JP6633137B2 - Steel - Google Patents

Steel Download PDF

Info

Publication number
JP6633137B2
JP6633137B2 JP2018109291A JP2018109291A JP6633137B2 JP 6633137 B2 JP6633137 B2 JP 6633137B2 JP 2018109291 A JP2018109291 A JP 2018109291A JP 2018109291 A JP2018109291 A JP 2018109291A JP 6633137 B2 JP6633137 B2 JP 6633137B2
Authority
JP
Japan
Prior art keywords
yield point
steel
steel bar
steel pipe
point region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018109291A
Other languages
Japanese (ja)
Other versions
JP2018168694A (en
Inventor
福馬 飯干
福馬 飯干
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP2018109291A priority Critical patent/JP6633137B2/en
Publication of JP2018168694A publication Critical patent/JP2018168694A/en
Application granted granted Critical
Publication of JP6633137B2 publication Critical patent/JP6633137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Mutual Connection Of Rods And Tubes (AREA)

Description

本発明は、複数の部材が組み立てられて形成される鋼材に関する。   The present invention relates to a steel material formed by assembling a plurality of members.

従来、地震時や暴風時などの非常時の荷重エネルギーを吸収可能な各種構造が研究、開発されている。エネルギー吸収能力を有するRC(鉄筋コンクリート)またはPC(プレキャスト)架構の場合、非常時の荷重に対して弾性範囲内で変形し、降伏しない高強度の曲げ引張鋼材と、非常時の荷重のエネルギーを熱に変換して吸収するダンパーとがそれぞれ、別個の部材として設けられていた。しかし、従来のRCまたはPC架構のようにダンパーと曲げ引張鋼材とが別個に設けられる構成では、ダンパーが構造躯体外部に配置され当該ダンパーを隠すための壁が必要となったり、人間の動線の邪魔になったりという設計上の制約が生じてしまう。   2. Description of the Related Art Conventionally, various structures capable of absorbing load energy in an emergency such as an earthquake or a storm have been researched and developed. In the case of RC (Reinforced Concrete) or PC (Precast) frame with energy absorption capacity, it deforms in the range of elasticity against emergency load and does not yield, high strength bending tensile steel material and heat of emergency load is converted to heat. And a damper that converts and absorbs the water is provided as separate members. However, in a configuration in which a damper and a bending-tensile steel material are provided separately as in a conventional RC or PC frame, the damper is disposed outside the structural body, and a wall for hiding the damper is required. Design constraints such as disturbing the design.

そこで、プレストレストコンクリート部材に関し、プレストレス導入のための鋼材を形成するほかに、プレストレス導入の際に降伏時ひずみを超えてまたは応力度が降伏点応力度近傍となるように引張力が導入される鋼材を形成する従来例がある。しかし、この従来例では、2種類の鋼材を必要とするから、現場施工点数の増加によって作業効率が低下するとともに施工品質の安定性の確保が困難となる。
また、焼入れした棒鋼を表面のみ焼き戻すことにより、表面から所定の深さまでが低強度部とされ、低強度部の内側は高強度部とされた鋼材の従来例があるが、この従来例では、低強度部および高強度部のそれぞれの強度やこれらの強度差、低強度部の深さなどを均一に管理することが難しく、施工品質の安定性の確保が課題となる。
Therefore, for prestressed concrete members, in addition to forming the steel material for introducing prestress, a tensile force is introduced so as to exceed the strain at the time of yielding or to bring the stress level close to the yield point stress level at the time of prestressing. There is a conventional example in which a steel material is formed. However, in this conventional example, since two types of steel materials are required, work efficiency is reduced due to an increase in the number of construction sites on site, and it is difficult to ensure the stability of construction quality.
Further, by tempering the quenched steel bar only on the surface, a low-strength portion is formed from the surface to a predetermined depth, and there is a conventional example of a steel material having a high-strength portion inside the low-strength portion. In addition, it is difficult to uniformly manage the strength of each of the low-strength portion and the high-strength portion, the difference between these strengths, the depth of the low-strength portion, and the like.

以上に鑑みて、地震等の荷重エネルギーを吸収可能なうえ、現場での施工点数が増えず、施工品質の安定性の確保が容易な曲げ引張鋼材を提供するために、軸方向両端側の部分がそれぞれ構造躯体に固定される鋼管と、鋼管に挿入され、両端部がそれぞれ鋼管の端部に固定される棒鋼と、鋼管の両端部にそれぞれ設けられ棒鋼を鋼管に固定するとともに、鋼管が圧縮された際に棒鋼を軸方向外側から軸方向内側に向かって押さえる固定部材と、を備え、鋼管は、棒鋼の強度よりも高強度であり、棒鋼は、鋼管の降伏点よりも低降伏点である鋼材の従来例がある(特許文献1)。
特許文献1の従来例では、降伏点とエネルギー消費量とを両方大きく確保できる上、
棒鋼ではなく鋼管が高強度鋼材とされているため、棒鋼の強度が鋼管の強度よりも高強度とされた場合と比較して、圧縮力作用時に高強度鋼材が降伏せずに棒鋼を拘束する弾性範囲を大きく確保できる。そのため、降伏点とエネルギー消費量との両方をより大きく確保できるので、地震時や暴風時などの非常時の荷重エネルギーを十分に吸収できる。また、鋼管および棒鋼が予め組み立てられて鋼材が形成されるため現場での施工点数が増えず、施工品質の安定性の確保が容易となるという利点もある。
In view of the above, in order to provide bending tensile steel that can absorb load energy such as earthquakes, does not increase the number of construction points on site, and can easily secure the stability of construction quality, Are fixed to the structural skeleton, a steel bar inserted into the steel pipe, both ends of which are fixed to the ends of the steel pipe, and a steel bar provided at both ends of the steel pipe to fix the steel bars to the steel pipe and compress the steel pipe. A fixing member that presses the steel bar from the outside in the axial direction to the inside in the axial direction when the steel pipe is made, the steel pipe having a strength higher than the strength of the steel bar, and the steel bar having a lower yield point than the yield point of the steel pipe. There is a conventional example of a certain steel material (Patent Document 1).
In the conventional example of Patent Literature 1, both the yield point and the energy consumption can be kept large, and
Since the steel pipe is made of high-strength steel instead of steel bar, the high-strength steel material restrains the steel bar without yielding when a compressive force is applied, compared to the case where the strength of the steel bar is higher than that of the steel pipe. A large elastic range can be secured. For this reason, both the yield point and the energy consumption can be secured larger, so that the load energy in an emergency such as an earthquake or a storm can be sufficiently absorbed. Further, since the steel pipe and the steel bar are assembled in advance to form the steel material, the number of construction points on site does not increase, and there is an advantage that the stability of the construction quality is easily ensured.

特許第5017724号公報Japanese Patent No. 5017724

一般的に、エネルギー消費性能、つまり、ダンパー効果を期待できるような低降伏点の材料は高価である。
特許文献1の従来例では、ダンパー効果を得るための棒鋼は、その全ての範囲において鋼管の降伏点よりも低降伏点の領域とされている。
すなわち、特許文献1の従来例では、1本の棒鋼が同じ低降伏点の領域とされているため、鋼材の製造コストが高いものとなる。
Generally, a material having a low yield point at which energy consumption performance, that is, a damper effect can be expected, is expensive.
In the conventional example of Patent Literature 1, the steel bar for obtaining the damper effect is a region having a lower yield point than the yield point of the steel pipe in the entire range.
That is, in the conventional example of Patent Literature 1, since one steel bar has the same low yield point region, the manufacturing cost of the steel material is high.

