JP6654555B2 - Method for producing protected Pd dinuclear complex - Google Patents

Method for producing protected Pd dinuclear complex Download PDF

Info

Publication number
JP6654555B2
JP6654555B2 JP2016244824A JP2016244824A JP6654555B2 JP 6654555 B2 JP6654555 B2 JP 6654555B2 JP 2016244824 A JP2016244824 A JP 2016244824A JP 2016244824 A JP2016244824 A JP 2016244824A JP 6654555 B2 JP6654555 B2 JP 6654555B2
Authority
JP
Japan
Prior art keywords
complex
solution
protected
solvent
mononuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016244824A
Other languages
Japanese (ja)
Other versions
JP2018095628A (en
Inventor
直人 永田
直人 永田
公靖 小野
公靖 小野
裕之 松坂
裕之 松坂
真 竹本
真 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
University Public Corporation Osaka
Original Assignee
Toyota Motor Corp
University Public Corporation Osaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, University Public Corporation Osaka filed Critical Toyota Motor Corp
Priority to JP2016244824A priority Critical patent/JP6654555B2/en
Publication of JP2018095628A publication Critical patent/JP2018095628A/en
Application granted granted Critical
Publication of JP6654555B2 publication Critical patent/JP6654555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、被保護Pd2核錯体の製造方法に関する。   The present invention relates to a method for producing a protected Pd2 core complex.

自動車等のための内燃機関、例えば、ガソリンエンジン又はディーゼルエンジン等の内燃機関から排出される排ガス中には、一酸化炭素(CO)、炭化水素(HC)、及び窒素酸化物(NOx)等の成分が含まれている。   BACKGROUND ART Exhaust gas discharged from an internal combustion engine for an automobile or the like, for example, an internal combustion engine such as a gasoline engine or a diesel engine includes carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx). Contains ingredients.

このため、一般的には、これらの成分を分解除去するための排ガス浄化装置が内燃機関に設けられており、この排ガス浄化装置内に取り付けられた排ガス浄化触媒によって、これらの成分が実質的に浄化されている。   Therefore, in general, an exhaust gas purifying device for decomposing and removing these components is provided in the internal combustion engine, and these components are substantially reduced by an exhaust gas purifying catalyst installed in the exhaust gas purifying device. It has been purified.

排ガス浄化触媒の触媒成分の例としては、白金系金属、例えば、パラジウム(Pd)、プラチナ(Pt)、及びロジウム(Rh)を挙げることができる。この白金系金属の中でも、Pd及びPtは、CO酸化を触媒する高い能力を有している。   Examples of the catalyst component of the exhaust gas purifying catalyst include platinum-based metals, for example, palladium (Pd), platinum (Pt), and rhodium (Rh). Among these platinum-based metals, Pd and Pt have high ability to catalyze CO oxidation.

また、このCO酸化の触媒能力は、PdO等の酸化状態よりもPd等の金属状態において、高いことが知られている。したがって、Pdと、酸化し難い金属であるAuとを組み合わせて複合化し、これによって、CO酸化の触媒能力、例えば低温条件等でのCO酸化の触媒能力を高めたPd−Au複合化金属及びPd−Au複合化多核錯体などが提案されている。   It is known that the catalytic ability of this CO oxidation is higher in the metal state such as Pd than in the oxidation state such as PdO. Therefore, Pd and Au, which are hardly oxidizable metals, are combined to form a composite, thereby increasing the catalytic ability of CO oxidation, for example, the catalytic ability of CO oxidation under low-temperature conditions or the like. -Au complexed polynuclear complexes and the like have been proposed.

特許文献1のPd及びAuを含有する異種金属多核錯体の製造方法では、Pd2核錯体である[Pd(μ−NH(NH][B(Cの末端NH配位子を保護する保護工程、及び末端NH配位子が保護された前記Pd2核錯体とAu(PMe)[N(SiMe]を混合する混合工程が開示されている。 In the method for producing a heteronuclear polynuclear complex containing Pd and Au described in Patent Document 1, [Pd 2 (μ-NH 2 ) 2 (NH 3 ) 4 ] [B (C 6 F 5 ) 4 ] which is a Pd dinuclear complex. protection step of protecting the second end NH 3 ligand, and terminal NH 3 the ligand is protected Pd2 nuclear complex and Au (PMe 3) [N ( SiMe 3) 2] mixing step of mixing is disclosed Have been.

特開2016−036791号公報JP-A-2006-036791

本発明は、少ない環境負荷及び高い収率で被保護Pd2核錯体を製造することを目的とする。   An object of the present invention is to produce a protected Pd2 nucleus complex with a low environmental load and a high yield.

本発明者らは、以下の手段により、上記課題を解決できることを見出した。   The present inventors have found that the above problem can be solved by the following means.

〈1〉Pd単核錯体[Pd(NH][NO、LiN(Si(CH、及びCHSOCH溶媒を混合して、Pd2核錯体[Pd(μ−NH(NH][NOを含有している第1の溶液を得ること、
上記Pd2核錯体[Pd(μ−NH(NH][NOを前記第1の溶液から分離すること、そして
分離された上記Pd2核錯体[Pd(μ−NH(NH][NO、(CHNCHCHN(CH、及びHO溶媒を混合して、被保護Pd2核錯体[Pd(μ−NH((CHNCHCHN(CH][NOを含有している第2の溶液を得ること
を含む、被保護Pd2核錯体の製造方法。
<1> Pd mononuclear complex [Pd (NH 3 ) 4 ] [NO 3 ] 2 , LiN (Si (CH 3 ) 3 ) 2 , and CH 3 SOCH 3 solvents are mixed to form a Pd dinuclear complex [Pd 2 ( μ-NH 2) 2 (NH 3) 4] [NO 3] 2 to obtain a first solution containing,
The Pd2 binuclear complex [Pd 2 (μ-NH 2 ) 2 (NH 3) 4] [NO 3] 2 that is separated from the first solution and separated the Pd2 binuclear complex [Pd 2 (.mu. NH 2 ) 2 (NH 3 ) 4 ] [NO 3 ] 2 , (CH 3 ) 2 NCH 2 CH 2 N (CH 3 ) 2 , and H 2 O solvent are mixed to form a protected Pd2 nucleus complex [Pd 2 (μ-NH 2) 2 ( (CH 3) 2 NCH 2 CH 2 N (CH 3) 2) 2] [NO 3] and obtaining a second solution containing 2, the protected Pd2 nucleus A method for producing a complex.

本発明によれば、少ない環境負荷及び高い収率で被保護Pd2核錯体を製造することができる。   According to the present invention, a protected Pd2 nucleus complex can be produced with a low environmental load and a high yield.

図1は、カウンターアニオン置換工程の結果物([Pd(NH][NO)のH−NMR(核磁気共鳴:Nuclear Magnetic Resonance)スペクトルを示す図である。FIG. 1 is a diagram showing a 1 H-NMR (nuclear magnetic resonance) spectrum of a product ([Pd (NH 3 ) 4 ] [NO 3 ] 2 ) resulting from the counter anion substitution step. 図2は、Pd2核錯体合成工程の結果物([Pd(μ−NH(NH][NO)のH−NMRスペクトルを示す図である。FIG. 2 is a diagram showing a 1 H-NMR spectrum of a product ([Pd 2 (μ-NH 2 ) 2 (NH 3 ) 4 ] [NO 3 ] 2 ) as a result of the Pd2 core complex synthesis step. 図3は、被保護Pd2核錯体合成工程の結果物([Pd(μ−NH((CHNCHCHN(CH][NO)のH−NMRスペクトルを示す図である。Figure 3 is a result of the protective Pd2 binuclear complex synthesis step ([Pd 2 (μ-NH 2) 2 ((CH 3) 2 NCH 2 CH 2 N (CH 3) 2) 2] [NO 3] 2) It is a figure which shows the < 1 > H-NMR spectrum of.

