JP6652054B2 - 位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体 - Google Patents

位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体 Download PDF

Info

Publication number
JP6652054B2
JP6652054B2 JP2016529026A JP2016529026A JP6652054B2 JP 6652054 B2 JP6652054 B2 JP 6652054B2 JP 2016529026 A JP2016529026 A JP 2016529026A JP 2016529026 A JP2016529026 A JP 2016529026A JP 6652054 B2 JP6652054 B2 JP 6652054B2
Authority
JP
Japan
Prior art keywords
vibration
measurement
pipe
position determination
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016529026A
Other languages
English (en)
Other versions
JPWO2015194137A1 (ja
Inventor
裕文 井上
裕文 井上
尚武 高橋
尚武 高橋
慎 冨永
慎 冨永
純一郎 又賀
純一郎 又賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2015194137A1 publication Critical patent/JPWO2015194137A1/ja
Application granted granted Critical
Publication of JP6652054B2 publication Critical patent/JP6652054B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/42Detecting the response signal, e.g. electronic circuits specially adapted therefor by frequency filtering or by tuning to resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4418Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a model, e.g. best-fit, regression analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/022Liquids

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

この発明は、位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体に関する。
水やガス等の流体が流れる配管において、漏洩の存在が明らかになった場合、流体の漏洩が生じた位置(以下「漏洩位置」とする場合がある)を高精度に特定することが求められる。
特許文献1には、管状体のピンホール位置特定方法が記載されている。特許文献1に記載の方法は、管状体内に加圧気体を充填し、間隔をあけて2ポイントに設置した音波検出センサで該気体の漏洩音を検出する。そして、特許文献1に記載の方法は、該センサの検出音波波形を対比することにより、管状体中のピンホールの位置を知見する。
特開平4−184133号公報
特許文献1に記載の方法では、2ポイントに設置したセンサのうち一方に近い場所に漏洩(ピンホール)の位置がある場合に、それぞれのセンサで検出する検出波形の類似性が失われる場合がある。これは、2ポイントに設置したセンサのうち漏洩の位置から遠いセンサで検出した漏洩音の波形は、振動が管状体を伝搬する間に、複数の伝搬モードの重畳や周波数分散性等により、波形の形状が崩れる場合があるためである。そのため、特許文献1に記載の方法では、漏洩位置の特定精度が低下する場合がある。
本発明は、上記課題を解決するためになされたものであって、漏洩位置を特定するための振動の計測位置を決定する位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体を提供することを一つの目的とする。
本発明の一態様における位置決定装置は、複数の検知手段によってそれぞれ検出した配管の振動に基づいて、検出した振動の各々に関して特徴量をそれぞれ抽出する特徴量抽出手段と、特徴量に基づいて、少なくとも2つの検知手段による計測位置を決定する計測位置決定手段とを有する。
本発明の一態様における位置決定方法は、複数の検知手段によってそれぞれ検出した配管の振動に基づいて、検出した振動の各々に関して特徴量をそれぞれ抽出し、特徴量に基づいて、少なくとも2つの検知手段による計測位置を決定する。
本発明の一態様におけるコンピュータ読み取り可能記録媒体は、複数の検知手段によってそれぞれ検出した配管の振動に基づいて、検出した振動の各々に関して特徴量をそれぞれ抽出する処理と、特徴量に基づいて、少なくとも2つの検知手段による計測位置を決定する処理とを実行させるプログラムを非一時的に格納する。
本発明の一態様における漏洩検知システムは、本発明の一態様における位置決定装置と、位置決定装置により決定した位置にある2つの検知手段で検出した配管の振動に基づいて配管からの流体の漏洩位置を特定する漏洩位置特定手段とを有する。
本発明によると、漏洩位置を特定するための振動の計測位置を決定する位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体を提供することができる。
本発明の第1の実施形態における位置決定装置を示す図である。 本発明の第1の実施形態における位置決定装置の動作を示すフローチャートである。 本発明の第1の実施形態における漏洩検知システムを示す図である。 本発明の第1の実施形態における漏洩検知システムにて検知部を配管に設置した例を示す図である。 本発明の第1の実施形態における漏洩検知システムの動作を示すフローチャートである。 本発明の第2の実施形態における位置決定装置を示す図である。 本発明の第2の実施形態における位置決定装置にて計測位置の決定対象となる検知部を配管に設置した例を示す図である。 本発明の第2の実施形態における位置決定装置の動作を示すフローチャートである。 本発明の第3の実施形態における位置決定装置を示す図である。 本発明の第3の実施形態における位置決定装置の動作を示すフローチャートである。 本発明の第4の実施形態における位置決定装置を示す図である。 本発明の第4の実施形態における位置決定装置の動作を示すフローチャートである。 本発明の第5の実施形態における漏洩検知システムにて検知部を配管に設置した例を示す図である。 本発明の第5の実施形態における位置決定装置の動作を示すフローチャートである。 本発明の各実施形態における位置決定装置等を実現する情報処理装置の構成例を示す図である。
(第1の実施形態)
本発明の各実施形態について、添付の図面を参照して説明する。
なお、本発明の各実施形態において、各装置の各構成要素は、機能単位のブロックを示している。各装置の各構成要素は、例えば図15に示すような情報処理装置1000とソフトウェアとの任意の組み合わせにより実現することができる。情報処理装置1000は、一例として、以下のような構成を含む。
・CPU(Central Processing Unit)1001
・ROM(Read Only Memory)1002
・RAM(Ramdom Access Memory)1003