本発明は、地震等の荷重エネルギーを吸収可能なうえ、現場での施工点数が増えず、施工品質の安定性の確保が容易であり、しかも、製造コストが低い鋼材を提供することを目的とする。   An object of the present invention is to provide a steel material that can absorb load energy such as an earthquake, does not increase the number of construction points on site, easily secures the stability of construction quality, and has a low manufacturing cost. I do.

本発明の鋼材は、軸方向両端側の部分がそれぞれ構造躯体に固定される鋼管と、前記鋼管に挿入され、両端部それぞれ前記鋼管の端部に固定される棒鋼と、前記鋼管の両端部の雄ねじ部にそれぞれ螺合されるナットで構成され、前記棒鋼を前記鋼管に固定するとともに、前記鋼管が圧縮された際に前記棒鋼を軸方向外側から軸方向内側に向かって押さえる固定部材と、を備え、前記棒鋼は、前記鋼管の降伏点または0.2%耐力よりも低い低降伏点領域と前記鋼管の降伏点または0.2%耐力と同じあるいは前記鋼管の降伏点または0.2%耐力より高い高降伏点領域とが軸方向に並んで配置され、前記低降伏点領域は、前記棒鋼の両端部にそれぞれ設けられ、前記高降伏点領域は、前記棒鋼の中央部に設けられることを特徴とする。 Steel of the present invention, a steel tube portion of the axial end side is fixed to the respective structural frame, is inserted into the steel pipe, a steel bar having both ends are fixed to the end of each of the steel pipe, both ends of the steel pipe A fixing member configured with nuts screwed to the male screw portions of the steel pipe, and fixing the steel bar to the steel pipe, and pressing the steel bar from the axial outside to the axial inside when the steel pipe is compressed, Wherein the steel bar has a low yield point region lower than the yield point or 0.2% proof stress of the steel pipe and the same as the yield point or 0.2% proof stress of the steel pipe or the yield point or 0.2% of the steel pipe. A high yield point region higher than the proof stress is arranged in the axial direction, the low yield point region is provided at each of both ends of the steel bar, and the high yield point region is provided at a central portion of the steel bar. It is characterized by.

この構成の発明では、荷重のエネルギーが構造躯体に作用することにより鋼管に引張力が作用したり、圧縮力が作用したりすると、固定部材によって棒鋼と鋼管とが一体になっているため、棒鋼の低降伏点領域の降伏点を超える荷重が加わる。棒鋼の低降伏点領域が降伏した後も、棒鋼の高降伏点領域と鋼管とは弾性範囲内で変形するため、鋼管の低降伏点領域の降伏点に棒鋼による負担分を加えた鋼材全体としての大きな降伏点が得られる。
また、降伏後の棒鋼の低降伏点領域は、荷重による応力が増加することなく鋼管により拘束された状態でひずみだけが増加するため、荷重の載荷および除荷によるヒステリシスを大きく確保できる。この棒鋼の履歴性状に対応する荷重エネルギーが消費されることから、エネルギー消費量を大きくできる。
以上のように、本発明では鋼管が棒鋼よりも高強度とされ、かつ棒鋼の低降伏点領域が高降伏点領域や鋼管よりも低降伏点とされていることによって、前述のように鋼材全体としてのエネルギー消費量を大きくできる。
According to the invention of this configuration, when the tensile energy acts on the steel pipe by applying the energy of the load to the structural frame, or when the compressive force acts on the steel pipe, the steel bar and the steel pipe are integrated by the fixing member. A load exceeding the yield point in the low yield point region is applied. Even after the low yield point region of the steel bar yields, since the high yield point region of the steel bar and the steel pipe are deformed within the elastic range, the steel material as a whole is obtained by adding the load of the steel bar to the yield point of the low yield point region of the steel pipe. Large yield point is obtained.
Further, in the low yield point region of the steel bar after yielding, only the strain increases in a state of being restrained by the steel pipe without increasing the stress due to the load, so that a large hysteresis due to loading and unloading of the load can be secured. Since the load energy corresponding to the hysteresis of the steel bar is consumed, the energy consumption can be increased.
As described above, in the present invention, the steel pipe is made higher in strength than the steel bar, and the low yield point region of the steel bar is made higher in the high yield point region and the lower yield point than the steel pipe. Energy consumption can be increased.

しかも、鋼管および棒鋼のそれぞれの端部同士を適宜な固定手段によって固定することにより、現場施工前にこれらの鋼管および棒鋼を一体化することが可能となるので、現場での施工点数が増えない。また、鋼管および棒鋼のそれぞれの強度を管理すればよいため、一部材の内部に高強度部と低降伏点部とが形成される場合よりも部品の品質を保証しやすい。これらの点で、施工品質の安定性の確保が容易となる。
その上、本発明では、棒鋼の低降伏点領域が一部のみの形成されているため、棒鋼の全てを低降伏点領域とする場合に比べて、製造コストを低いものにできる。
In addition, by fixing the respective ends of the steel pipe and the bar by appropriate fixing means, it becomes possible to integrate these steel pipes and the bar before the on-site construction, so that the number of construction on-site does not increase. . Further, since it is only necessary to manage the strength of each of the steel pipe and the steel bar, the quality of parts can be more easily assured than when a high strength portion and a low yield point portion are formed inside one member. From these points, it is easy to ensure the stability of the construction quality.
In addition, in the present invention, since only a part of the low yield point region of the steel bar is formed, the manufacturing cost can be reduced as compared with the case where all the steel bars are set to the low yield point region.

ここで、本発明に関連する鋼材では、前記高降伏点領域は、前記棒鋼の両端部にそれぞれ設けられ、前記低降伏点領域は前記棒鋼の中央部に設けられる構成が好ましい。
この構成では、棒鋼の両端部を高降伏点領域としたので、固定部材を用いて鋼管に一体にすることを容易に行うことができる。
Here, in the steel material related to the present invention, it is preferable that the high yield point region is provided at both ends of the steel bar, and the low yield point region is provided at a central portion of the steel bar.
In this configuration, since both ends of the steel bar are in the high yield point region, it can be easily integrated with the steel pipe using the fixing member.

本発明では、地震等の荷重エネルギーを吸収可能なうえ、現場での施工点数が増えず、施工品質の安定性の確保が容易であり、しかも、製造コストが低いものにできる。   ADVANTAGE OF THE INVENTION According to this invention, load energy, such as an earthquake, can be absorbed, the number of construction points on site does not increase, the stability of construction quality is easily ensured, and the manufacturing cost can be reduced.