以下、本発明の実施形態を詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨の範囲内で種々変形して実施することができる。   Hereinafter, embodiments of the present invention will be described in detail. It should be noted that the present invention is not limited to the following embodiments, and can be implemented with various modifications within the scope of the present invention.

なお、本発明において、「(CHNCHCHN(CH」は、N,N,N’,N’−テトラメチルエチレンジアミン又はTMEDAとして言及される。 In the present invention, “(CH 3 ) 2 NCH 2 CH 2 N (CH 3 ) 2 ” is referred to as N, N, N ′, N′-tetramethylethylenediamine or TMEDA.

また、本発明において、「LiN(Si(CH」は、リチウムヘキサメチルジシラジド又はLiHMDSとして言及される。 In the present invention, “LiN (Si (CH 3 ) 3 ) 2 ” is referred to as lithium hexamethyldisilazide or LiHMDS.

さらに、本発明において、「CHSOCH」は、ジメチルスルホキシド又はDMSOとして言及される。 Further, in the present invention, "CH 3 SOCH 3" is referred to as dimethyl sulfoxide or DMSO.

また、本発明において、「Me」は、メチル基又はCHとして言及される。 In the present invention, “Me” is referred to as a methyl group or CH 3 .

《従来の被保護Pd2核錯体の製造方法》
特許文献1の方法でのような従来の被保護Pd2核錯体の製造方法は、Pd単核錯体[Pd(NH][B(C、BuLi、及びTHF溶媒を混合してPd2核錯体[Pd(μ−NH(NH][B(Cを含有している第1の溶液を得ること;上記Pd2核錯体[Pd(μ−NH(NH][B(Cを上記第1の溶液から分離すること;そして、分離された上記Pd2核錯体[Pd(μ−NH(NH][B(C、TMEDA、及びTHF溶媒を混合して、被保護Pd2核錯体[Pd(μ−NH(TMEDA)][B(Cを含有している第2の溶液を得ることを含む。
<< Conventional method for producing protected Pd2 nucleus complex >>
A conventional method for producing a protected Pd dinuclear complex as in the method of Patent Document 1 includes a Pd mononuclear complex [Pd (NH 3 ) 4 ] [B (C 6 F 5 ) 4 ] 2 , BuLi, and a THF solvent. mixed with Pd2 binuclear complex [Pd 2 (μ-NH 2 ) 2 (NH 3) 4] [B (C 6 F 5) 4] 2 to obtain a first solution containing; the Pd2 nucleus Separating the complex [Pd 2 (μ-NH 2 ) 2 (NH 3 ) 4 ] [B (C 6 F 5 ) 4 ] 2 from the first solution; and separating the separated Pd 2 core complex [Pd 2 (μ-NH 2 ) 2 (NH 3 ) 4 ] [B (C 6 F 5 ) 4 ] 2 , TMEDA, and a THF solvent are mixed to form a protected Pd2 nuclear complex [Pd 2 (μ-NH 2 )] 2 (TMEDA) 2] [B (C 6 F 5) 4] 2 to obtain a second solution containing Including that.

被保護Pd2核錯体を製造する従来の方法に関する反応機構の概要を下記に示している。   A summary of the reaction mechanism for a conventional method for producing a protected Pd dinuclear complex is shown below.

Figure 0006654555
Figure 0006654555

このように、出発材料として用いられるPd単核錯体[Pd(NH]が、そのカウンターアニオンとして[B(Cを有している場合には、Pd単核錯体は、比較的親油性の特性を示す。したがって、このようなPd単核錯体から得られる反応生成物であるPd2核錯体[Pd(μ−NH(NH][B(Cを含む第2の溶液の粘度も、一般的に高く、かつ当該溶液から溶媒を除去する場合には、典型的には、粘度がさらに上昇する。結果として、このPd2核錯体を単離することは、一般的には困難であり、収率の低下を招来する。また、これは、このようなPd2核錯体から得られる被保護Pd2核錯体である[Pd(μ−NH(TMEDA)][B(Cに関しても、同様に言える。 Thus, when the Pd mononuclear complex [Pd (NH 3 ) 4 ] used as a starting material has [B (C 6 F 5 ) 4 ] 2 as its counter anion, the Pd mononuclear complex The complexes exhibit relatively lipophilic properties. Therefore, such a Pd is a reaction product obtained from mononuclear complex Pd2 binuclear complex [Pd 2 (μ-NH 2 ) 2 (NH 3) 4] The containing [B (C 6 F 5) 4] 2 The viscosity of the second solution is also generally high, and if the solvent is removed from the solution, typically the viscosity will further increase. As a result, it is generally difficult to isolate this Pd2 nucleus complex, leading to a reduction in yield. This also applies to [Pd 2 (μ-NH 2 ) 2 (TMEDA) 2 ] [B (C 6 F 5 ) 4 ] 2 which is a protected Pd 2 core complex obtained from such a Pd 2 core complex. The same can be said.

また、親油性のPd2核錯体[Pd(μ−NH(NH][B(Cは、無機系の溶媒、例えばDMSOや水に溶解し難い一方で、有機系の溶媒、例えばテトラヒドロフラン(THF)に容易に溶解する。したがって、このような親油性のPd2核錯体を用いる反応では、THF等の有機系の溶媒を用いる必要がある。しかしながら、有機系の溶媒であるTHF等の環境負荷は、一般的に無機系の溶媒と比較して高い。 Further, Pd2 binuclear complex lipophilic [Pd 2 (μ-NH 2 ) 2 (NH 3) 4] [B (C 6 F 5) 4] 2 , the solvent of inorganic, hardly soluble, for example, DMSO or water On the other hand, it is easily dissolved in an organic solvent such as tetrahydrofuran (THF). Therefore, in the reaction using such a lipophilic Pd2 core complex, it is necessary to use an organic solvent such as THF. However, the environmental load of THF, which is an organic solvent, is generally higher than that of an inorganic solvent.

《本発明の被保護Pd2核錯体の製造方法》
被保護Pd2核錯体を製造する本発明の方法は、Pd単核錯体[Pd(NH][NO、LiN(Si(CH、及びCHSOCH溶媒を混合してPd2核錯体[Pd(μ−NH(NH][NOを含有している第1の溶液を得ること;上記Pd2核錯体[Pd(μ−NH(NH][NOを上記第1の溶液から分離すること;そして、分離された上記Pd2核錯体[Pd(μ−NH(NH][NO、(CHNCHCHN(CH、及びHO溶媒を混合して、被保護Pd2核錯体[Pd(μ−NH((CHNCHCHN(CH][NOを含有している第2の溶液を得ることを含む。
<< Method for producing protected Pd2 core complex of the present invention >>
The method of the present invention for producing a protected Pd dinuclear complex comprises a Pd mononuclear complex [Pd (NH 3 ) 4 ] [NO 3 ] 2 , LiN (Si (CH 3 ) 3 ) 2 , and a CH 3 SOCH 3 solvent. mixed and Pd2 binuclear complex [Pd 2 (μ-NH 2 ) 2 (NH 3) 4] [NO 3] 2 to obtain a first solution containing; the Pd2 binuclear complex [Pd 2 (.mu. Separating NH 2 ) 2 (NH 3 ) 4 ] [NO 3 ] 2 from the first solution; and separating the separated Pd 2 core complex [Pd 2 (μ-NH 2 ) 2 (NH 3 ) 4 ] [NO 3 ] 2 , (CH 3 ) 2 NCH 2 CH 2 N (CH 3 ) 2 , and H 2 O solvent are mixed to form a protected Pd2 nucleus complex [Pd 2 (μ-NH 2 ) 2 (( CH 3) 2 NCH 2 CH 2 N (CH 3) 2) 2] [NO 3] And obtaining a second solution containing.

