JP6513754B2 - Reinforcement structure of reinforced concrete wall column - Google Patents

Reinforcement structure of reinforced concrete wall column Download PDF

Info

Publication number
JP6513754B2
JP6513754B2 JP2017164091A JP2017164091A JP6513754B2 JP 6513754 B2 JP6513754 B2 JP 6513754B2 JP 2017164091 A JP2017164091 A JP 2017164091A JP 2017164091 A JP2017164091 A JP 2017164091A JP 6513754 B2 JP6513754 B2 JP 6513754B2
Authority
JP
Japan
Prior art keywords
shear
reinforcement
bars
bar
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017164091A
Other languages
Japanese (ja)
Other versions
JP2017203378A (en
Inventor
健好 是永
健好 是永
慎一郎 河本
慎一郎 河本
努 小室
努 小室
洋三 篠崎
洋三 篠崎
宮原 貴昭
貴昭 宮原
英義 渡辺
英義 渡辺
智昭 杉山
智昭 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2017164091A priority Critical patent/JP6513754B2/en
Publication of JP2017203378A publication Critical patent/JP2017203378A/en
Application granted granted Critical
Publication of JP6513754B2 publication Critical patent/JP6513754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforcement Elements For Buildings (AREA)

Description

本発明は鉄筋コンクリート部材のせん断補強技術に関する。   The present invention relates to a shear reinforcing technique for reinforced concrete members.

鉄筋コンクリート部材(以下、RC部材ともいう)のせん断補強技術としては様々な方式が提案されている。例えば、特許文献1には開口部(貫通孔)を有する梁のせん断補強技術が開示されている。特許文献2には、壁柱(扁平柱)内にせん断補強筋を交差させたものが開示されている。また、特許文献3には中子筋を用いたものが開示されている。   Various methods have been proposed as shear reinforcement techniques for reinforced concrete members (hereinafter also referred to as RC members). For example, Patent Document 1 discloses a shear reinforcing technique of a beam having an opening (a through hole). Patent Document 2 discloses one in which a shear reinforcing bar is crossed in a wall column (flat column). Further, Patent Document 3 discloses one using a core muscle.

RC部材のせん断補強は、一般にD10〜D16の細径鉄筋を使って主筋を囲むようになされている(フープ、スターラップ)。また、超高強度鉄筋(例えばSBPD1275/1420)を使用する場合には、せん断補強筋の径が更に小さくなる場合(公称径7.1mm、9.0mm)もある。長方形断面のRC部材のせん断補強としては、せん断応力条件が厳しい部材端部付近に、せん断補強筋を密に配筋することも知られている。   The shear reinforcement of the RC member is generally made to surround the main reinforcement using small diameter rebars of D10 to D16 (hoop, stirrup). When super high strength reinforcing bars (for example, SBPD 1275/1420) are used, the diameter of the shear reinforcing bars may be further reduced (nominal diameter 7.1 mm, 9.0 mm). It is also known that, as a shear reinforcement of a rectangular cross-section RC member, a shear reinforcement bar is closely arranged near the end of the member where the shear stress condition is severe.

一方、このような長方形断面部材、特に断面の長辺/短辺比が大きい扁平な壁柱や壁梁(ウォールガーダー)では、主筋による曲げ抵抗力に対して圧縮部コンクリートの幅が狭い。このため、例えば図7(A)に示すような最終ひび割れ状態となり、正方形断面の部材などに比べて部材端圧縮部コンクリートの圧壊が生じやすい。また、開口部(貫通孔)を有する梁部材では、開口補強がない場合には図7(B)に示すように開口部から伸びるせん断ひび割れが拡大する破壊形式となり、十分な開口補強を施していても図7(C)に示すように開口部上下でせん断ひび割れが拡大する破壊形式となりえる。   On the other hand, in such rectangular cross-section members, in particular, flat wall columns or wall beams (wall girders) having a large long side / short side ratio of the cross section, the width of the compression section concrete is narrower than the bending resistance due to the main bars. For this reason, for example, the final cracked state as shown in FIG. 7A is obtained, and crushing of the member end compression part concrete is more likely to occur as compared with a member having a square cross section. Further, in the case of a beam member having an opening (through hole), if there is no opening reinforcement, a fracture type in which a shear crack extending from the opening is enlarged as shown in FIG. However, as shown in FIG. 7 (C), it can be a failure type in which the shear cracks expand at the upper and lower portions of the opening.

特開2011−256658号公報JP, 2011-256658, A 特開2002−4411号公報Japanese Patent Laid-Open No. 2002-4411 特開平8−260565号公報JP-A-8-260565

図7(A)〜(C)に示したような、部材の曲げ補強部の主筋位置近傍におけるひび割れの拡大を抑止する方策として、例えば、外周のせん断補強筋とは別に、太径の鉄筋を使った中子筋を設けることが考えられる。しかし、図8(A)に示すように、鉄筋の曲げ半径およびフック部の余長に関する配筋規定により、曲げ加工されたフック部における鉄筋の曲げ半径や余長が大きくなり、配筋困難な場合がある。なお、同図のような135°フックではなく、180°フックを採用すると余長が短くなって施工は煩雑であるが配筋が可能となる場合が増える。しかし、同図に示すように中子筋の直線部(S2)では引張力が有効に働くものの、それ以外の部分(S1)では引張力の利きが悪くなる。よって、主筋近傍の破壊を誘発するひび割れの伸展・拡大を効率的に拘束できない。   As a measure for suppressing the expansion of the crack in the vicinity of the main reinforcement position of the bending reinforcement portion of the member as shown in FIGS. 7A to 7C, for example, a large diameter reinforcing bar is It is conceivable to provide the core used. However, as shown in FIG. 8 (A), the bending radius and the excess length of the reinforcing bar at the bent hook portion become large due to the reinforcing bar definition regarding the bending radius of the reinforcing bar and the extra length of the hook part There is a case. When the hook of 180 degree is adopted instead of the hook of 135 degree as shown in the figure, the extra length is shortened and the construction is complicated but the reinforcement may be possible in many cases. However, as shown in the figure, although the tensile force works effectively in the straight part (S2) of the core, the advantage of the tensile force is deteriorated in the other part (S1). Therefore, it is not possible to efficiently restrain the extension and expansion of the crack that induces the fracture in the vicinity of the main bar.

また、フープ、スターラップに太径の鉄筋を使用することや、一般的な細径鉄筋(D10〜D16)を使ってせん断補強筋(フープ、スターラップ)を密に配筋することも考えられる。しかし、いずれの方策も施工面での困難性や限界がある。また、一般論として、柱、梁や壁等のせん断補強筋量を増やしても、その効果には限界があると言われている。   In addition, it is also conceivable to use large diameter reinforcing bars for hoops and stirrups, and to re-arrange shear reinforcing bars (hoops and stirrups) using general small diameter reinforcing bars (D10 to D16). . However, there are difficulties and limitations in terms of construction. Also, as a general theory, even if the amount of shear reinforcement bars such as columns, beams and walls is increased, the effect is said to have a limit.