・RAM1003にロードされるプログラム1004
・プログラム1004を格納する記憶装置1005
・記憶媒体1006の読み書きを行うドライブ装置1007
・通信ネットワーク1009と接続する通信インターフェース1008
・データの入出力を行う入出力インターフェース1010
・各構成要素を接続するバス1011
また、各装置の実現方法には様々な変形例がある。例えば、各装置は、専用の装置として実現することができる。また、各装置は、複数の装置の組み合わせにより実現することができる。
最初に、本発明の第1の実施形態について説明する。図1は、本発明の第1の実施形態における位置決定装置を示す図である。図2は、本発明の第1の実施形態における位置決定装置の動作を示すフローチャートである。
図1に示す通り、本発明の第1の実施形態における位置決定装置100は、特徴量抽出部110と、計測位置決定部120とを有する。特徴量抽出部110は、検知部101にて検出した配管の振動に基づいて特徴量を抽出する。計測位置決定部120は、特徴量抽出部110で抽出した特徴量に基づいて、少なくとも2つの検知部による計測位置を決定する。
最初に、本実施形態における位置決定装置100の構成について説明する。
特徴量抽出部110は、検知部101にて検出した配管の振動に基づいて特徴量をそれぞれ抽出する。図1に示す例では、検知部101は、検知部101−1及び検知部101−2の2つを含む。この場合には、特徴量抽出部110は、検知部101−1及び検知部101−2の各々にて検出した配管の振動に基づいて特徴量を抽出する。特徴量抽出部110は、検知部101の各々によって検知した振動の波形の類似性を判断できる指標を特徴量とすることができる。一例として、特徴量抽出部110は、例えば検知部101−1及び検知部101−2の各々にて検出した配管の振動の位相を特徴量として抽出することができる。なお、特徴量抽出部110は、検知部101の各々にて検知された同一の原因により生じた振動に基づいて特徴量を抽出することが好ましい。また、特徴量を抽出する対象となる振動は、流体の配管からの漏洩に起因して生じる振動(以下「漏洩振動」と呼ぶ場合がある)であることが好ましい。
計測位置決定部120は、特徴量抽出部110にて配管の振動に基づいて抽出した特徴量に基づいて、2つの検知部101による計測位置をそれぞれ決定する。計測位置決定部120は、一例として、特徴量抽出部110で抽出した検知部101の各々の特徴量が、当該特徴量に対応する振動の波形の類似性に関する所定の条件を満たす位置を、検知部101の各々による計測位置とする。この場合には、計測位置決定部120は、上述した特徴量に基づいて、例えば検知部101の各々によって検知された振動の波形の類似性が高いと判断される2つの位置を、検知部101による計測位置として決定する。つまり、所定の条件は、検知部101によって検出される複数の地点における振動のうち、波形の類似性が高い振動が条件を満たすように適宜定められる。ただし、計測位置決定部120は、特徴量抽出部110にて配管の振動に基づいて抽出した特徴量に基づいて、上述した振動の波形の類似性とは異なる任意の条件によって少なくとも2つの検知部101による計測位置をそれぞれ決定してもよい。
計測位置決定部120は、より詳細な一例として、次のように検知部101による計測位置をそれぞれ決定する。配管のいずれかの場所で漏洩が生じていることが想定される場合には、配管の複数の地点において検知された配管の振動に基づいて、上述した特徴量がそれぞれ特徴量抽出部110にて抽出される。配管の複数の地点における配管の振動は、例えば、任意の数の検知部101を配管に沿って移動させる等して、各々の地点において振動を検知することで得られる。計測位置決定部120は、このようにして抽出された配管の複数の地点における特徴量を参照して、当該特徴量によって表される振動の波形の類似性が高いと判断される2つの特徴量を特定する。そして、当該特徴量に対応する振動が検知された2つの地点を、検知部101による計測位置として決定する。なお、計測位置決定部120は、上述した振動の波形の類似性に関する所定の条件を満たす3つ以上の地点を、検知部101による計測位置として決定してもよい。
計測位置決定部120は、一例として、特徴量抽出部110で抽出した検知部101の各々の特徴量の相違が所定の閾値以下である位置を、検知部101の各々による計測位置とする。例えば、特徴量抽出部110が配管の振動の位相を特徴量として抽出した場合、計測位置決定部120は、各々の検知部101から抽出した位相の差が閾値以下である位置を、検知部101の各々による計測位置とすることができる。これは、特徴量抽出部110で抽出した検知部101の各々の特徴量の相違が閾値以下である位置に検知部を設置することで、検知部101の各々によって検出する振動の波形の類似性が高まるからである。また、計測位置決定部120は、検知部101の各々による計測位置を決定する場合に、配管の振動を検知可能な所定の地点を検知部101の各々による計測位置とすることができる。また、計測位置決定部120は、検知部101の各々による計測位置を決定する場合に、配管の振動を検知可能な所定の範囲を検知部101の各々による計測位置とすることができる。更に、計測位置決定部120は、上述した閾値を、例えば検知部101の各々が振動の検知対象とする配管の種類、口径又は材質等に基づいて適宜定めることができる。
計測位置決定部120によって検知部101の各々による計測位置が決定されると、その計測位置に配置された検知部101を用いて、流体の配管からの漏洩位置の特定が行われる。この漏洩位置の特定に関する詳細は後述する。
次に、図2を用いて、本実施形態における位置決定装置100の動作について説明する。
最初に、位置決定装置100は、検知部101の各々によって検知した配管の振動に関する計測値を取得する(ステップS101)。続いて、特徴量抽出部110は、ステップS101にて取得した振動に関する計測値に基づいて、特徴量を抽出する(ステップS102)。続いて、計測位置決定部120は、ステップS102にて取得した特徴量に基づいて、検知部101の各々による計測位置を決定する(ステップS103)。
(本実施形態における位置決定装置を有する漏洩検知システムの例)
次に、本実施形態における位置決定装置を有する漏洩検知システム10の構成について説明する。図3は、本発明の第1の実施形態における漏洩検知システムを示す図である。図4は、本発明の第1の実施形態における漏洩検知システムにて検知部を配管に設置した例を示す図である。図5は、本発明の第1の実施形態における漏洩検知システムの動作を示すフローチャートである。
図3に示す通り、本発明の第1の実施形態における漏洩検知システム10は、検知部101と、上述した位置決定装置100と、漏洩位置特定部102とを有する。検知部101は、配管の振動を検出する。漏洩位置特定部102は、位置決定装置100により決定した位置にある2つの検知部101にて検出した配管の振動に基づいて、配管にて流体の漏洩が生じた位置を特定する。なお、漏洩検知システム10において、検知部101は、例えば図4に示すように配管に取付けられる。
検知部101は、配管又は配管の内部を流れる流体の振動を検出する。検知部101は、例えば固体の振動を計測するセンサを用いることができる。該当するセンサとして、圧電型加速度センサ、動電型加速度センサ、静電容量型加速度センサ、光学式速度センサ、動ひずみセンサ等がある。ただし、検知部101は、音響センサのように、その他の種類のセンサであってもよい。検知部101にて検出された振動に関する計測値は、任意の通信手段により漏洩検知システム10に含まれる位置決定装置100へ送信される。また、検知部101は、配管の外壁面や内壁面に設置される。検知部101は、配管1に設置された図示しないフランジや、弁栓等の付属物表面や内面に設置されてもよい。検知部101は、例えば磁石、専用ジグ、又は接着剤を用いて配管等に取付けられる。なお、配管は、例えば地中に埋設されていてもよい。又は、配管は、構造物に設置されていてもよい。