被保護Pd2核錯体を製造する本発明の方法に関する反応機構の概要を下記に示している。   A summary of the reaction mechanism for the method of the present invention for producing a protected Pd binuclear complex is shown below.

Figure 0006654555
Figure 0006654555

本発明者らは、特許文献1のような先行技術でカウンターアニオンとして用いられていたB(C を、比較的水和し易いNO に置換したPd単核錯体[Pd(NH][NOを用いることによって、反応生成物であるPd2核錯体[Pd(μ−NH(NH][NOの収率が向上することを見出した。 The present inventors have proposed a mononuclear Pd complex in which B (C 6 F 5 ) 4 −, which has been used as a counter anion in the prior art such as Patent Document 1, is substituted with NO 3 which is relatively hydrated [ By using Pd (NH 3 ) 4 ] [NO 3 ] 2 , the yield of the reaction product Pd 2 core complex [Pd 2 (μ-NH 2 ) 2 (NH 3 ) 4 ] [NO 3 ] 2 is reduced. Found to improve.

具体的には、Pd単核錯体[Pd(NH]が、そのカウンターアニオンとして[NOを有している場合には、このPd単核錯体は、比較的親水性の特性を示す。また、その反応生成物であるPd2核錯体[Pd(μ−NH(NH][NOも比較的親水性の特性を示し、非プロトン性極性溶媒のDMSOに容易に水和する。結果として、反応生成物を容易に単離することが可能となり、その収率が向上する。 Specifically, when the Pd mononuclear complex [Pd (NH 3 ) 4 ] has [NO 3 ] 2 as its counter anion, the Pd mononuclear complex has a relatively hydrophilic property. Is shown. Moreover, its is the reaction product Pd2 binuclear complex [Pd 2 (μ-NH 2 ) 2 (NH 3) 4] [NO 3] 2 also shows a relatively hydrophilic properties, in DMSO aprotic polar solvent Easily hydrates. As a result, the reaction product can be easily isolated, and the yield is improved.

また、これは、このようなPd2核錯体から得られる被保護Pd2核錯体である[Pd(μ−NH(TMEDA)][NOに対しても同様に言え、これがプロトン性極性溶媒の水(HO)に容易に水和するため、単離の容易性及び収率の向上を達成することが可能である。 The same applies to [Pd 2 (μ-NH 2 ) 2 (TMEDA) 2 ] [NO 3 ] 2 which is a protected Pd 2 core complex obtained from such a Pd 2 core complex. Since it hydrates easily with the protic polar solvent water (H 2 O), it is possible to achieve easy isolation and improved yield.

また、有機系の溶媒であるTHF等の代わりに、無機系の溶媒であるDMSOや水(HO)を採用することによって、環境負荷を低減させることが可能である。 In addition, by using DMSO or water (H 2 O) as an inorganic solvent instead of THF or the like as an organic solvent, it is possible to reduce the environmental load.

〈Pd2核錯体合成工程〉
Pd2核錯体[Pd(μ−NH(NH][NOの合成工程では、Pd単核錯体[Pd(NH]のNHに対して、脱プロトン化剤としてのLiN(Si(CHが作用し、[Pd(NH]のアニオン種、例えば[Pd(NH(NH)]を生じる。このアニオン種がさらに別のPd単核錯体[Pd(NH]に作用してPd2核錯体[Pd(μ−NH(NH][NOが生じる。
<Pd2 core complex synthesis step>
In the step of synthesizing the Pd2 core complex [Pd 2 (μ-NH 2 ) 2 (NH 3 ) 4 ] [NO 3 ] 2 , deprotonation is performed on NH 3 of the Pd mononuclear complex [Pd (NH 3 ) 4 ]. It acts LiN (Si (CH 3) 3 ) 2 as a reduction agent, [Pd 2 (NH 3) 4] anion species, e.g., [Pd (NH 3) 3 ( NH 2)] - produce. This anionic species acts on another Pd mononuclear complex [Pd (NH 3 ) 4 ] to produce a Pd dinuclear complex [Pd 2 (μ-NH 2 ) 2 (NH 3 ) 4 ] [NO 3 ] 2 .

Pd単核錯体[Pd(NH][NO及びLiN(Si(CHのモル比は、特に限定されないが、1:0.8〜1:1.2でよい。かかるモル比の範囲では、Pd単核錯体同士がNHを介して過度に結合することなく、上記のPd2核錯体を効率的に生成することができる。 The molar ratio of Pd mononuclear complex [Pd (NH 3 ) 4 ] [NO 3 ] 2 and LiN (Si (CH 3 ) 3 ) 2 is not particularly limited, but is 1: 0.8 to 1: 1.2. Good. The scope of such molar ratios can Pd mononuclear complex with each other without binding excessively via NH 2, it generates a Pd2 nuclear complex of efficiently.

当該工程における、反応時間、反応温度、及び反応雰囲気は、特に限定されない。反応試薬の反応性等を考慮した場合には、それらは、それぞれ1時間以上及び/又は24時間以下、−100℃以上及び/又は常温以下の温度、並びに不活性雰囲気でよい。   The reaction time, reaction temperature, and reaction atmosphere in this step are not particularly limited. When the reactivity of the reaction reagents is taken into consideration, they may be 1 hour or more and / or 24 hours or less, -100 ° C. or more and / or room temperature or less, and an inert atmosphere.

なお、当該工程では、Pd2核錯体を合成可能である条件で、他の原料や溶媒を用いてよい。また、当該工程は、その他の操作、例えば濾過操作や、再結晶操作等を含んでよい。   In this step, other raw materials and solvents may be used under the condition that the Pd2 nucleus complex can be synthesized. In addition, the step may include other operations, for example, a filtration operation, a recrystallization operation, and the like.

〈Pd2核錯体分離工程〉
Pd2核錯体の分離工程では、Pd2核錯体[Pd(μ−NH(NH][NOを、少なくともCHSOCH溶媒を含む第1の溶液から分離する。
<Pd dinuclear complex separation step>
In the step of separating Pd2 nuclear complex, Pd2 binuclear complex [Pd 2 (μ-NH 2 ) 2 (NH 3) 4] and [NO 3] 2, separated from the first solution comprising at least CH 3 SOCH 3 solvent.

Pd2核錯体を第1の溶液から分離する工程は、特に限定されない。当該工程の例としては、例えば、当該第1の溶液の溶媒を減圧乾燥してPd2核錯体の固体を析出させること、当該第1の溶液に貧溶媒を添加してPd2核錯体の固体を析出させることを挙げることができる。   The step of separating the Pd dinuclear complex from the first solution is not particularly limited. Examples of the process include, for example, drying the solvent of the first solution under reduced pressure to precipitate a solid of a Pd2 nucleus complex, and adding a poor solvent to the first solution to precipitate a solid of a Pd2 nucleus complex. Can be mentioned.

