処理方法の場合、活性汚泥中に硝化菌と脱窒菌が混在しているため、増殖速度が低い独立栄養性細菌である硝化菌の汚泥中での存在割合は非常に小さいと言われている。窒素含有排水の処理に対して、硝化脱窒法を利用した場合、排水中の窒素の除去効率は、硝化工程における硝化菌の活性が律速となる。また、硝化菌は水温の影響を大きく受け、水温低下が大幅な活性低下を招く恐れがある。そのため、処理水質を悪化させないために、硝化工程における汚泥当りの硝化速度(アンモニア酸化比活性)を脱窒工程のそれよりも低くする必要がある。例えば、非特許文献1には、アンモニア酸化比活性は0.113mgN/(mgVSS・日)、亜硝酸酸化非活性は0.056mgN/(mgVSS・日)であったと報告されている。実処理においても、水温20℃の条件において、汚泥あたりの処理速度として0.05〜0.1kgN/(kgVSS・日)程度で運転するように硝化槽の容積負荷を設定することが多い。   In both treatment methods, nitrifying bacteria and denitrifying bacteria in microbial activated sludge are used.Denitrifying bacteria are heterotrophic bacteria capable of assimilating organic substances, whereas nitrifying bacteria use inorganic carbon. Since it is an autotrophic bacterium used as a carbon source, its growth rate is very slow as compared with denitrifying bacteria. In the case of the treatment method using microbial activated sludge, nitrification bacteria and denitrifying bacteria are mixed in the activated sludge, so the proportion of nitrifying bacteria, which is an autotrophic bacterium with a low growth rate, is very small in the sludge. It is said that. When the nitrification denitrification method is used for the treatment of the nitrogen-containing wastewater, the activity of nitrifying bacteria in the nitrification step is rate-limiting for the removal efficiency of nitrogen in the wastewater. Nitrifying bacteria are greatly affected by the water temperature, and a decrease in the water temperature may cause a significant decrease in activity. Therefore, in order to prevent the quality of the treated water from deteriorating, the nitrification rate (specific activity of ammonia oxidation) per sludge in the nitrification step needs to be lower than that in the denitrification step. For example, Non-Patent Document 1 reports that the ammonia oxidation specific activity was 0.113 mgN / (mgVSs / day) and the nitrite oxidation inactivity was 0.056 mgN / (mgVSs / day). Even in actual treatment, the volume load of the nitrification tank is often set so as to operate at a treatment rate per sludge of about 0.05 to 0.1 kgN / (kgVSS / day) at a water temperature of 20 ° C.

一方で、被処理水中の窒素濃度が例えば100mgN/L以上のように、高濃度の窒素を含有する被処理水を硝化菌および脱窒菌を含む微生物活性汚泥により処理を行う場合においては、硝化工程における硝化活性が低下してしまうことがある。硝化活性が低下すると最終処理水質をも悪化させてしまうため、硝化工程の汚泥あたりの硝化速度を上記の0.05〜0.1kgN/(kgMLVSS・日)よりも低く設定しなければならず、その結果として処理速度を高く保つことが困難となる場合がある。   On the other hand, when the treated water containing a high concentration of nitrogen is treated with microbial activated sludge containing nitrifying bacteria and denitrifying bacteria such that the nitrogen concentration in the treated water is, for example, 100 mg N / L or more, the nitrification step In some cases, the nitrification activity may decrease. If the nitrification activity decreases, the quality of the final treated water also deteriorates. Therefore, the nitrification rate per sludge in the nitrification step must be set lower than the above 0.05 to 0.1 kgN / (kgMLVSS / day), As a result, it may be difficult to keep the processing speed high.

特開2006−272287号公報JP 2006-272287 A

荒木ら(1999)、FISH法を適用した生物膜内硝化細菌の菌数計測と空間分布の解析;水環境学会誌第22巻、第2号、pp.152−159Araki et al. (1999), Counting the number of nitrifying bacteria in a biofilm and analyzing the spatial distribution by applying the FISH method; Journal of Japan Society on Water Environment, Vol. 152-159 Microbiology nitrate respiration - Genes, enzymes, and environmental distribution, Journal of Biotechnology, 155(2011), pp.104-117Microbiology nitrate respiration-Genes, enzymes, and environmental distribution, Journal of Biotechnology, 155 (2011), pp.104-117 Molybdenum as a micronutrient for Nitrobacter, Journal of Bacteriology, 89(1965), pp.123-128Molybdenum as a micronutrient for Nitrobacter, Journal of Bacteriology, 89 (1965), pp.123-128 Molecular analysis of ammonia oxidation and denitrification in natural environments , FEMS Microbiology Reviews, 24(2000), pp.673-690Molecular analysis of ammonia oxidation and denitrification in natural environments, FEMS Microbiology Reviews, 24 (2000), pp.673-690

本発明の目的は、アンモニア態窒素および有機態窒素を含む被処理水の生物学的処理において、被処理水中の窒素濃度が高濃度であっても高い処理速度で安定して処理することができる水処理方法を提供することにある。 An object of the present invention is to perform a stable treatment at a high treatment rate even in a case where the nitrogen concentration in the treatment water is high, in the biological treatment of the treatment water containing ammonia nitrogen and organic nitrogen. It is to provide a water treatment how.

本発明は、アンモニア態窒素を含む被処理水を、生物学的に処理する水処理方法であって、微生物活性汚泥中に含まれる独立栄養性のアンモニア酸化菌と亜硝酸酸化菌とを含む硝化菌により、前記アンモニア態窒素を亜硝酸または硝酸態窒素にまで酸化する硝化工程を含み、前記硝化工程において、前記被処理水に対して、モリブデン濃度が0.025mgMo/gN以上となるようにモリブデン化合物を存在させ、汚泥あたりの硝化速度が、0.11[kgN/(kgVSS・日)]以上である、水処理方法である。 The present invention, water to be treated containing ammonia Tai窒element, a water treatment method for biologically treated, and a autotrophic ammonia-oxidizing bacteria and nitrite oxidizing bacteria contained in microbial activity sludge A nitrification step of oxidizing the ammonia nitrogen to nitrite or nitrate nitrogen with a nitrifying bacterium, wherein in the nitrification step, the molybdenum concentration with respect to the water to be treated is 0.025 mg Mo / gN or more. in the presence of a molybdenum compound, nitrification speed of the sludge, Ru der 0.11 [kgN / (kgVSS · day)] or more, a water treatment process.

前記水処理方法において、前記硝化工程におけるモリブデン濃度を、前記被処理水に対して2mgMo/L以下とすることが好ましい。   In the water treatment method, the concentration of molybdenum in the nitrification step is preferably set to 2 mgMo / L or less with respect to the water to be treated.

前記水処理方法において、前記被処理水中の窒素濃度が、100mgN/L以上であることが好ましい。   In the water treatment method, the concentration of nitrogen in the water to be treated is preferably 100 mgN / L or more.

前記水処理方法において、前記微生物活性汚泥中に含まれる脱窒菌により、前記硝化工程で生成した亜硝酸または硝酸態窒素を窒素ガスにまで還元する脱窒工程をさらに含むことが好ましい。   The water treatment method preferably further includes a denitrification step of reducing nitrous acid or nitrate nitrogen generated in the nitrification step to nitrogen gas by denitrifying bacteria contained in the microbial activated sludge.

前記水処理方法における前記脱窒工程において、処理水の水理学的滞留時間における水素供与体の最大濃度と最小濃度との差が、50mgTOC/L以上となるように、前記水素供与体の添加量に時間変動を与えることによって、前記硝化菌と脱窒菌とを含む微生物活性汚泥をグラニュール化させることが好ましい。 In the denitrification step of the water treatment method, the amount of the hydrogen donor added is such that the difference between the maximum concentration and the minimum concentration of the hydrogen donor during the hydraulic residence time of the treated water is 50 mgTOC / L or more. in the Rukoto allow time variation, it is preferred that the microbial activity sludge is granulated comprising said nitrifying bacteria and denitrifying bacteria.

前記水処理方法において、前記脱窒工程は、少なくとも第一脱窒工程と第二脱窒工程とを含み、前記脱窒工程において、前記第二脱窒工程における処理水の水理学的滞留時間における前記第一脱窒工程における水素供与体の最大濃度と前記第二脱窒工程における水素供与体の最小濃度との差が、50mgTOC/L以上となるように、少なくとも前記第一脱窒工程において水素供与体を供給することが好ましい。   In the water treatment method, the denitrification step includes at least a first denitrification step and a second denitrification step, and in the denitrification step, in the hydraulic residence time of the treated water in the second denitrification step At least hydrogen is added in the first denitrification step so that the difference between the maximum concentration of the hydrogen donor in the first denitrification step and the minimum concentration of the hydrogen donor in the second denitrification step is 50 mgTOC / L or more. Preferably, a donor is provided.

本発明により、アンモニア態窒素および有機態窒素を含む被処理水の生物学的処理において、被処理水中の窒素濃度が高濃度であっても高い処理速度で安定して処理することができる。   ADVANTAGE OF THE INVENTION According to this invention, in biological treatment of the to-be-processed water containing an ammonia nitrogen and an organic nitrogen, even if the nitrogen concentration in a to-be-processed water is high, it can stably process at a high processing rate.

本発明の実施形態に係る水処理装置の一例を示す概略構成図である。It is a schematic structure figure showing an example of a water treatment device concerning an embodiment of the present invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic structure figure showing other examples of a water treatment device concerning an embodiment of the present invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic structure figure showing other examples of a water treatment device concerning an embodiment of the present invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic structure figure showing other examples of a water treatment device concerning an embodiment of the present invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic structure figure showing other examples of a water treatment device concerning an embodiment of the present invention. 実施例1および比較例1における、経過日数[day]に対する硝化槽容積負荷[kgN/(m・d)]、硝化槽のアンモニア態窒素濃度[mgN/L]を示すグラフである。In Example 1 and Comparative Example 1, nitrification tank volume loading for age [day] [kgN / (m 3 · d)], it is a graph showing the ammonium nitrogen concentration in the nitrification tank [mgN / L]. 実施例1および比較例1における、経過日数[day]に対する脱窒槽容積負荷[kgN/(m・d)]、処理水の総窒素濃度[mgN/L]を示すグラフである。In Example 1 and Comparative Example 1, denitrification tank volume loading for age [day] [kgN / (m 3 · d)], it is a graph showing the total nitrogen concentration in the treated water [mgN / L]. 比較例2における、経過日数[day]に対する硝化槽容積負荷[kgN/(m・d)]、硝化槽のアンモニア態窒素濃度[mgN/L]を示すグラフである。10 is a graph showing the nitrification tank volume load [kgN / (m 3 · d)] and the ammonia nitrogen concentration [mgN / L] of the nitrification tank with respect to the elapsed days [day] in Comparative Example 2. 比較例2における、経過日数[day]に対する脱窒槽容積負荷[kgN/(m・d)]、処理水の総窒素濃度[mgN/L]を示すグラフである。In Comparative Example 2, the denitrification tank volume loading for age [day] [kgN / (m 3 · d)], is a graph showing the total nitrogen concentration in the treated water [mgN / L]. 実施例2における、経過日数[day]に対する硝化槽容積負荷[kgN/(m・d)]、硝化槽のアンモニア態窒素濃度[mgN/L]を示すグラフである。In Example 2, nitrification tank volume loading for age [day] [kgN / (m 3 · d)], it is a graph showing the ammonium nitrogen concentration in the nitrification tank [mgN / L]. 実施例2における、経過日数[day]に対する脱窒槽容積負荷[kgN/(m・d)]、処理水の総窒素濃度[mgN/L]を示すグラフである。In Example 2, the denitrification tank volume loading for age [day] [kgN / (m 3 · d)], is a graph showing the total nitrogen concentration in the treated water [mgN / L]. 実施例3における、経過日数[day]に対する硝化槽容積負荷[kgN/(m・d)]、硝化槽のアンモニア態窒素濃度[mgN/L]を示すグラフである。In Example 3, nitrification tank volume loading for age [day] [kgN / (m 3 · d)], it is a graph showing the ammonium nitrogen concentration in the nitrification tank [mgN / L]. 実施例3における、経過日数[day]に対する脱窒槽容積負荷[kgN/(m・d)]、処理水の総窒素濃度[mgN/L]を示すグラフである。In Example 3, denitrification tank volume loading for age [day] [kgN / (m 3 · d)], it is a graph showing the total nitrogen concentration in the treated water [mgN / L]. 実施例におけるモリブデン濃度(Mo/N[mg/g])に対する硝化速度[kgN/(kgVSS・d)]を示すグラフである。It is a graph which shows the nitrification rate [kgN / (kgVS.d)] with respect to the molybdenum concentration (Mo / N [mg / g]) in an Example.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   An embodiment of the present invention will be described below. The present embodiment is an example for implementing the present invention, and the present invention is not limited to the present embodiment.