漏洩位置特定部102は、2つの検知部101にて検出した配管の振動に基づいて、配管にて流体の漏洩が生じた位置を特定する。この場合において、検知部101は、例えば、それぞれ位置決定装置100で決定された位置にて振動を検出する。位置決定装置100において3つ以上の位置が検知部101による計測位置として決定された場合には、そのうちの2つの位置が適宜選択される。漏洩位置特定部102は、例えば相関法等の任意の手法にて漏洩位置を特定する。漏洩位置特定部102は、相関法を用いると、振動の到達時間差τ、振動の伝搬速度c及び検知部間距離lから、以下の(1)式より漏洩位置l1を算出する。漏洩位置l1は、2つの検知部101のうち一方の検知位置からの距離を表す。
Figure 0006652054
(1)式において、到達時間差τは、漏洩振動が、2つの検知部101の各々にて検出される時刻の差である。具体的には、到達時間差τは、2つの検知部101のうち、上述した一方とは異なる他方における漏洩信号の到達時刻から、2つの検知部101のうち、上述した一方における漏洩信号の到達時刻を差し引くことで算出される。到達時間差τは、例えば2つの検知部101の各々にて検出された振動の相互相関関数を用いて算出される。伝搬速度cは、漏洩振動が配管を伝搬する際の速度である。伝搬振動cは、配管の種類や材質、配管の周囲の土壌等によって決まる。伝搬速度cは、上記の配管の種類などの情報から理論的に求めることもできるし、又は実験的に求めることもできる。検知部間距離lは、本実施形態においては、検知部101−1と検知部101−2との間の距離である。
次に、図5を用いて、本実施形態における漏洩検知システム10の動作について説明する。
漏洩検知システム10の位置決定装置100は、検知部101の各々によって検知した配管の振動に関する計測値を取得する(ステップS151)。続いて、特徴量抽出部110は、ステップS151にて取得した振動に関する計測値に基づいて、特徴量を抽出する(ステップS152)。続いて、計測位置決定部120は、ステップS152にて取得した特徴量に基づいて、検知部101の各々による計測位置を決定する(ステップS153)。ステップS151からステップS153までの動作は、上記位置決定装置100にてステップS101からステップS103として説明した動作と同じとすることができる。続いて、漏洩位置特定部102は、ステップS153にて決定した位置に設置された検知部101により検出した配管の振動に関する計測値に基づいて、配管にて流体の漏洩が生じた位置を特定する(ステップS154)。この場合に、漏洩位置特定部102は、例えば相関法により配管にて流体の漏洩が生じた位置を特定することができる。
続いて、本実施形態において、位置決定装置100にて決定される検知部101による計測位置と、漏洩検知システム10にて特定される漏洩位置との関係について説明する。
本実施形態において、漏洩検知システム10は、例えば相関法により配管にて流体の漏洩が生じた位置を特定する。相関法では、配管にて流体の漏洩が生じた位置を特定する場合に、例えば2つの検知部の各々にて検出された振動波形の相互相関関数から算出された到達時間差が用いられる。到達時間差を高精度に求めるためには、2つの検知部の各々にて検出された振動の波形が、同一であるか又は類似することが好ましい。
配管から流体が漏洩する際に生じる振動は、配管の管壁を伝搬する姿態や、流体を伝搬する姿態など、伝搬特性(減衰特性、伝搬速度)の異なる複数の姿態で伝搬する。また、配管から流体が漏洩する際に生じる振動は、各々の姿態においても周波数ごとに伝搬特性が異なる周波数分散性を有する。このような場合には、配管から流体が漏洩する際に生じる振動は、各振動が配管を伝搬する過程で波形が崩れるので、漏洩箇所(すなわち振動源)から離れるほど、漏洩箇所における原波形と異なる波形となる場合がある。
一例として、漏洩位置を特定する際に、漏洩個所の位置が2つの検知部のうち一方の検知部に偏った地点にある場合を想定する。この場合には、上述した配管における振動伝搬特性から、2つの検知部の各々によって検知される振動波形の類似性が失われる場合がある。例えば、漏洩位置から近い検知部には、複数の伝搬姿態の振動が到達する。これに対し、漏洩個所から遠い検知部には、減衰しやすい伝搬姿態の振動は減衰して到達せず、減衰しにくい伝搬姿態の振動のみが到達する場合が生じうる。この場合において、2つの検知部の各々にて検出された振動波形の相互相関関数に基づいて漏洩振動の到達時間差を算出しようとすると、到達時間差の決定精度が低下する場合がある。そして、到達時間差の決定精度が低下する結果として、配管にて流体の漏洩が生じた位置の特定精度が低下する場合がある。
一方、例えば漏洩個所の位置が2つの検知部から等距離又はほぼ等距離にある場合では、2つの検知部に到達する振動の伝搬姿態には大きな差が生じない場合が多い。この場合には、2つの検知部の各々にて検知される振動波形の類似性は失われにくい。そのため、2つの検知部の各々にて検出された振動波形の相互相関関数に基づいて漏洩振動の到達時間差を算出すると、漏洩個所の位置が一方の検知部に偏った地点にある場合と比較して、到達時間差の決定精度が高い場合が多い。そして、その結果として、漏洩個所の位置が2つの検知部から等距離又はほぼ等距離にある場合には、漏洩個所の位置が一方の検知部に偏った地点にある場合と比較して、配管にて流体の漏洩が生じた位置の特定精度が高い場合が多い。
また、漏洩個所の位置が2つの検知部から等距離又はほぼ等距離でない場合でも、配管における振動伝搬特性によっては、振動波形の類似性が失われにくい場合がある。そのため、漏洩振動を、振動波形の類似性が相対的に高い2か所で検知することによっても、配管にて流体の漏洩が生じた位置の特定精度が高い場合が多い。すなわち、配管にて流体の漏洩が生じた位置を特定する場合に、特徴値に基づいて検知部による計測位置を決定してから漏洩位置を特定することで、配管にて流体の漏洩が生じた位置の高い精度で特定することができる。
以上の通り、本実施形態における位置決定装置100は、特徴量に基づいて配管における検知部101による計測位置を決定する。そのため、検知部101で検知する漏洩振動の類似性を高くすることができる。また、本実施形態における漏洩検知システム10は、当該検知部101にて検知した振動に基づいて漏洩位置を特定する。すなわち、本実施形態における位置決定装置100を用いることにより、漏洩位置を特定するための検知部による計測位置を決定することができる。そして、本実施形態における漏洩検知システム10を用いることにより、漏洩位置を高精度に特定することができる。
本実施形態においては、変形例が考えられる。一例として、位置決定装置100は、特徴量として、配管の振動の位相の他に、例えば、各々の検知部101への振動の到達時刻差、配管の振動波形の包絡線又は配管の振動の振幅を用いることができる。
特徴量抽出部110が各々の検知部101への振動の到達時刻差を特徴量として抽出した場合、計測位置決定部120は、到達時刻差が閾値以下である位置を計測位置とすることができる。特徴量抽出部110が配管の振動の包絡線を特徴量として抽出した場合、計測位置決定部120は、各々の検知部101から抽出した包絡線の形状の差が閾値以下である位置を、検知部101の各々による計測位置とすることができる。また、特徴量抽出部110が振動の振幅を特徴量として抽出した場合、計測位置決定部120は、各々の検知部101から抽出した振幅の大きさの差が閾値以下である位置を、検知部101の各々の計測位置とすることができる。