なお、貧溶媒(poor solvent)とは、特定の物質の溶解度が小さい溶媒を意味する。したがって、Pd2核錯体の固体を析出させる目的で、Pd2核錯体の溶解度が小さい溶媒(貧溶媒)を第1の溶液に添加してよい。   In addition, a poor solvent means a solvent having low solubility of a specific substance. Therefore, a solvent (poor solvent) having low solubility of the Pd2 nucleus complex may be added to the first solution for the purpose of precipitating a solid of the Pd2 nucleus complex.

また、当該工程は、その他の操作、例えば濾過操作や、再結晶操作等を含んでよい。   In addition, the step may include other operations, for example, a filtration operation, a recrystallization operation, and the like.

〈被保護Pd2核錯体合成工程〉
被保護Pd2核錯体[Pd(μ−NH((CHNCHCHN(CH][NOの合成工程では、Pd2核錯体の合計4つの末端NH配位子を、保護基としての2つのTMEDAで置換してPd2核錯体を保護する。具体的には、Pd2核錯体の各Pdに対してTMEDAの2つの末端N(CHが配位してキレート化すること、及びNH配位子が脱離すること、これによって、Pd2核錯体が保護される。
<Protected Pd dinuclear complex synthesis step>
Protected Pd2 binuclear complex [Pd 2 (μ-NH 2 ) 2 ((CH 3) 2 NCH 2 CH 2 N (CH 3) 2) 2] [NO 3] In the second synthesis step, a total of Pd2 binuclear complex 4 The two terminal NH 3 ligands are replaced with two TMEDAs as protecting groups to protect the Pd2 core complex. Specifically, the two terminal N (CH 3 ) 2 of TMEDA coordinate and chelate to each Pd of the Pd dinuclear complex, and the NH 3 ligand is eliminated, whereby The Pd2 complex is protected.

したがって、保護基で保護されていないPd2核錯体では、その合計4つの末端NH配位子で所定の反応が生じる可能性がある一方で、保護基で保護されているPd2核錯体では、その反応を抑制することができる。また、被保護Pd2核錯体の2つのPdを架橋しているNH基は、保護基で保護されていないため、当該NH基においてのみ所定の反応を生じさせることが可能である。 Therefore, in a Pd2 nucleus complex not protected by a protecting group, a predetermined reaction may occur at a total of four terminal NH 3 ligands, while in a Pd2 nucleus complex protected by a protecting group, The reaction can be suppressed. Further, since the NH 2 group bridging the two Pd's of the protected Pd 2 core complex is not protected by a protecting group, a predetermined reaction can be caused only at the NH 2 group.

すなわち、上記の保護基をPd2核錯体に適用することによって、所定の反応を特定の部位でのみ生じさせることが可能である。   That is, by applying the above protecting group to the Pd2 nucleus complex, it is possible to cause a predetermined reaction only at a specific site.

Pd2核錯体[Pd(μ−NH(NH][NO、及びTMEDAのモル比は、特に限定されないが、1:2〜1:10でよい。かかるモル比の範囲では、Pd2核錯体をTMEDAで効率的に保護することができる。 Pd2 binuclear complex [Pd 2 (μ-NH 2 ) 2 (NH 3) 4] [NO 3] 2, and the molar ratio of TMEDA is not particularly limited, 1: 2 to 1: may be 10. Within such a molar ratio range, the Pd2 nucleus complex can be efficiently protected by TMEDA.

当該工程における、反応時間、反応温度、及び反応雰囲気は、特に限定されない。反応試薬の反応性等を考慮した場合には、それらは、それぞれ1時間以上及び/又は24時間以下、−100℃以上及び/又は常温以下の温度、並びに不活性雰囲気でよい。   The reaction time, reaction temperature, and reaction atmosphere in this step are not particularly limited. When the reactivity of the reaction reagents is taken into consideration, they may be 1 hour or more and / or 24 hours or less, -100 ° C. or more and / or room temperature or less, and an inert atmosphere.

なお、当該工程では、被保護Pd2核錯体を合成可能である条件で、他の原料や溶媒を用いてよい。また、当該工程は、その他の操作、例えば濾過操作や、再結晶操作等を含んでよい。   In this step, another raw material or a solvent may be used under the condition that the protected Pd2 nucleus complex can be synthesized. In addition, the step may include other operations, for example, a filtration operation, a recrystallization operation, and the like.

〈カウンターアニオン置換工程〉
本発明の方法は、Pd単核錯体[Pd(NH][NOを得るために他のPd単核錯体のカウンターアニオンを置換する工程を、任意選択的に含んでよい。当該工程は、Pd単核錯体[Pd(NH]のカウンターアニオン[CA]を、[NO]で置換する工程である。具体的には、例えば[CA]を含むPd単核錯体[Pd(NH]を、硝酸銀(AgNO)等の硝酸塩と反応させることができる。当該工程により、Pd単核錯体[Pd(NH][NOを得ることができる。
<Counter anion replacement step>
The method of the present invention may optionally include the step of substituting the counter anion of another Pd mononuclear complex to obtain a Pd mononuclear complex [Pd (NH 3 ) 4 ] [NO 3 ] 2 . In this step, the counter anion [CA] of the Pd mononuclear complex [Pd (NH 3 ) 4 ] is replaced with [NO 3 ]. Specifically, for example, a Pd mononuclear complex [Pd (NH 3 ) 4 ] containing [CA] can be reacted with a nitrate such as silver nitrate (AgNO 3 ). By this step, a Pd mononuclear complex [Pd (NH 3 ) 4 ] [NO 3 ] 2 can be obtained.

なお、カウンターアニオン[CA]は、特に限定されないが、例えば[Cl]でよい。また、[CA]の配位数は、[CA]の価数に依存してよい。   The counter anion [CA] is not particularly limited, but may be, for example, [Cl]. Further, the coordination number of [CA] may depend on the valence of [CA].

カウンターアニオン[CA]を含むPd単核錯体[Pd(NH]、及び硝酸塩の硝酸イオンのモル比は、特に限定されないが、1:2〜1:10でよい。かかるモル比の範囲では、Pd単核錯体[Pd(NH][NOを効率的に得ることができる。 The molar ratio of the Pd mononuclear complex [Pd (NH 3 ) 4 ] containing the counter anion [CA] and the nitrate ion of the nitrate is not particularly limited, but may be 1: 2 to 1:10. Within such a molar ratio range, the Pd mononuclear complex [Pd (NH 3 ) 4 ] [NO 3 ] 2 can be efficiently obtained.

当該工程における、反応時間、反応温度、及び反応雰囲気は、特に限定されない。反応試薬の反応性等を考慮した場合には、それらは、それぞれ1時間以上及び/又は24時間以下、−100℃以上及び/又は常温以下の温度、並びに不活性雰囲気でよい。   The reaction time, reaction temperature, and reaction atmosphere in this step are not particularly limited. In consideration of the reactivity of the reaction reagents and the like, they may be 1 hour or more and / or 24 hours or less, -100 ° C or more and / or room temperature or less, and an inert atmosphere.

なお、当該工程では、Pd単核錯体のカウンターアニオンを置換可能である条件で、他の原料や溶媒を用いてよい。   In this step, another material or solvent may be used under the condition that the counter anion of the Pd mononuclear complex can be replaced.