本発明の一実施形態に係る鋼材の一部破断側面図。1 is a partially broken side view of a steel material according to an embodiment of the present invention. 前記鋼材の要部の側面図。The side view of the important section of the above-mentioned steel material. 前記鋼材を構成する鋼管の側面図。The side view of the steel pipe which comprises the said steel material. 前記鋼材を構成する棒鋼の側面図。The side view of the steel bar which comprises the said steel material. (A)(B)は図4とは異なる棒鋼の側面図。(A) and (B) are side views of the steel bar different from FIG. 前記実施形態の棒鋼に外力PAがかかった状態を示す概略図。The schematic diagram showing the state where external force PA was applied to the steel bar of the above-mentioned embodiment. (A)は、低降伏点領域Aと高降伏点領域Bとが配置された本実施形態の棒鋼の荷重と伸びとの関係を示すグラフ、(B)は、低降伏点領域部分の荷重と伸びとの関係を示すグラフ、(C)は、高降伏点領域部分の荷重と伸びとの関係を示すグラフ。(A) is a graph showing the relationship between the load and the elongation of the steel bar of the present embodiment in which the low yield point region A and the high yield point region B are arranged, and (B) is the load and the low yield point region portion. 7 is a graph showing a relationship between elongation and elongation, and FIG. 8C is a graph showing a relationship between load and elongation in a high yield point region. (A)は、低降伏点領域Aと高降伏点領域Bとが配置された本実施形態の棒鋼の荷重と歪みとの関係を示すグラフ、(B)は、低降伏点領域部分の荷重と歪みとの関係を示すグラフ、(C)は、高降伏点領域部分の荷重と歪みとの関係を示すグラフ。(A) is a graph showing the relationship between the load and strain of the steel bar of the present embodiment in which the low yield point region A and the high yield point region B are arranged, and (B) shows the load and the load in the low yield point region. FIG. 4C is a graph showing the relationship between the strain and the load, and FIG. 4C is a graph showing the relationship between the load and the strain in the high yield point region. 従来例の棒鋼に外力PAがかかった状態を示す概略図。The schematic diagram showing the state where external force PA was applied to the conventional steel bar. 従来例の棒鋼の荷重と伸びとの関係を示すものであって図7に対応したグラフ。8 is a graph showing the relationship between the load and the elongation of a conventional steel bar and corresponding to FIG. 7. 従来例の棒鋼の荷重と歪みとの関係を示すものであって図8に対応したグラフ。9 is a graph showing the relationship between load and strain of a conventional steel bar and corresponding to FIG. 8.

以下、本発明の一実施形態について図面を参照して説明する。
図1は、本実施形態における鋼材を示す一部破断側面図である。この鋼材は、曲げ引張鋼材体10と、曲げ引張鋼材体10における軸方向一端側の部分を構造躯体の取付プレート9に取付固定する取付ナット20と、曲げ引張鋼材体10における軸方向一端部に設けられる固定部材としての第1袋ナット30と、曲げ引張鋼材体10の軸方向他端部に設けられて曲げ引張鋼材体10を構造躯体の取付プレート9に取付固定する固定部材としての第2袋ナット40とを備えている。
なお、取付ナット20と取付プレート9との間にはワッシャー21が介装され、第2袋ナット40と取付プレート9との間にはワッシャー41が介装されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a partially broken side view showing a steel material in the present embodiment. This steel material includes a bending tensile steel body 10, a mounting nut 20 for mounting and fixing an axial end portion of the bending tensile steel body 10 to the mounting plate 9 of the structural body, and an axial one end portion of the bending tensile steel body 10. A first cap nut 30 as a fixing member provided, and a second fixing member provided at the other end in the axial direction of the bending-tensile steel member 10 and fixing the bending-tensile steel member 10 to the mounting plate 9 of the structural frame. And a cap nut 40.
A washer 21 is interposed between the mounting nut 20 and the mounting plate 9, and a washer 41 is interposed between the second cap nut 40 and the mounting plate 9.

図2は、曲げ引張鋼材体10の側面図である。曲げ引張鋼材体10は、鋼管11(図3)と、鋼管11に挿入される棒鋼12(図4)と、これらの鋼管11と棒鋼12とを固定する棒鋼固定ナットとしての丸ナット13(図2)とを有している。
鋼管11は、高強度鋼材により形成され、図1および図3のように鋼管11の両端部の端縁から取付プレート9に固定される位置までを含む部分にはそれぞれ、鋼管雄ねじ部111が形成されている。
FIG. 2 is a side view of the bending tensile steel body 10. The bending tensile steel body 10 includes a steel pipe 11 (FIG. 3), a steel bar 12 inserted into the steel pipe 11 (FIG. 4), and a round nut 13 (FIG. 4) as a steel bar fixing nut for fixing the steel pipe 11 and the steel bar 12. 2).
The steel pipe 11 is formed of a high-strength steel material. As shown in FIG. 1 and FIG. 3, male pipe thread portions 111 are formed at portions including ends from both ends of the steel pipe 11 to positions fixed to the mounting plate 9. Have been.

ここで、鋼管11は、棒鋼12の強度よりも高強度であり、鋼管11の強度は、降伏点または0.2%耐力が390N/mmを超えるか、もしくは引張強さが490N/mmを超えるように設定されている。本実施形態において、「高強度」とは、降伏点または0.2%耐力が390N/mmを超えるか、もしくは引張強さが490N/mmを超えることを言う。
本実施形態では、建築学会の鉄筋コンクリート造設計基準書において規定された降伏点と0.2%耐力の材料を用いている。つまり、降伏点または0.2%耐力が390N/mmに相当する鋼材は、例えば、鉄筋コンクリート造用の異形鉄筋SD390である。建築学会の鉄筋コンクリート造の設計基準書において、SD390までは許容応力度が決められている。引張強さが490N/mmに相当する鋼材は、例えば、鉄骨造用の鋼材SN490(SM490)である。建築学会の鉄骨造の設計基準書において、このSN490(SM490)までは許容応力度が決められている。
以上から、降伏点または0.2%耐力が390N/mmを超えるほど高降伏点領域が高強度の場合、または引張強さが490N/mmを超えるほど高降伏点領域が高強度である場合に、鋼材全体としての降伏点をより高くできる。
Here, the steel pipe 11, than the strength of the steel bar 12 is a high strength, the strength of the steel pipe 11, yield point or 0.2% proof stress exceeds 390 N / mm 2 or, or a tensile strength of 490 N / mm 2 Is set to exceed. In the present embodiment, "high strength", yield point or 0.2% proof stress exceeds 390 N / mm 2 or, or tensile strength refers to exceed 490 N / mm 2.
In the present embodiment, a material having a yield point and a 0.2% proof stress specified in the reinforced concrete design standard of the Architectural Institute of Japan is used. That is, a steel material having a yield point or a 0.2% proof stress equivalent to 390 N / mm 2 is, for example, a deformed reinforcing bar SD390 for reinforced concrete construction. In the Architectural Institute of Japan's design standards for reinforced concrete structures, the allowable stress level is determined up to SD390. A steel material having a tensile strength of 490 N / mm 2 is, for example, a steel material SN490 (SM490) for steel structure. In the design standards for steel structures of the Architectural Institute of Japan, the allowable stress level is determined up to SN490 (SM490).
From the above, when the yield point or 0.2% proof stress exceeds 390 N / mm 2 , the high yield point region has high strength, or as the tensile strength exceeds 490 N / mm 2 , the high yield point region has high strength. In this case, the yield point of the steel material as a whole can be made higher.

図2および図4に示される通り、棒鋼12は、鋼管11の端部から突出する棒鋼雄ねじ部121が形成されている。
図4のように、棒鋼12は、鋼管11の降伏点よりも低降伏点である低降伏点領域Aと鋼管11の降伏点と同じ高降伏点領域Bとが軸方向に並んで配置されている。これらの低降伏点領域Aと高降伏点領域Bとは同じ断面積である。
低降伏点領域Aは、その降伏点または0.2%耐力が高降伏点領域Bの降伏点または0.2%耐力より小さい。
低降伏点領域Aは、棒鋼12の一端からの長さがLであり、高降伏点領域Bは、棒鋼12の他端からの長さがLである。L+Lは棒鋼12の全体の長さLとなる。
As shown in FIGS. 2 and 4, the steel bar 12 is formed with a steel bar male screw portion 121 projecting from the end of the steel pipe 11.
As shown in FIG. 4, in the steel bar 12, a low yield point region A which is a lower yield point than the yield point of the steel pipe 11 and a high yield point region B which is the same as the yield point of the steel pipe 11 are arranged in the axial direction. I have. These low yield point areas A and high yield point areas B have the same cross-sectional area.
The low yield point region A has a lower yield point or 0.2% proof stress than the higher yield point region B.
Low yield point region A is a length L A from one end of the bars 12, the high yield point region B has a length from the other end of the steel bar 12 is L B. L A + L B is the entire length L of the steel bar 12.