特徴量として配管の振動の位相を用いる場合、位置決定装置100は、検知部による計測位置を高い精度で決定することができる。しかしながら、特徴量抽出部110における特徴値の抽出や、計測位置決定部120における計測位置の決定において、波形全体の情報が必要となる。すなわち、必要となるデータ量が多くなる。一方、特徴量として振動波形の包絡線や振動の振幅を用いる場合に特徴量抽出部110又は計測位置決定部120にて必要となるデータ量は、特徴量として配管の振動の位相を用いる場合に必要となるデータ量と比較して小さくなる。位置決定装置100にて用いる特徴量は、漏洩位置の特定において必要とされる精度や、検知部101の各々から送信可能なデータ量、位置決定装置100又は検知部101の消費電力等に応じて適宜決定される。
また、本実施形態において、位置決定装置100は、配管の振動を検知する検知部101による計測位置を決定するとした。しかしながら、本実施形態における位置決定装置100は、例えば、構造物の劣化位置を特定するために、構造物の振動を検知する検知部による計測位置を決定するために用いることができる。
(第2の実施形態)
続いて、本発明の第2の実施形態について説明する。図6は、本発明の第2の実施形態における位置決定装置を示す図である。図7は、本発明の第2の実施形態における位置決定装置にて計測位置の決定対象となる検知部を配管に設置した例を示す図である。図8は、本発明の第2の実施形態における位置決定装置の動作を示すフローチャートである。
図6に示す通り、本発明の第2の実施形態における位置決定装置200は、特徴量抽出部110と、計測位置決定部120とを有する。特徴量抽出部110は、検知部101−1から検知部101−nの各々にて検出した配管の振動に基づいて特徴量を抽出する。計測位置決定部120は、特徴量抽出部110で抽出した特徴量に基づいて、検知部101−1から検知部101−nまでの検知部から2つの検知部を選択する。
つまり、本実施形態における位置決定装置100は、計測位置決定部120が、特徴量抽出部110で抽出した特徴量に基づいて、検知部101−1から検知部101−nまでの検知部から2つの検知部を選択する点が、第1の実施形態における位置決定装置100と異なる。言い換えると、本実施形態における位置決定装置100は、例えば予め配管等に取付けられた、検知部101−1から検知部101−nまでの検知部から2つの検知部を選択することで、2つの検知部による計測位置をそれぞれ決定する。これ以外の要素については、第2の実施形態における位置決定装置100は、第1の実施形態における位置決定装置100と同様の構成を有している。
なお、図7に示すように、第1の実施形態における漏洩検知システム10と同様にして、本実施形態における位置決定装置200を有する漏洩検知システム20を構成することができる。この場合において、漏洩検知システム20は、例えば検知部101−1から検知部101−nまでの検知部から少なくとも2つの検知部を選択し、当該選択された検知部にて検知した振動に基づいて、配管の漏洩が生じている位置を特定する。
計測位置決定部120は、特徴量抽出部110で抽出した特徴量に基づいて、検知部101−1から検知部101−nまでの検知部から少なくとも2つの検知部を選択する。例えば、計測位置決定部120が、検知部101−1から検知部101−nまでの検知部から2つの検知部を選択する場合、特徴量の相違が最小となる2つの検知部の組を選択することができる。また、計測位置決定部120は、検知部101−1から検知部101−nまでの検知部のうち、特徴量の相違が閾値以下である2つの検知部の組を選択することができる。計測位置決定部120は、これ以外の手法によって、検知部101−1から検知部101−nまでの検知部から少なくとも2つの検知部を選択してもよい。そして、特徴量として配管の振動の位相を用いる場合、計測位置決定部120は、例えば検知部101−1から検知部101−nまでの検知部のうち、抽出した位相の差が最小となる2つの検知部の組を選択することができる。このようにすることで、計測位置決定部120は、少なくとも2つの検知部101による計測位置をそれぞれ決定する。
続いて、図8を用いて、本実施形態における位置決定装置200の動作について説明する。
位置決定装置200は、最初に、検知部101の各々によって検知した配管の振動に関する計測値を取得する(ステップS201)。続いて、特徴量抽出部110は、ステップS101にて取得した振動に関する計測値に基づいて、特徴量を抽出する(ステップS202)。ステップS201及びステップS202の動作は、本発明の第1の実施形態におけるステップS101及びステップS102と同様に行うことができる。続いて、計測位置決定部120は、ステップS202にて取得した特徴量に基づいて、検知部101−1から検知部101−nまでの検知部から2つの検知部を選択する(ステップS203)。
続いて、図7に示すように、検知部101−1から検知部101−nが配管に取付けられている場合を想定して、計測位置決定部120がステップS203において少なくとも2つの検知部を選択する動作の具体的な一例を説明する。
図7において、配管の漏洩位置180から漏洩が発生している例を想定する。この想定において、2つの検知部を選択することを考えると、漏洩位置180から近い2つの検知部は、検知部101−3及び検知部101−4である。しかしながら、図7によると、漏洩位置180から検知部101−3及び検知部101−4の各々までの距離は異なっている。これに対し、漏洩位置180から検知部101−2及び検知部101−5の各々までの距離はほぼ同じである。このことから、この想定例においては、検知部101−2及び検知部101−5の各々により検出された配管の振動の波形は、検知部101−3及び検知部101−4の各々により検出された配管の振動の波形と比較して、類似性が高いと予想される。そして、計測位置決定部120は、配管の漏洩位置の特定精度を高めようとする場合には、波形の類似性が高いことが予想される検知部101−2及び検知部101−5の組を、2つの検知部として選択することが好ましい。
計測位置決定部120は、この場合に、例えば検知部101−3及び検知部101−4の各々にて検出された配管の振動に基づいて抽出された特徴量の相違(以下「第1の相違」とする)を求める。また、計測位置決定部120は、例えば検知部101−2及び検知部101−5の各々にて検出された配管の振動に基づいて抽出された特徴量の相違(以下「第2の相違」とする)を求める。そして、計測位置決定部120は、例えば第1の相違と第2の相違とを比較する。この場合に、第2の相違の方が小さいとすると、計測位置決定部120は、検知部101−2及び検知部101−5の組を、2つの検知部として選択することが可能となる。
続いて、上記の一例において、本実施形態における位置決定装置200を含む漏洩検知システム20によって漏洩位置を特定する場合を想定する。漏洩検知システム20は、上記の通り選択された検知部101−2及び検知部101−5により検出した配管の振動に関する計測値に基づいて、配管にて流体の漏洩が生じた位置を特定する。検知部101−2及び検知部101−5の各々により検出した配管の振動の波形は、検知部101−3及び検知部101−4の各々により検出した配管の振動の波形と比較して、類似性が高いと期待される。そのため、本実施形態における位置決定装置200を含む漏洩システム20は、漏洩位置180の特定精度を高めることができる。
以上の通り、本実施形態における位置決定装置200によると、計測位置決定部120は、特徴量に基づいて、検知部101−1から検知部101−nまでの検知部から少なくとも2つの検知部を選択する。これにより、計測位置決定部120は、少なくとも2つの検知部による計測位置を決定する。すなわち、計測位置決定部120は、振動波形の類似性が相対的に高い2つの位置を検知部による計測位置として決定することができる。したがって、本実施形態における位置決定装置200は、例えば配管に複数の検知部が予め設置されている場合に、配管の漏洩位置の特定精度を高めることができる。
(第3の実施形態)
続いて、本発明の第3の実施形態について説明する。図9は、本発明の第3の実施形態における位置決定装置を示す図である。図10は、本発明の第3の実施形態における位置決定装置の動作を示すフローチャートである。