その要因の一つが、日本建築学会編「(旧)鉄筋コンクリート構造計算規準・同解説」(以下、旧RC規準)の耐震壁に関する解説に示されている。図8(B)は同規準で示される模式図である。同解説では、せん断ひび割れ面に対して45°にせん断補強筋が横切っているため、図に示すようにひび割れ幅の拡大(またはひび割れ面でのずれ)によってせん断補強筋が曲がろうとし、その屈曲部のコンクリートが圧縮され、かぶり厚に対して太い径の鉄筋を使用した場合や、細径鉄筋で補強筋量を増やした場合には、屈曲部のコンクリートが局所的に破壊し、せん断補強筋の引張力があまり増大せず、補強効果が十分期待できないことが指摘されている。     One of the factors is shown in the commentary on the earthquake-resistant wall of "(Old) reinforced concrete structure calculation standard and commentary" (hereinafter referred to as old RC standard) edited by the Architectural Institute of Japan. FIG. 8 (B) is a schematic view shown by the same standard. In the same explanation, the shear reinforcement bar crosses the shear crack surface at 45 °, so as shown in the figure, the shear reinforcement bar tends to bend due to the expansion of the crack width (or the displacement at the crack plane) When the concrete in the inflection is compressed and the reinforcing bar with a large diameter is used for the cover thickness or when the amount of reinforcement is increased by the small diameter rebar, the concrete in the inflection is locally broken and shear reinforcement It has been pointed out that the tensile force of the muscle does not increase so much that the reinforcing effect can not be expected sufficiently.

したがって、太径鉄筋に対して十分なかぶりを確保した補強方法が肝要と考えられる。この点は、一般のRC部材のせん断補強において、前述した中子筋を除き、せん断補強筋は断面外周に施されてかぶりが少ないこと、コンクリート強度が大きくなるとせん断補強筋の効果が増大するという既往の研究事例とも関係する。   Therefore, it is considered important to have a reinforcing method that secures sufficient covering for large diameter rebar. This point is that in general shear reinforcement of RC members, except for the above-mentioned core reinforcement, shear reinforcement bars are applied to the outer periphery of the cross section and there is less fogging, and the effect of shear reinforcement bars increases as the concrete strength increases It also relates to previous research cases.

一方、別の要因として、RC部材のせん断抵抗機構として現行の設計で普及しているトラス機構では、せん断補強筋の引張力、斜め方向に形成されるコンクリート圧縮束の圧縮力、および主筋の付着力の3つの内力の釣合条件により、せん断抵抗力が決まり、せん断補強量が多いとコンクリート圧縮束がクリティカル(せん断圧縮破壊)となり、せん断補強筋が降伏せずにせん断抵抗力が頭打ちとなることがよく知られている。ただし、図8(B)で示したひび割れ幅の拡大を抑止する効果は、十分なかぶりを有する太径鉄筋の方が鉄筋の曲げ剛性(鉄筋の断面2次モーメント)が大きくひび割れ面で変形しづらく、少なくともトラス機構で想定さるせん断補強筋の効果に比べて抵抗力が増大すると考えられる。     On the other hand, as another factor, in the truss mechanism popularized in the current design as a shear resistance mechanism of RC members, the tensile force of the shear reinforcement bar, the compressive force of the concrete compression bundle formed diagonally, and the attachment of the main bar The shear resistance is determined by the balance condition of the three internal forces of adhesion, and when the amount of shear reinforcement is large, the concrete compression bundle becomes critical (shear compression failure), and the shear reinforcement does not yield but the shear resistance becomes flat. It is well known. However, the effect of suppressing the expansion of the crack width shown in Fig. 8 (B) is that the large-diameter rebar with sufficient cover has a large flexural rigidity (respectively the second moment of the rebar) of the rebar and is deformed at the cracked surface It is difficult that the resistance is increased at least compared to the effect of the shear reinforcement assumed in the truss mechanism.

本発明の目的は、かぶりを確保するとともに施工性を悪化させることなく、応力条件が厳しい部位へ、より太径の鉄筋を利用してそのせん断補強を行うことにある。     An object of the present invention is to secure a fogging and perform shear reinforcement on a site where stress conditions are severe using a larger diameter reinforcing bar without deteriorating the workability.

本発明によれば、鉄筋コンクリート壁柱の補強構造であって、前記鉄筋コンクリート壁柱の両隅部には、複数の主筋を囲むように拘束筋がそれぞれ配設されており、前記鉄筋コンクリート壁柱の主筋の外周側に配設された第1のせん断補強筋と、前記主筋の内周側において、互いに対向する前記主筋の列を横断するように直線的に延設された第2のせん断補強筋と、を備え、前記第2のせん断補強筋は、前記鉄筋コンクリート壁柱の横断面上に複数列が配筋され、前記第1のせん断補強筋よりも太径であることを特徴とする補強構造が提供される。 According to the present invention, in the reinforced structure of the reinforced concrete wall column , at both corners of the reinforced concrete wall column , restraint bars are disposed so as to surround a plurality of main bars, and the main bars of the reinforced concrete wall column A first shear reinforcing bar disposed on the outer peripheral side of the second reinforcing bar, and a second shear reinforcing bar linearly extended so as to cross rows of the main bars facing each other on the inner peripheral side of the main bar; A reinforcement structure characterized in that the second shear reinforcement bar is arranged in a plurality of rows on the cross section of the reinforced concrete wall column and has a diameter larger than that of the first shear reinforcement bar. Ru is provided.

本発明によれば、かぶりを確保するとともに施工性を悪化させることなく、応力条件が厳しい部位へ、より太径の鉄筋を利用してそのせん断補強を行うことができる。     According to the present invention, shear reinforcement can be performed using a larger diameter reinforcing bar to a site where stress conditions are severe without securing the fog and without deteriorating the workability.

(A)は本発明の一実施形態に係る補強構造を適用した扁平柱の垂直断面図、(B)は水平断面図。(A) is a vertical sectional view of a flat column to which a reinforcing structure according to an embodiment of the present invention is applied, and (B) is a horizontal sectional view. (A)は別例の補強構造を適用した扁平柱の垂直断面図、(B)は水平断面図、(C)は図2(A)の線I−Iに沿う断面図。(A) is a vertical cross-sectional view of a flat column to which another reinforcing structure is applied, (B) is a horizontal cross-sectional view, and (C) is a cross-sectional view along line I-I of FIG. (A)及び(B)は、それぞれ別例の補強構造を適用した扁平柱の水平断面図。(A) And (B) is a horizontal sectional view of the flat pillar which applied the reinforcement structure of another example, respectively. (A)は本発明の一実施形態に係る補強構造を適用した梁の水平断面図、(B)は垂直断面図、(C)は図4(B)の線II−IIに沿う断面図。(A) is a horizontal sectional view of a beam to which a reinforcing structure according to an embodiment of the present invention is applied, (B) is a vertical sectional view, (C) is a sectional view taken along line II-II in FIG. 別例の補強構造を適用した梁の垂直断面図。The vertical sectional view of the beam which applied another reinforcement structure. ひび割れ集中率と断面欠損率とを示す図。The figure which shows a crack concentration rate and a cross-sectional defect rate. (A)は扁平柱におけるひび割れ状態の説明図、(B)及び(C)は開口部を有する梁におけるひび割れ状態の説明図。(A) is explanatory drawing of the crack state in flat column, (B) and (C) is explanatory drawing of the crack state in the beam which has an opening. (A)は中子筋の問題点の説明図、(B)は従来のせん断補強の問題点の説明図。(A) is explanatory drawing of the problem of a core reinforcement, (B) is explanatory drawing of the problem of the conventional shear reinforcement.

<第1実施形態>
図1(A)は本発明の一実施形態に係る補強構造を適用したRC部材である、扁平柱(壁柱)1の垂直断面図であり、扁平柱1の立面図を示している。図1(B)は扁平柱1の水平断面図である。なお、各図に示す矢印X、Yは互いに直交する水平方向を示し、矢印Zは上下方向(垂直方向)を示している。
First Embodiment
FIG. 1A is a vertical sectional view of a flat column (wall column) 1 as an RC member to which a reinforcing structure according to an embodiment of the present invention is applied, and shows an elevation view of the flat column 1. FIG. 1B is a horizontal sectional view of the flat column 1. Arrows X and Y shown in the respective drawings indicate horizontal directions orthogonal to each other, and arrow Z indicates the vertical direction (vertical direction).