本実施形態では、棒鋼12における低降伏点領域Aと高降伏点領域Bとの配置は図4に示される構造に限定されるものではない。
例えば、図5(A)のように、高降伏点領域Bを、棒鋼12の両端部にそれぞれ設け、低降伏点領域Aを棒鋼12の中央部に設ける構成でもよい。
2カ所の高降伏点領域Bのうち一方の高降伏点領域Bは、棒鋼12の一端からの長さがLB1であり、他方の高降伏点領域Bは、棒鋼12の他端からの長さがLB2である。高降伏点領域Bの合計の長さLはLB1+LB2であり、この合計の長さLと低降伏点領域Aの長さLとを合計すると、棒鋼12の全体の長さLとなる。高降伏点領域Bの長さLB1と長さLB2とは同じであっても異なっていてもよい。
さらに、図5(B)のように、低降伏点領域Aを、棒鋼12の両端部にそれぞれ設け、高降伏点領域Bを棒鋼12の中央部に設ける構成でもよい。
2カ所の低降伏点領域Aのうち一方の低降伏点領域Aの一端からの長さがLA1であり、他方の低降伏点領域Aの他端からの長さがLA2である。低降伏点領域Aの合計の長さLはLA1+LA2であり、この合計の長さLと高降伏点領域Bの長さLとは図4の例と同じ関係となる。
In the present embodiment, the arrangement of the low yield point region A and the high yield point region B in the steel bar 12 is not limited to the structure shown in FIG.
For example, as shown in FIG. 5A, a configuration may be adopted in which the high yield point regions B are provided at both ends of the steel bar 12, and the low yield point regions A are provided at the center of the steel bar 12.
One of the high yield point region B of the high yield point region B of the two positions, the length from one end of the steel bar 12 is L B1, the other high-yield area B, the length from the other end of the steel bar 12 it is a saga L B2. Total length L B of the high yield point region B is L B1 + L B2, The sum of the length L A of the length L B and the low yield point region A of the total, overall length of the bars 12 L. The length L B1 and length L B2 of the high yield point region B may be different even in the same.
Further, as shown in FIG. 5B, a configuration may be employed in which the low yield point regions A are provided at both ends of the steel bar 12 and the high yield point regions B are provided at the center of the steel bar 12.
One length from one end of the low yield point region A of the low yield point region A of the two locations is L A1, is L A2 length from the other end of the other of the low yield point region A. Total length L A of the low yield point region A is L A1 + L A2, and the length L B of the length L A and the high yield point region B of the total the same relationship with the example of FIG.

ここで、低降伏点領域Aの長さLと高降伏点領域Bの長さLとの比率は、低降伏点領域Aの塑性変形能力の大小により決定される。つまり、低降伏点領域Aの一様伸びが大きいほど低降伏点領域Aの必要長さは小さくなる。本実施形態では、一様伸びが40%以上50%以下(破断伸びで60%以上80%以下)確保できる低降伏点領域Aの鋼材を用意する。
また、エネルギーの消費能力は、低降伏点領域Aの降伏点または0.2%耐力と高降伏点領域Bの降伏点または0.2%耐力の差に大きく影響を受ける。つまり、低降伏点領域Aの降伏点または0.2%耐力が小さいほど、または、高降伏点領域Bの降伏点または0.2%耐力が大きいほどエネルギーの消費能力は大きくなる。ここで、低降伏点領域Aの降伏点または0.2%耐力と高降伏点領域Bの降伏点または0.2%耐力との比は、低降伏点領域Aを基準にして降伏の比が1:2以上1:16以下、好ましくは、1:3以上1:15以下、より好ましくは1:13である。例えば、低降伏点領域Aを基準にした降伏の比が1:3以上1:15以下の場合は、低降伏点領域Aの降伏点または0.2%耐力が100N/mm程度のものから240N/mm程度のものの鋼材と、高降伏点領域Bの降伏点または0.2%耐力が785N/mm程度のものから1300N/mm程度のものの鋼材との組み合わせからなる。降伏の比が1:13の場合は、低降伏点領域Aの降伏点または0.2%耐力が100N/mm程度の鋼材と高降伏点領域Bの降伏点または0.2%耐力が1300N/mm程度の鋼材の組み合わせからなる。
なお、低降伏点領域Aの棒鋼全長に対する比は、低降伏点領域Aを基準にした高降伏点領域Bの降伏の比、その他の条件で変わるが、概ね、1/10以上1/2以下である。
Here, the ratio of the length L B of the length L A of the low yield point region A high yield point region B is determined by the magnitude of the plastic deformation capacity of the low yield point region A. That is, as the uniform elongation of the low yield point area A increases, the required length of the low yield point area A decreases. In the present embodiment, a steel material in a low yield point region A that can secure uniform elongation of 40% or more and 50% or less (60% or more and 80% or less in breaking elongation) is prepared.
Further, the energy consumption ability is greatly affected by the difference between the yield point or 0.2% proof stress of the low yield point area A and the yield point or 0.2% proof stress of the high yield point area B. In other words, the energy consumption ability increases as the yield point or 0.2% proof stress of the low yield point area A decreases or the yield point or the 0.2% proof stress of the high yield point area B increases. Here, the ratio of the yield point or 0.2% proof stress of the low yield point area A to the yield point or 0.2% proof stress of the high yield point area B is determined by the yield ratio based on the low yield point area A. The ratio is from 1: 2 to 1:16, preferably from 1: 3 to 1:15, and more preferably 1:13. For example, when the yield ratio based on the low yield point area A is 1: 3 or more and 1:15 or less, the yield point or the 0.2% proof stress of the low yield point area A is about 100 N / mm 2. and steel 240 N / mm 2 about things, yield point or 0.2% proof stress of the high yield point region B consists of a combination of a steel ones from of about 785N / mm 2 of about 1300 N / mm 2. When the yield ratio is 1:13, the yield point or the 0.2% yield strength of the low yield point area A is about 100 N / mm 2 and the yield point or the 0.2% yield strength of the high yield point area B is 1300 N. / Mm 2 of a combination of steel materials.
The ratio of the low yield point area A to the entire length of the steel bar varies depending on the yield ratio of the high yield point area B based on the low yield point area A and other conditions, but is generally about 1/10 or more and 1/2 or less. It is.

本実施形態のように、低降伏点領域Aと高降伏点領域Bとが併存する棒鋼12が従来例の棒鋼に比べて効果を有することを図6から図11に基づいて説明する。
図6から図8に基づき本実施形態について説明する。
図6は本実施形態の棒鋼12のモデルを示す。棒鋼12は、ヤング率Eが2.06×10N/mmのPC鋼棒である。
図6において、Lは低降伏点領域Aの引張前の長さであり、Lは高降伏点領域Bの引張前の長さである。ここで、低降伏点領域Aと高降伏点領域Bとの断面形状が同じ円形である。
The fact that the steel bar 12 in which the low yield point area A and the high yield point area B coexist as in this embodiment is more effective than the conventional steel bar will be described with reference to FIGS.
This embodiment will be described with reference to FIGS.
FIG. 6 shows a model of the steel bar 12 of the present embodiment. The steel bar 12 is a PC steel bar having a Young's modulus E of 2.06 × 10 5 N / mm 2 .
In FIG. 6, L A is a tensile pre length of the low yield point area A, L B is the tensile previous length of the high yield point region B. Here, the low yield point area A and the high yield point area B have the same circular cross-sectional shape.