図9に示す通り、本発明の第2の実施形態における位置決定装置300は、信号対雑音比算出部130と、特徴量抽出部110と、計測位置決定部120とを有する。信号対雑音比測定部130は、検知部101にて検出した配管の振動に関する計測値について、各々の信号対雑音比を算出する。特徴量抽出部110は、検知部101にて検出した配管の振動に基づいて特徴量を抽出する。計測位置決定部120は、特徴量抽出部110で抽出した特徴量と、信号対雑音比測定部130で算出した各々の検知部による計測値の信号対雑音比とに基づいて、2つの検知部による計測位置を決定する。
つまり、本実施形態における位置決定装置300は、信号対雑音比算出部130を有する点が、本発明の第1の実施形態における位置決定装置100と異なる。また、本実施形態における位置決定装置300は、計測位置決定部120が、計測値の信号対雑音比に基づいて、2つの検知部による計測位置を決定する点が、本発明の第1の実施形態における位置決定装置100と異なる。これ以外の要素については、本実施形態における位置決定装置300は、第1の実施形態における位置決定装置100と同様の構成を有している。
なお、第1の実施形態における漏洩検知システム10と同様にして、本実施形態における位置決定装置300を有する漏洩検知システムを構成することができる。
信号対雑音比測定部130は、検知部101の各々にて検出した配管の振動に関する計測値について、各々の信号対雑音比を算出する。この場合において、信号対雑音比は、一例として、漏洩振動と、配管から漏洩が生じていない場合の配管の振動との振幅の比とすることができる。また、別の例として、信号対雑音比は、配管の振動に関する情報とその他のノイズとの比とすることができる。
計測位置決定部120は、特徴量抽出部110で抽出した特徴量と、信号対雑音比測定部130で算出した各々の検知部における計測値の信号対雑音比とに基づいて、2つの検知部による計測位置を決定する。例えば、計測位置決定部120は、検知部101の各々の特徴量の相違が所定の閾値以下となり、かつ、信号対雑音比が所定の閾値を超える位置を、検知部101の各々による計測位置とすることができる。なお、信号対雑音比に関する閾値は、例えば検知部101の各々に関する特性や、検知部101の各々が振動の検知対象とする配管の種類(例えば、配管の材質や径等)、配管における振動の伝搬特性、配管の周囲の土壌等に関する情報に基づいて理論的に算出される値でもよい。また、この閾値は、検知部101の各々が振動の検知対象とする配管や当該配管と同じ種類の配管において過去に生じた漏洩振動の計測値や、これらの配管に対して予め発生させた擬似的な漏洩振動の計測値等に基づいて実験的に求められる値でもよい。
続いて、図10を用いて、本実施形態における位置決定装置300の動作について説明する。
最初に、位置決定装置300は、検知部101の各々によって検知した配管の振動に関する計測値を取得する(ステップS301)。このステップは、本発明の第1の実施形態におけるステップS101と同様に行うことができる。
続いて、信号対雑音比測定部130は、検知部101の各々によって検知した配管の振動に関する計測値について、各々の信号対雑音比を算出する(ステップS302)。配管の振動に関する計測値は、例えば振動の振幅等、検知部101の各々によって検知した配管の振動の様子を表す任意の値を含む。信号対雑音比測定部130は、信号対雑音比の算出を、例えば以下のように行う。すなわち、信号対雑音比測定部130は、最初に、検知部101の各々によって検知した、配管からの流体の漏洩に起因する振動を含む配管の振動に関する計測値について、漏洩に特徴的な部分に着目し、各々の振動の振幅を信号振幅として算出する。漏洩に特徴的な部分とは、例えば、漏洩に起因して振幅の大きな振動が発生すると想定される周波数帯域等である。この周波数帯域は、検知部101の各々が検知対象とする配管の種類等に応じて定められる。この場合に、振動の振幅は、例えば、検知部101の各々によって検知した配管の振動に関する計測値に対して、配管の種類等に応じて予め指定された周波数帯域を抽出するフィルタ処理を行い、そのフィルタ処理を行った後の振動の振幅を求めることで算出される。次に、信号対雑音比測定部130は、配管からの流体の漏洩がない場合の配管の振動に関する計測値について、各々の振動の振幅を雑音振幅として算出する。次に、信号対雑音比測定部130は、信号振幅と、雑音振幅との各々の比を求めることにより、検知部101の各々によって検知した配管の振動に関する計測値における信号対雑音比を算出する。
続いて、特徴量抽出部110は、ステップS301にて取得した振動に関する計測値に基づいて、特徴量を抽出する(ステップS303)。このステップは、本発明の第1の実施形態におけるステップS102と同様に行うことができる。
続いて、計測位置決定部120は、ステップS303で抽出した特徴量及びステップS302で算出した各々の検知部における計測値の信号対雑音比に基づいて、2つの検知部による計測位置を決定する(ステップS304)。計測位置決定部120は、検知部101の各々の特徴量の相違が閾値以下である位置のうち、検知部101の各々について算出した信号対雑音比が所定の閾値を超える位置を、検知部101の各々による計測位置とすることができる。
以上の通り、本実施形態における位置決定装置300によると、信号対雑音比測定部130は、検知部101の各々にて検出した配管の振動に関する計測値について、各々の信号対雑音比を算出する。計測位置決定部120は、ステップS303で抽出した特徴量及びステップS302で算出した各々の検知部における計測値の信号対雑音比に基づいて、2つの検知部による計測位置を決定する。このようにすることで、位置決定装置200は、信号対雑音比の高い、すなわち、漏洩信号が明確となるような検知部による計測位置を決定することができる。したがって、本実施形態における位置決定装置300は、配管の漏洩位置の特定精度を高めることができる。
なお、本実施形態における位置決定装置300は、図10に示すフローチャートと異なる順番で動作することができる。例えば、位置決定装置300は、ステップS302の動作と、ステップS303の動作とを、逆の順番で動作することができる。また、位置決定装置300は、ステップS302の動作と、ステップS303の動作とを、並行して動作することができる。
更に、本実施形態における位置決定装置300は、本発明の第2の実施形態における位置決定装置200と、互いに組み合わせることができる。この場合において、信号対雑音比測定部130は、検知部101−1から検知部101−nまでの各々にて検出した配管の振動に関する計測値について、各々の信号対雑音比を算出することができる。また、計測位置決定部120は、一例として、検知部101−1から検知部101−nまでの検知部のうち、特徴量の相違が所定の閾値より小さく、かつ、信号対雑音比が所定の閾値を超える2つの検知部の組を選択することができる。
(第4の実施形態)
続いて、本発明の第4の実施形態について説明する。図11は、本発明の第4の実施形態における位置決定装置を示す図である。図12は、本発明の第4の実施形態における位置決定装置の動作を示すフローチャートである。
図11に示す通り、本発明の第4の実施形態における位置決定装置400は、漏洩有無判定部140と、特徴量抽出部110と、計測位置決定部120とを有する。漏洩有無判定部140は、検知部101にて検出した配管の振動に基づいて、配管に流体の漏洩が生じているかを判定する。これ以外の要素については、第4の実施形態における位置決定装置100は、第1の実施形態における位置決定装置100と同様の構成を有している。
なお、第1の実施形態における漏洩検知システム10と同様にして、本実施形態における位置決定装置400を有する漏洩検知システムを構成することができる。