扁平柱1は長方形断面のRC部材であり、その長辺方向がX方向であり、その短辺方向がY方向となっている。長辺方向を左右方向と呼び、短辺方向を奥行方向と呼ぶ場合がある。扁平柱1は主筋2a及び2b(総称するときは主筋2という)、補助筋3、拘束筋4、中子筋5、せん断補強筋6及びせん断補強筋7を備える。せん断補強筋6及びせん断補強筋7は本発明の一実施形態に係る補強構造を構成している。     The flat column 1 is an RC member having a rectangular cross section, and the long side direction thereof is the X direction, and the short side direction thereof is the Y direction. The long side direction may be called the left and right direction, and the short side direction may be called the depth direction. The flat column 1 includes main muscles 2a and 2b (collectively referred to as main muscle 2), an auxiliary muscle 3, a restraint muscle 4, a core muscle 5, a shear reinforcement muscle 6, and a shear reinforcement muscle 7. The shear reinforcement bars 6 and the shear reinforcement bars 7 constitute a reinforcement structure according to an embodiment of the present invention.

曲げ補強筋となる主筋2は、面内方向(X方向)に対して働く比較的太径の集約主筋としており、配置上、左隅部の主筋2aと、右隅部の主筋2bとに大別される。図1(B)に示すように、全主筋2を囲む包絡線Lの内側を内周側、外側を外周側と呼ぶ。主筋2はZ方向に延設されており、左隅部の主筋2a及び右隅部の主筋2bのいずれも、Y方向を列方向として1列2本の構成であり、2列で4本、総計で8本とされている。左隅部の主筋2aと、右隅部の主筋2bとは、互いに対向する主筋の列を構成している。     The main reinforcement 2 serving as a bending reinforcement is a relatively large-diameter integrated main reinforcement working in the in-plane direction (X direction), and in terms of arrangement, the main reinforcement 2a at the left corner and the main reinforcement 2b at the right corner Be done. As shown to FIG. 1 (B), the inner side of the envelope L which encloses all the main reinforcement 2 is called an inner peripheral side, and the outer side is called an outer peripheral side. The main bars 2 extend in the Z direction, and both the main bars 2a at the left corner and the main bars 2 b at the right corner have a configuration of two in one row with the Y direction as the row direction, four in two rows, It is considered to be eight. The main reinforcement 2a at the left corner and the main reinforcement 2b at the right corner constitute a row of main reinforcements facing each other.

補助筋3はZ方向に延設され、扁平柱1の部材周縁に沿って複数本(ここでは20本)配筋されている。拘束筋4は、左隅部の主筋2aと、右隅部の主筋2bとに区分けされてその周辺の補助筋3を囲むように配設されている。中子筋5は扁平柱1のX方向中央部において、両端部が補助筋3に係止されて配筋されている。     The auxiliary reinforcements 3 extend in the Z direction, and a plurality of (here, 20) reinforcements are arranged along the periphery of the flat column 1. The restraint muscle 4 is divided into a main muscle 2a at the left corner and a main muscle 2b at the right corner, and is disposed so as to surround the auxiliary muscle 3 around it. At the central portion of the flat column 1 in the X direction, both ends of the core muscle 5 are engaged with the auxiliary muscle 3 and arranged.

せん断補強筋6は、主筋2の外周側に配置され、本実施形態の場合、補助筋3を囲むように環状を有して配置されたフープを構成している。せん断補強筋6としては、例えば、D10〜D16の細径鉄筋を採用できる。     The shear reinforcing bars 6 are disposed on the outer peripheral side of the main bars 2 and, in the case of this embodiment, constitute a hoop having an annular shape so as to surround the auxiliary bars 3. As the shear reinforcing bars 6, for example, small diameter rebars of D10 to D16 can be adopted.

せん断補強筋7は、主筋2の内周側において、互いに対向する主筋2aの列と主筋2bの列とを横断するようにX方向に直線的に延設されている。せん断補強筋7は、せん断補強筋6よりも太径とした棒状鉄筋であり、Z方向でみるとせん断補強筋6と交互に配置されている。本実施形態の場合、せん断補強筋7はY方向中央部において1列配置された構成としている。しかし、複数列配置(例えば部材幅に応じて最大4列程度)でもよい。     The shear reinforcing bars 7 are linearly extended in the X direction on the inner circumferential side of the main bars 2 so as to cross the rows of main bars 2 a and the rows of main bars 2 b facing each other. The shear reinforcing bars 7 are rod-like rebars having a diameter larger than that of the shear reinforcing bars 6 and are alternately arranged with the shear reinforcing bars 6 when viewed in the Z direction. In the case of this embodiment, the shear reinforcing bars 7 are arranged in a single row at the central portion in the Y direction. However, multiple rows may be arranged (for example, up to about 4 rows depending on the member width).

せん断補強筋7の両端部にはプレート型定着部7a、7aが設けられている。プレート型定着部7aは、せん断補強筋7の径方向に突出してせん断補強筋7端部の定着性を向上できる構成であればどのような構成でもよい。例えば、せん断補強筋7の途中部に対して拡径したもの、鋼板を固定したもの、定着板を有するナットを装着したもの等とすることができる。鋼板を用いる場合は、例えば、せん断補強筋7を構成する鉄筋端部に摩擦圧接で固着してもよい。プレート型定着部7aは主筋2の外周側に配置されている。     At both ends of the shear reinforcing bars 7, plate-type fixing portions 7a, 7a are provided. The plate type fixing portion 7a may have any configuration as long as it can protrude in the radial direction of the shear reinforcing bar 7 to improve the fixability of the end portion of the shear reinforcing bar 7. For example, it is possible to use one in which the diameter is increased in the middle of the shear reinforcing bars 7, one in which a steel plate is fixed, one in which a nut having a fixing plate is mounted, or the like. In the case of using a steel plate, for example, it may be fixed by friction welding to the end of the reinforcing bar constituting the shear reinforcing bar 7. The plate type fixing portion 7 a is disposed on the outer peripheral side of the main reinforcement 2.

本実施形態の場合、プレート型定着部7aを補助筋3に引っ掛けるように配置している。この構成はせん断補強筋7に引っ張り力が作用した場合にせん断補強筋7の定着性を向上させる。引っ掛ける対象は主筋2であってもよい。     In the case of the present embodiment, the plate-type fixing portion 7 a is disposed to be hooked to the auxiliary muscle 3. This configuration improves the fixability of the shear reinforcing bars 7 when a tensile force acts on the shear reinforcing bars 7. The target to be hooked up may be the main muscle 2.

係る構成からなる扁平柱1では、せん断力が同図矢印方向に作用した場合に、圧縮部となる柱脚部1aにおいて、太径のせん断補強筋7が圧壊を誘発する主筋位置のひび割れ(破線L1)の拡大を直接拘束する配筋となっており、ひび割れの拡大・伸展を十分抑止できる。     In the flat column 1 having such a configuration, when the shear force acts in the direction of the arrow in the figure, the crack in the main bar position where the large-diameter shear reinforcement bar 7 induces crush in the column base 1a serving as the compression portion (broken line It is a reinforcement that directly restrains the expansion of L1), and can sufficiently suppress the expansion and extension of the crack.