本発明の実施形態に係る水処理装置の一例の概略を図1に示し、その構成について説明する。   FIG. 1 schematically shows an example of a water treatment apparatus according to an embodiment of the present invention, and the configuration thereof will be described.

水処理装置1は、アンモニア態窒素および有機態窒素を含む被処理水を、生物学的に処理する水処理装置であって、微生物活性汚泥中に含まれる独立栄養性のアンモニア酸化菌と亜硝酸酸化菌とを含む硝化菌により、アンモニア態窒素を亜硝酸または硝酸態窒素にまで酸化する硝化手段として、硝化装置10を備え、硝化装置10において、被処理水に対して、モリブデン濃度が0.025mgMo/gN以上となるようにモリブデン化合物を存在させる装置である。水処理装置1は、微生物活性汚泥中に含まれる脱窒菌により、硝化装置10で生成した亜硝酸または硝酸態窒素を窒素ガスにまで還元する脱窒手段として、脱窒装置12をさらに備えてもよい。   The water treatment apparatus 1 is a water treatment apparatus for biologically treating water to be treated containing ammonia nitrogen and organic nitrogen, and comprises autotrophic ammonium oxidizing bacteria and nitrite contained in microbial activated sludge. As a nitrification means for oxidizing ammonia nitrogen to nitrite or nitrate nitrogen by nitrifying bacteria containing oxidizing bacteria, a nitrification device 10 is provided. This is a device in which a molybdenum compound is present so as to be 025 mgMo / gN or more. The water treatment device 1 may further include a denitrification device 12 as denitrification means for reducing nitrite or nitrate nitrogen generated in the nitrification device 10 to nitrogen gas by denitrification bacteria contained in the microbial activated sludge. Good.

水処理装置1は、微生物活性汚泥から処理水を分離して処理水を得る固液分離手段として、固液分離装置14と、固液分離装置14で分離された汚泥を固液分離装置14の前段へ返送する返送手段として、汚泥返送配管24とをさらに備えてもよい。   The water treatment apparatus 1 includes a solid-liquid separator 14 and a solid-liquid separator 14 that separates treated water from microbial activated sludge to obtain treated water. A sludge return pipe 24 may be further provided as return means for returning to the preceding stage.

図1の水処理装置1において、硝化装置10の入口には、配管16が接続され、硝化装置10の出口と脱窒装置12の入口とは、配管18により接続され、脱窒装置12の出口と固液分離装置14の入口とは、配管20により接続され、固液分離装置14の処理水出口には、配管22が接続され、固液分離装置14の汚泥出口と配管16とは、汚泥返送配管24により接続されている。配管16には、モリブデン化合物供給配管26が接続され、脱窒装置12には、水素供与体供給配管28が接続されている。   In the water treatment apparatus 1 of FIG. 1, a pipe 16 is connected to an inlet of the nitrification apparatus 10, an outlet of the nitrification apparatus 10 is connected to an inlet of the denitrification apparatus 12 by a pipe 18, and an outlet of the denitrification apparatus 12 is provided. The solid-liquid separator 14 is connected to an inlet of the solid-liquid separator 14 by a pipe 20, and the treated water outlet of the solid-liquid separator 14 is connected to a pipe 22. The sludge outlet of the solid-liquid separator 14 and the pipe 16 are It is connected by a return pipe 24. A molybdenum compound supply pipe 26 is connected to the pipe 16, and a hydrogen donor supply pipe 28 is connected to the denitrification apparatus 12.

本実施形態に係る水処理方法および水処理装置1の動作について説明する。   The operation of the water treatment method and the water treatment device 1 according to the present embodiment will be described.

アンモニア態窒素および有機態窒素を含む被処理水は、配管16を通して、硝化装置10へ送液される。硝化装置10において、微生物活性汚泥中に含まれる独立栄養性のアンモニア酸化菌と亜硝酸酸化菌とを含む硝化菌により、被処理水に含まれるアンモニア態窒素が亜硝酸または硝酸態窒素にまで酸化される(硝化工程)。ここで、配管16において、被処理水に対して、モリブデン化合物供給配管26を通してモリブデン化合物が供給され、モリブデン濃度が0.025mgMo/gN以上となるようにモリブデン化合物を存在させる(モリブデン化合物供給工程)。硝化液は、配管18を通して、脱窒装置12へ送液される。   The water to be treated containing ammonia nitrogen and organic nitrogen is sent to the nitrification device 10 through the pipe 16. In the nitrification apparatus 10, ammonia nitrogen contained in the water to be treated is oxidized to nitrite or nitrate nitrogen by nitrifying bacteria containing autotrophic ammonium oxidizing bacteria and nitrite oxidizing bacteria contained in the microbial activated sludge. (Nitrification step). Here, in the pipe 16, the molybdenum compound is supplied to the water to be treated through the molybdenum compound supply pipe 26, and the molybdenum compound is present so that the molybdenum concentration becomes 0.025 mg Mo / gN or more (molybdenum compound supply step). . The nitrification liquid is sent to the denitrification device 12 through the pipe 18.

脱窒装置12において、水素供与体供給配管28を通して水素供与体が供給され、微生物活性汚泥中に含まれる従属栄養性の脱窒菌により、硝化装置10(硝化工程)で生成した亜硝酸または硝酸態窒素が窒素ガスにまで還元される(脱窒工程)。脱窒液は、配管20を通して、固液分離装置14へ送液される。   In the denitrification device 12, a hydrogen donor is supplied through a hydrogen donor supply pipe 28, and nitrite or nitrate generated in the nitrification device 10 (nitrification step) by heterotrophic denitrifying bacteria contained in the microbial activated sludge. Nitrogen is reduced to nitrogen gas (denitrification step). The denitrification liquid is sent to the solid-liquid separator 14 through the pipe 20.

固液分離装置14において、脱窒液の微生物活性汚泥から処理水が分離されて処理水が得られる(固液分離工程)。固液分離により得られた処理水は、配管22を通して排出される。一方、固液分離により得られた汚泥の少なくとも一部は、汚泥返送配管24を通して、配管16へ返送されて、被処理水と混合される。汚泥は、固液分離装置14(固液分離工程)の前段へ返送されればよく、例えば、硝化装置10、脱窒装置12へ返送されてもよく、配管18,20へ返送されてもよい。固液分離により得られた汚泥の少なくとも一部は、固液分離装置14から系外へ排出されてもよい。   In the solid-liquid separator 14, the treated water is separated from the microbial activated sludge of the denitrification liquid to obtain treated water (solid-liquid separation step). The treated water obtained by the solid-liquid separation is discharged through a pipe 22. On the other hand, at least a part of the sludge obtained by the solid-liquid separation is returned to the pipe 16 through the sludge return pipe 24 and mixed with the water to be treated. The sludge may be returned to the previous stage of the solid-liquid separation device 14 (solid-liquid separation step). For example, the sludge may be returned to the nitrification device 10, the denitrification device 12, or may be returned to the pipes 18 and 20. . At least a part of the sludge obtained by the solid-liquid separation may be discharged from the solid-liquid separation device 14 to the outside of the system.

本発明者らは、アンモニア態窒素および有機態窒素を含む窒素含有被処理水、特に被処理水中の窒素濃度が例えば100mgN/L以上のような高濃度の窒素含有被処理水を、独立栄養性のアンモニア酸化菌と亜硝酸酸化菌とを含む硝化菌を含む微生物活性汚泥を用いて処理する方法において、微生物の代謝活性が低下してしまい、処理速度が低下した場合において、被処理水に対してモリブデン濃度が0.025mgMo/gN以上となるようにモリブデン化合物を存在させることで、硝化菌の代謝活性が大幅に回復、さらには向上し、安定して高い処理速度を得ることが可能となることを見出した。また、本発明者らは、アンモニア態窒素および有機態窒素を含む窒素含有被処理水、特に被処理水中の窒素濃度が例えば100mgN/L以上のような高濃度の窒素含有被処理水を、独立栄養性のアンモニア酸化菌と亜硝酸酸化菌とを含む硝化菌および従属栄養性の脱窒菌を含む微生物活性汚泥を用いて処理する方法において、微生物の代謝活性が低下してしまい、処理速度が低下した場合において、被処理水に対してモリブデン濃度が0.025mgMo/gN以上となるようにモリブデン化合物を存在させることで、硝化菌および脱窒菌の代謝活性が大幅に回復、さらには向上し、安定して高い処理速度を得ることが可能となることを見出した。   The present inventors have proposed to treat nitrogen-containing treated water containing ammonia nitrogen and organic nitrogen, particularly high-concentration nitrogen-containing treated water having a nitrogen concentration of, for example, 100 mgN / L or more in autotrophic water. In the method of treating with a microbial activated sludge containing nitrifying bacteria containing ammonia oxidizing bacteria and nitrite oxidizing bacteria, the metabolic activity of microorganisms is reduced, and when the treatment speed is reduced, The presence of the molybdenum compound so that the molybdenum concentration becomes 0.025 mg Mo / gN or more greatly restores and further improves the metabolic activity of nitrifying bacteria, and makes it possible to stably obtain a high processing rate. I found that. In addition, the present inventors independently treat nitrogen-containing treated water containing ammonia nitrogen and organic nitrogen, particularly high-concentration nitrogen-containing treated water having a nitrogen concentration in the treated water of, for example, 100 mgN / L or more. In the method using microbial activated sludge containing nitrifying bacteria containing vegetative ammonium oxidizing bacteria and nitrite oxidizing bacteria and heterotrophic denitrifying bacteria, the metabolic activity of microorganisms is reduced and the processing speed is reduced. When the molybdenum compound is present in the water to be treated so that the molybdenum concentration becomes 0.025 mg Mo / gN or more, the metabolic activities of nitrifying bacteria and denitrifying bacteria are largely recovered, further improved, and stabilized. High processing speed can be obtained.

窒素含有被処理水、特に高濃度の窒素含有被処理水の生物学的処理において、モリブデン化合物により、微生物活性汚泥中のアンモニア酸化菌および亜硝酸酸化菌を含む硝化菌の活性を向上させることにより、被処理水中の窒素濃度が高濃度であっても高い処理速度で安定して処理することができる。また、窒素含有被処理水、特に高濃度の窒素含有被処理水の生物学的処理において、モリブデン化合物により、微生物活性汚泥中の脱窒菌の活性だけでなく、アンモニア酸化菌および亜硝酸酸化菌を含む硝化菌の活性をも向上させることにより、被処理水中の窒素濃度が高濃度であっても高い処理速度で安定して処理することができる。   In biological treatment of nitrogen-containing treated water, especially high-concentration nitrogen-containing treated water, molybdenum compounds improve the activity of nitrifying bacteria, including ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, in microbial activated sludge. Even if the concentration of nitrogen in the water to be treated is high, the treatment can be performed stably at a high treatment speed. In the biological treatment of nitrogen-containing treated water, particularly high-concentration nitrogen-containing treated water, molybdenum compounds not only reduce the activity of denitrifying bacteria in microbial activated sludge, but also reduce ammonia oxidizing bacteria and nitrite oxidizing bacteria. By improving the activity of the nitrifying bacteria contained, even if the nitrogen concentration in the water to be treated is high, it can be stably treated at a high treatment rate.