漏洩有無判定部140は、検知部101にて検出した配管の振動に基づいて、配管に流体の漏洩が生じているかを判定する。漏洩有無判定部140は、検知部101のいずれかにて検出した配管の振動の振幅が、所定の閾値を超えている場合に、配管に流体の漏洩が生じていると判定することができる。
次に、図12を用いて、本実施形態における位置決定装置400の動作について説明する。
最初に、位置決定装置400は、検知部101の各々によって検知した配管の振動に関する計測値を取得する(ステップS401)。ステップS401の動作は、本発明の第1の実施形態におけるステップS101と同様とすることができる。
続いて、漏洩有無判定部140は、検知部101にて検出した配管の振動に基づいて、配管に流体の漏洩が生じているかを判定する(ステップS402)。配管に流体の漏洩が生じていると判定する場合(ステップS403)には、特徴量抽出部110は、ステップS401にて取得した振動に関する計測値に基づいて、特徴量を抽出する(ステップS404)。続いて、計測位置決定部120は、ステップS404にて取得した特徴量に基づいて、検知部101の各々による計測位置を決定する(ステップS405)。ステップS404及びS405の動作は、本発明の第1の実施形態におけるステップS102及びS103と同様とすることができる。なお、ステップS403において、漏洩が生じていないと判断する場合には、ステップS401に戻り、再度、位置決定装置400は、検知部101の各々によって検知した配管の振動に関する計測値を取得する。
以上の通り、本実施形態における位置決定装置400は、漏洩有無判定部140において配管からの漏洩の有無を判定してから、配管の振動に基づく特徴量の抽出及び特徴量に基づく2つの検知部による計測位置の決定を行う。すなわち、本実施形態における位置決定装置400においては、配管からの漏洩がない場合には、計測位置の決定を行わない動作が可能となる。そのため、本実施形態における位置決定装置400は、処理の実行に伴う消費電力を抑えることができる。
なお、本実施形態における位置決定装置400は、本発明の第2の実施形態における位置決定装置200及び本発明の第3の実施形態における位置決定装置300の一方又は両方と、互いに組み合わせることができる。
すなわち、本実施形態における位置決定装置400は、例えば計測位置決定部120が、検知部101−1から検知部101−nまでの検知部から少なくとも2つの検知部による計測位置を選択する構成とすることができる。また、本実施形態における位置決定装置400は、例えば信号対雑音比測定部を有する構成とすることができる。この場合において、本実施形態における位置決定装置400は、計測位置決定部120が、信号対雑音比測定部で算出した各々の検知部における計測値の信号対雑音比に基づいて、少なくとも2つの検知部による計測位置を決定する構成とすることができる。
(第5の実施形態)
続いて、本発明の第5の実施形態について説明する。図13は、本発明の第5の実施形態における漏洩検知システムにて検知部を配管に設置した例を示す図である。図14は、本発明の第5の実施形態における位置決定装置の動作を示すフローチャートである。
本実施形態において、位置決定装置500の構成は、本発明の第1の実施形態における位置決定装置100の構成と同様とすることができる。そして、特徴量抽出部110は、2つの検知部のうち少なくとも1つの検知部について、複数の位置で検知した振動に関する計測値の各々に基づいて特徴値を抽出することができる。また、計測位置決定部120は、特徴量抽出部110で抽出した複数の位置で検知した振動に関する特徴量に基づいて、検知部による計測位置を決定することができる。
なお、第1の実施形態における漏洩検知システム10と同様にして、本実施形態における位置決定装置500を有する漏洩検知システム50を構成することができる。
次に、図13及び図14を用いて、本実施形態における位置決定装置500の動作について説明する。
最初に、本実施形態における位置決定装置500にて計測位置の決定対象となる2つの検知部が配管に設置される(ステップS501)。続いて、位置決定装置100は、検知部101の各々によって検知した配管の振動に関する計測値を取得する(ステップS502)。続いて、特徴量抽出部110は、ステップS502にて取得した振動に関する計測値に基づいて、特徴量を抽出する(ステップS503)。ステップS502及びステップS503の各々の動作は、例えば本発明の第1の実施形態におけるステップS101及びステップS102とそれぞれ同様とすることができる。続いて、計測位置決定部120は、2つの検知部101の各々によって検知した配管の振動に基づいて抽出された特徴値の相違が所定の閾値以下か否かを判定する(ステップS504)。ステップS504において、特徴値の相違が所定の閾値以下である場合には、計測位置決定部120は、ステップS501にて設置された2つの検知部101の位置を計測位置として特定する(ステップS505)。ステップS504において、特徴値の相違が所定の閾値以下でない場合には、ステップS501にて、本実施形態における位置決定装置500にて計測位置の決定対象となる2つの検知部が計測位置を変更して再度配管に設置される。そして、位置決定装置500は、再度ステップS502以降の動作を行う。位置決定装置500は、特徴値の相違が所定の閾値以下になるまでこの動作を繰り返すことができる。
なお、本実施形態における位置決定装置500は、これ以外の動作によっても2つの検知部101の計測位置を特定することができる。例えば、位置決定装置500は、2つの検知部101の各々に関して、複数の計測位置にて検出した振動に基づいて特徴値を抽出し、特徴量の相違が最小となる位置を、2つの検知部101の計測位置として特定することができる。
以上の通り、本実施形態における位置決定装置500は、特徴量抽出部110が、2つの検知部のうち少なくとも1つの検知部について、複数の位置で検知した振動に関する計測値の各々に基づいて特徴値を抽出することができる。そして、計測位置決定部120は、特徴量抽出部110で抽出した複数の位置で検知した振動に関する特徴量に基づいて、検知部による計測位置を決定することができる。そのため、位置決定装置500は、配管に設置した2つの検知部101の計測値から求めた特徴値の相違が閾値以下になるかの判定を、特徴値の相違が閾値以下になるまで2つの検知部101による計測位置を変えて繰り返し行うことができる。したがって、本実施形態における位置決定装置100を用いることにより、検知部101が2つである場合にも、漏洩位置を高精度に特定できる検知部による計測位置を決定することができる。
以上、本発明における各実施形態を説明したが、本発明はその趣旨を逸脱しない限りにおいて以上述べた各実施形態における構成以外の構成を採用することもできる。また、各実施形態における構成は、本発明の趣旨を逸脱しない限りにおいて、互いに組み合わせることが可能である。
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、各実施形態における構成は、本発明の趣旨を逸脱しない限りにおいて、互いに組み合わせることが可能である。
この出願は、2014年6月16日に出願された日本出願特願2014−123038を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10 漏洩検知システム
100、200、300、400、500 位置決定装置
101 検知部
102 漏洩位置特定部
110 特徴量抽出部
120 計測位置決定部
130 信号対雑音比測定部
140 漏洩有無判定部
1000 情報処理装置
1001 CPU
1002 ROM
1003 RAM
1004 プログラム
1005 記憶装置
1006 記憶媒体
1007 ドライブ装置
1008 通信インターフェース
1009 通信ネットワーク
1010 入出力インターフェース
1011 バス