太径のせん断補強筋7を採用することにより、多量の細径補強筋で同程度のせん断補強を行った場合に比べて、太径鉄筋の曲げ剛性が大きいため、それを横切るせん断ひび割れの伸展・拡大を抑止できる。例えば、1本の太径鉄筋D29に対して、細径鉄筋D10で鉄筋の総断面積を等しくするためには9本必要(6.42cm2)となる。鉄筋の曲げ剛性、すなわち断面2次モーメント(I=πd4/64、d:鉄筋径)のみで考えると、1本のD29鉄筋は、断面積が等しい9本のD10鉄筋の7.9倍となり、両者の鉄筋屈曲部のコンクリート支圧面の複雑な応力条件の違い等を考慮しても、太径鉄筋を使用することによって、鉄筋の曲げ剛性は確実に大きくなる。     By adopting a large diameter shear reinforcement bar 7, the flexural rigidity of a large diameter rebar is greater than when the same degree of shear reinforcement is performed with a large number of small diameter reinforcement bars, so the shear crack extension across it・ We can suppress expansion. For example, in order to equalize the total cross-sectional area of the reinforcing bars with the small-diameter reinforcing bar D10 with respect to one large-diameter reinforcing bar D29, nine need to be made (6.42 cm 2). Considering only the bending stiffness of the rebar, ie, the second moment of area (I = πd4 / 64, d: diameter of rebar), one D29 rebar is 7.9 times as large as nine D10 rebars of equal cross-sectional area. The bending rigidity of the reinforcing bar is surely increased by using the large diameter reinforcing bar even in consideration of the difference in the complex stress condition of the concrete bearing surface of the reinforcing bar bent portion.

このせん断ひび割れ伸展・拡大を抑止する効果は、せん断補強筋7の径ができるだけ大きい方が効果的であり、併用するせん断補強筋6の径より2倍以上太径であることが好ましく、特に、D19以上の鉄筋であることが好ましい。     The larger the diameter of the shear reinforcing bars 7 is, the more effective, the more effective, the more effective, the larger the diameter of the shear reinforcing bars 6 used, the larger the diameter. It is preferable that it is a reinforcement of D19 or more.

せん断補強筋7は直線の棒状鉄筋であり、曲げ加工を要しないので太径としても施工性を悪化させない。更に、その両端部にプレート型定着部7aを設けたので、定着性を向上できるだけでなく、かぶりがプレート型定着部7aの厚みには影響されるものの、せん断補強筋7の径に影響されず、より太径の鉄筋を利用した場合であっても、かぶりを確保しやすくなっている。     The shear reinforcing bar 7 is a straight bar and does not require bending, so the workability does not deteriorate even if it has a large diameter. Furthermore, since the plate-type fixing portion 7a is provided at both ends, not only fixing ability can be improved, but although the fog is affected by the thickness of the plate-type fixing portion 7a, it is not affected by the diameter of the shear reinforcing bar 7. Even when using a larger diameter rebar, it is easier to secure the cover.

こうして本実施形態の補強構造では、かぶりを確保するとともに施工性を悪化させることなく、応力条件が厳しい部位(ここでは柱脚部1a)へ、より太径の鉄筋を利用してそのせん断補強を行うことができる。また、配筋方法が簡易かつ合理的なため、終局耐力等の設計法が明快かつ簡便なものとなる。     Thus, in the reinforcing structure of the present embodiment, the shear reinforcement is performed using a thicker reinforcing bar to a portion where the stress condition is severe (here, the column base portion 1a) without securing the fog and deteriorating the workability. It can be carried out. In addition, since the method of reinforcement is simple and rational, the design method such as ultimate resistance becomes clear and simple.

なお、本実施形態では、Z方向全域にわたってせん断補強筋7を配置しているが、応力条件が相対的に厳しくない部位(例えば扁平柱1のZ方向中間部位)ではプレート型定着部7aを省略してもよく、あるいは、せん断補強筋7の本数を減らしたり、なくしたりしてもよい。     In the present embodiment, the shear reinforcing bars 7 are arranged over the entire area in the Z direction, but the plate type fixing portion 7a is omitted in a portion where the stress condition is not relatively severe (for example, the middle portion in the Z direction of the flat column 1). Alternatively, the number of shear reinforcing bars 7 may be reduced or eliminated.

<第2実施形態>
図2(A)は本発明の別実施形態に係る補強構造を適用したRC部材である、扁平柱(壁柱)1Aの垂直断面図であり、扁平柱1の立面図を示している。図2(B)は扁平柱1Aの水平断面図、図2(C)は図2(A)の線II−IIに沿う断面図である。扁平柱1Aは、上記第1実施形態の扁平柱1の変形例であり、同様の構成については同じ符号を付して説明を省略し、異なる点について以下に説明する。
Second Embodiment
FIG. 2A is a vertical sectional view of a flat column (wall column) 1A which is an RC member to which a reinforcing structure according to another embodiment of the present invention is applied, and shows an elevation view of the flat column 1. FIG. 2 (B) is a horizontal sectional view of the flat column 1A, and FIG. 2 (C) is a sectional view taken along the line II-II of FIG. 2 (A). The flat column 1A is a modified example of the flat column 1 of the first embodiment, and the same reference numerals are given to the same components, the description is omitted, and different points will be described below.

本実施形態は、上記第1実施形態のせん断補強筋6に対応するせん断補強筋6’を有している。せん断補強筋6’は、主筋2の外周側に配置されているが、直線棒状の鉄筋であり、1段の同一水平面上にY方向に離間して互いに平行に2本設けられている。     This embodiment has a shear reinforcing bar 6 'corresponding to the shear reinforcing bar 6 of the first embodiment. The shear reinforcing bars 6 'are disposed on the outer peripheral side of the main bar 2, but are straight rod-like reinforcing bars, and are provided parallel to each other in the same horizontal plane in one step, separated in the Y direction.

せん断補強筋7は上記第1実施形態と同様であるが、せん断補強筋6’と、せん断補強筋7との配設位置を高さ方向(Z方向)で近接させている。換言すると、せん断補強筋6’とせん断補強筋7とが、主筋2の列方向と平行な方向(Y方向)で互いに重なるように配置されている。本実施形態では、特に、せん断補強筋6’の中心軸の高さとせん断補強筋7の中心軸とを同一水平面(破線L2)上に位置させており、両者のZ方向の位置を揃えた構成としている。そして、せん断補強筋6’とせん断補強筋7の組と、拘束筋4とをZ方向に交互に配置して、両者の干渉を回避する配筋としている。     The shear reinforcing bars 7 are the same as in the first embodiment, but the disposition positions of the shear reinforcing bars 6 ′ and the shear reinforcing bars 7 are close in the height direction (Z direction). In other words, the shear reinforcement bars 6 ′ and the shear reinforcement bars 7 are arranged so as to overlap each other in the direction (Y direction) parallel to the row direction of the main bars 2. In this embodiment, in particular, the height of the central axis of the shear reinforcing bar 6 'and the central axis of the shear reinforcing bar 7 are positioned on the same horizontal plane (broken line L2), and the positions of both in the Z direction are aligned. And Then, a set of shear reinforcement bars 6 ′ and shear reinforcement bars 7 and restraint bars 4 are alternately arranged in the Z direction to provide a bar arrangement for avoiding interference between the two.

せん断補強筋6’と、せん断補強筋7との配設位置を高さ方向(Z方向)で近接させると、その断面(破線L2)でコンクリート面積が鉄筋によって欠損することになり、作用せん断力によって発生する曲げひび割れが破線L2に沿って伸展しやすくなる。     When the installation positions of the shear reinforcement bars 6 'and the shear reinforcement bars 7 are made close in the height direction (Z direction), the concrete area is broken by the reinforcing bars in the cross section (broken line L2), and the acting shear force Bending cracks that occur due to are likely to extend along the broken line L2.