図6において、棒鋼12の軸方向に外力Pを付加すると、低降伏点領域Aの伸びた長さはΔLであり、高降伏点領域Bの伸びた長さはΔLであるので、棒鋼12の全体の伸びた長さはΔL(=ΔL+ΔL)となる。そのため、外力Pが付加されると、低降伏点領域Aは、長さLからLA’(=L+ΔL)となり、高降伏点領域Bは長さLからLB’(=L+ΔL)となり、棒鋼12の全体の長さはLからL’(=L+ΔL)となる。
棒鋼12の全体の歪みは、ε(=ΔL/L)であり、低降伏点領域Aの歪みは、ε(=ΔL/L)であり、高降伏点領域Bの歪みは、ε(=ΔL/L)である。
6, adding an external force P A in the axial direction of the steel bar 12, the length extending of the low yield point region A is [Delta] L A, since the extended length of the high yield point region B is [Delta] L B, entire extended length of the steel bar 12 is ΔL (= ΔL a + ΔL B ). Therefore, when an external force P A is added, the low yield point region A, L A from the length L A '(= L A + ΔL A) becomes, L B from the high yield point region B is the length L B' ( = L B + ΔL B ), and the entire length of the steel bar 12 changes from L to L ′ (= L + ΔL).
The overall strain of the steel bar 12 is ε (= ΔL / L), the distortion of the low yield point region A is ε A (= ΔL A / L A), distortion of the high yield point region B, epsilon is a B (= ΔL B / L B ).

図7(A)には、低降伏点領域Aと高降伏点領域Bとが配置された本実施形態の棒鋼12の荷重と伸びとの関係を示すグラフが示され、図7(B)には、低降伏点領域Aにおける荷重と伸びとの関係を示すグラフが示され、図7(C)には、高降伏点領域Bにおける荷重と伸びとの関係を示すグラフが示されている。
図7(B)に示される通り、低降伏点領域Aでは、弾性限界を示す位置ΔLAyにおいて外力PがPAyとなり、外力Pは、弾性限界を示す位置ΔLAyを過ぎると、荷重PAyのままΔLAPの位置まで塑性変形する。塑性変形量はD(=ΔLAP−ΔLAy)である。
FIG. 7A is a graph showing the relationship between the load and the elongation of the steel bar 12 of the present embodiment in which the low yield point area A and the high yield point area B are arranged, and FIG. Is a graph showing the relationship between the load and the elongation in the low yield point region A, and FIG. 7C is a graph showing the relationship between the load and the elongation in the high yield point region B.
As shown in FIG. 7 (B), the low yield point area A, the external force P A is next P Ay at position [Delta] L Ay showing the elastic limit, the external force P A is past the position [Delta] L Ay showing the elastic limit, the load plastic deformation remains to the position of ΔL AP of P Ay. The amount of plastic deformation is D (= ΔL AP −ΔL Ay ).

図7(C)に示される通り、高降伏点領域Bでは、荷重PAyとなる位置まで弾性変形することになり、この際の伸びはΔLByである。
本実施形態は、低降伏点領域Aと高降伏点領域Bとが棒鋼12に並んで配置されるものであるため、荷重と伸びとの関係は、図7(B)と図7(C)とが合わさったものとなる。つまり、図7(A)で示される通り、低降伏点領域と高降伏点領域とを有する棒鋼12では、弾性限界を示す位置ΔLは、図7(B)の弾性限界を示す位置ΔLAyと図7(C)の弾性限界を示す位置ΔLByとを合算した値(ΔL=ΔLAy+ΔLBy)であり、この位置ΔLを超えると、荷重PAyの値のままΔL(=ΔLAP+ΔLBy)の位置まで塑性変形する。
As shown in FIG. 7 (C), in the high yield point region B, elastic deformation is performed to a position where the load P Ay is reached, and the elongation at this time is ΔL By .
In the present embodiment, since the low yield point region A and the high yield point region B are arranged side by side on the steel bar 12, the relationship between the load and the elongation is shown in FIGS. 7B and 7C. And are combined. That is, as shown in FIG. 7A, in the steel bar 12 having the low yield point region and the high yield point region, the position ΔL y indicating the elastic limit is the position ΔL Ay indicating the elastic limit in FIG. 7B. and a 7 position [Delta] L by a value obtained by summing the showing the elastic limit of the (C) (ΔL y = ΔL Ay + ΔL by), above this position [Delta] L y, while the values of the load P Ay ΔL P (= It plastically deforms to the position of ΔL AP + ΔL By .

図8(A)には、低降伏点領域Aと高降伏点領域Bとが配置された本実施形態の棒鋼12の荷重と歪みとの関係を示すグラフが示され、図8(B)には、低降伏点領域Aにおける荷重と歪みとの関係を示すグラフが示され、図8(C)には、高降伏点領域Bにおける荷重と歪みとの関係を示すグラフが示されている。
図8(B)に示される通り、低降伏点領域Aでは、弾性限界時における外力PがPAyとなり、その際の歪みがεAyとなる(εAy=ΔLAy/L)。さらに、伸びがΔLAPの時の歪みはεAPとなる(εAP=ΔLAP/L)。図8(C)に示される通り、高降伏点領域Bでは、弾性限界時における外力がPAyとなる時の歪みがε(εAy時)である(ε(εAy時)=ΔL(ΔLAy時)/L)。
本実施形態は、低降伏点領域Aと高降伏点領域Bとが棒鋼12に並んで配置されるものであるため、荷重と歪みとの関係は、図8(A)となる。
図8(A)で示される通り、低降伏点領域Aの弾性限界時の外力PがPAyとなる歪みがεとなり(ε=ΔL/L)、全体の歪みがεとなる(ε=ΔL/L)。
FIG. 8A is a graph showing the relationship between the load and strain of the steel bar 12 of the present embodiment in which the low yield point area A and the high yield point area B are arranged, and FIG. Shows a graph showing the relationship between load and strain in the low yield point region A, and FIG. 8 (C) shows a graph showing the relationship between load and strain in the high yield point region B.
Figure 8 as shown (B), the in low yield point area A, the external force P A is next P Ay at elastic limit strain at that time is ε Ay (ε Ay = ΔL Ay / L). In addition, growth is distortion at the time of the ΔL AP becomes ε AP (ε AP = ΔL AP / L A). As shown in FIG. 8C, in the high yield point region B, the strain when the external force at the elastic limit is P Ay is ε B (at ε Ay ) (ε B (at ε Ay ) = ΔL). B (at ΔLAy) / L B ).
In the present embodiment, since the low yield point region A and the high yield point region B are arranged side by side on the steel bar 12, the relationship between load and strain is as shown in FIG.
As shown in FIG. 8 (A), the elastic limit when the external force P A distortion is epsilon y becomes to be a P Ay low yield point region A (ε y = ΔL y / L), and distortion of the total epsilon PP = ΔL P / L).

これに対して、特許文献1で示される従来例の棒鋼を、図9から図11に基づき説明する。
図9は従来例の棒鋼のモデルを示す。棒鋼は、ヤング率Eが2.06×10N/mmのPC鋼棒である。
図9において、Lは低降伏点領域Aの引張前の長さであり、これは、棒鋼の引張前の全体の長さである。
図9において、棒鋼の軸方向に外力Pを付加すると、棒鋼の伸びた長さはΔLとなる。外力Pが付加されると、棒鋼は、長さLからLA’(=L+ΔL)となる。
棒鋼の全体の歪みは、ε(=ΔL/L)である。
On the other hand, a conventional steel bar disclosed in Patent Document 1 will be described with reference to FIGS.
FIG. 9 shows a model of a conventional steel bar. The steel bar is a PC steel bar having a Young's modulus E of 2.06 × 10 5 N / mm 2 .
In Figure 9, L A is a tensile pre length of the low yield point area A, which is the overall length of the front tension of the steel bars.
9, adding an external force P A in the axial direction of the steel bars, the length extending of the bars becomes [Delta] L A. When the external force P A is applied, the bar changes from the length L A to L A ′ (= L A + ΔL A ).
The overall strain of the steel bar is ε (= ΔL / L).