〈Pd及びAu含有異種金属多核錯体合成工程〉
本発明の方法は、例えば、Pd及びAuを含有する異種金属多核錯体を合成する工程を任意選択的に含んでよい。当該工程は、例えば上記の被保護Pd2核錯体と、Au単核錯体であるAu(PMe)[N(SiMe]とを混合する工程である。当該工程により、当該被保護Pd2核錯体中の2つのPdを架橋するNH基とAu(PMe)[N(SiMe]中のAuとを選択的に結合させてPd及びAuを含有する異種金属多核錯体を得ることができる。当該工程の詳細は、上記の特許文献1の記載を参照されたい。
<Pd and Au-containing heterometallic polynuclear complex synthesis step>
The method of the present invention may optionally include, for example, synthesizing a heterometallic polynuclear complex containing Pd and Au. The process is, for example, a step of mixing and the object to be protected Pd2 nuclear complex of, Au (PMe 3) is Au mononuclear complex and [N (SiMe 3) 2] . According to this step, the NH 2 group bridging the two Pd's in the protected Pd 2 core complex and Au in Au (PMe 3 ) [N (SiMe 3 ) 2 ] are selectively bonded to form Pd and Au. A heteronuclear polynuclear complex can be obtained. For details of the step, refer to the description of Patent Document 1 described above.

以下に示す実施例を参照して本発明を更に詳しく説明するが、本発明の範囲はこれらの実施例によって限定されるものでないことは、言うまでもない。   The present invention will be described in more detail with reference to the following examples, but it is needless to say that the scope of the present invention is not limited by these examples.

《留意》
特に断りのない限り、以下の全ての実験操作は、窒素雰囲気下で典型的なシュレンクを用いて行った。
《Notes》
Unless otherwise noted, all experimental procedures described below were performed using a typical Schlenk under a nitrogen atmosphere.

テトラヒドロフラン(THF)及びヘキサンに関しては、脱水されたものを関東化学より購入し、さらにこれを脱気したものを用いた。また、DMSO及びアセトンに関しては、脱水されたものを和光純薬工業より購入し、さらにこれを脱気したものを用いた。Pd単核錯体[Pd(NH][Cl]自体は、文献(Mann,F.G.;Crawfoot,D.;Gattiker,D.C.;Wooster,H.J.Am.Chem.Soc.1935,1642.)に記載の方法により合成した。 As for tetrahydrofuran (THF) and hexane, dehydrated ones were purchased from Kanto Chemical and further degassed ones were used. As for DMSO and acetone, dehydrated ones were purchased from Wako Pure Chemical Industries, and deaerated ones were used. Pd mononuclear complex [Pd (NH 3 ) 4 ] [Cl] 2 itself has been described in the literature (Mann, FG; Crawfoot, D .; Gattiker, DC; Wooster, HJ. Am. Chem. Soc. 1935, 1642.).

また、NMR測定は、JEOL ECP500を用いて常温で行った。さらに、IR測定では、JASCO FT−IR4100を用いた。その他、質量分析では、JEOL製のJMS−700 スペクトロメーターを用いた。   The NMR measurement was performed at room temperature using JEOL ECP500. Further, in the IR measurement, JASCO FT-IR4100 was used. In addition, in the mass spectrometry, a JMS-700 spectrometer manufactured by JEOL was used.

《実施例》
被保護Pd2核錯体を製造する実施例に関する反応機構の概要を下記に示している。
"Example"
A summary of the reaction mechanism for the example for producing the protected Pd binuclear complex is shown below.

Figure 0006654555
Figure 0006654555

〈カウンターアニオン置換工程〉
Pd単核錯体[Pd(NH][Cl](900mg、3.667mmol)の水溶液(10mL)と、2当量のAgNO(1250mg、7.358mmol)の水溶液(5mL)とを室温で混合し、遮光下で0.5時間にわたって撹拌した。これにより、白色固体が析出した。
<Counter anion replacement step>
An aqueous solution (10 mL) of Pd mononuclear complex [Pd (NH 3 ) 4 ] [Cl] 2 (900 mg, 3.667 mmol) and an aqueous solution (5 mL) of 2 equivalents of AgNO 3 (1250 mg, 7.358 mmol) were added at room temperature. And stirred under light protection for 0.5 hour. Thereby, a white solid was deposited.

その後、白色固体を含む懸濁液を濾過して水(10mL)で抽出し、これによって黄色溶液を得た。この溶液から溶媒を蒸発させ、これによって固体が析出した。この固体をアセトン(4mL×2)及びへキサン(4mL×2)で洗浄して減圧乾燥することによって、白色固体状の結果物、すなわちPd単核錯体[Pd(NH][NOを得た。 Thereafter, the suspension containing the white solid was filtered and extracted with water (10 mL), which gave a yellow solution. The solvent was evaporated from this solution, which caused a solid to precipitate. This solid was washed with acetone (4 mL × 2) and hexane (4 mL × 2) and dried under reduced pressure to obtain a white solid, that is, a mononuclear complex of Pd [Pd (NH 3 ) 4 ] [NO 3 2 was obtained.

結果物の収量は、1070mg(3.584mmol)であり、その収率は、98%(100×3.584/3.667)であった。   The yield of the resulting product was 1070 mg (3.584 mmol), and the yield was 98% (100 × 3.584 / 3.667).

結果物に関するNMR測定の結果を、下記で示している。
H−NMR(400MHz、DMSO−d):δ 3.25(brs、12H、NH
The results of NMR measurement on the resulting product are shown below.
1 H-NMR (400 MHz, DMSO-d 6 ): δ 3.25 (brs, 12H, NH 3 )

図1は、カウンターアニオン置換工程の結果物([Pd(NH][NO)のH−NMRスペクトルを示す図である。図1からは、白色固体状の結果物が、高純度の[Pd(NH][NOであることが分かる。 FIG. 1 is a diagram showing a 1 H-NMR spectrum of a product ([Pd (NH 3 ) 4 ] [NO 3 ] 2 ) resulting from the counter anion substitution step. From FIG. 1, it can be seen that the resulting product in the form of a white solid is [Pd (NH 3 ) 4 ] [NO 3 ] 2 with high purity.

〈Pd2核錯体合成工程〉
Pd単核錯体[Pd(NH][NO(238mg、0.797mmol)のDMSO溶液(10mL)に、1当量のLiN(Si(CHを含むTHF溶液(1.0M、0.8mL、0.800mmol)を室温下で添加し、この溶液を1時間にわたって撹拌した。溶液は淡黄色から黄色ヘと変化した。その後、THF(30mL)をこの溶液に添加し、これによって、白色固体が析出した。
<Pd2 core complex synthesis step>
A THF solution containing 1 equivalent of LiN (Si (CH 3 ) 3 ) 2 in a DMSO solution (10 mL) of Pd mononuclear complex [Pd (NH 3 ) 4 ] [NO 3 ] 2 (238 mg, 0.797 mmol) ( 1.0M, 0.8 mL, 0.800 mmol) was added at room temperature and the solution was stirred for 1 hour. The solution changed from pale yellow to yellow. Then, THF (30 mL) was added to the solution, which caused a white solid to precipitate.