一方、せん断補強筋7が太径であればあるほど曲げ剛性が高くなり、せん断補強筋7を横切るせん断ひび割れ(破線L3)の伸展を抑止できる。実際には、地震時にせん断力が正負繰り返し作用するため、比較的初期段階で曲げひび割れ(破線L2)が水平断面全体に貫通して拡がり、その後生じるせん断ひび割れ(破線L3)の伸展は、一般的な配筋(細径鉄筋のフープ)に比べて抑えることができる。     On the other hand, the larger the diameter of the shear reinforcement bar 7, the higher the bending rigidity, and the extension of the shear crack (broken line L3) across the shear reinforcement bar 7 can be suppressed. In fact, since a shear force acts repeatedly repeatedly during earthquakes, a bending crack (broken line L2) spreads through the entire horizontal cross section at a relatively early stage, and subsequent spreading of a shear crack (broken line L3) is generally It can be suppressed compared to the regular reinforcement (hoop with small diameter rebar).

鉄筋によるコンクリートの断面欠損率に関して、日本建築学会編「鉄筋コンクリート造のひび割れ対策指針・同解説」において、ひび割れ誘発目地のひび割れ集中率に関する検討によれば、図6に示す結果となっており、コンクリート断面に対して20%の欠損率でひび割れが60%以上の集中率と、22%の欠損率で80%の集中率となっている。この指針では、コンクリートの乾燥収縮によるひび割れを誘発目地に集中させることを目的としているが、ひび割れ発生の外的要因が乾燥収縮か、作用せん断力かの違いであり、この考え方は本実施形態にも整合すると考えられる。     Regarding the section loss rate of concrete due to rebar, according to the review on crack concentration rate of crack-inducing joints in “Guide to crack prevention measures and reinforced concrete structure of reinforced concrete structure” in the Architectural Institute of Japan “Editing Guide to Cracks in Reinforced Concrete Structure”, the results shown in FIG. The concentration rate of cracks is 60% or more at a defect rate of 20% with respect to the cross section, and 80% at a defect rate of 22%. This guideline aims to concentrate cracks due to drying shrinkage of concrete on induced joints, but the external factor of cracking is whether it is drying shrinkage or acting shear force, and this concept is based on this embodiment. Is also considered consistent.

したがって、以上のような効果を達成するためには、外周側のせん断補強筋6’と内周側のせん断補強筋7の径の総和が部材幅に対して20%以上が望ましい。例えば、本実施形態でいえば、柱幅250mmに対して、せん断補強筋6’:2本-D13+せん断補強筋7:1本-D25で、欠損率20.4%とすることができる。せん断補強筋6’と、せん断補強筋7との配設位置は高さ方向(Z方向)で完全に一致していなくても近接していれば同様の効果が期待できる。     Therefore, in order to achieve the above effects, it is desirable that the sum of the diameters of the outer peripheral shear reinforcement bars 6 'and the inner peripheral shear reinforcement bars 7 be at least 20% of the member width. For example, in the present embodiment, with respect to a column width of 250 mm, it is possible to set the defect rate to 20.4% with shear reinforcing bars 6 ': 2-D13 + shear reinforcing bars 7: 1-D25. The same effect can be expected as long as the disposition positions of the shear reinforcement bars 6 'and the shear reinforcement bars 7 are close to each other even if they do not completely coincide in the height direction (Z direction).

なお、せん断補強筋6’と、せん断補強筋7とがZ方向に離れていても、曲げひび割れを誘発する方法として、例えば、せん断補強筋7として部材幅に対して10%以上の径の太径鉄筋を2本使用することや、あるいは、部材幅に対して20%以上の径の太径鉄筋を1本使用することが挙げられる。これにより、せん断補強筋7のみで欠損率を20%以上にでき、曲げひび割れの集中化を効果的に促進し、せん断ひび割れの伸展をせん断補強筋7の曲げ剛性によって抑えることができる。     In addition, even if the shear reinforcing bars 6 'and the shear reinforcing bars 7 are separated in the Z direction, as a method for inducing a bending crack, for example, a thick reinforcing bar 7 having a diameter of 10% or more of the member width Using two diameter reinforcing bars or using one large diameter reinforcing bar having a diameter of 20% or more with respect to the member width may be mentioned. As a result, the defect rate can be increased to 20% or more only by the shear reinforcing bars 7, and concentration of bending cracks can be effectively promoted, and extension of the shear cracks can be suppressed by the bending stiffness of the shear reinforcing bars 7.

さらに、せん断補強筋7によるコンクリート断面欠損率が20%以下でも、せん断補強筋7の径が、併用するせん断補強筋6’の2倍以上かつD19以上であれば、通常配筋(細径補強筋のフープのみ)に比べてせん断補強筋7の配設位置において曲げひび割れが先行して生じやすくなる。いずれにしろ、正負繰り返しの地震荷重によって断面を貫通する複数の曲げひび割れが発生した状態では、それらを横切るせん断ひび割れが生じづらくなるというRC部材の力学原理を応用している点が本実施形態の特徴の一つである。   Furthermore, if the diameter of the shear reinforcement bar 7 is twice or more and D19 or more of the shear reinforcement bar 6 'used in combination, even if the concrete cross-section loss rate due to the shear reinforcement bar 7 is 20% or less Bending cracks tend to occur in advance at the position where the shear reinforcing bars 7 are provided, as compared with the hoops of the bars). In any case, in the present embodiment, the mechanical principle of the RC member is applied that, in the state where a plurality of bending cracks penetrating the cross section are generated by the seismic load of repeated positive and negative, it is difficult to generate shear cracks crossing them. It is one of the features.

<第3実施形態>
図3(A)は本発明の別実施形態に係る補強構造を適用したRC部材である、扁平柱(壁柱)1Bの水平断面図である。扁平柱1Bは、上記第1実施形態の扁平柱1の変形例であり、同様の構成については同じ符号を付して説明を省略し、異なる点について以下に説明する。
Third Embodiment
FIG. 3A is a horizontal sectional view of a flat column (wall column) 1B which is an RC member to which a reinforcing structure according to another embodiment of the present invention is applied. The flat column 1B is a modification of the flat column 1 of the first embodiment, and the same reference numerals are given to the same components, the description is omitted, and different points will be described below.

本実施形態では、扁平柱1Bを高配筋・高耐力とするために、主筋2を上記第1実施形態より増やし、それに伴いせん断補強筋7も増やしている。     In the present embodiment, in order to make the flat column 1B have high reinforcement and high strength, the main reinforcement 2 is increased from the first embodiment, and the shear reinforcement reinforcement 7 is also increased accordingly.

上記第1および第2実施形態では、かぶり厚を大きくする目的で、拘束筋4に主筋2が接しないように配置した場合について説明した。しかし、より一般的な扁平柱における主筋は、図3(A)の例のように、主筋2が拘束筋4に接するように配筋されることが多い。そのような場合、図7(A)で示したように、主筋に沿ったひび割れを生じやすくなるが、せん断補強筋7を断面に対して複数列(図3(A)の例では2列)にすることで、曲げ補強筋に沿ったひび割れの防止と、高耐力で変形性能の優れた高靱性の扁平柱とすることができる。     In the first and second embodiments, for the purpose of increasing the cover thickness, the case where the main muscle 2 is disposed so as not to contact the restraint muscle 4 has been described. However, as in the example of FIG. 3A, the main muscles in a more general flat column are often arranged such that the main muscles 2 are in contact with the restraint muscles 4. In such a case, as shown in FIG. 7 (A), cracks tend to occur along the main bars, but the shear reinforcement bars 7 are arranged in a plurality of rows with respect to the cross section (two rows in the example of FIG. 3 (A)) By doing this, it is possible to prevent cracks along the bending reinforcement bars and to obtain a high strength and high toughness flat column with excellent deformation performance.