一般的に、排水の生物学的処理を行う場合において微生物の増殖および代謝反応を維持するために、被処理水中の栄養素バランスを保つ必要がある。細胞の構成成分としての栄養素として「生物親元素」と言われる炭素(C)、酸素(O)、窒素(N)、水素(H)、リン(P)は必須成分となる。その他、生物親元素よりは比較的要求量は少ないが、硫黄(S)、カリウム(K)、ナトリウム(Na)、カルシウム(Ca)、マグネシウム(Mg)、塩素(Cl)、鉄(Fe)も細胞構成要素として必要な成分であるため、被処理水中の各種元素の含有量が少ない場合、それらを添加補給することが好ましい。一方で、要求量は少ないが、微生物の酵素代謝に関与する微量元素も存在した方がよく、例えば、フッ素(F)、シリカ(Si)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ヒ素(As)、セレン(Se)、モリブデン(Mo)、ヨウ素(I)等が挙げられる。しかし、これら重金属類を含む微量元素類は、要求量が非常に微量であり、被処理水中に必要十分な量が存在していると想定されていることから、通常、外部から被処理水や処理系内に添加するようなことはない。一方で、半導体産業等の超純水を使用する工場から排出される排水を生物学的に処理する際に、上記のような微量元素類が不足していると想定される場合は、被処理水に水道水や、工業用水、井水等を混合することで補給する場合がある。しかし被処理水中の窒素濃度が比較的高い(例えば100mgN/L以上)場合、硝化速度が低下してしまうことがある。このような状態であっても、本実施形態に係る水処理方法および水処理装置では、モリブデン化合物を処理系内に所定量供給することで、処理の安定化、高速処理が可能となる。   Generally, when performing biological treatment of wastewater, it is necessary to maintain a nutrient balance in the treated water in order to maintain the growth and metabolic reaction of microorganisms. Carbon (C), oxygen (O), nitrogen (N), hydrogen (H), and phosphorus (P), which are called "biological parent elements", are essential components as nutrients as constituents of cells. In addition, sulfur (S), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), chlorine (Cl), and iron (Fe) are relatively less required than the biological parent element. Since it is a necessary component as a cell component, when the content of various elements in the water to be treated is low, it is preferable to add and replenish them. On the other hand, although the required amount is small, it is preferable that trace elements involved in the enzyme metabolism of microorganisms are also present. For example, fluorine (F), silica (Si), vanadium (V), chromium (Cr), manganese (Mn) ), Cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), iodine (I) and the like. However, since the required amount of these trace elements including heavy metals is extremely small, and it is assumed that a necessary and sufficient amount is present in the water to be treated, the water to be treated is usually supplied from outside. There is no need to add it in the treatment system. On the other hand, when biologically treating wastewater discharged from a factory that uses ultrapure water in the semiconductor industry, etc., if it is assumed that the above trace elements are insufficient, In some cases, replenishment is performed by mixing tap water, industrial water, well water, and the like with water. However, when the nitrogen concentration in the water to be treated is relatively high (for example, 100 mgN / L or more), the nitrification rate may decrease. Even in such a state, in the water treatment method and the water treatment apparatus according to the present embodiment, by supplying a predetermined amount of the molybdenum compound into the treatment system, the treatment can be stabilized and the high-speed treatment can be performed.

被処理水中の窒素成分の処理に関る反応は、主に以下に分けられる。
1.NH →NO (アンモニア酸化菌)
2.NO →NO (亜硝酸酸化菌)
3.NO →N(脱窒菌)
The reaction relating to the treatment of the nitrogen component in the water to be treated is mainly divided into the following.
1. NH 4 + → NO 2 (ammonia oxidizing bacteria)
2. NO 2 → NO 3 (Nitrite oxidizing bacteria)
3. NO 3 → N 2 (denitrifying bacteria)

脱窒菌による、無酸素条件下における硝酸の異化的還元反応(硝酸呼吸)に関しては、生化学的な検討が進められている。例えば、非特許文献2によれば、硝酸から窒素ガスまでの反応は、[NO →NO →NO→NO→N]に細分化され、[NO →NO ]の還元反応を触媒する酵素は、モリブデン元素が関与していることが明らかとなっている。つまり、排水処理系における脱窒反応に関して、必要量の程度は明らかとなってはいないが、モリブデン化合物を添加することでその活性が向上することが想定される。 Biochemical studies on the catabolic reduction reaction of nitric acid (nitrate respiration) under anoxic conditions by denitrifying bacteria are under way. For example, according to Non-Patent Document 2, the reaction from nitric acid to nitrogen gas is subdivided into [NO 3 → NO 2 → NO → N 2 O → N 2 ] and [NO 3 → NO 2 −]. It has been clarified that molybdenum element is involved in the enzyme that catalyzes the reduction reaction [1]. That is, although the required amount of the denitrification reaction in the wastewater treatment system is not clear, it is assumed that the activity is improved by adding a molybdenum compound.

また、亜硝酸酸化菌が亜硝酸を酸化する際にモリブデンを要求することが研究により解明されている。例えば、非特許文献3では、亜硝酸酸化菌であるNitrobacterの培養条件を検討しており、少なくとも、10−9Mのモリブデン添加により、Nitrobacterによる亜硝酸の利用および細胞増殖が11倍上昇したことが示されている。つまり、排水処理系における亜硝酸酸化反応に関しては、モリブデン化合物を添加することでその活性が向上することが想定される。 Research has also shown that nitrite oxidizing bacteria require molybdenum when oxidizing nitrite. For example, Non-Patent Document 3 discusses the culture conditions of Nitrobacter, which is a nitrite-oxidizing bacterium. At least 10 −9 M of molybdenum increases nitrite utilization and cell growth by Nitrobacter by 11 times. It is shown. That is, regarding the nitrite oxidation reaction in the wastewater treatment system, it is assumed that the activity is improved by adding the molybdenum compound.

一方で、アンモニア酸化菌のアンモニア酸化代謝に関わる酵素としては、アンモニアを酸化し、ヒドロキシルアミンを生成するammonium monooxygenase (AMO)および、生成したヒドロキシルアミンからさらに亜硝酸を生成するhydroxylamine oxidoreductase(HAO)の2種類の酵素が関与しているとされているが、これらはモリブデンが関与する酵素反応であるという報告はない(非特許文献4参照)。   On the other hand, enzymes involved in the ammonia oxidative metabolism of ammonia oxidizing bacteria include ammonium monooxygenase (AMO), which oxidizes ammonia to produce hydroxylamine, and hydroxylamine oxidoreductase (HAO), which produces nitrite from the produced hydroxylamine. Although it is said that two kinds of enzymes are involved, there is no report that these are enzyme reactions involving molybdenum (see Non-Patent Document 4).

特許文献1には、効率的に硝化反応を進めるために、コバルトを被処理水に共存させるとともに、さらにモリブデン、カルシウム、マグネシウム成分を共存させる方法が記載されている。特許文献1の実施例で、窒素濃度として70mgN/Lという比較的低濃度の被処理水の硝化脱窒処理試験を、モリブデン濃度として1mgMo/L共存下(14.3mgMo/gN)で検証しており、硝化の汚泥負荷が2.5gN/(kgMLSS・時)[=0.06kgN/(kgMLSS・日)]の条件にて、窒素の除去率が90%になるという結果を得ているが、顕著な効果が得られたとは考えにくい。   Patent Literature 1 describes a method in which cobalt is coexisted in water to be treated and molybdenum, calcium, and a magnesium component are coexistent in order to efficiently promote a nitrification reaction. In the example of Patent Document 1, a nitrification denitrification treatment test of water to be treated having a relatively low nitrogen concentration of 70 mgN / L was verified in the presence of 1 mgMo / L (14.3 mgMo / gN) as a molybdenum concentration. Under the condition that the sludge load of nitrification is 2.5 gN / (kgMLSS · hour) [= 0.06 kgN / (kgMLSS · day)], the result that the nitrogen removal rate is 90% is obtained. It is unlikely that a remarkable effect was obtained.

本発明者らは、アンモニア酸化菌および亜硝酸酸化菌が共存する微生物活性汚泥を用いて、特に高濃度の窒素を含有する被処理水を処理する方法において、モリブデンを所定量供給することで、亜硝酸酸化反応のみならず、アンモニア酸化菌の活性をも大幅に向上させることができることを見出した。また、本発明者らは、アンモニア酸化菌および亜硝酸酸化菌、脱窒菌を含む様々な細菌類が共存する微生物活性汚泥を用いて、特に高濃度の窒素を含有する被処理水を処理する方法において、モリブデンを所定量供給することで、亜硝酸酸化や脱窒(硝酸還元)反応のみならず、アンモニア酸化菌の活性をも大幅に向上させることができることを見出した。アンモニア酸化菌および亜硝酸酸化菌のような独立栄養性細菌と、有機物を資化可能な脱窒菌のような従属栄養性細菌が共存した微生物活性汚泥中では、増殖速度が硝化菌よりも大きい脱窒菌を含む従属栄養性細菌が汚泥中で優占している。通常、各細菌の代謝反応は独立していると想定されるが、複数の機能微生物が存在する微生物活性汚泥中では、各細菌が共存関係にある。モリブデン化合物添加がアンモニア酸化活性を向上させる機構は明らかではないが、脱窒菌のような従属栄養性細菌の代謝活性をモリブデンの供給により、増加させることができることから、相対的にアンモニア酸化の活性向上にも繋がっていると推察される。   The present inventors, using a microbial activated sludge coexisting with ammonia oxidizing bacteria and nitrite oxidizing bacteria, particularly in a method of treating water to be treated containing a high concentration of nitrogen, by supplying a predetermined amount of molybdenum, It has been found that not only the nitrite oxidation reaction but also the activity of ammonia oxidizing bacteria can be significantly improved. In addition, the present inventors have proposed a method of treating water to be treated containing a particularly high concentration of nitrogen by using microbial activated sludge in which various bacteria including ammonia oxidizing bacteria, nitrite oxidizing bacteria, and denitrifying bacteria coexist. It has been found that, by supplying a predetermined amount of molybdenum, not only the nitrite oxidation and denitrification (nitrate reduction) reaction but also the activity of ammonia-oxidizing bacteria can be significantly improved. In microbial activated sludge in which autotrophic bacteria such as ammonia oxidizing bacteria and nitrite oxidizing bacteria coexist with heterotrophic bacteria such as denitrifying bacteria capable of assimilating organic substances, the growth rate is higher than that of nitrifying bacteria. Heterotrophic bacteria, including nitrifying bacteria, dominate in the sludge. Normally, it is assumed that the metabolic reaction of each bacterium is independent, but in a microbial activated sludge in which a plurality of functional microorganisms are present, each bacterium has a coexistence relationship. The mechanism by which the addition of molybdenum compounds improves the ammonia oxidation activity is not clear, but the metabolic activity of heterotrophic bacteria such as denitrifying bacteria can be increased by the supply of molybdenum. It is presumed that it is also connected to.

本実施形態において、処理対象となる被処理水は、アンモニア態窒素を含む窒素含有水であり、特に、アンモニア態窒素を高濃度に含む窒素含有水であり、さらに有機態窒素を含む。被処理水としては、例えば、電子産業排水、金属精錬工場排水、発電所排水等の産業排水や、汚泥処理過程で排出される消化脱離水を含む排水等が挙げられる。ここで、電子産業排水は、様々な薬品が含まれており、また、製造する製品によっても排水中の成分は大きく異なるが、窒素含有水としては、例えばウェハー洗浄排水等が挙げられる。この排水中には、アンモニアの他、水酸化テトラメチルアンモニウム(TMAH)、過酸化水素、フッ素イオン、イソプロピルアルコール(IPA)等を含むことが多い。   In the present embodiment, the water to be treated is nitrogen-containing water containing ammonia nitrogen, particularly nitrogen-containing water containing ammonia nitrogen at a high concentration, and further contains organic nitrogen. Examples of the water to be treated include industrial effluents such as electronic industrial effluents, metal smelting plant effluents, and power plant effluents, and effluents including digestion desorbed water discharged in a sludge treatment process. Here, the electronic industrial wastewater contains various chemicals, and the components in the wastewater vary greatly depending on the products to be manufactured. Examples of the nitrogen-containing water include wafer cleaning wastewater. This wastewater often contains, in addition to ammonia, tetramethylammonium hydroxide (TMAH), hydrogen peroxide, fluorine ions, isopropyl alcohol (IPA), and the like.

被処理水中のモリブデン濃度は、例えば、0.0001mgMo/L以下である。また、被処理水中の窒素濃度が、好ましくは100mgN/L以上である場合、より好ましくは400mgN/L以上である場合に、本実施形態に係る水処理方法および水処理装置が好適に適用される。   The molybdenum concentration in the water to be treated is, for example, 0.0001 mgMo / L or less. Further, when the nitrogen concentration in the water to be treated is preferably 100 mgN / L or more, and more preferably 400 mgN / L or more, the water treatment method and the water treatment apparatus according to the present embodiment are suitably applied. .