この白色固体を含む溶液を濾過して、白色固体を分離し、分離した白色固体をTHF(3mL×3)で洗浄した。また、洗浄した白色固体を、再度水(4mL)に溶解させ、この溶液にTHF(50mL)を加えた。これによって、固体を析出させ、当該固体を含む溶液を濾過してTHF(3mL×3)で洗浄した。さらに、この溶液を減圧乾燥し、これによって、白色固体状の結果物、すなわちPd2核錯体[Pd(μ−NH(NH][NOを得た。 The solution containing the white solid was filtered to separate the white solid, and the separated white solid was washed with THF (3 mL × 3). The washed white solid was dissolved again in water (4 mL), and THF (50 mL) was added to the solution. As a result, a solid was precipitated, and the solution containing the solid was filtered and washed with THF (3 mL × 3). Further, the solution was dried under reduced pressure, whereby a white solid of the resultant structure, i.e. Pd2 binuclear complex [Pd 2 (μ-NH 2 ) 2 (NH 3) 4] was obtained [NO 3] 2.

結果物の収量は、124mg(0.284mmol)であり、その収率は、71%(100×(0.284×2)/0.797)であった。   The yield of the resulting product was 124 mg (0.284 mmol), and the yield was 71% (100 × (0.284 × 2) /0.797).

結果物に関するNMR測定の結果を、下記で示ししている。
H−NMR(400MHz、DMSO−d):δ−1.69(brs、4H、μ−NH)、2.57(s、12H、NH
The results of NMR measurement on the resulting product are shown below.
1 H-NMR (400MHz, DMSO -d 6): δ-1.69 (brs, 4H, μ-NH 2), 2.57 (s, 12H, NH 3)

図2は、Pd2核錯体合成工程の結果物([Pd(μ−NH(NH][NO)のH−NMRスペクトルを示す図である。図2からは、白色固体状の結果物が、高純度の[Pd(μ−NH(NH][NOであることが分かる。 FIG. 2 is a diagram showing a 1 H-NMR spectrum of a product ([Pd 2 (μ-NH 2 ) 2 (NH 3 ) 4 ] [NO 3 ] 2 ) as a result of the Pd2 core complex synthesis step. From FIG. 2, it can be seen that the resulting product in the form of a white solid is [Pd 2 (μ-NH 2 ) 2 (NH 3 ) 4 ] [NO 3 ] 2 with high purity.

〈被保護Pd2核錯体合成工程〉
Pd2核錯体[Pd(μ−NH(NH][NO(26mg、0.0595mmol)の水溶液(3mL)に、過剰量(5当量)のN,N,N’,N’−テトラメチルエチレンジアミン(TMEDA)を室温下で添加し、この溶液を6時間にわたって撹拌した。この溶液は淡黄色から橙色ヘと変化した。この溶液から溶媒を蒸発させ、これによって固体が析出した。
<Protected Pd dinuclear complex synthesis step>
Pd2 binuclear complex [Pd 2 (μ-NH 2 ) 2 (NH 3) 4] [NO 3] 2 (26mg, 0.0595mmol) in aqueous solution (3 mL), N of excess (5 equivalents), N, N ', N'-Tetramethylethylenediamine (TMEDA) was added at room temperature and the solution was stirred for 6 hours. The solution turned from pale yellow to orange. The solvent was evaporated from this solution, which caused a solid to precipitate.

析出した固体をTHF(3mL×2)で洗浄し、減圧乾燥することによって、褐色固体状の結果物、すなわち[Pd(μ−NH(TMEDA)][NOを得た。 The precipitated solid was washed with THF (3 mL × 2) and dried under reduced pressure to obtain a brown solid, that is, [Pd 2 (μ-NH 2 ) 2 (TMEDA) 2 ] [NO 3 ] 2 . Was.

結果物の収量は、32mg(0.0532mmol)であり、その収率は、89%(100×0.0532/0.0595)であった。   The yield of the resulting product was 32 mg (0.0532 mmol), and the yield was 89% (100 × 0.0532 / 0.0595).

結果物に関するNMR測定の結果を、下記で示している。
H−NMR(400MHz、DMSO−d):δ−0.89(brs、4H、μ−NH)、2.54(s、24H、Me)、2.63(s、8H、CH
The results of NMR measurement on the resulting product are shown below.
1 H-NMR (400MHz, DMSO -d 6): δ-0.89 (brs, 4H, μ-NH 2), 2.54 (s, 24H, Me), 2.63 (s, 8H, CH 2 )

図3は、被保護Pd2核錯体合成工程の結果物([Pd(μ−NH((CHNCHCHN(CH][NO)のH−NMRスペクトルを示す図である。図3からは、結果物である褐色固体が、高純度の[Pd(μ−NH(TMEDA)][NOであることが分かる。 Figure 3 is a result of the protective Pd2 binuclear complex synthesis step ([Pd 2 (μ-NH 2) 2 ((CH 3) 2 NCH 2 CH 2 N (CH 3) 2) 2] [NO 3] 2) It is a figure which shows the < 1 > H-NMR spectrum of. From FIG. 3, it can be seen that the resulting brown solid is [Pd 2 (μ-NH 2 ) 2 (TMEDA) 2 ] [NO 3 ] 2 with high purity.

《比較例》
被保護Pd2核錯体を製造する比較例に関する反応機構の概要を下記に示している。
<< Comparative Example >>
The outline of the reaction mechanism for the comparative example for producing a protected Pd dinuclear complex is shown below.

Figure 0006654555
Figure 0006654555

〈カウンターアニオン置換工程〉
Pd単核錯体[Pd(NH][Cl](671mg、2.734mmol)の水溶液(15mL)と、2当量のLi[B(C](5000mg、7.289mmol)の水溶液(50mL)とを室温下で混合し、15分間にわたって撹拌した。これにより、白色固体が析出した。
<Counter anion replacement step>
An aqueous solution (15 mL) of Pd mononuclear complex [Pd (NH 3 ) 4 ] [Cl] 2 (671 mg, 2.734 mmol) and 2 equivalents of Li [B (C 6 F 5 ) 4 ] (5000 mg, 7.289 mmol) )) (50 mL) at room temperature and stirred for 15 minutes. Thereby, a white solid was deposited.

その後、白色固体を含む懸濁液を濾過し、これによって固体を得た。この固体をTHF(30mL)に溶解させ、かつ当該THF溶液に硫酸マグネシウムを添加し、一晩にわたって溶液の脱水を行った。脱水したTHF溶液から、減圧乾燥によって溶媒を除去し、これによって無色の結晶性固体状の結果物、すなわちPd単核錯体[Pd(NH][B(C・2THFを得た。結果物の収量は、4220mg(2.517mmol)であり、その収率は、92%(100×2.517/2.734)であった。 Thereafter, the suspension containing the white solid was filtered, thereby obtaining a solid. This solid was dissolved in THF (30 mL), and magnesium sulfate was added to the THF solution, and the solution was dehydrated overnight. The solvent was removed from the dehydrated THF solution by drying under reduced pressure, whereby the resulting product was a colorless crystalline solid, that is, a mononuclear Pd complex [Pd (NH 3 ) 4 ] [B (C 6 F 5 ) 4 ] 2. -2THF was obtained. The yield of the resulting product was 4220 mg (2.517 mmol), and the yield was 92% (100 × 2.517 / 2.734).