図3(B)は、本発明の別実施形態に係る補強構造を適用したRC部材である、扁平柱(壁柱)1Cの水平断面図であり、上述した扁平柱1Bと同様に、主筋2が拘束筋4に接する配筋としている。扁平柱1Cでは、より施工を合理化する目的で、せん断補強筋6の代わりにメッシュ筋8を扁平柱1Cの両側面から設置した事例である。メッシュ筋8は、上記第2実施形態におけるせん断補強筋6’に相当する鉄筋と、上述した補強筋3に相当する鉄筋とを網目状に交差させたものに相当する。このようなメッシュ筋8は上記第1実施形態や上記第2実施形態においても採用可能である。     FIG. 3 (B) is a horizontal sectional view of a flat column (wall column) 1C, which is an RC member to which a reinforcing structure according to another embodiment of the present invention is applied, and like the flat column 1B described above, main bars 2 Are arranged in contact with the restraint muscles 4. The flat column 1C is an example in which mesh bars 8 are installed from both sides of the flat column 1C in place of the shear reinforcing bars 6 for the purpose of streamlining construction. The mesh bars 8 correspond to those in which the reinforcing bars corresponding to the shear reinforcing bars 6 'in the second embodiment and the reinforcing bars corresponding to the reinforcing bars 3 described above cross in a mesh shape. Such mesh lines 8 can also be adopted in the first embodiment and the second embodiment.

なお、断面両側の応力条件が厳しい部位で、拘束筋4とせん断補強筋7の協働効果が期待できるため、せん断補強筋7の補強量が多い場合には、断面両側の拘束域以外の中間部分では、メッシュ筋8がなくてもせん断補強筋7のみで十分なせん断補強効果が期待できる。     In addition, since the joint effect of the restraint bars 4 and the shear reinforcement bars 7 can be expected at a site where the stress conditions on both sides of the cross section are severe, when the reinforcement amount of the shear reinforcement bars 7 is large, the middle other than the restraint zones on both sides of the cross section In the part, even if there is no mesh bar 8, a sufficient shear reinforcing effect can be expected with only the shear reinforcing bar 7.

<第4実施形態>
本実施形態では、RC梁の開口部の補強に本発明の補強構造を適用したものである。図4(A)は本発明の一実施形態に係る補強構造を適用した梁11の水平断面図、(B)は垂直断面図、(C)は図4(B)の線II−IIに沿う断面図である。
Fourth Embodiment
In the present embodiment, the reinforcing structure of the present invention is applied to the reinforcement of the opening of the RC beam. FIG. 4 (A) is a horizontal sectional view of the beam 11 to which the reinforcing structure according to the embodiment of the present invention is applied, (B) is a vertical sectional view, and (C) is along the line II-II of FIG. FIG.

一般的な開口部補強では、開口部上下の上弦材と下弦材にせん断補強(小径のスターラップ)に加えて、開口周りに、斜め補強筋(X型等)や既製品の開口補強金物等で補強される。本実施形態ではこのような補強は採用せず、開口部上下の上弦材と下弦材の補強と、せん断応力が厳しい開口際(開口左右)の補強とを行っている。     In general opening reinforcements, in addition to shear reinforcement (small diameter stirrups) on the upper and lower chord materials of the opening and the lower part of the opening, diagonal reinforcement bars (X type etc) around the opening, existing reinforcing reinforcements of the opening etc. It is reinforced by. In the present embodiment, such reinforcement is not employed, and reinforcement of upper and lower chord materials at the top and bottom of the opening and reinforcement at the opening where the shear stress is severe (right and left opening) are performed.

梁11は長方形断面のRC部材であり、その軸方向がX方向、梁せい方向がZ方向、梁幅方向がY方向となっている。軸方向を左右方向と呼び、梁せい方向を上下方向と呼ぶ場合がある。梁11は、その軸方向中央部に水平方向に開口した貫通孔である開口部11aを有している。また、梁11は主筋12a及び12b(総称するときは主筋12という)、せん断補強筋16、せん断補強筋17、開口補強筋18及び拘束筋19を備える。せん断補強筋16、せん断補強筋17及び開口補強筋18は本発明の一実施形態に係る補強構造を構成している。     The beam 11 is an RC member having a rectangular cross section, and the axial direction is the X direction, the beam direction is the Z direction, and the beam width direction is the Y direction. The axial direction may be referred to as the left-right direction, and the beam direction may be referred to as the up-down direction. The beam 11 has an opening 11a which is a through hole opened in the axial direction at the center in the axial direction. In addition, the beam 11 includes main bars 12 a and 12 b (collectively referred to as main bars 12), shear reinforcement bars 16, shear reinforcement bars 17, opening reinforcement bars 18 and restraint bars 19. The shear reinforcing bars 16, the shear reinforcing bars 17 and the opening reinforcing bars 18 constitute a reinforcing structure according to an embodiment of the present invention.

主筋12は、配置上、上側の主筋12aと、下側の主筋12bとに大別される。主筋12はX方向に延設されており、主筋12a及び主筋12bのいずれも、Y方向を列方向として1列4本の構成であり、総計で8本とされている。上側の主筋2aと、下側の主筋2bとは、互いに対向する主筋の列を構成している。     The main muscle 12 is roughly divided into an upper main muscle 12a and a lower main muscle 12b in terms of arrangement. The main bars 12 extend in the X direction, and each of the main bars 12a and 12b has a configuration of four in one row with the Y direction as the row direction, and has a total of eight. The upper main muscle 2a and the lower main muscle 2b constitute a row of main muscles facing each other.

せん断補強筋16は、主筋12の外周側に配置され、本実施形態の場合、主筋12を囲むように環状を有して配置されたスターラップを構成している。せん断補強筋16としては、例えば、D10〜D16の細径鉄筋を採用できる。     The shear reinforcing bars 16 are disposed on the outer peripheral side of the main bar 12, and in the case of this embodiment, constitute a stirrup having an annular shape so as to surround the main bar 12. As the shear reinforcing bars 16, for example, small diameter rebars of D10 to D16 can be adopted.

せん断補強筋17は、主筋12の内周側において、互いに対向する主筋12aの列と主筋12bの列とを横断するようにZ方向に直線的に延設されている。せん断補強筋17は、せん断補強筋16よりも太径とした棒状鉄筋である。本実施形態の場合、せん断補強筋17は、開口部11aの左右側部にそれぞれ上下方向に配置され、片側で2×2=4本で、両側で総計8本としている。しかし、せん断補強筋17の数は適宜選択できる。     The shear reinforcing bars 17 extend linearly in the Z direction on the inner circumferential side of the main bars 12 so as to cross the rows of main bars 12 a and the rows of main bars 12 b facing each other. The shear reinforcement bar 17 is a bar-shaped rebar having a diameter larger than that of the shear reinforcement bar 16. In the case of the present embodiment, the shear reinforcing bars 17 are arranged vertically on the left and right sides of the opening 11a, and 2 × 2 = 4 on one side, for a total of 8 on both sides. However, the number of shear reinforcing bars 17 can be selected appropriately.

せん断補強筋17の両端部にはプレート型定着部17a、17aが設けられている。プレート型定着部17aは、上記第1実施形態と同様、せん断補強筋17の径方向に突出してせん断補強筋7端部の定着性を向上できる構成であればどのような構成でもよい。プレート型定着部17aは主筋12の外周側に配置されている。本実施形態の場合、プレート型定着部17aを主筋12に引っ掛けるように配置している。この構成はせん断補強筋17に引っ張り力が作用した場合にせん断補強筋17の定着性を向上させる。     Plate-type fixing portions 17 a and 17 a are provided at both ends of the shear reinforcing bars 17. The plate type fixing portion 17a may have any configuration as long as it can protrude in the radial direction of the shear reinforcing bar 17 to improve the fixability of the end portion of the shear reinforcing bar 7 as in the first embodiment. The plate type fixing portion 17 a is disposed on the outer peripheral side of the main reinforcement 12. In the case of the present embodiment, the plate-type fixing portion 17 a is disposed to be hooked to the main reinforcement 12. This configuration improves the fixability of the shear reinforcing bar 17 when a tensile force acts on the shear reinforcing bar 17.