このような窒素含有水を生物学的に処理するにあたり、過酸化水素やフッ素イオン等の阻害性物質は生物に対して阻害性を有するため、予め除去することが望ましい。これらの阻害性物質の処理方法としては、既存技術を使用することができ、例えば、過酸化水素の処理においては、酵素を添加する方法、還元剤を注入する方法、活性炭に接触させる方法等が挙げられる。また、フッ素イオンの処理においては、カルシウムを添加してフッ化カルシウムとして除去する方法、イオン交換樹脂にて処理する方法等が挙げられる。   In biologically treating such nitrogen-containing water, inhibitory substances such as hydrogen peroxide and fluorine ions have an inhibitory effect on living organisms, and thus it is desirable to remove them in advance. As a method for treating these inhibitory substances, existing techniques can be used.For example, in the treatment of hydrogen peroxide, a method of adding an enzyme, a method of injecting a reducing agent, a method of contacting with activated carbon, and the like are exemplified. No. In the treatment of fluorine ions, a method of adding calcium to remove as calcium fluoride, a method of treating with an ion-exchange resin, and the like can be given.

過酸化水素やフッ素イオン等の阻害性物質を除去した窒素含有水は、生物学的処理工程による処理が行われる前に、一旦水槽に貯められ、生物学的処理工程にかかる流量や水質を安定化させるとともに、アルカリまたは酸等のpH調整剤により適切なpH(例えば、pH6.5〜8.0)に調整されることが好ましい。そして、流量、水質、pH等が調整された窒素含有水(被処理水)が生物学的処理工程に送られる。   Nitrogen-containing water from which inhibitory substances such as hydrogen peroxide and fluorine ions have been removed is temporarily stored in a water tank before the biological treatment process is performed, and the flow rate and water quality of the biological treatment process are stabilized. Preferably, the pH is adjusted to an appropriate pH (for example, pH 6.5 to 8.0) with a pH adjuster such as an alkali or an acid. Then, nitrogen-containing water (water to be treated) whose flow rate, water quality, pH and the like are adjusted is sent to the biological treatment step.

硝化装置10における硝化工程は、硝化部(例えば硝化槽)に被処理水を供給して、被処理水中のアンモニウムイオン等のアンモニア態窒素を好気的(例えば酸素の存在下で)に亜硝酸または硝酸態窒素にまで酸化する工程である。硝化部には例えば空気導入管が接続されており、硝化部内の被処理水に空気等の酸素含有気体を供給することができる構造となっている。そして、硝化部内で、硝化菌の働きにより、被処理水中のアンモニウムイオン等のアンモニア態窒素を亜硝酸または硝酸態窒素に硝化させる。ここで硝化菌とは、アンモニウムイオン等のアンモニア態窒素を亜硝酸イオンに酸化する独立栄養性のアンモニア酸化菌と、亜硝酸イオンを硝酸イオンに酸化する独立栄養性の亜硝酸酸化菌との総称のことをいう。   In the nitrification step in the nitrification apparatus 10, the water to be treated is supplied to a nitrification section (for example, a nitrification tank), and ammonia nitrogen such as ammonium ions in the water to be treated is aerobically (for example, in the presence of oxygen) nitrite. Alternatively, it is a step of oxidizing to nitrate nitrogen. For example, an air introduction pipe is connected to the nitrification unit, and has a structure capable of supplying an oxygen-containing gas such as air to the water to be treated in the nitrification unit. Then, in the nitrification section, nitric acid is used to nitrify ammonium nitrogen such as ammonium ion in the water to be treated into nitrite or nitrate nitrogen. Here, nitrifying bacteria are a general term for autotrophic ammonium oxidizing bacteria that oxidize ammonium nitrogen such as ammonium ions to nitrite ions, and autotrophic nitrite oxidizing bacteria that oxidize nitrite ions to nitrate ions. Means

被処理水中に含まれるモリブデンが不足する場合には、モリブデン化合物を外部添加すればよい。モリブデン化合物は、例えばモリブデン化合物溶液として、被処理水に対してモリブデン化合物供給配管26を通して供給されて、モリブデン化合物が被処理水に混合されることで系内に供給される。モリブデン化合物は例えば処理される窒素量に比例させて供給すればよい。モリブデン化合物を所定量供給することで、硝化菌(アンモニア酸化菌および亜硝酸酸化菌)および脱窒菌の活性を高く維持し、安定運転または高速処理が可能となる。   When molybdenum contained in the water to be treated is insufficient, a molybdenum compound may be externally added. The molybdenum compound is supplied to the water to be treated through the molybdenum compound supply pipe 26, for example, as a molybdenum compound solution, and is supplied into the system by mixing the molybdenum compound with the water to be treated. The molybdenum compound may be supplied, for example, in proportion to the amount of nitrogen to be treated. By supplying a predetermined amount of the molybdenum compound, the activities of nitrifying bacteria (ammonium oxidizing bacteria and nitrite oxidizing bacteria) and denitrifying bacteria are maintained at a high level, and stable operation or high-speed treatment can be performed.

モリブデン化合物としては、例えば、モリブデン酸ナトリウム、モリブデン酸カリウム、モリブデン酸アンモニウム等のモリブデン酸化合物等が挙げられる。モリブデン化合物の形態としては特に限定はないが、例えば溶液の状態であれば微生物活性汚泥中の細菌が利用しやすく、例えばモリブデン酸ナトリウムやモリブデン酸カリウム等の水溶液が予め調製されて添加されることが好ましい。   Examples of the molybdenum compound include molybdate compounds such as sodium molybdate, potassium molybdate, and ammonium molybdate. The form of the molybdenum compound is not particularly limited, but, for example, if it is in the form of a solution, the bacteria in the microbial activated sludge can be easily used.For example, an aqueous solution of sodium molybdate or potassium molybdate is prepared and added in advance. Is preferred.

モリブデン化合物の添加場所については、硝化処理が行われる前の配管16に供給されてもよいし、被処理水と微生物活性汚泥とが混合された硝化装置10に供給されてもよい。また、添加されたモリブデン化合物が返送汚泥として固液分離工程よりも前段に返送され、系内を循環することを考慮すれば、配管18や脱窒装置12にモリブデン化合物供給配管が接続されて供給されてもいい。   The molybdenum compound may be added to the pipe 16 before the nitrification treatment is performed, or may be supplied to the nitrification apparatus 10 in which the water to be treated and the microbial activated sludge are mixed. Also, considering that the added molybdenum compound is returned as return sludge before the solid-liquid separation step and circulates in the system, the molybdenum compound supply pipe is connected to the pipe 18 and the denitrification apparatus 12 and supplied. It can be done.

硝化装置10(硝化工程)において、被処理水に対して、モリブデン濃度が0.025mgMo/gN以上となるようにモリブデン化合物を存在させるが、モリブデン濃度が0.1mgMo/gN以上となるようにモリブデン化合物を存在させることが好ましい。モリブデン濃度の上限としては、特に制限はないが、例えば、0.25mgMo/gN以下である。硝化装置10(硝化工程)において、被処理水に対して、モリブデン濃度が0.025mgMo/gN未満となると、硝化菌(アンモニア酸化菌および亜硝酸酸化菌)および脱窒菌の活性維持効果が現れない場合がある。   In the nitrification device 10 (nitrification step), the molybdenum compound is present in the water to be treated so that the molybdenum concentration becomes 0.025 mg Mo / gN or more, but the molybdenum compound becomes so that the molybdenum concentration becomes 0.1 mg Mo / gN or more. Preferably, the compound is present. The upper limit of the molybdenum concentration is not particularly limited, but is, for example, 0.25 mgMo / gN or less. In the nitrification apparatus 10 (nitrification step), when the molybdenum concentration is less than 0.025 mgMo / gN with respect to the water to be treated, the activity maintaining effect of nitrifying bacteria (ammonium oxidizing bacteria and nitrite oxidizing bacteria) and denitrifying bacteria does not appear. There are cases.

硝化装置10(硝化工程)において、モリブデン濃度を、被処理水に対して2mgMo/L以下とすることが好ましい。モリブデン濃度を、被処理水に対して2mgMo/L超とすると、硝化反応が阻害を受ける場合がある。   In the nitrification apparatus 10 (nitrification step), the molybdenum concentration is preferably set to 2 mgMo / L or less with respect to the water to be treated. If the molybdenum concentration exceeds 2 mgMo / L with respect to the water to be treated, the nitrification reaction may be hindered.

硝化部内には、微生物を担持させる担体が設置されていてもよい。微生物が担持される担体としては、特に限定されるものではないが、例えば、プラスチックやポリウレタン等の樹脂製等のものを利用することが好ましい。   A carrier for supporting microorganisms may be provided in the nitrification section. The carrier on which the microorganisms are carried is not particularly limited, but it is preferable to use, for example, a carrier made of resin such as plastic or polyurethane.

脱窒装置12における脱窒工程は、例えば、完全混合型の脱窒部(例えば脱窒槽)に水素供与体を供給し、硝化部にて生成された亜硝酸または硝酸態窒素を無酸素条件下にて窒素ガスにまで還元する工程である。脱窒部(例えば脱窒槽)内では、従属栄養性細菌である脱窒菌の働きにより、亜硝酸または硝酸態窒素が窒素ガスにまで還元されることとなる。脱窒部では、効率的に処理を行うために硝化液と微生物活性汚泥とを無酸素条件で混合させるための撹拌装置が設置されていることが好ましい。   In the denitrification step in the denitrification apparatus 12, for example, a hydrogen donor is supplied to a completely mixed type denitrification unit (for example, a denitrification tank), and nitrous acid or nitrate nitrogen generated in the nitrification unit is subjected to anoxic condition. This is the step of reducing to nitrogen gas. In the denitrification unit (for example, a denitrification tank), nitrite or nitrate nitrogen is reduced to nitrogen gas by the action of heterotrophic bacteria, denitrification bacteria. In the denitrification section, it is preferable to provide a stirrer for mixing the nitrifying solution and the microorganism-activated sludge under oxygen-free conditions in order to perform the treatment efficiently.

脱窒部内には、微生物を担持させる担体が設置されていてもよい。微生物が担持される担体としては、特に限定されるものではないが、プラスチックやポリウレタン等の樹脂製等のものを利用することが好ましい。   A carrier for supporting microorganisms may be provided in the denitrification unit. The carrier on which the microorganisms are supported is not particularly limited, but it is preferable to use a carrier made of resin such as plastic or polyurethane.

本実施形態で用いられる、脱窒のための水素供与体は、例えばメタノール、エタノール、イソプロピルアルコール等のアルコール類、酢酸等の有機酸類、水素ガス、アセトン、グルコース、エチルメチルケトン、水酸化テトラメチルアンモニウム(TMAH)等のうち1つまたは複数が挙げられるが、これに限定されるものではなく、水素供与体として従来公知のもの全てを使用することができる。水素供与体として、被処理水中に含まれている有機物等を利用してもよい。   Examples of the hydrogen donor for denitrification used in the present embodiment include alcohols such as methanol, ethanol, and isopropyl alcohol, organic acids such as acetic acid, hydrogen gas, acetone, glucose, ethyl methyl ketone, and tetramethyl hydroxide. One or more of ammonium (TMAH) and the like may be mentioned, but not limited thereto, and any conventionally known hydrogen donors may be used. As the hydrogen donor, an organic substance or the like contained in the water to be treated may be used.

固液分離装置14における固液分離工程は、微生物活性汚泥内の硝化菌および脱窒菌により、窒素成分が、硝化および脱窒処理された脱窒液を、処理水と微生物活性汚泥とに分離し、処理水を得る工程である。   The solid-liquid separation step in the solid-liquid separation device 14 separates the denitrification liquid whose nitrogen component has been nitrified and denitrified by the nitrifying bacteria and denitrifying bacteria in the microbial activated sludge into treated water and microbial activated sludge. This is a step of obtaining treated water.