図10は図7に対応したグラフである。図10(A)には、従来例の棒鋼の荷重と伸びとの関係を示すグラフが示され、図10(B)には、低降伏点領域における荷重と伸びとの関係を示すグラフが示され、図10(C)には、高降伏点領域における荷重と伸びとの関係を示すグラフが示されている。従来例は、低降伏点領域のみの棒鋼であるため、図10(A)と図10(C)とは同じであり、図10(C)で示される高降伏点領域は、従来例にはないので、図10(C)には実質的なグラフ(線)が示されていない。
図10(A)(B)に示される通り、従来例の棒鋼では、弾性限界を示す位置ΔLを超えると、荷重PAyの値のままΔLの位置まで塑性変形する。塑性変形量はDである。
FIG. 10 is a graph corresponding to FIG. FIG. 10 (A) shows a graph showing the relationship between load and elongation of the conventional steel bar, and FIG. 10 (B) shows a graph showing the relationship between load and elongation in the low yield point region. FIG. 10C shows a graph showing the relationship between the load and the elongation in the high yield point region. Since the conventional example is a steel bar having only a low yield point region, FIGS. 10A and 10C are the same, and the high yield point region shown in FIG. Therefore, a substantial graph (line) is not shown in FIG.
As shown in FIG. 10 (A) (B), in the conventional example of steel bar, it exceeds the position [Delta] L y showing the elastic limit, undergo plastic deformation to a position of the left [Delta] L P values of the load P Ay. The amount of plastic deformation is D.

図11は図8に対応したグラフである。図11(A)には、従来例の棒鋼の荷重と歪みとの関係を示すグラフが示され、図11(B)には、低降伏点領域における荷重と歪みとの関係を示すグラフが示され、図11(C)には、高降伏点領域における荷重と歪みとの関係を示すグラフが示されている。従来例は、低降伏点領域のみの棒鋼であるため、図11(A)と図11(B)とは同じであり、図11(C)に示される高降伏点領域は、従来例にはないので、図11(C)には実質的なグラフ(線)が示されていない。
図11(A)(B)に示される通り、低降伏点領域のみからなる従来例の棒鋼では、弾性限界時の歪みがεAyであり、低降伏点領域の歪みがεAPの時の全体の歪みがε(=εAy)となる。
FIG. 11 is a graph corresponding to FIG. FIG. 11 (A) shows a graph showing the relationship between load and strain of the conventional steel bar, and FIG. 11 (B) shows a graph showing the relationship between load and strain in the low yield point region. FIG. 11 (C) shows a graph showing the relationship between load and strain in the high yield point region. Since the conventional example is a steel bar having only a low yield point region, FIGS. 11A and 11B are the same, and the high yield point region shown in FIG. 11 (C), no substantial graph (line) is shown.
As shown in FIGS. 11 (A) and 11 (B), in the conventional steel bar consisting only of the low yield point region, the strain at the elastic limit is ε Ay , and the strain in the low yield point region is ε AP. Is ε P (= ε Ay ).

図8(A)に示される通り、低降伏点領域Aと高降伏点領域Bとの双方を有する本実施形態の棒鋼12では、図10(A)で示される低降伏点領域のみからなる従来例の棒鋼と同様に、低降伏点領域の弾性限界時から荷重PAyが一体の値に維持されて塑性変形が続くことになる。さらに、図8(A)で示される通り、本実施形態の棒鋼12では、図11(A)で示される従来例の棒鋼と同様に、低降伏点領域の弾性限界時から歪みが一定となる。
即ち、本実施形態の棒鋼12は従来例の棒鋼と同じ変形量ΔLで、外力Pも荷重PAyであるので、エネルギー消費量は同じである。これは、鋼棒の一部に高降伏点領域があっても、全てが低降伏点領域の場合に比べて大きな効果の差がないことを示す。
図4で示される棒鋼12を製造するには、低降伏点領域Aからなる鋼材と、高降伏点領域Bからなる鋼材とを、圧接、摩擦圧接、溶接、接着剤、ねじ止め等によって接合する。
As shown in FIG. 8A, in the steel bar 12 of the present embodiment having both the low yield point area A and the high yield point area B, the conventional steel bar including only the low yield point area shown in FIG. Similar to the bar of the example, the load PAy is maintained at an integrated value from the time of the elastic limit in the low yield point region, and plastic deformation continues. Further, as shown in FIG. 8 (A), in the steel bar 12 of the present embodiment, the strain is constant from the elastic limit in the low yield point region, similarly to the conventional steel bar shown in FIG. 11 (A). .
That is, bars 12 of this embodiment is the same deformation amount ΔL and steel bars of the prior art, since the external force P A is the load P Ay, energy consumption is the same. This indicates that even if a high yield point region is present in a part of the steel bar, there is no significant difference in the effect as compared with the case where all of the steel bars have a low yield point region.
In order to manufacture the steel bar 12 shown in FIG. 4, the steel material having the low yield point region A and the steel material having the high yield point region B are joined by pressure welding, friction welding, welding, adhesive, screwing, or the like. .

本実施形態の鋼材を組み立てるには、まず、鋼管11内に棒鋼12を挿入し、各棒鋼雄ねじ部121にそれぞれ丸ナット13を螺合する。この際、丸ナット13の座面と鋼管11の端面とが密着するまで丸ナット13をきつくねじ込む。このように鋼管11と棒鋼12とが一体化されることにより、曲げ引張鋼材体10が組み立てられる。
次に、曲げ引張鋼材体10をRC、PC架構、ブレース架構などの各種の構造躯体の取付プレート9,9に配置し、曲げ引張鋼材体10の一端側からワッシャー41を介して第2袋ナット40を鋼管雄ねじ部111に螺合する。この際、第2袋ナット40の底面40Aと丸ナット13とを密着させる。
このように一方の取付プレート9に曲げ引張鋼材体10が固定されたら、曲げ引張鋼材体10の他端側からワッシャー21を介して取付ナット20を鋼管雄ねじ部111に螺合し、所定のトルクで締め付ける。このように取付プレート9,9に曲げ引張鋼材体10の両端側が固定されたら、第1袋ナット30を鋼管雄ねじ部111に螺合する。この際、第1袋ナット30の底面30Aと丸ナット13とを密着させる。以上により、本実施形態の鋼材が図1のように組み立てられる。
In order to assemble the steel material of the present embodiment, first, the steel bar 12 is inserted into the steel pipe 11, and the round nuts 13 are screwed into the respective male bar threads 121. At this time, the round nut 13 is screwed tightly until the seat surface of the round nut 13 and the end face of the steel pipe 11 are in close contact. By thus integrating the steel pipe 11 and the steel bar 12, the bending-tensile steel body 10 is assembled.
Next, the bending-tensile steel member 10 is disposed on the mounting plates 9 of various structural bodies such as RC, PC frame, and brace frame, and the second cap nut is connected to the one end side of the bending-tensile steel member 10 via the washer 41. 40 is screwed into the steel pipe male screw part 111. At this time, the bottom surface 40A of the second cap nut 40 and the round nut 13 are brought into close contact with each other.
When the bending-tensile steel member 10 is fixed to one of the mounting plates 9 in this way, the mounting nut 20 is screwed into the steel pipe male thread portion 111 from the other end side of the bending-tensile steel member 10 via the washer 21 to a predetermined torque. Tighten with. After the both ends of the bending-tensile steel member 10 are fixed to the mounting plates 9, 9, the first cap nut 30 is screwed into the male pipe thread portion 111. At this time, the bottom surface 30A of the first cap nut 30 and the round nut 13 are brought into close contact with each other. As described above, the steel material of the present embodiment is assembled as shown in FIG.