本実施形態では、梁11の上側および下側において、主筋2がそれぞれ1段配筋のため、開口部11a上下の開口に近接した部位に開口補強筋18を施している。なお、主筋2が多段配筋の場合等の構成の場合、開口補強筋18を省略することができる。     In the present embodiment, on the upper side and the lower side of the beam 11, the reinforcement bars 18 are applied to the portions adjacent to the upper and lower openings of the opening 11a because the main reinforcements 2 are respectively arranged in one step. In addition, in the case of the structure of the case in which the main bar 2 is a multistage rebar, etc., the opening reinforcing bar 18 can be omitted.

開口補強筋18は、開口部11aの上部及び下部にそれぞれ配置され、左右方向に直線的に延設された直線棒状の鉄筋である。開口補強筋18の両端部にはプレート型定着部18aが設けられている。プレート型定着部18aは、上記第1実施形態のプレート型定着部7aと同様、開口補強筋18の径方向に突出して開口補強筋18端部の定着性を向上できる構成であればどのような構成でもよい。プレート型定着部18aは必須ではないが、本実施形態では破壊を誘発するひび割れを効率的かつ強制的に拘束することを目的として、あえて設けている。拘束筋19は主筋2と開口補強筋18とを囲むように配筋されている。     The opening reinforcing bars 18 are straight rod-shaped reinforcing bars disposed at the upper and lower portions of the opening 11 a and extending linearly in the left-right direction. Plate-type fixing portions 18 a are provided at both ends of the opening reinforcing bars 18. The plate type fixing portion 18a has a configuration that can be protruded in the radial direction of the opening reinforcing bar 18 to improve the fixing property of the end portion of the opening reinforcing bar 18 similarly to the plate type fixing portion 7a of the first embodiment. It may be a configuration. The plate-type fixing unit 18a is not essential, but in the present embodiment, it is intentionally provided for the purpose of efficiently and forcibly restraining the crack which induces the fracture. The restraint muscles 19 are arranged to surround the main muscle 2 and the opening reinforcement muscles 18.

係る構成からなる梁11では、太径のせん断補強筋17が圧壊を誘発する主筋12や開口補強筋18近傍の位置のひび割れ(破線L4)の拡大を直接拘束する配筋となっており、ひび割れの拡大・伸展を十分抑止できる。また、開口補強筋18も破壊を誘発するひび割れを拘束する。せん断補強筋17は、また、主筋12の付着条件が厳しい場合に生じる主筋12に沿った付着割裂ひび割れの抑止にも効果を発揮する。     In the beam 11 having such a configuration, the large diameter shear reinforcement bar 17 is a reinforcement bar that directly restrains the expansion of the crack (broken line L4) in the vicinity of the main bar 12 causing the crush or the opening reinforcement bar 18 Can prevent the expansion and extension of In addition, the opening reinforcing bars 18 also restrain cracks that cause breakage. The shear reinforcement bar 17 also exerts an effect on the suppression of the bond split crack along the main bar 12 which occurs when the adhesion condition of the main bar 12 is severe.

せん断補強筋17は直線の棒状鉄筋であり、曲げ加工を要しないので太径としても施工性を悪化させない。更に、その両端部にプレート型定着部17aを設けたので、定着性を向上できるだけでなく、かぶりがプレート型定着部17aの厚みには影響されるものの、せん断補強筋17の径に影響されず、より太径の鉄筋を利用した場合であっても、かぶりを確保しやすくなっている。     The shear reinforcing bar 17 is a straight bar and does not require bending, so the workability does not deteriorate even if it has a large diameter. Furthermore, since the plate-type fixing portion 17a is provided at both ends, not only fixing ability can be improved, but although the fog is affected by the thickness of the plate-type fixing portion 17a, it is not affected by the diameter of the shear reinforcing bar 17. Even when using a larger diameter rebar, it is easier to secure the cover.

こうして本実施形態の補強構造でも、上記第1実施形態の補強構造と同様、かぶりを確保するとともに施工性を悪化させることなく、応力条件が厳しい部位(ここでは開口部11a近傍)へ、より太径の鉄筋を利用してそのせん断補強を行うことができる。また、配筋方法が簡易かつ合理的なため、終局耐力等の設計法が明快かつ簡便なものとなる。     Thus, even in the reinforcing structure of the present embodiment, as in the reinforcing structure of the first embodiment, the cover is further secured to the portion where the stress condition is severe (here, in the vicinity of the opening 11a) without securing the fog and deteriorating the workability. Shear reinforcement can be performed using diameter reinforcing bars. In addition, since the method of reinforcement is simple and rational, the design method such as ultimate resistance becomes clear and simple.

<第5実施形態>
図5は本発明の別実施形態に係る補強構造を適用したRC部材である、梁11’の垂直断面図である。梁11’は、上記第3実施形態の梁11の変形例であり、同様の構成については同じ符号を付して説明を省略し、異なる点について以下に説明する。
Fifth Embodiment
FIG. 5 is a vertical sectional view of a beam 11 ', which is an RC member to which a reinforcing structure according to another embodiment of the present invention is applied. The beam 11 'is a modified example of the beam 11 of the third embodiment, and the same reference numerals are given to the same components, and the description thereof is omitted, and different points will be described below.

本実施形態の場合、主筋2は上下で2段構成とされており、上記第3実施形態の開口補強筋18は省略されて拘束筋19’は上側の主筋2aと、下側の主筋2bとをそれぞれ囲む構成である。     In the case of the present embodiment, the main reinforcement 2 is configured in two stages at the top and bottom, and the opening reinforcing reinforcement 18 of the third embodiment is omitted, and the restraint reinforcement 19 'is the upper main reinforcement 2a and the lower main reinforcement 2b. Are respectively enclosed.

梁11’は開口部11aが複数形成されている。同図の例では、開口部11aの間隔を開口径の2倍としているが、通常は開口径の3倍以上とされている(日本建築学会編:鉄筋コンクリート造配筋指針・同解説)。     The beam 11 'has a plurality of openings 11a. In the example shown in the figure, the distance between the openings 11a is twice the diameter of the opening, but normally it is more than three times the diameter of the opening (Edition of Architectural Institute of Japan: Guidelines for Reinforced Concrete Reinforcement Reinforcement Guidelines, the same comment).

このような複数の開口部11aを有するRC梁では、同図に示す開口部11a間の束材と開口部11a上下の弦材の耐力の低い方で梁11’の終局せん断耐力が決まる。図5において、破線L5は上弦材の破壊線を、破線L6は下弦材の破壊線を、破線L7は束材の破壊線を、それぞれ示している。破壊線上の補強量が多いとコンクリートのせん断圧縮破壊が、補強量が少なくなると破壊線上のせん断ひび割れの拡大が最終破壊形式となる。     In the RC beam having a plurality of openings 11a, the ultimate shear resistance of the beam 11 'is determined by the lower strength of the bundle between the openings 11a shown in the figure and the upper and lower chords of the openings 11a. In FIG. 5, the broken line L5 indicates the broken line of the upper chord, the broken line L6 indicates the broken line of the lower chord, and the broken line L7 indicates the broken line of the bundle. When the amount of reinforcement on the failure line is large, the shear compression failure of the concrete becomes the final type of failure, and if the amount of reinforcement is small, the expansion of the shear crack on the failure line becomes the final failure type.