固液分離装置14としては、特に限定されるものではないが、例えば、沈降分離、加圧浮上、濾過、膜分離等の分離装置が挙げられる。固液分離工程では、処理水が得られるとともに、分離後の微生物活性汚泥も得られ、微生物活性汚泥は一部が余剰汚泥として系外に引き抜かれ、一部は例えば硝化装置10(硝化工程)へと返送されることで、系内の微生物活性汚泥量を維持することができる。   The solid-liquid separation device 14 is not particularly limited, and examples thereof include separation devices such as sedimentation separation, pressure flotation, filtration, and membrane separation. In the solid-liquid separation step, the treated water is obtained, and the microorganism-activated sludge after separation is also obtained. Part of the microorganism-activated sludge is drawn out of the system as excess sludge, and part is, for example, a nitrification device 10 (nitrification step). By returning to the system, the amount of microbial activated sludge in the system can be maintained.

脱窒装置12にて水素供与体が添加されるが、脱窒処理後に水素供与体が残存し、処理水質が悪化することが懸念される場合には、脱窒装置12(脱窒工程)と固液分離装置14(固液分離工程)との間に水素供与体を好気的に処理するための酸化手段として酸化装置が設置されてもいい。   The hydrogen donor is added in the denitrification device 12, but if there is a concern that the hydrogen donor remains after the denitrification treatment and the quality of the treated water deteriorates, the denitrification device 12 (denitrification step) is used. An oxidizing device may be provided as an oxidizing means for aerobically treating the hydrogen donor between the solid-liquid separating device 14 (solid-liquid separating step).

このような形態の水処理装置の例を図2に示す。図2の水処理装置3において、脱窒装置12(脱窒工程)と固液分離装置14(固液分離工程)との間に酸化装置30を備える。脱窒装置12の出口と酸化装置30の入口とは、配管32により接続され、酸化装置30の出口と固液分離装置14の入口とは、配管34により接続されている。   FIG. 2 shows an example of such a water treatment apparatus. In the water treatment device 3 of FIG. 2, an oxidizing device 30 is provided between the denitrification device 12 (denitrification process) and the solid-liquid separation device 14 (solid-liquid separation process). The outlet of the denitrification device 12 and the inlet of the oxidizer 30 are connected by a pipe 32, and the outlet of the oxidizer 30 and the inlet of the solid-liquid separator 14 are connected by a pipe 34.

脱窒装置12(脱窒工程)で得られた脱窒液は、配管32を通して、酸化装置30へ送液される。酸化装置30における酸化工程は、酸化部(たとえば酸化槽)で水素供与体が好気的に処理される。酸化部(たとえば酸化槽)には、例えば、硝化部と同様に空気導入管が接続されており、酸化部内の被処理水に空気等の酸素含有気体を供給することができる構造となっている。   The denitrification liquid obtained in the denitrification device 12 (denitrification step) is sent to the oxidizing device 30 through the pipe 32. In the oxidation step in the oxidation device 30, a hydrogen donor is aerobically treated in an oxidation section (for example, an oxidation tank). An air introduction pipe is connected to the oxidizing section (for example, the oxidizing tank), similarly to the nitrifying section, and has a structure capable of supplying an oxygen-containing gas such as air to the water to be treated in the oxidizing section. .

酸化装置30において酸化処理された酸化処理液は、配管34を通して固液分離装置14へ送液され、以降、図1の水処理装置1と同様にして処理が行われる。   The oxidizing solution oxidized in the oxidizing device 30 is sent to the solid-liquid separating device 14 through the pipe 34, and thereafter, the treatment is performed in the same manner as in the water treatment device 1 of FIG.

被処理水に有機物と窒素を含む場合には、脱窒反応のための水素供与体を外部から添加することなく、被処理水中の有機物を水素供与体として脱窒反応を起こしてもいい。   When the water to be treated contains organic matter and nitrogen, the denitrification reaction may be caused by using the organic matter in the water to be treated as a hydrogen donor without adding a hydrogen donor for the denitrification reaction from the outside.

このような形態の水処理装置の例を図3に示す。図3の水処理装置5において、脱窒装置12の入口には、配管36が接続され、脱窒装置12の出口と硝化装置10の入口とは、配管38により接続され、硝化装置10の出口と固液分離装置14の入口とは、配管40により接続され、固液分離装置14の処理水出口には、配管42が接続され、固液分離装置14の汚泥出口と配管36とは、汚泥返送配管44により接続されている。配管36には、モリブデン化合物供給配管26が接続されている。配管40と脱窒装置12とは、硝化液返送配管46により接続されている。   FIG. 3 shows an example of such a water treatment apparatus. In the water treatment apparatus 5 shown in FIG. 3, a pipe 36 is connected to an inlet of the denitrification apparatus 12, and an outlet of the denitrification apparatus 12 and an inlet of the nitrification apparatus 10 are connected by a pipe 38, and an outlet of the nitrification apparatus 10 is provided. And the inlet of the solid-liquid separator 14 are connected by a pipe 40, the treated water outlet of the solid-liquid separator 14 is connected to a pipe 42, and the sludge outlet of the solid-liquid separator 14 and the pipe 36 are connected to the sludge It is connected by a return pipe 44. The pipe 36 is connected to the molybdenum compound supply pipe 26. The pipe 40 and the denitrification device 12 are connected by a nitrification liquid return pipe 46.

水処理装置5において、アンモニア態窒素および有機態窒素を含む被処理水は、配管36を通して、脱窒装置12へ送液される。一方、後段の硝化装置10から硝化液の少なくとも一部が硝化液返送配管46を通して脱窒装置12へ送液される。ここで、配管36において、被処理水に対して、モリブデン化合物供給配管26を通してモリブデン化合物が供給され、モリブデン濃度が0.025mgMo/gN以上となるようにモリブデン化合物を存在させる(モリブデン化合物供給工程)。   In the water treatment device 5, the water to be treated containing ammonia nitrogen and organic nitrogen is sent to the denitrification device 12 through the pipe 36. On the other hand, at least a part of the nitrification liquid is sent to the denitrification apparatus 12 through the nitrification liquid return pipe 46 from the subsequent nitrification apparatus 10. Here, in the pipe 36, the molybdenum compound is supplied to the water to be treated through the molybdenum compound supply pipe 26, and the molybdenum compound is present so that the molybdenum concentration becomes 0.025 mgMo / gN or more (molybdenum compound supply step). .

硝化装置10において、微生物活性汚泥中に含まれる独立栄養性のアンモニア酸化菌と亜硝酸酸化菌とを含む硝化菌により、被処理水に含まれるアンモニア態窒素が亜硝酸または硝酸態窒素にまで酸化される(硝化工程)。脱窒装置12において、微生物活性汚泥中に含まれる従属栄養性の脱窒菌により、硝化装置10(硝化工程)で生成した亜硝酸または硝酸態窒素が窒素ガスにまで還元される(脱窒工程)。脱窒液は、配管38を通して、硝化装置10へ送液され、硝化液の少なくとも一部は、配管40を通して、固液分離装置14へ送液される。以降、図1の水処理装置1と同様にして処理が行われる。   In the nitrification apparatus 10, ammonia nitrogen contained in the water to be treated is oxidized to nitrite or nitrate nitrogen by nitrifying bacteria containing autotrophic ammonium oxidizing bacteria and nitrite oxidizing bacteria contained in the microbial activated sludge. (Nitrification step). In the denitrification apparatus 12, nitrite or nitrate nitrogen generated in the nitrification apparatus 10 (nitrification step) is reduced to nitrogen gas by heterotrophic denitrifying bacteria contained in the microbial activated sludge (denitrification step). . The denitrification liquid is sent to the nitrification device 10 through the pipe 38, and at least a part of the nitrification liquid is sent to the solid-liquid separation device 14 through the pipe 40. Thereafter, the processing is performed in the same manner as in the water treatment apparatus 1 of FIG.

処理水の窒素濃度をさらに低減させる場合には、図3の水処理装置5における硝化装置10と固液分離装置14との間に、後脱窒手段として後脱窒装置と、酸化手段として酸化装置とをさらに備えてもよい。   To further reduce the nitrogen concentration of the treated water, a post-denitrification device as a post-denitrification device and an oxidization device as an oxidization device are provided between the nitrification device 10 and the solid-liquid separation device 14 in the water treatment device 5 in FIG. And a device.

このような形態の水処理装置の例を図4に示す。図4の水処理装置7は、後脱窒手段として後脱窒装置48と、酸化手段として酸化装置30とさらに備える。硝化装置10の出口と後脱窒装置48の入口とは、配管50により接続され、後脱窒装置48の出口と酸化装置30の入口とは、配管52により接続され、酸化装置30の出口と固液分離装置14の入口とは、配管54により接続されている。後脱窒装置48には、水素供与体供給配管28が接続されている。配管50と脱窒装置12とは、硝化液返送配管46により接続されている。   FIG. 4 shows an example of such a water treatment apparatus. The water treatment apparatus 7 in FIG. 4 further includes a post-denitrification device 48 as post-denitrification means, and an oxidization device 30 as oxidization means. An outlet of the nitrification device 10 and an inlet of the post-denitrification device 48 are connected by a pipe 50, and an outlet of the post-denitrification device 48 and an inlet of the oxidizer 30 are connected by a pipe 52, and connected to an outlet of the oxidizer 30. The inlet of the solid-liquid separator 14 is connected by a pipe 54. The hydrogen donor supply pipe 28 is connected to the post-denitrification device 48. The pipe 50 and the denitrification device 12 are connected by a nitrification liquid return pipe 46.

水処理装置7において、アンモニア態窒素および有機態窒素を含む被処理水は、配管36を通して、脱窒装置12へ送液される。一方、後段の硝化装置10から硝化液の少なくとも一部が硝化液返送配管46を通して脱窒装置12へ送液される。ここで、配管36において、被処理水に対して、モリブデン化合物供給配管26を通してモリブデン化合物が供給され、モリブデン濃度が0.025mgMo/gN以上となるようにモリブデン化合物を存在させる(モリブデン化合物供給工程)。   In the water treatment device 7, the water to be treated containing ammonia nitrogen and organic nitrogen is sent to the denitrification device 12 through the pipe 36. On the other hand, at least a part of the nitrification liquid is sent to the denitrification apparatus 12 through the nitrification liquid return pipe 46 from the subsequent nitrification apparatus 10. Here, in the pipe 36, the molybdenum compound is supplied to the water to be treated through the molybdenum compound supply pipe 26, and the molybdenum compound is present so that the molybdenum concentration becomes 0.025 mgMo / gN or more (molybdenum compound supply step). .

硝化装置10において、微生物活性汚泥中に含まれる独立栄養性のアンモニア酸化菌と亜硝酸酸化菌とを含む硝化菌により、被処理水に含まれるアンモニア態窒素が亜硝酸または硝酸態窒素にまで酸化される(硝化工程)。脱窒装置12において、微生物活性汚泥中に含まれる従属栄養性の脱窒菌により、硝化装置10(硝化工程)で生成した亜硝酸または硝酸態窒素が窒素ガスにまで還元される(脱窒工程)。脱窒液は、配管38を通して、硝化装置10へ送液され、硝化液の少なくとも一部は、配管50を通して、後脱窒装置48へ送液され、後脱窒装置48において、脱窒菌により、硝化装置10(硝化工程)で生成した亜硝酸または硝酸態窒素が窒素ガスにまで還元される(脱窒工程)。脱窒液は、配管52を通して、酸化装置30へ送液される。以降、図2の水処理装置3と同様にして処理が行われる。硝化液の少なくとも一部は、硝化液返送配管46を通して、脱窒装置12へ送液される。   In the nitrification apparatus 10, ammonia nitrogen contained in the water to be treated is oxidized to nitrite or nitrate nitrogen by nitrifying bacteria containing autotrophic ammonium oxidizing bacteria and nitrite oxidizing bacteria contained in the microbial activated sludge. (Nitrification step). In the denitrification apparatus 12, nitrite or nitrate nitrogen generated in the nitrification apparatus 10 (nitrification step) is reduced to nitrogen gas by heterotrophic denitrifying bacteria contained in the microbial activated sludge (denitrification step). . The denitrification liquid is sent to the nitrification apparatus 10 through the pipe 38, and at least a part of the nitrification liquid is sent to the post-denitrification apparatus 48 through the pipe 50. Nitrite or nitrate nitrogen generated in the nitrification device 10 (nitrification step) is reduced to nitrogen gas (denitrification step). The denitrification liquid is sent to the oxidizer 30 through the pipe 52. Thereafter, the processing is performed in the same manner as in the water treatment apparatus 3 of FIG. At least a part of the nitrification liquid is sent to the denitrification device 12 through the nitrification liquid return pipe 46.