結果物に関するNMR測定の結果を、下記で示している。
Anal. Calcd for C562840Pd: C, 40.11; H, 1.68; N, 3.34. Found: C, 40.28; H, 1.47; N,3.05. H NMR (CDCN): d 2.51 (br, 12H, NH). MS (FAB): m/z 853 [Pd(NH)4][B(C. IR (nujol): 3381 (w), 3351 (w), 1644 (m), 1515 (s), 1306 (m), 1274 (m), 1084 (s), 980(s) cm−1
The results of NMR measurement on the resulting product are shown below.
Anal. Calcd for C 56 H 28 B 2 F 40 N 4 O 2 Pd: C, 40.11; H, 1.68; N, 3.34. Found: C, 40.28; H, 1.47; N, 3.05. 1 H NMR (CD 3 CN): d 2.51 (br, 12H, NH 3 ). MS (FAB): m / z 853 [Pd (NH 3) 4] [B (C 6 F 5) 4] +. IR (nujol): 3381 (w), 3351 (w), 1644 (m), 1515 (s), 1306 (m), 1274 (m), 1084 (s), 980 (s) cm -1 .

〈Pd2核錯体合成工程〉
Pd単核錯体[Pd(NH][B(C・2THF(434mg、0.259mmol)のTHF溶液(8mL)を−80℃に冷却し、この溶液にn−BuLi(1.62M、ヘキサン溶液、160mL、0.259mmol)を添加して激しく撹拌した。溶液の撹拌を3時間にわたって維持しつつ、溶液の温度を室温まで昇温させる。かかる溶液を減圧乾燥にかけて溶媒を除去し、固体を析出させる。この固体を、水(50mL)で洗浄した。さらに、この水分を蒸発させた後、固体を、THF/ジクロロメタン/ヘキサンを用いて再結晶し、これにより薄黄色結晶状の結果物、すなわちPd2核錯体[Pd(μ−NH(NH][B(C・2THFを得た。
<Pd2 core complex synthesis step>
Pd mononuclear complex [Pd (NH 3) 4] [B (C 6 F 5) 4] 2 · 2THF (434mg, 0.259mmol) THF solution of the (8 mL) was cooled to -80 ° C., n in the solution -BuLi (1.62 M, hexane solution, 160 mL, 0.259 mmol) was added and stirred vigorously. The temperature of the solution is raised to room temperature while maintaining stirring of the solution for 3 hours. The solution is dried under reduced pressure to remove the solvent and precipitate a solid. This solid was washed with water (50 mL). Further, after evaporating the water, the solid was recrystallized from THF / dichloromethane / hexane, thereby pale yellow crystalline result, ie Pd2 binuclear complex [Pd 2 (μ-NH 2 ) 2 ( NH 3) 4] [B ( C 6 F 5) 4] was obtained 2 · 2THF.

結果物の収量は、163mg(0.0898mmol)であり、その収率は、69%(100×0.0898/0.259)であった。   The yield of the resulting product was 163 mg (0.0898 mmol), and the yield was 69% (100 × 0.0898 / 0.259).

結果物に関するNMR測定の結果を、下記で示している。
Anal. Calcd for C563240Pd: C,37.05; H, 1.78; N, 4.63. Found: C, 36.94; H, 1.75; N, 4.44. H NMR (CDCN): d 1.87(br, 12H, NH), −1.94 (br, 4H, μ−NH). MS (FAB): m/z 993 {5・[B(C)4]}. IR(nujol, cm−1): 3383 (w), 3342 (w), 3167 (m), 1645 (m), 1514 (s), 1276 (m), 1082 (m), 975 (s).
The results of NMR measurement on the resulting product are shown below.
Anal. Calcd for C 56 H 32 B 2 F 40 N 6 O 2 Pd 2: C, 37.05; H, 1.78; N, 4.63. Found: C, 36.94; H, 1.75; N, 4.44. 1 H NMR (CD 3 CN) : d 1.87 (br, 12H, NH 3), -1.94 (br, 4H, μ-NH 2). MS (FAB): m / z 993 {5 · [B (C 6 F 5 ) 4]} + . IR (nujol, cm −1 ): 3383 (w), 3342 (w), 3167 (m), 1645 (m), 1514 (s), 1276 (m), 1082 (m), 975 (s).

〈被保護Pd2核錯体合成工程〉
Pd2核錯体[Pd(μ−NH(NH][B(C・2THF(391mg、0.215mmol)のTHF溶液(5mL)に、N,N,N’,N’−テトラメチルエチレンジアミン(TMEDA:150mL、1.00mmol)を室温下で添加し、この溶液を10分間にわたって撹拌した。この溶液は淡黄色から黄色ヘと変化した。この溶液から溶媒を蒸発させ、残ったオイル状の生成物を、塩化メチレン/ヘキサンを用いて再結晶し、これにより黄色針状結晶の結果物、すなわち[Pd(μ−NH(TMEDA)][B(Cを得た。
<Protected Pd dinuclear complex synthesis step>
Pd2 binuclear complex [Pd 2 (μ-NH 2 ) 2 (NH 3) 4] [B (C 6 F 5) 4] 2 · 2THF (391mg, 0.215mmol) in THF solution (5 mL) of, N, N , N ′, N′-Tetramethylethylenediamine (TMEDA: 150 mL, 1.00 mmol) was added at room temperature, and the solution was stirred for 10 minutes. The solution turned from pale yellow to yellow. The solvent was evaporated from this solution and the remaining oily product was recrystallized from methylene chloride / hexane, which resulted in yellow needles, [Pd 2 (μ-NH 2 ) 2 ( TMEDA) 2] was obtained [B (C 6 F 5) 4] 2.

結果物の収量は、331mg(0.180mmol)であり、その収率は、84%(100×0.180/0.215)であった。   The yield of the resulting product was 331 mg (0.180 mmol), and the yield was 84% (100 × 0.180 / 0.215).

結果物に関するNMR測定の結果を、下記で示している。
H NMR (500 MHz, CDCN): δ −1.52(br, 8H, μ−NH), 2.53(s, 24H, CH),2.61 (br, 8H, CH). Anal. Calcdfor C603640Pd: C, 39.26; H, 1.98; N, 4.58. Found: C, 39.42; H, 1.66; N, 4.14.
The results of NMR measurement on the resulting product are shown below.
1 H NMR (500 MHz, CD 3 CN): δ-1.52 (br, 8H, μ-NH 2 ), 2.53 (s, 24H, CH 3 ), 2.61 (br, 8H, CH 2) ). Anal. Calcdfor C 60 H 36 B 2 F 40 N 6 Pd 2: C, 39.26; H, 1.98; N, 4.58. Found: C, 39.42; H, 1.66; N, 4.14.

実施例及び比較例の各工程に関して、当該工程で用いた前駆体、材料、主溶媒又は主溶液、並びに生成物の化学式及び収率を、下記の表1に示している。   For each step of the examples and comparative examples, the precursors, materials, main solvents or main solutions, and the chemical formulas and yields of the products used in the steps are shown in Table 1 below.

Figure 0006654555
Figure 0006654555

表1からは、実施例のPd2核錯体合成工程の生成物の収率71%が、比較例のものの収率69%より高いことが分かる。これは、実施例のPd2核錯体合成工程の生成物である[Pd(μ−NH(NH][NOが、比較的親水性であるためと考えられる。具体的には、[Pd(μ−NH(NH][NOが親水性であることによって、非プロトン性の極性溶媒のDMSOに容易に水和し、結果として、これを単離することが容易になったためと考えられる。 Table 1 shows that the yield of the product of the step of synthesizing the Pd2 nucleus complex of the example was 71% higher than that of the comparative example at 69%. This is presumably because [Pd 2 (μ-NH 2 ) 2 (NH 3 ) 4 ] [NO 3 ] 2 , which is a product of the Pd 2 core complex synthesis step of the example, is relatively hydrophilic. Specifically, since [Pd 2 (μ-NH 2 ) 2 (NH 3 ) 4 ] [NO 3 ] 2 is hydrophilic, it easily hydrates into aprotic polar solvent DMSO, and It is considered that it became easier to isolate this.