本実施形態において、地震時や暴風時などの非常時の荷重エネルギーが取付プレート9に作用することによって曲げ引張鋼材体10自体に引張力が作用すると、取付プレート9に固定された鋼管11と、鋼管11に丸ナット13で固定された棒鋼12とが伸びる。
一方、鋼管11に圧縮力が作用した際には、鋼管11が弾性範囲内で圧縮変形するとともに、鋼管11に作用した圧縮力が第1袋ナット30および丸ナット13を介して棒鋼12に伝達される。すなわち、第1袋ナット30が棒鋼12を軸方向外側から軸方向内側に向かって押さえるため、棒鋼12は鋼管11の端部から飛び出したり撓むことなく、鋼管11内に拘束された状態で圧縮される。
In the present embodiment, when a load force in an emergency such as an earthquake or a storm acts on the mounting plate 9 and a tensile force acts on the bending-tensile steel body 10 itself, a steel pipe 11 fixed to the mounting plate 9 and A steel bar 12 fixed to a steel pipe 11 with a round nut 13 extends.
On the other hand, when a compressive force is applied to the steel pipe 11, the steel pipe 11 is compressed and deformed within the elastic range, and the compressive force applied to the steel pipe 11 is transmitted to the steel bar 12 via the first cap nut 30 and the round nut 13. Is done. In other words, since the first cap nut 30 presses the steel bar 12 from the outside in the axial direction to the inside in the axial direction, the steel bar 12 is compressed without restraining inside the steel pipe 11 without protruding or bending from the end of the steel pipe 11. Is done.

以上の本実施形態によれば、主に、次のような効果が得られる。
(1)曲げ引張鋼材体10が高強度の鋼管11と低降伏点領域Aを一部に含む棒鋼12によるハイブリッド鋼材であって、鋼管11における歪みと棒鋼12における歪みとが合成される結果、降伏点とエネルギー消費量とを両方大きく確保できる。その上、棒鋼12に高降伏点領域Bが含まれるとともに、鋼管11が高強度とされているため、棒鋼12の強度が鋼管11の強度よりも高強度とされた場合と比較して、圧縮力作用時に高強度鋼材が降伏せずに棒鋼12を拘束する弾性範囲を大きく確保できる。
以上の理由から降伏点とエネルギー消費量との両方をより大きく確保できるので、地震時や暴風時などの非常時の荷重エネルギーを十分に吸収できる。
According to the above embodiment, the following effects are mainly obtained.
(1) The bending-tensile steel body 10 is a hybrid steel material composed of a high-strength steel pipe 11 and a steel bar 12 partially including the low-yield-point region A, and the strain in the steel pipe 11 and the strain in the steel bar 12 are combined. Both the yield point and the energy consumption can be kept large. In addition, since the steel bar 12 includes the high yield point region B and the steel pipe 11 has high strength, the steel bar 11 has a higher compression strength than the steel bar 11 having a higher strength than the steel pipe 11. A large elastic range in which the high-strength steel material restrains the steel bar 12 without yielding when a force is applied can be secured.
For the above reasons, both the yield point and the energy consumption can be made larger, so that the load energy in an emergency such as an earthquake or a storm can be sufficiently absorbed.

(2)鋼管11および棒鋼12が予め組み立てられて曲げ引張鋼材体10が形成されるため現場での施工点数が増えず、施工品質の安定性の確保が容易となる。
(3)棒鋼12の低降伏点領域Aが一部のみ形成されているため、棒鋼12の全てを低降伏点領域とする特許文献1の従来例の場合に比べて、製造コストを低いものにできる。
(2) Since the steel pipe 11 and the steel bar 12 are pre-assembled to form the bending-tensile steel body 10, the number of construction points on site does not increase, and the stability of construction quality is easily ensured.
(3) Since only a part of the low yield point region A of the steel bar 12 is formed, the manufacturing cost is lower than that of the conventional example of Patent Document 1 in which all of the steel bar 12 has the low yield point region. it can.

(4)高降伏点領域Bを棒鋼12の両端部にそれぞれ設け、低降伏点領域Aを棒鋼12の中央部に設けるとともに、低降伏点領域Aの間に配置しているので、固定部材である第1袋ナット30および第2袋ナット40を用いて鋼管11に一体にすることを容易に行うことができる。 (4) Since the high yield point area B is provided at both ends of the steel bar 12 and the low yield point area A is provided at the center of the steel bar 12 and is located between the low yield point areas A, a fixing member is used. The use of a certain first cap nut 30 and a second cap nut 40 can easily be integrated with the steel pipe 11.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
前記実施形態では、高降伏点領域Bの降伏点を鋼管11の降伏点と同じとしたが、本発明では、高降伏点領域Bと鋼管11との降伏点が相違するものでもよい。
さらに、低降伏点領域Aと高降伏点領域Bとの断面積(太さ)を相違させるものでもよい。例えば、低降伏点領域Aは、その断面形状を変更することが容易であるため、太さを変えることで、エネルギー消費能力をコントロールすることができる。
また、本発明では、棒鋼12を製造するために、全体が低降伏点領域Aと同じ降伏点の鉄筋用棒状体を用意し、この鉄筋用棒状体の一端部側を熱処理して高降伏点領域Bを形成するものでもよい。
It should be noted that the present invention is not limited to the above-described embodiment, but includes modifications and improvements as long as the object of the present invention can be achieved.
In the above embodiment, the yield point of the high yield point area B is the same as the yield point of the steel pipe 11, but in the present invention, the yield point of the high yield point area B and the yield point of the steel pipe 11 may be different.
Further, the sectional area (thickness) of the low yield point area A and the high yield point area B may be different. For example, it is easy to change the cross-sectional shape of the low yield point region A, so that the energy consumption ability can be controlled by changing the thickness.
Further, in the present invention, in order to manufacture the steel bar 12, a bar for a reinforcing bar having the same yield point as the entire low yield point region A is prepared, and one end side of the bar for the bar is heat-treated to obtain a high yield point. The region B may be formed.