脱窒工程において、処理水の水理学的滞留時間における水素供与体の最大濃度と最小濃度との差が、50mgTOC/L以上となるように、水素供与体の添加量に時間変動を与え、硝化菌と脱窒菌とを含む微生物活性汚泥をグラニュール化させることが好ましい。脱窒反応において添加を行う水素供与体の濃度に変動を与えることにより、脱窒菌が自己造粒したグラニュールが容易に形成可能である。   In the denitrification step, the addition amount of the hydrogen donor is varied with time so that the difference between the maximum concentration and the minimum concentration of the hydrogen donor during the hydraulic residence time of the treated water is 50 mgTOC / L or more. It is preferable to granulate microbial activated sludge containing bacteria and denitrifying bacteria. By varying the concentration of the hydrogen donor to be added in the denitrification reaction, granules self-granulated by the denitrifying bacteria can be easily formed.

さらに、このグラニュールを硝化、脱窒を行う窒素含有水の処理システム内で循環させることにより、硝化菌等のすべての菌群をグラニュール化し、窒素含有被処理水の処理装置全体を実質的に同一のグラニュールで処理することが可能である。   Furthermore, by circulating the granules in a nitrogen-containing water treatment system for nitrification and denitrification, all bacterial groups such as nitrifying bacteria are granulated, and the entire treatment apparatus for the nitrogen-containing water to be treated is substantially reduced. Can be processed with the same granules.

また、脱窒工程における水素供与体の最大濃度と最小濃度との差を大きくし、微生物活性汚泥のグラニュール化を効率的に進行させる場合には、脱窒工程は、少なくとも第一脱窒工程と第二脱窒工程とを含む2つ以上の工程としてもよい。脱窒工程は、少なくとも第一脱窒工程と第二脱窒工程とを含み、脱窒工程において、第二脱窒工程における処理水の水理学的滞留時間における第一脱窒工程における水素供与体の最大濃度と第二脱窒工程における水素供与体の最小濃度との差が、50mgTOC/L以上となるように、少なくとも第一脱窒工程において水素供与体を供給してもよい。   Further, in the case where the difference between the maximum concentration and the minimum concentration of the hydrogen donor in the denitrification step is increased to efficiently promote the granulation of the microbial activated sludge, the denitrification step is performed at least in the first denitrification step. And two or more steps including a second denitrification step. The denitrification step includes at least a first denitrification step and a second denitrification step, and in the denitrification step, the hydrogen donor in the first denitrification step at the hydraulic residence time of the treated water in the second denitrification step The hydrogen donor may be supplied at least in the first denitrification step so that the difference between the maximum concentration of the hydrogen donor and the minimum concentration of the hydrogen donor in the second denitrification step is 50 mgTOC / L or more.

このような形態の水処理装置の例を図5に示す。図5の水処理装置9は、脱窒手段として、第1脱窒装置58と第2脱窒装置60とを備える。硝化装置10の出口と第1脱窒装置58の入口とは、配管62により接続され、第1脱窒装置58の出口と第2脱窒装置60の入口とは、配管64により接続され、第2脱窒装置60の出口と酸化装置30の入口とは、配管66により接続されている。   An example of such a water treatment apparatus is shown in FIG. 5 includes a first denitrification device 58 and a second denitrification device 60 as denitrification means. The outlet of the nitrification device 10 and the inlet of the first denitrification device 58 are connected by a pipe 62, the outlet of the first denitrification device 58 and the inlet of the second denitrification device 60 are connected by a pipe 64, 2 The outlet of the denitrification device 60 and the inlet of the oxidation device 30 are connected by a pipe 66.

硝化装置10で得られた硝化液は、配管62を通して第1脱窒装置58へ送液される。第1脱窒装置58において、水素供与体供給配管28を通して水素供与体が供給され、微生物活性汚泥中に含まれる従属栄養性の脱窒菌と接触された後、混合液は、配管64を通して第2脱窒装置60へ送液され、第2脱窒装置60において、脱窒菌により、硝化装置10(硝化工程)で生成した亜硝酸または硝酸態窒素が窒素ガスにまで還元される(脱窒工程)。脱窒液は、配管66を通して、酸化装置30へ送液される。以降、図2の水処理装置3と同様にして処理が行われる。   The nitrification liquid obtained by the nitrification device 10 is sent to the first denitrification device 58 through the pipe 62. In the first denitrification apparatus 58, after the hydrogen donor is supplied through the hydrogen donor supply pipe 28 and is brought into contact with heterotrophic denitrifying bacteria contained in the microbial activated sludge, the mixed solution is passed through the pipe 64 to the second The liquid is sent to the denitrification device 60, and in the second denitrification device 60, the nitrite or nitrate nitrogen generated in the nitrification device 10 (nitrification process) is reduced to nitrogen gas by the denitrifying bacteria (denitrification process). . The denitrification liquid is sent to the oxidizer 30 through the pipe 66. Thereafter, the processing is performed in the same manner as in the water treatment apparatus 3 of FIG.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.

以下に連続通水試験機を用いた実施例および比較例を示す。なお、全て室温を20℃で制御した条件で実施した。   Examples and comparative examples using a continuous water flow tester are shown below. In addition, all were implemented on the conditions which controlled room temperature at 20 degreeC.

<実施例1>
実施例1では、図5に示す水処理装置9の構成のベンチスケール試験機を用いた。硝化菌および脱窒菌をグラニュール化させ、模擬排水の硝化脱窒処理試験を実施した。模擬排水としては、純水にアンモニア態窒素として400mgN/Lとなるように溶解させたものを用い、その他の栄養源としてリン酸および微量元素薬液を添加したものを用いた。本試験に用いた微量元素薬液にはモリブデンは含まないものを用いた。脱窒のための水素供与体はメタノールを用い、第1脱窒槽へ間欠的に添加し、第1脱窒槽内の最大メタノール濃度と、第2脱窒槽内の最小メタノール濃度との差が、50mgTOC/L以上となるようにした。硝化槽、第1脱窒槽、第2脱窒槽にはpHコントローラを設置し、塩酸または水酸化ナトリウムを用いて槽内pHを7〜7.5に調整した。固液分離槽から得られた濃縮汚泥は硝化槽へと返送した。0日目から45日目まではモリブデン添加は実施せず(比較例1)、46日目からモリブデン化合物(モリブデン酸ナトリウム)を被処理水に対して0.1mgMo/Lとなるように添加を開始した(実施例1)。モリブデン添加濃度は、被処理水の窒素濃度に対しては0.25mgMo/gNの条件である。結果を図6,7に示す。図6は、硝化槽容積負荷[kgN/(m・d)]、硝化槽のアンモニア態窒素濃度[mgN/L]の推移を示し、図7は、経過日数[day]に対する脱窒槽容積負荷[kgN/(m・d)]、処理水の総窒素濃度[mgN/L]の推移を示す。
<Example 1>
In Example 1, a bench scale tester having the configuration of the water treatment device 9 shown in FIG. 5 was used. The nitrifying bacteria and the denitrifying bacteria were granulated, and the simulated wastewater was subjected to a nitrification denitrification treatment test. The simulated wastewater used was a solution prepared by dissolving ammonia nitrogen in pure water at a concentration of 400 mgN / L, and a phosphoric acid and a trace element chemical solution added as other nutrient sources. The trace element chemical solution used in this test did not contain molybdenum. Methanol was used as a hydrogen donor for denitrification and was added intermittently to the first denitrification tank, and the difference between the maximum methanol concentration in the first denitrification tank and the minimum methanol concentration in the second denitrification tank was 50 mgTOC. / L or more. A pH controller was installed in the nitrification tank, the first denitrification tank, and the second denitrification tank, and the pH in the tank was adjusted to 7 to 7.5 using hydrochloric acid or sodium hydroxide. The concentrated sludge obtained from the solid-liquid separation tank was returned to the nitrification tank. From day 0 to day 45, molybdenum was not added (Comparative Example 1), and from day 46, a molybdenum compound (sodium molybdate) was added to the water to be treated so as to be 0.1 mgMo / L. Started (Example 1). The concentration of molybdenum is 0.25 mgMo / gN with respect to the nitrogen concentration of the water to be treated. The results are shown in FIGS. 6, the nitrification tank volume loading [kgN / (m 3 · d )], shows changes in ammonium nitrogen concentration of the nitrification tank [mgN / L], FIG. 7, the denitrification tank volume loading for age [day] [kgN / (m 3 · d )], shows changes in total nitrogen concentration in the treated water [mgN / L].

初期の比較例1において、硝化槽における容積負荷を0.2kgN/(m・d)で通水開始したが、硝化槽においてアンモニア態窒素が5〜60mgN/L残存し、負荷を上昇させることができず、硝化速度は0.15〜0.25kgN/(m・d)で停滞した。硝化速度の停滞に伴い、脱窒速度も0.3〜0.5kgN/(m・d)で停滞した。比較例1の期間中、安定運転が可能となる汚泥当りの処理速度は、硝化で0.05kgN/(kgVSS・d)であった。 In early Comparative Example 1, although the volume load in the nitrification tank starts passing water in 0.2kgN / (m 3 · d) , the ammonia nitrogen in the nitrification tank is left 5~60mgN / L, increasing the load can not, nitrification rate was stagnant at 0.15~0.25kgN / (m 3 · d) . With the stagnation of the nitrification rate, stagnated in denitrification rate also 0.3~0.5kgN / (m 3 · d) . During the period of Comparative Example 1, the processing speed per sludge at which stable operation was possible was 0.05 kgN / (kgVSs · d) by nitrification.

次に、被処理水へのモリブデン添加を開始したところ、処理速度の上昇が認められ、最大で1.1kgN/(m・d)の硝化速度を確認できた。なお、実施例1の期間中は硝化槽のアンモニア態窒素は常に1mgN/L以下で推移した。硝化速度の上昇に伴い、脱窒速度の上昇も認められ、最大で2.2kgN/(m・d)に達した。比較例1の期間中、汚泥活性を示す汚泥当りの処理速度は、硝化で0.24kgN/(kgVSS・d)、脱窒で0.54kgN/(kgVSS・d)での安定運転を確認できた。 Next, when the addition of molybdenum to the water to be treated was started, an increase in the treatment rate was observed, and a nitrification rate of 1.1 kgN / (m 3 · d) at maximum was confirmed. In addition, during the period of Example 1, the ammonia nitrogen in the nitrification tank constantly changed to 1 mgN / L or less. As the nitrification rate increased, the denitrification rate also increased, reaching 2.2 kgN / (m 3 · d) at the maximum. During the period of Comparative Example 1, it was confirmed that the processing speed per sludge exhibiting sludge activity was stable at 0.24 kgN / (kgVSs · d) for nitrification and 0.54 kgN / (kgVSS · d) for denitrification. .

<比較例2>
比較例2では、図5に示す水処理装置9の構成のベンチスケール試験機を用い、連続通水試験を行った。模擬排水としては、純水中にアンモニア態窒素として800mgN/Lとなるように調整し、その他リン酸および微量元素薬液(モリブデンを含まない)を添加したものを用いた。微量元素の補給を目的として120日目から215日目まではモリブデンを含まない井水(モリブデン濃度:0.0001mgMo/L以下(検出限界以下))を、216日目から280日目まではモリブデンを含む工水を被処理水の10%流量を添加して補給を行った。なお、工水中のモリブデン濃度は0.0006mgMo/Lであった。井水および工水中のモリブデン濃度は、ICP質量分析法(ICP−MS)を用いて測定した。
<Comparative Example 2>
In Comparative Example 2, a continuous water flow test was performed using a bench scale tester having the configuration of the water treatment apparatus 9 shown in FIG. As the simulated wastewater, pure water adjusted to 800 mgN / L as ammonia nitrogen and added with phosphoric acid and a trace element chemical solution (not containing molybdenum) was used. For the purpose of replenishing trace elements, molybdenum-free well water (molybdenum concentration: 0.0001 mg Mo / L or less (below detection limit)) was used from day 120 to day 215, and molybdenum was used from day 216 to day 280. The replenishment was carried out by adding 10% flow rate of the water to be treated to the processing water containing. The molybdenum concentration in the working water was 0.0006 mgMo / L. The molybdenum concentration in well water and industrial water was measured using ICP mass spectrometry (ICP-MS).