Claims (9)

  1. 検知手段によって検出された配管の振動に基づいて、検出した前記振動の各々に関して特徴量をそれぞれ抽出する特徴量抽出手段と、
    前記特徴量に基づいて、少なくとも2つの前記検知手段による、配管における漏洩位置を検出するための計測位置を決定する計測位置決定手段とを備え
    前記計測位置決定手段は、2つの前記検知手段によって検出された前記振動の各々に関する前記特徴量のそれぞれの相違が所定の閾値以下である場合に、前記2つの前記検知手段が前記振動を検出した位置を前記計測位置とする
    位置決定装置。
  2. 前記計測位置決定手段は、前記特徴量のそれぞれが、前記特徴量に対応する振動の波形の類似性に関する所定の条件を満たす場合に、前記検知手段が前記振動を検出した位置を前記計測位置とする、請求項1に記載の位置決定装置。
  3. 前記計測位置決定手段は、複数の前記検知手段から少なくとも2つの前記検知手段を特定することで、前記少なくとも2つの前記検知手段による計測位置を決定する、請求項1又は2に記載の位置決定装置。
  4. 前記検知手段によってそれぞれ検出した配管の振動に関する計測値について、各々の信号対雑音比を算出する信号対雑音比測定手段を有し、
    前記計測位置決定手段は、前記特徴量及び前記信号対雑音比測定手段にて算出した各々の前記検知手段による計測値の信号対雑音比に基づいて、少なくとも2つの検知手段による計測位置を決定する、請求項1からのいずれか一項に記載の位置決定装置。
  5. 管からの流体の漏洩有無を判定する漏洩有無判定手段を有し、
    前記漏洩有無判定手段が配管の漏洩があると判定した場合に、前記特徴量抽出手段は特徴量を抽出し、前記計測位置決定手段は少なくとも2つの前記検知手段による計測位置を決定する、請求項1からのいずれか一項に記載の位置決定装置。
  6. 前記特徴量抽出手段は、少なくとも1つの前記検知手段について、複数の位置で検知した振動に関する計測値の各々に基づいて前記特徴値を抽出し、
    前記計測位置決定手段は、前記特徴量抽出手段によって抽出した前記複数の位置における振動に関する前記特徴量に基づいて、前記検知手段による計測位置を決定する、請求項1からのいずれか一項に記載の位置決定装置。
  7. 請求項1からのいずれか一項に記載の位置決定装置と、
    前記位置決定装置により決定した位置にある2つの前記検知手段によって検出した配管の振動に基づいて配管からの流体の漏洩位置を特定する漏洩位置特定手段とを有する、漏洩検知システム。
  8. 検知手段によって検出された配管の振動に基づいて、検出した前記振動の各々に関して特徴量をそれぞれ抽出し、
    前記特徴量に基づいて、少なくとも2つの前記検知手段による、配管における漏洩位置を検出するための計測位置を決定する、位置決定方法であって、
    前記計測位置を決定する際に、2つの前記検知手段によって検出された前記振動の各々に関する前記特徴量のそれぞれの相違が所定の閾値以下である場合に、前記2つの前記検知手段が前記振動を検出した位置を前記計測位置とする
    位置決定方法
  9. コンピュータに、
    検知手段によって検出された配管の振動に基づいて、検出した前記振動の各々に関して特徴量をそれぞれ抽出する処理と、
    前記特徴量に基づいて、少なくとも2つの前記検知手段による、配管における漏洩位置を検出するための計測位置を決定する処理とを実行させるプログラムであって、
    前記計測位置を決定する際に、2つの前記検知手段によって検出された前記振動の各々に関する前記特徴量のそれぞれの相違が所定の閾値以下である場合に、前記2つの前記検知手段が前記振動を検出した位置を前記計測位置とする
    プログラム
JP2016529026A 2014-06-16 2015-06-11 位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体 Active JP6652054B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014123038 2014-06-16
JP2014123038 2014-06-16
PCT/JP2015/002935 WO2015194137A1 (ja) 2014-06-16 2015-06-11 位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体