前記実施形態において、鋼管11の端部と棒鋼12の端部とは丸ナット13により固定されていたが、鋼管の端部と棒鋼の端部との固定手段はこのようなねじによる固定手段には限定されない。
前記実施形態では曲げ引張鋼材体10の一端側において、曲げ引張鋼材体10を取付プレート9に取付固定するための取付ナット20と、棒鋼12の飛び出しを押さえる第1袋ナット30とが別々に設けられていたが、鋼管11の端縁から取付プレート9への取付位置までの長さが一定の場合には、これら取付ナット20と第1袋ナット30とが一体に形成されていてもよい。
前記実施形態では第2袋ナット40が取付プレート9への固定手段と、鋼管11から飛び出さないように棒鋼12を押さえる手段とを兼ねていたが、これに限らず、第2袋ナット40の代わりに、取付ナット20および第1袋ナット30が設けられていても良い。
なお、構造躯体に曲げ引張鋼材を固定する手段は、前記実施形態の取付ナット20や第2袋ナット40に限らず、適宜な手段であってよい。
In the above-described embodiment, the end of the steel pipe 11 and the end of the steel bar 12 are fixed by the round nut 13, but the means for fixing the end of the steel pipe and the end of the steel bar is not limited to such fixing means using screws. Is not limited.
In the above-described embodiment, a mounting nut 20 for mounting and fixing the bending-tensile steel material 10 to the mounting plate 9 and a first cap nut 30 for holding the steel bar 12 out are provided separately at one end of the bending-tensile steel material 10. However, when the length from the edge of the steel pipe 11 to the mounting position on the mounting plate 9 is constant, the mounting nut 20 and the first cap nut 30 may be integrally formed.
In the above-described embodiment, the second cap nut 40 serves both as a means for fixing to the mounting plate 9 and a means for pressing the steel bar 12 so as not to protrude from the steel pipe 11. However, the present invention is not limited to this. Instead, the mounting nut 20 and the first cap nut 30 may be provided.
The means for fixing the bending tensile steel material to the structural body is not limited to the mounting nut 20 and the second cap nut 40 of the above embodiment, but may be any appropriate means.

そして、本発明の高強度鋼管および低降伏点棒鋼を備える鋼材は、RCにおける主筋やPC架構、ブレース架構などに適用できる。ここで、ブレース架構は従来エネルギー吸収機構を備えていなかったため、ブレース部材の断面に余裕を持たせる設計が必要であったが、本発明の鋼材をブレース部材として使用することによってエネルギー吸収能力を備えたブレース架構が実現するので、ブレース断面が過大とならない。   And the steel material provided with the high-strength steel pipe and the low-yield-point steel bar of the present invention can be applied to a main reinforcing bar in RC, a PC frame, a brace frame, and the like. Here, since the brace frame had not conventionally been provided with an energy absorbing mechanism, it was necessary to design the cross section of the brace member to have an allowance. Since a braced frame is realized, the cross section of the brace is not excessively large.

本発明は、プレストレストコンクリート部材を用いた建築構造物、その他の建築構造物に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a building structure using a prestressed concrete member and other building structures.

9…取付プレート(構造躯体)、10…曲げ引張鋼材体、11…鋼管、12…棒鋼、13…丸ナット(棒鋼固定ナット)、20…取付ナット、30…第1袋ナット(固定部材)、40…第2袋ナット(固定部材)、111…雄ねじ部(鋼管雄ねじ部)、121…雄ねじ部(棒鋼雄ねじ部)、A…低降伏点領域、B…高降伏点領域 9: mounting plate (structural body), 10: bending tensile steel body, 11: steel pipe, 12: steel bar, 13: round nut (bar steel fixing nut), 20: mounting nut, 30: first bag nut (fixing member), 40: second cap nut (fixing member), 111: male thread (male steel thread), 121: male thread (bar steel male thread), A: low yield point area, B: high yield point area

Claims (1)

軸方向両端側の部分がそれぞれ構造躯体に固定される鋼管と、
前記鋼管に挿入され、両端部それぞれ前記鋼管の端部に固定される棒鋼と、
前記鋼管の両端部の雄ねじ部にそれぞれ螺合されるナットで構成され、前記棒鋼を前記鋼管に固定するとともに、前記鋼管が圧縮された際に前記棒鋼を軸方向外側から軸方向内側に向かって押さえる固定部材と、を備え、
前記棒鋼は、前記鋼管の降伏点または0.2%耐力よりも低い低降伏点領域と前記鋼管の降伏点または0.2%耐力と同じあるいは前記鋼管の降伏点または0.2%耐力より高い高降伏点領域とが軸方向に並んで配置され、
前記低降伏点領域は、前記棒鋼の両端部にそれぞれ設けられ、前記高降伏点領域は、前記棒鋼の中央部に設けられる
ことを特徴とする鋼材。
A steel pipe whose axial end portions are respectively fixed to the structural skeleton,
Is inserted into the steel pipe, a steel bar having both ends are fixed to the end of each of the steel pipe,
The steel pipe is constituted by nuts respectively screwed into the external thread portions at both ends of the steel pipe, and the steel bar is fixed to the steel pipe, and when the steel pipe is compressed, the steel bar is moved from the outside in the axial direction to the inside in the axial direction. And a fixing member for holding down,
The steel bar has a low yield point region lower than the yield point or 0.2% proof stress of the steel pipe and the same as the yield point or 0.2% proof stress of the steel pipe or higher than the yield point or 0.2% proof stress of the steel pipe. The high yield point region is arranged side by side in the axial direction,
The steel material, wherein the low yield point region is provided at each of both ends of the steel bar, and the high yield point region is provided at a central portion of the steel bar.
JP2018109291A 2018-06-07 2018-06-07 Steel Active JP6633137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018109291A JP6633137B2 (en) 2018-06-07 2018-06-07 Steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018109291A JP6633137B2 (en) 2018-06-07 2018-06-07 Steel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013166665A Division JP6352602B2 (en) 2013-08-09 2013-08-09 Steel

Publications (2)

Publication Number Publication Date
JP2018168694A JP2018168694A (en) 2018-11-01
JP6633137B2 true JP6633137B2 (en) 2020-01-22

Family

ID=64019307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018109291A Active JP6633137B2 (en) 2018-06-07 2018-06-07 Steel

Country Status (1)

Country Link
JP (1) JP6633137B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195416A (en) * 1996-01-17 1997-07-29 Nippon Steel Corp Earthquake resistant member structure
JP2000314412A (en) * 1999-04-30 2000-11-14 High Frequency Heattreat Co Ltd Screw member and manufacture of the same
JP4805619B2 (en) * 2005-07-06 2011-11-02 高周波熱錬株式会社 Damper system
US7584578B2 (en) * 2006-10-21 2009-09-08 Hilmy Said I Seismic energy damping apparatus
JP5017724B2 (en) * 2007-11-16 2012-09-05 高周波熱錬株式会社 Steel

Also Published As

Publication number Publication date
JP2018168694A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US7185462B1 (en) Double core brace
JP4669321B2 (en) Buckling-restrained axial force bearing member
KR100869568B1 (en) Opening steel-concrete composite steel girder and method for manufacturing the same
JP2006312859A (en) Aseismatic reinforcing structure and aseismatic reinforcing method for existing building
CN101718123A (en) E-shaped fastener constrained type assembled buckling-restrained energy-consumed brace
JP4419088B2 (en) Seismic reinforcement structure for buildings
JP4546617B2 (en) Pre-cast concrete beam and column PC pressure bonding structure
JP5017724B2 (en) Steel
CN201184001Y (en) Flexion-proof energy consumption supporting structure
CN105735504A (en) Rectangular bamboo joint buckling restrained brace
JP4819605B2 (en) Precast prestressed concrete beams using tendons with different strength at the end and center
JP4424638B2 (en) Anchor bolt seismic construction method
JP6633137B2 (en) Steel
JP5037031B2 (en) Wall panel fixing structure and building
JP5290097B2 (en) Brace type damping damper
JP6352602B2 (en) Steel
JP5498122B2 (en) Construction method of buckling restraint brace mounting structure
JP5654060B2 (en) Damper brace and damping structure
JP6535152B2 (en) Reinforcement method of structure
JP3941028B2 (en) Damping damper
JP2009197499A (en) Method for manufacturing precast rc column and rc column
JP3392027B2 (en) Braces
JP2652201B2 (en) Tension compression member
JP2977994B2 (en) Reinforcement structure of concrete filled steel pipe member
JP5498103B2 (en) Buckling restraint brace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191211

R150 Certificate of patent or registration of utility model

Ref document number: 6633137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250