硝化槽容積負荷[kgN/(m・d)]と硝化槽の残存アンモニア態窒素濃度[mgN/L]の推移を図8、脱窒槽容積負荷[kgN/(m・d)]と処理水の総窒素濃度[mgN/L]の推移を図9に示す。図8から分かるように、硝化槽容積負荷を0.8kgN/(m・d)まで上昇させたが、169日目にはアンモニア態窒素濃度が41mgN/L残存し、171日目には130mgN/Lにまで上昇した。その後も硝化性能は安定せず、10から40mgN/Lが硝化槽内で残存することがあり、安定運転ができなかった。また、試験期間中の硝化活性は0.02〜0.075kgN/(kgVSS・d)であった。硝化の不安定性に伴い、脱窒も処理が安定せず、処理水TNは最大で150mgN/L程度にまで上昇した。 Nitrification tank volume loading [kgN / (m 3 · d )] and FIG changes in the residual ammonia nitrogen concentration in the nitrification tank [mgN / L] 8, denitrification tank volume loading [kgN / (m 3 · d )] and treated FIG. 9 shows changes in the total nitrogen concentration [mgN / L] of water. As can be seen from FIG. 8, the nitrification tank volume load was increased to 0.8 kgN / (m 3 · d), but the ammonia nitrogen concentration remained 41 mgN / L on the 169th day, and 130 mgN / L on the 171th day. / L. Thereafter, the nitrification performance was not stable, and 10 to 40 mgN / L sometimes remained in the nitrification tank, and stable operation was not possible. The nitrification activity during the test period was 0.02 to 0.075 kgN / (kgVSs · d). Due to the instability of nitrification, the treatment for denitrification was not stable, and the treated water TN increased to a maximum of about 150 mgN / L.

<実施例2>
比較例2と同様の条件の模擬排水、試験装置を用い、モリブデン化合物溶液の添加影響を連続通水試験で検証した。モリブデン添加濃度としては被処理水のアンモニア態窒素濃度800mgN/Lに対して、0.02mgMo/Lとし、175日目から添加を開始した。モリブデン添加濃度は、被処理水の窒素濃度に対しては0.025mgMo/gNの条件である。
<Example 2>
Using a simulated drainage and test apparatus under the same conditions as in Comparative Example 2, the effect of adding the molybdenum compound solution was verified by a continuous water flow test. The molybdenum addition concentration was 0.02 mgMo / L with respect to the ammonia nitrogen concentration of the water to be treated of 800 mgN / L, and the addition was started on the 175th day. The molybdenum addition concentration is 0.025 mgMo / gN with respect to the nitrogen concentration of the water to be treated.

硝化槽容積負荷[kgN/(m・d)]と硝化槽の残存アンモニア態窒素濃度[mgN/L]の推移を図10、脱窒槽容積負荷[kgN/(m・d)]と処理水の総窒素濃度[mgN/L]の推移を図11に示す。その結果、モリブデンを添加していない期間は、硝化槽容積負荷を上げられず、175日目に55mgN/Lのアンモニア態窒素が残存した。175日目からMo化合物の添加を開始したところ、アンモニア態窒素濃度の低下が確認され、容積負荷を0.8〜0.9kgN/(m・d)にまで上昇させても安定運転が可能であった。モリブデン添加前の硝化活性は最大で0.05kgN/(kgVSS・d)であったが、モリブデン添加開始後の硝化活性は0.11kgN/(kgVSS・d)まで上昇した。脱窒に関しても、脱窒槽容積負荷として1.4kgN/(m・d)まで上昇した。 Nitrification tank volume loading [kgN / (m 3 · d )] and the transition of the remaining ammonia nitrogen concentration in the nitrification tank [mgN / L] 10, a denitrification tank volume loading [kgN / (m 3 · d )] and treated FIG. 11 shows the transition of the total nitrogen concentration [mgN / L] of water. As a result, during the period in which molybdenum was not added, the volume load of the nitrification tank was not increased, and 55 mgN / L of ammonia nitrogen remained on the 175th day. Was started addition of Mo compound 175 days, reduction of the ammonia nitrogen concentration is confirmed, can be stably operated even by increasing the volumetric loading up to 0.8~0.9kgN / (m 3 · d) Met. The nitrification activity before the addition of molybdenum was 0.05 kgN / (kg VSS · d) at the maximum, but the nitrification activity after the start of the addition of molybdenum increased to 0.11 kgN / (kg VSS · d). Regard denitrification, rose as denitrification volume loading up 1.4kgN / (m 3 · d) .

<実施例3>
実施例2と同様の条件の模擬排水、試験装置を用い、モリブデン化合物の添加影響を連続通水試験で検証した。添加濃度としては被処理水アンモニア態窒素濃度が800mgN/Lに対して、0.1mgMo/Lとし、343日目から添加を開始した。モリブデン添加濃度は、被処理水の窒素濃度に対しては0.125mgMo/gNの条件である。
<Example 3>
Using a simulated drainage and test apparatus under the same conditions as in Example 2, the effect of adding the molybdenum compound was verified by a continuous water flow test. The addition concentration was 0.1 mgMo / L with respect to the ammonium nitrogen concentration of the water to be treated being 800 mgN / L, and the addition was started on the 343rd day. The concentration of molybdenum is 0.125 mgMo / gN with respect to the nitrogen concentration of the water to be treated.

硝化槽容積負荷[kgN/(m・d)]と硝化槽の残存アンモニア態窒素濃度[mgN/L]の推移を図12、脱窒槽容積負荷[kgN/(m・d)]と処理水の総窒素濃度[mgN/L]の推移を図13に示す。その結果、モリブデンを添加していない期間は脱窒槽で70から80mg/L程度の硝酸態窒素が検出されていたため負荷を上げることができず、硝化槽容積負荷として0.25kgN/(m・d)程度で停滞していた。343日目からモリブデン溶液の添加を開始し、負荷の上昇を試みた。346日目に硝化槽でアンモニア態窒素が37mgN/L検出されたが、その後アンモニア態窒素濃度の低下が見られた。硝化槽容積負荷を0.86kgN/(m・d)まで上昇させたが、硝化槽でアンモニア態窒素が検出されることはなく、脱窒槽でも処理水TNは5mgN/L以下で推移した。モリブデン添加前の硝化活性は0.05〜0.06kgN/(kgVSS・d)で停滞していたが、モリブデン添加開始後、活性の向上が見られ、0.2kgN/(kgVSS・d)への上昇が確認された。 Nitrification tank volume loading [kgN / (m 3 · d )] and 12 changes in the residual ammonia nitrogen concentration in the nitrification tank [mgN / L], denitrification tank volume loading [kgN / (m 3 · d )] and treated FIG. 13 shows changes in the total nitrogen concentration [mgN / L] of water. As a result, during the period in which molybdenum was not added, the load could not be increased because about 70 to 80 mg / L of nitrate nitrogen was detected in the denitrification tank, and the load on the nitrification tank was 0.25 kgN / (m 3 ·· d) It was stagnant. On day 343, the addition of the molybdenum solution was started to try to increase the load. On the 346th day, 37 mg N / L of ammonia nitrogen was detected in the nitrification tank, and thereafter, a decrease in the concentration of ammonia nitrogen was observed. Although increasing the nitrification tank volume loading up 0.86kgN / (m 3 · d) , never ammonia nitrogen is detected in the nitrification tank, treated water TN in denitrification tank remained below 5mgN / L. The nitrification activity before the addition of molybdenum was stagnant at 0.05 to 0.06 kgN / (kgVSs · d), but after the start of the addition of molybdenum, the activity was improved, and the activity increased to 0.2 kgN / (kgVSs · d). The rise was confirmed.

以上の結果のまとめを図14に示す。図14より、硝化工程において、被処理水に対して、モリブデン濃度が0.025mgMo/gN以上となるようにモリブデン化合物を存在させることが好ましいことがわかる。   FIG. 14 shows a summary of the above results. FIG. 14 shows that in the nitrification step, the molybdenum compound is preferably present in the water to be treated so that the molybdenum concentration becomes 0.025 mgMo / gN or more.

このように、実施例の方法により、アンモニア態窒素および有機態窒素を含む被処理水の生物学的処理において、被処理水中の窒素濃度が高濃度であっても高い処理速度で安定して処理することができた。   As described above, according to the method of the embodiment, in the biological treatment of the treated water containing ammonia nitrogen and organic nitrogen, even if the concentration of nitrogen in the treated water is high, the treatment is stably performed at a high treatment rate. We were able to.

以下、モリブデン化合物の添加濃度がアンモニア酸化反応および脱窒反応へ与える阻害影響を、回分試験により評価を実施した。   Hereinafter, the inhibitory effect of the addition concentration of the molybdenum compound on the ammonia oxidation reaction and the denitrification reaction was evaluated by a batch test.

[脱窒へのモリブデン添加影響試験(回分試験)]
硝化脱窒汚泥を用いて、モリブデン添加が脱窒反応に与える影響を、模擬排水を用いた回分試験により検証した。実験方法の具体的な方法を下記に記す。
[Test for the effect of adding molybdenum on denitrification (batch test)]
Using nitrifying denitrification sludge, the effect of molybdenum addition on the denitrification reaction was verified by a batch test using simulated wastewater. The specific method of the experiment is described below.

1.回分試験に用いる模擬排水としては、井水に硝酸態イオンが60mgN/L、リン酸態リンが1mgP/Lとなるように添加したものを用いた。なお、模擬排水中のモリブデン含有濃度は、0.0001mg/L以下であった。
2.予め水素供与体としてのメタノールで馴養された汚泥を純水で洗浄したものを模擬排水に懸濁させ、5個のビーカに分注した。
3.汚泥と模擬排水の混合液にモリブデン酸ナトリウム溶液を各ビーカに0mgMo/L、1mgMo/L、5mgMo/L、10mgMo/L、20mgMo/Lとなるように添加し、撹拌した。
4.撹拌をしながら、水素供与体としてのメタノールを各ビーカに同量ずつ添加し、硝酸の減少速度を評価した。
1. As the simulated wastewater used for the batch test, well water was used in which nitrate ion was added to 60 mgN / L and phosphate phosphorus to 1 mgP / L. In addition, the molybdenum content concentration in the simulated wastewater was 0.0001 mg / L or less.
2. A sludge that had been previously acclimated to methanol as a hydrogen donor and washed with pure water was suspended in simulated wastewater, and dispensed into five beakers.
3. A sodium molybdate solution was added to the mixed liquid of the sludge and the simulated drainage so as to be 0 mgMo / L, 1 mgMo / L, 5 mgMo / L, 10 mgMo / L, and 20 mgMo / L in each beaker, followed by stirring.
4. While stirring, methanol as a hydrogen donor was added to each beaker in the same amount, and the reduction rate of nitric acid was evaluated.

脱窒活性試験の結果、硝酸減少速度とビーカ内の汚泥量から算出される脱窒活性は、Moを添加しない系列では0.43gN/gSS/日、Mo濃度が1mgMo/Lとした系列では0.46、5mgMo/Lとした系列では0.45gN/gSS/日、10mgMo/Lとした系列では0.42gN/gSS/日、20mgMo/Lとした系列では0.41gN/gSS/日となり、Moを添加しない系列と比較して僅かではあるが、Mo濃度が1mgMo/Lとした系列で8%、5mgMo/Lとした系列で5%の活性向上が確認された。一方で、Mo濃度を20mgMo/Lと高濃度に添加した系列においても、最も脱窒活性が高かったMo濃度1mgMo/Lの系列と比較して約10%の活性低下しか確認されず、脱窒へのMoの顕著な阻害は確認されなかった。   As a result of the denitrification activity test, the denitrification activity calculated from the nitric acid reduction rate and the amount of sludge in the beaker was 0.43 gN / gSS / day in the series where no Mo was added, and 0 in the series where the Mo concentration was 1 mgMo / L. 0.46 gN / gSS / day in the series of 0.46 g, 5 mgMo / L, 0.42 gN / gSS / day in the series of 10 mgMo / L, and 0.41 gN / gSS / day in the series of 20 mgMo / L. Although the activity was slightly higher than that of the series in which no was added, the activity was improved by 8% in the series in which the Mo concentration was 1 mgMo / L and 5% in the series in which the Mo concentration was 5 mgMo / L. On the other hand, in the series in which the Mo concentration was added as high as 20 mg Mo / L, only about 10% decrease in the activity was confirmed as compared with the series in which the Mo concentration was 1 mg Mo / L, which had the highest denitrification activity. No significant inhibition of Mo was observed.