Publications (2)

Publication Number Publication Date
JPWO2015194137A1 JPWO2015194137A1 (ja) 2017-04-20
JP6652054B2 true JP6652054B2 (ja) 2020-02-19

Family

ID=54935146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016529026A Active JP6652054B2 (ja) 2014-06-16 2015-06-11 位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体

Country Status (4)

Country Link
US (1) US10458878B2 (ja)
JP (1) JP6652054B2 (ja)
GB (1) GB2541149B (ja)
WO (1) WO2015194137A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152143A1 (ja) * 2015-03-24 2016-09-29 日本電気株式会社 欠陥分析装置、欠陥分析システム、欠陥分析方法およびコンピュータ読み取り可能記録媒体
EP3517184A1 (en) * 2018-01-24 2019-07-31 Marioff Corporation OY Fire sprinkler system
KR102038689B1 (ko) * 2018-06-14 2019-10-30 한국원자력연구원 거리차-주파수 분석을 이용한 배관의 누설 감지장치 및 방법
JP6936200B2 (ja) * 2018-09-28 2021-09-15 株式会社日立製作所 漏水検知システムおよび方法
JP7433717B2 (ja) * 2020-03-27 2024-02-20 矢崎エナジーシステム株式会社 コージェネレーションシステムの設備決定方法、設備決定装置、設備決定プログラム、及び、コンピュータ読取可能な記録媒体
KR102473194B1 (ko) * 2021-11-16 2022-12-02 (주)예측진단기술 음향방출센서를 이용한 누설 위치 추정장치 및 그 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243534A (ja) 1985-08-21 1987-02-25 Nippon Kokan Kk <Nkk> 音響放出によるパイプラインの漏洩監視方法
JPH03188343A (ja) 1989-12-19 1991-08-16 Chiyoda Corp 高圧ガス漏洩位置検出方法
JPH04184133A (ja) 1990-11-19 1992-07-01 Mitsubishi Cable Ind Ltd 管状体のピンホール検出方法
US5416724A (en) * 1992-10-09 1995-05-16 Rensselaer Polytechnic Institute Detection of leaks in pipelines
JPH11210999A (ja) 1998-01-21 1999-08-06 Osaka Gas Co Ltd 相関法による管路系の漏洩位置特定方法
GB2364126B (en) * 2000-06-26 2004-06-02 Palmer Environmental Ltd A leak detection apparatus and method
JP2005265663A (ja) * 2004-03-19 2005-09-29 Jfe Steel Kk 埋設配管および漏洩位置の特定方法
SG11201503041SA (en) * 2012-10-26 2015-05-28 Mueller Int Llc Detecting leaks in a fluid distribution system
US20150355045A1 (en) * 2013-01-28 2015-12-10 Aquarius Spectrum Ltd. Method and apparatus for detecting leaks in a pipeline network

Also Published As

Publication number Publication date
GB2541149A (en) 2017-02-08
GB2541149B (en) 2020-07-15
GB201620526D0 (en) 2017-01-18
US10458878B2 (en) 2019-10-29
JPWO2015194137A1 (ja) 2017-04-20
US20170102286A1 (en) 2017-04-13
WO2015194137A1 (ja) 2015-12-23

Similar Documents

Publication Publication Date Title
JP6652054B2 (ja) 位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体
JP2015210225A (ja) 漏水監視システム、漏水監視方法、漏水監視装置、および漏水監視プログラム
WO2016084366A1 (ja) 位置推定装置、位置推定システム、位置推定方法及びコンピュータ読み取り可能記録媒体
KR101956160B1 (ko) 누수 탐지 장치
JPWO2015141129A1 (ja) 音速算出装置、音速算出方法および音速算出プログラム
KR101381469B1 (ko) 매설배관 누설 탐지용 상호상관함수기법의 정확도 향상을 위한 기계 잡음 제거 방법
WO2018164102A1 (ja) 診断コスト出力装置、診断コスト出力方法及びコンピュータ読み取り可能記録媒体
US10119880B2 (en) Leakage position calculation device, leakage position calculation method, computer-readable recording medium, vibration calculation device, and computation device
WO2017188074A1 (ja) 漏洩箇所分析システム、漏洩箇所分析方法、漏洩箇所分析装置及びコンピュータ読み取り可能な記録媒体
KR101525329B1 (ko) 모드분리기법을 이용한 매설배관의 누설위치 추정방법
KR20180110543A (ko) 누출음의 시공간 특성을 이용한 미세누출 탐지 장치 및 이를 이용한 미세누출 탐지 방법
CN110319955B (zh) 压电薄膜检测装置和压电薄膜传感器
JP6826970B2 (ja) 漏洩位置推定装置及び漏洩位置推定方法
US10156493B2 (en) Position determination device, position determination system, position determination method, and computer-readable recording medium
CN115978462A (zh) 液体管网泄漏监测方法、***和电子设备
JP6349861B2 (ja) 漏洩検知装置、漏洩検知システム、漏洩検知方法及びプログラム
JP6557576B2 (ja) 異常音の発生位置特定方法および異常音の発生位置特定装置
JP6408929B2 (ja) 分析データ作成方法、漏水位置検知装置および漏水位置特定方法
JPWO2016013201A1 (ja) 判定装置、判定方法及びコンピュータ読み取り可能記録媒体
WO2015145972A1 (ja) 欠陥分析装置、欠陥分析方法および記憶媒体
JP7070540B2 (ja) 計測時間特定装置、検知装置、計測時間特定方法及びプログラム
JPWO2016185726A1 (ja) 状態判定装置、状態判定方法及びプログラム記録媒体
US20210164859A1 (en) Analyzing device, analysis method, and storage medium
Muggleton et al. Detection of buried pipes using a shear wave ground surface vibration technique
Hawwa et al. Transmission Loss as an Indicator of Multiple Leaks in a Pipeline

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200106

R150 Certificate of patent or registration of utility model

Ref document number: 6652054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150