これに対して、比較的親油性である比較例の[Pd(μ−NH(NH][B(Cの形態は、THF溶媒中において、オイル状であり、単離が容易ではない。 In contrast, the form of [Pd 2 (μ-NH 2 ) 2 (NH 3 ) 4 ] [B (C 6 F 5 ) 4 ] 2 of the comparative example, which is relatively lipophilic, is expressed in THF solvent. It is oily and not easy to isolate.

また、この収率の説明は、実施例2の被保護Pd2核錯体合成工程の生成物の[Pd(μ−NH(TMEDA)][NOについても同様に言える。 The description of the yield can be similarly applied to [Pd 2 (μ-NH 2 ) 2 (TMEDA) 2 ] [NO 3 ] 2 which is a product of the step of synthesizing the protected Pd 2 nucleus complex in Example 2.

本発明の好ましい実施形態を詳細に記載したが、特許請求の範囲から逸脱することなく、本発明に関して種々の変更が可能であることを当業者は理解する。   While the preferred embodiment of the invention has been described in detail, those skilled in the art will recognize that various changes may be made in the present invention without departing from the scope of the claims.

Claims (1)

Pd単核錯体[Pd(NH][NO、LiN(Si(CH、及びCHSOCH溶媒を混合して、Pd2核錯体[Pd(μ−NH(NH][NOを含有している第1の溶液を得ること、
前記Pd2核錯体[Pd(μ−NH(NH][NOを前記第1の溶液から分離すること、そして
分離された前記Pd2核錯体[Pd(μ−NH(NH][NO、(CHNCHCHN(CH、及びHO溶媒を混合して、被保護Pd2核錯体[Pd(μ−NH((CHNCHCHN(CH][NOを含有している第2の溶液を得ること
を含む、前記被保護Pd2核錯体の製造方法。
A Pd mononuclear complex [Pd (NH 3 ) 4 ] [NO 3 ] 2 , LiN (Si (CH 3 ) 3 ) 2 , and a CH 3 SOCH 3 solvent are mixed to form a Pd dinuclear complex [Pd 2 (μ-NH 2) 2 (NH 3) 4 ] [NO 3] 2 to obtain a first solution containing,
The Pd2 binuclear complex [Pd 2 (μ-NH 2 ) 2 (NH 3) 4] [NO 3] 2 that is separated from the first solution and separated the Pd2 binuclear complex [Pd 2 (.mu. NH 2 ) 2 (NH 3 ) 4 ] [NO 3 ] 2 , (CH 3 ) 2 NCH 2 CH 2 N (CH 3 ) 2 , and H 2 O solvent are mixed to form a protected Pd2 nucleus complex [Pd 2 (mu-NH 2) 2 containing ((CH 3) 2 NCH 2 CH 2 N (CH 3) 2) 2] [NO 3] 2 to obtain a second solution containing the protected Pd2 A method for producing a nuclear complex.
JP2016244824A 2016-12-16 2016-12-16 Method for producing protected Pd dinuclear complex Active JP6654555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016244824A JP6654555B2 (en) 2016-12-16 2016-12-16 Method for producing protected Pd dinuclear complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016244824A JP6654555B2 (en) 2016-12-16 2016-12-16 Method for producing protected Pd dinuclear complex

Publications (2)

Publication Number Publication Date
JP2018095628A JP2018095628A (en) 2018-06-21
JP6654555B2 true JP6654555B2 (en) 2020-02-26

Family

ID=62631793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016244824A Active JP6654555B2 (en) 2016-12-16 2016-12-16 Method for producing protected Pd dinuclear complex

Country Status (1)

Country Link
JP (1) JP6654555B2 (en)

Also Published As

Publication number Publication date
JP2018095628A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
US7977271B2 (en) Multiple-metal complex-containing compound and metal complex, and manufacture methods therefor, and exhaust gas purification catalyst manufacture method using the same
White et al. Synthesis and structural studies of titanium-rhodium heterobimetallic complexes. Characterization and electrochemistry of the redox partners [Cp2Ti (SCH2CH2CH2PPh2) 2Rh] BF4 and [Cp2Ti (SCH2CH2CH2PPh2) 2Rh] 0
WO2007141662A2 (en) Amidine-carboxylic acid complex, bridged polynuclear complex derived therefrom, production methods therefor, and use for preparing supported metal or metal oxide clusters
Jones et al. Synthesis and further reactivity studies of some transition metal gallyl complexes
Leñero et al. Heterolytic activation of dihydrogen by platinum and palladium complexes
Cabrero-Antonino et al. Bimetallic nanosized solids with acid and redox properties for catalytic activation of C–C and C–H bonds
Newkome et al. Synthesis and characterization of metalated and cyclometalated platinum (II) and platinum (IV) complexes of. beta.-diesters
Frey et al. Novel acyclic carbene-substituted phospha-palladacycles
Hanft et al. Aminotroponiminates: ligand-centred, reversible redox events under oxidative conditions in sodium and bismuth complexes
US20030032808A1 (en) Tri-and bidentate amido ligands prepared by palladium0 coupling and metallation threreof to form metal-amido catalysts
AU2003290629B2 (en) Method for the catalytic production of hydrocodone and hydromorphone
JP6654555B2 (en) Method for producing protected Pd dinuclear complex
JP5825221B2 (en) Exhaust gas purification catalyst and method for producing the same
Zhai et al. Dehydrogenation of iron amido-borane and resaturation of the imino-borane complex
Atkinson et al. Coordination chemistry with phosphine and phosphine oxide-substituted hydroxyferrocenes
Shishilov et al. Reactivity of polynuclear palladium carboxylate complexes towards acetonitrile: synthesis and X-ray study of Pd 2 (C 6 H 4-o-C ([double bond, length as m-dash] NH) CH 3) 2 (CH 3 CO 2) 2 and Pd 5 (CH 3 C ([double bond, length as m-dash] N) OC ([double bond, length as m-dash] N) CH 3)(NO)(NO 2) x (RCO 2) 7− x
JP5505773B2 (en) Heterometallic polynuclear complex and method for producing catalyst using the same
JP6154409B2 (en) Method for producing heterometallic multinuclear complex containing Ni and Au
JP4413507B2 (en) Pincer metal complex, method for producing the same, and pincer metal complex catalyst
Suen et al. Novel Hydrogen‐bond Three Dimensional Networks Generated from the Reaction of Metal Nitrate Hydrate (M= Co, Ni) with Ammonium Thiocynate and Bidentate Ligand Piperazine
JP6306468B2 (en) Process for producing dissimilar metal polynuclear complex containing Pd and Au
JP2006504765A (en) Method for producing palladium (0) -containing compound
Huang et al. Bis (imino) aryl NCN pincer cobalt complexes: synthesis and disproportionation
JP5251627B2 (en) Heteronuclear complex and method for producing the same
Xie et al. Heterobimetallic complexes stabilized by the P 2 N 2 macrocyclic ligand system: synthesis and reactivity of a rhodium–copper system that activates molecular hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190123

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200130

R151 Written notification of patent or utility model registration

Ref document number: 6654555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250