せん断補強筋17は、各開口部11aの左右両側に配置されている。せん断補強筋17は、開口部11a上下の弦材および束材の破壊防止に有効に働く。なお、束材の補強には、通常、開口部11aの側方を斜めに通過する斜め補強筋が有効であるが、開口部11aの間隔を通常の間隔(開口径の3倍以上)とした場合、束材の破壊線L7が図示の例の傾き(約30°)よりも水平に近くなる。補強筋はひび割れに直交する方が効果的とされる一般論からすると、必ずしも斜め補強筋と効果において大きな差はなく、せん断補強筋17によって、破壊線上での鉄筋の曲げ剛性も高く、せん断ひび割れの伸展・拡大を抑止できるので、施工性を考えると従来工法(斜め補強等)より合理的である。     The shear reinforcing bars 17 are disposed on the left and right sides of each opening 11a. The shear reinforcing bars 17 effectively work to prevent breakage of the chords and bundles at the top and bottom of the opening 11a. In addition, although the diagonal reinforcement which passes the side of the opening 11a diagonally is generally effective for reinforcement of the bundle material, the interval between the openings 11a is set to a normal interval (3 times or more of the opening diameter) In this case, the fracture line L7 of the bundle material is closer to the horizontal than the inclination (about 30 °) of the illustrated example. From the general point of view that it is more effective that the reinforcement is orthogonal to the crack, there is not necessarily a big difference in the oblique reinforcement and the effect, and the shear reinforcement 17 makes the bending stiffness of the rebar high on the fracture line. It is more rational than conventional methods (diagonal reinforcement etc.) in view of workability because it can prevent extension and expansion of

なお、開口部11aの位置が梁端部に近くなるほど、部材の曲げ応力によりせん断補強筋17に沿って曲げひび割れが生じやすく、有害なせん断ひび割れの伸展・拡大の抑止効果が更に増大する。     As the position of the opening 11a is closer to the end of the beam, bending cracks are more likely to occur along the shear reinforcing bars 17 due to bending stress of the member, and the effect of suppressing the extension and expansion of harmful shear cracks is further increased.

<他の実施形態>
上記第1〜第5実施形態では、RC造の柱および梁(開口補強)を対象として示したが、本発明の適用対象はこれらに限られるものでなく、柱型のない耐震壁や壁式構造における耐力壁のせん断補強や開口補強等、各種のRC部材に適用可能であり、特に、長方形断面を有するRC部材の長辺方向のせん断補強に有益である。また、プレストレストコンクリート造部材についても適用可能である。
Other Embodiments
Although the above-described first to fifth embodiments show RC columns and beams (opening reinforcement), the application of the present invention is not limited to these, and a seismic wall or wall type without a column type The present invention is applicable to various RC members such as shear reinforcement and opening reinforcement of a bearing wall in a structure, and is particularly useful for shear reinforcement in the longitudinal direction of RC members having a rectangular cross section. Moreover, it is applicable also to a prestressed concrete member.

Claims (1)

鉄筋コンクリート壁柱の補強構造であって、
前記鉄筋コンクリート壁柱の両隅部には、複数の主筋を囲むように拘束筋がそれぞれ配設されており、
前記鉄筋コンクリート壁柱の前記主筋の外周側に配設された第1のせん断補強筋と、
前記主筋の内周側において、前記拘束筋で囲まれた、前記両隅部の前記主筋の列を横断するように直線的に延設された第2のせん断補強筋と、を備え、
前記第2のせん断補強筋は前記鉄筋コンクリート壁柱の横断面上に複数列が配筋され、前記第1のせん断補強筋よりも太径であることを特徴とする鉄筋コンクリート壁柱の補強構造。
Reinforcing structure of reinforced concrete wall column,
Restraining bars are disposed at both corners of the reinforced concrete wall column so as to surround a plurality of main bars,
A first shear reinforcement bar disposed on an outer peripheral side of the main bar of the reinforced concrete wall column ;
And a second shear reinforcing bar linearly extended so as to cross the main bar rows of the two corners surrounded by the constraining bars on the inner peripheral side of the main bar;
A reinforced structure of a reinforced concrete wall column , wherein a plurality of rows of the second sheared reinforcing bars are arranged on a cross section of the reinforced concrete wall column and have a diameter larger than that of the first sheared reinforcing bar.
JP2017164091A 2017-08-29 2017-08-29 Reinforcement structure of reinforced concrete wall column Active JP6513754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017164091A JP6513754B2 (en) 2017-08-29 2017-08-29 Reinforcement structure of reinforced concrete wall column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017164091A JP6513754B2 (en) 2017-08-29 2017-08-29 Reinforcement structure of reinforced concrete wall column

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013043411A Division JP6204027B2 (en) 2013-03-05 2013-03-05 Reinforced structure

Publications (2)

Publication Number Publication Date
JP2017203378A JP2017203378A (en) 2017-11-16
JP6513754B2 true JP6513754B2 (en) 2019-05-15

Family

ID=60322092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017164091A Active JP6513754B2 (en) 2017-08-29 2017-08-29 Reinforcement structure of reinforced concrete wall column

Country Status (1)

Country Link
JP (1) JP6513754B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6741804B2 (en) * 2018-02-06 2020-08-19 東急建設株式会社 Structure of reinforced concrete beams

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133171A (en) * 1983-12-21 1985-07-16 株式会社竹中工務店 Reinforced concrete earthquake-proof wall
JPH08260565A (en) * 1995-03-20 1996-10-08 Kawatetsu Techno Wire Kk Reinforced concrete wall column
JP5384603B2 (en) * 2011-11-28 2014-01-08 大成建設株式会社 Concrete structure

Also Published As

Publication number Publication date
JP2017203378A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
JP5607892B2 (en) Reinforcement method for reinforced concrete column beam joints
JP2020200759A (en) Steel beam with floor slab
JP4819605B2 (en) Precast prestressed concrete beams using tendons with different strength at the end and center
JP6204027B2 (en) Reinforced structure
JP5996883B2 (en) Building with composite beams
JP6515302B2 (en) Beam joint structure design method, beam joint structure manufacturing method and beam joint structure
JP6513754B2 (en) Reinforcement structure of reinforced concrete wall column
JP3830767B2 (en) Continuous girder for bridge
KR101029613B1 (en) Short span beam and beam structure using the same
JP7432479B2 (en) reinforced concrete wall structure
US12012757B2 (en) Tie hoop untying prevention device
JP6996544B2 (en) Seismic retrofitting method for existing structures
JP5939707B2 (en) Reinforcement structure for beam-column joints
JP4922911B2 (en) Column beam frame
JP5118893B2 (en) Beam-column joint structure on the top floor of reinforced concrete structure
JP5784569B2 (en) Reinforced concrete beam opening reinforcement structure and beam reinforcement unit
JP3938718B2 (en) Reinforced concrete beam structure
JP5095967B2 (en) Joint structure of column beam joint
JP2009144500A (en) Shearing reinforcement structure for column-beam joint part of uppermost story
JPH08246547A (en) Pole-beam junction structure
JP2009091743A (en) Continuous i-beam bridge and structure near its intermediate supporting point
JPH10204994A (en) Steel pipe concrete member
JP6681709B2 (en) Stiffening structure of steel beams
JP7227801B2 (en) REINFORCED JOINT STRUCTURE, BUILDING USING THE SAME, AND CONSTRUCTION METHOD OF REINFORCED JOINT STRUCTURE
JP7441770B2 (en) Opening reinforcement structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190410

R150 Certificate of patent or registration of utility model

Ref document number: 6513754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150