[アンモニア酸化へのMo添加影響試験(回分試験)]
硝化脱窒汚泥を用いて、モリブデン添加がアンモニア酸化反応に与える影響を、模擬排水を用いた回分試験により検証した。実験方法の具体的な方法を下記に記す。
[Test for the effect of adding Mo on ammonia oxidation (batch test)]
Using nitrification denitrification sludge, the effect of molybdenum addition on the ammonia oxidation reaction was verified by a batch test using simulated wastewater. The specific method of the experiment is described below.

1.回分試験に用いる模擬排水としては、井水にアンモニア態イオンが60mgN/L、リン酸態リンが1mgP/Lとなるように添加したものを用いた。なお、模擬排水中のモリブデン含有濃度は、0.0001mg/L以下であった。
2.供試汚泥を純水で洗浄したものを模擬排水に懸濁させ、5個のビーカに分注した。
3.汚泥と模擬排水の混合液にモリブデン酸ナトリウム溶液を各ビーカに0mgMo/L、0.1mgMo/L、0.5mgMo/L、2mgMo/L、10mgMo/Lとなるように添加し、それぞれ曝気を開始した。
4.それぞれのアンモニア態窒素濃度の減少速度を評価した。
1. As the simulated wastewater used for the batch test, well water was used in which ammonium ion was added to 60 mgN / L and phosphoric acid phosphorus to 1 mgP / L. In addition, the molybdenum content concentration in the simulated wastewater was 0.0001 mg / L or less.
2. The test sludge washed with pure water was suspended in simulated drainage water and dispensed into five beakers.
3. Add sodium molybdate solution to the mixture of sludge and simulated waste water to each beaker to be 0mgMo / L, 0.1mgMo / L, 0.5mgMo / L, 2mgMo / L, 10mgMo / L, and start aeration respectively. did.
4. The reduction rate of each ammonia nitrogen concentration was evaluated.

アンモニア酸化活性試験の結果、アンモニア減少速度とビーカ内の汚泥量から算出されるアンモニア酸化活性は、Moを添加しない系列では0.18gN/gSS/日、Mo濃度が0.1mgMo/Lとした系列では0.13gN/gSS/日、0.5mgMo/Lとした系列では0.13gN/gSS/日、2mgMo/Lとした系列では0.13gN/gSS/日、10mgMo/Lとした系列では0.10gN/gSS/日となり、Moを添加しなかった系列のアンモニア酸化活性が最も高く、10mgMo/Lとした系列のアンモニア酸化活性が最も低い結果となった。本回分試験結果より、アンモニア酸化反応へのモリブデン濃度の阻害性を抑制するためには、2mgMo/L以下とすることが好ましいと考えられた。   As a result of the ammonia oxidation activity test, the ammonia oxidation activity calculated from the ammonia reduction rate and the amount of sludge in the beaker was 0.18 gN / gSS / day in the series without adding Mo, and the series in which the Mo concentration was 0.1 mgMo / L. In the series of 0.13 gN / gSS / day and 0.5 mgMo / L, 0.13 gN / gSS / day in the series of 2 mgMo / L, and 0.13 gN / gSS / day in the series of 10 mgMo / L. The result was 10 gN / gSS / day, and the result was that the ammonia oxidation activity of the series without addition of Mo was the highest, and the ammonia oxidation activity of the series with 10 mgMo / L was the lowest. From the results of the batch test, it was considered that the concentration is preferably 2 mgMo / L or less in order to suppress the inhibition of the molybdenum concentration on the ammonia oxidation reaction.

1,3,5,7,9 水処理装置、10 硝化装置、12 脱窒装置、14 固液分離装置、16,18,20,22,32,34,36,38,40,42,50,52,54,62,64,66 配管、24,44 汚泥返送配管、26 モリブデン化合物供給配管、28 水素供与体供給配管、30 酸化装置、46 硝化液返送配管、48 後脱窒装置、58 第1脱窒装置、60 第2脱窒装置。   1,3,5,7,9 water treatment device, 10 nitrification device, 12 denitrification device, 14 solid-liquid separation device, 16,18,20,22,32,34,36,38,40,42,50, 52, 54, 62, 64, 66 piping, 24, 44 sludge return piping, 26 molybdenum compound supply piping, 28 hydrogen donor supply piping, 30 oxidizer, 46 nitrification liquid return piping, 48 post-denitrification device, 58 first Denitrification device, 60 Second denitrification device.

Claims (6)

アンモニア態窒素を含む被処理水を、生物学的に処理する水処理方法であって、
微生物活性汚泥中に含まれる独立栄養性のアンモニア酸化菌と亜硝酸酸化菌とを含む硝化菌により、前記アンモニア態窒素を亜硝酸または硝酸態窒素にまで酸化する硝化工程を含み、
前記硝化工程において、前記被処理水に対して、モリブデン濃度が0.025mgMo/gN以上となるようにモリブデン化合物を存在させ、
汚泥あたりの硝化速度が、0.11[kgN/(kgVSS・日)]以上であることを特徴とする水処理方法。
A water treatment method for biologically treating water to be treated containing ammonia nitrogen,
By nitrifying bacteria containing autotrophic ammonium oxidizing bacteria and nitrite oxidizing bacteria contained in the microbial activated sludge, including a nitrification step of oxidizing the ammonia nitrogen to nitrite or nitrate nitrogen,
In the nitrification step, a molybdenum compound is present in the water to be treated so that the molybdenum concentration becomes 0.025 mgMo / gN or more,
A water treatment method, wherein a nitrification rate per sludge is 0.11 [kgN / (kgVSs / day)] or more.
請求項1に記載の水処理方法であって、
前記硝化工程におけるモリブデン濃度を、前記被処理水に対して2mgMo/L以下とすることを特徴とする水処理方法。
The water treatment method according to claim 1,
A water treatment method, wherein the molybdenum concentration in the nitrification step is 2 mgMo / L or less with respect to the water to be treated.
請求項1または2に記載の水処理方法であって、
前記被処理水中の窒素濃度が、100mgN/L以上であることを特徴とする水処理方法。
The water treatment method according to claim 1 or 2,
The water treatment method, wherein the nitrogen concentration in the water to be treated is 100 mgN / L or more.
請求項1〜3のいずれか1項に記載の水処理方法であって、
前記微生物活性汚泥中に含まれる脱窒菌により、前記硝化工程で生成した亜硝酸または硝酸態窒素を窒素ガスにまで還元する脱窒工程をさらに含むことを特徴とする水処理方法。
The water treatment method according to any one of claims 1 to 3,
A water treatment method, further comprising a denitrification step of reducing nitrite or nitrate nitrogen generated in the nitrification step to nitrogen gas by denitrifying bacteria contained in the microorganism-activated sludge.
請求項4に記載の水処理方法であって、
前記脱窒工程において、処理水の水理学的滞留時間における水素供与体の最大濃度と最小濃度との差が、50mgTOC/L以上となるように、前記水素供与体の添加量に時間変動を与えることによって、前記硝化菌と脱窒菌とを含む微生物活性汚泥をグラニュール化させることを特徴とする水処理方法。
The water treatment method according to claim 4,
In the denitrification step, the addition amount of the hydrogen donor is varied with time so that the difference between the maximum concentration and the minimum concentration of the hydrogen donor during the hydraulic residence time of the treated water is 50 mgTOC / L or more. A water treatment method, wherein the microbial activated sludge containing the nitrifying bacteria and the denitrifying bacteria is granulated.
請求項5に記載の水処理方法であって、
前記脱窒工程は、少なくとも第一脱窒工程と第二脱窒工程とを含み、
前記脱窒工程において、前記第二脱窒工程における処理水の水理学的滞留時間における前記第一脱窒工程における水素供与体の最大濃度と前記第二脱窒工程における水素供与体の最小濃度との差が、50mgTOC/L以上となるように、少なくとも前記第一脱窒工程において水素供与体を供給することを特徴とする水処理方法
The water treatment method according to claim 5, wherein
The denitrification step includes at least a first denitrification step and a second denitrification step,
In the denitrification step, the maximum concentration of the hydrogen donor in the first denitrification step and the minimum concentration of the hydrogen donor in the second denitrification step in the hydraulic residence time of the treated water in the second denitrification step A water treatment method comprising supplying a hydrogen donor at least in the first denitrification step so that the difference is 50 mgTOC / L or more .
JP2019080199A 2018-06-22 2019-04-19 Water treatment method Active JP6667030B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019080199A JP6667030B2 (en) 2019-04-19 2019-04-19 Water treatment method
US17/253,512 US11603327B2 (en) 2018-06-22 2019-06-20 Water treatment method and water treatment device
CN201980041656.9A CN112292355B (en) 2018-06-22 2019-06-20 Water treatment method and water treatment apparatus
PCT/JP2019/024421 WO2019244964A1 (en) 2018-06-22 2019-06-20 Water treatment method and water treatment device
TW108121694A TWI846706B (en) 2018-06-22 2019-06-21 Water treatment method and water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019080199A JP6667030B2 (en) 2019-04-19 2019-04-19 Water treatment method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018118619A Division JP6535125B1 (en) 2018-06-22 2018-06-22 Water treatment method

Publications (2)

Publication Number Publication Date
JP2020001033A JP2020001033A (en) 2020-01-09
JP6667030B2 true JP6667030B2 (en) 2020-03-18

Family

ID=69098028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019080199A Active JP6667030B2 (en) 2018-06-22 2019-04-19 Water treatment method

Country Status (1)

Country Link
JP (1) JP6667030B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3933009B2 (en) * 2002-08-22 2007-06-20 栗田工業株式会社 Wastewater treatment method
JP2006272287A (en) * 2005-03-30 2006-10-12 Aw Service:Kk Waste water treatment method
JP5355314B2 (en) * 2009-09-09 2013-11-27 オルガノ株式会社 Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus
JP5791359B2 (en) * 2011-05-02 2015-10-07 株式会社日立製作所 Wastewater treatment method
JP6373629B2 (en) * 2014-04-25 2018-08-15 株式会社日立製作所 Water treatment monitoring and control system, water treatment system having the same, and water treatment method
JP6391325B2 (en) * 2014-07-01 2018-09-19 メタウォーター株式会社 N2O suppression type water treatment method and treatment apparatus
JP6179630B1 (en) * 2016-03-29 2017-08-16 栗田工業株式会社 Biological treatment method and biological treatment apparatus
JP6535125B1 (en) * 2018-06-22 2019-06-26 オルガノ株式会社 Water treatment method

Also Published As

Publication number Publication date
JP2020001033A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP6210883B2 (en) Operation method of waste water treatment equipment
JP4644107B2 (en) Method for treating wastewater containing ammonia
JP5100091B2 (en) Water treatment method
JP4453397B2 (en) Biological nitrogen removal method
JP4882175B2 (en) Nitrification method
JP5006845B2 (en) Method for suppressing generation of nitrous oxide
JP5984137B2 (en) Water treatment apparatus and water treatment method
US11820688B2 (en) Water treatment method for simultaneous abatement of carbon, nitrogen and phosphorus, implemented in a sequencing batch moving bed biofilm reactor
Schmidt et al. Improved nitrogen removal in upflow anaerobic sludge blanket (UASB) reactors by incorporation of Anammox bacteria into the granular sludge
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP6535125B1 (en) Water treatment method
JP4529277B2 (en) Method for collecting autotrophic denitrifying microorganisms and method for biological nitrogen removal
WO2019244964A1 (en) Water treatment method and water treatment device
JP5362637B2 (en) Biological treatment method and treatment equipment for nitrogen-containing wastewater
Zhao et al. Pollutant removal from municipal sewage by a microaerobic up-flow oxidation ditch coupled with micro-electrolysis
JP6667030B2 (en) Water treatment method
JP4867099B2 (en) Biological denitrification method
JP6754863B1 (en) Water treatment equipment
TWI846706B (en) Water treatment method and water treatment device
JP2017018861A (en) Method for removing nitrogen and nitrogen removal device
JP2005329399A (en) Method and apparatus for removing nitrogen
JP2004305980A (en) Biological denitrification treatment method
JP6461408B1 (en) Water treatment method and water treatment apparatus
JP5076263B2 (en) Biological denitrification method
Dixit et al. A review on nitritation process

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200221

R150 Certificate of patent or registration of utility model

Ref document number: 6667030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250