JP6632352B2 - Method for producing semiconductive polyamide resin molded article - Google Patents

Method for producing semiconductive polyamide resin molded article Download PDF

Info

Publication number
JP6632352B2
JP6632352B2 JP2015235658A JP2015235658A JP6632352B2 JP 6632352 B2 JP6632352 B2 JP 6632352B2 JP 2015235658 A JP2015235658 A JP 2015235658A JP 2015235658 A JP2015235658 A JP 2015235658A JP 6632352 B2 JP6632352 B2 JP 6632352B2
Authority
JP
Japan
Prior art keywords
polyamide resin
semiconductive
resin molded
semiconductive polyamide
fine carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015235658A
Other languages
Japanese (ja)
Other versions
JP2017101157A (en
Inventor
重利 武智
重利 武智
卓士 横田
卓士 横田
中村 直樹
直樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okura Kogyo KK
Original Assignee
Okura Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okura Kogyo KK filed Critical Okura Kogyo KK
Priority to JP2015235658A priority Critical patent/JP6632352B2/en
Publication of JP2017101157A publication Critical patent/JP2017101157A/en
Application granted granted Critical
Publication of JP6632352B2 publication Critical patent/JP6632352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

電子写真方式を用いた画像成形装置に用いる電子写真用シームレスベルト等に好適に使用することができるポリアミド樹脂と電子伝導性材料とを含む半導電性ポリアミド樹脂成形体の製造方法に関する。   The present invention relates to a method for producing a semiconductive polyamide resin molded product containing a polyamide resin and an electroconductive material, which can be suitably used for an electrophotographic seamless belt used in an electrophotographic image forming apparatus.

複写機やレーザービームプリンターなどの電子写真方式を用いた画像形成装置に用いられる転写搬送部材、中間転写体、電子写真感光体および定着部材などには、ドラム形状やローラー形状のもの以外に、ベルト形状の電子写真用シームレスベルトが用いられることがある。   In addition to drum-shaped and roller-shaped belts, transfer and transfer members, intermediate transfer members, electrophotographic photosensitive members, and fixing members used in image forming apparatuses using an electrophotographic method such as a copying machine and a laser beam printer are used. An electrophotographic seamless belt having a shape may be used.

電子写真用シームレスベルトとしては、熱可塑性樹脂を主成分とするシームレスベルトが知られ、熱可塑性樹脂を主成分とするシームレスベルトは、汎用の成形機を用いて溶融押出法により低コスト、短工程で製造できるという利点がある。   As an electrophotographic seamless belt, a seamless belt containing a thermoplastic resin as a main component is known. A seamless belt containing a thermoplastic resin as a main component is low-cost, short process by a melt extrusion method using a general-purpose molding machine. There is an advantage that it can be manufactured with.

熱可塑性樹脂の中でも、ポリアミド樹脂は、破断伸びが大きく、弾性率が高いという優れた特性を有しているため、ポリアミド樹脂を電子写真用シームレスベルトに用いるという提案は既になされている(特許文献1、特許文献2及び特許文献3参照)。   Among thermoplastic resins, a polyamide resin has excellent properties such as a large elongation at break and a high elastic modulus. Therefore, it has been already proposed to use a polyamide resin for a seamless belt for electrophotography (Patent Documents) 1, Patent Documents 2 and 3).

一方、熱可塑性樹脂に半導電性を付与するには、カーボンブラック(CB)や金属酸化物等の電子伝導性材料を熱可塑性樹脂中に配合することが一般的である。これらの電子伝導性材料は、使用環境の変化に対して電気抵抗の変化が小さいという特徴を有するが、電子伝導性材料の接触によって導電性を発現しているため樹脂中への分散が重要である。このため、これらの電子伝導性材料は、僅かな濃度変化や分散状態により電気抵抗が大きくバラつき、ある添加量で急激に導電率が低下する(パーコレーション現象)為、体積抵抗率を10〜1013Ω・cmの半導電性領域に制御することが困難である。 On the other hand, in order to impart semiconductivity to the thermoplastic resin, it is general to mix an electron conductive material such as carbon black (CB) or a metal oxide in the thermoplastic resin. These electronically conductive materials have the characteristic that the change in electrical resistance is small with respect to changes in the use environment.However, since they exhibit conductivity by contact with the electronically conductive material, dispersion in the resin is important. is there. For this reason, these electronic conductive materials have a large variation in electric resistance due to a slight change in concentration or dispersion state, and the electric conductivity sharply decreases at a certain amount of addition (percolation phenomenon), so that the volume resistivity is 10 6 to 10. It is difficult to control to a semiconductive region of 13 Ω · cm.

近年、電子伝導性材料として、CBに替えてカーボンナノチューブ(CNT)等の微細炭素繊維を用いることが提案されている(特許文献4及び特許文献5参照)。この微細炭素繊維は、アスペクト比(長さ/外径)が大きいことから、CBなどと比べ、比較的少量の配合で樹脂に導電性を付与することができ、かつその添加量と導電率との関係性が直線的に変化することから、導電率の制御が容易になるという特徴を有する。   In recent years, it has been proposed to use fine carbon fibers such as carbon nanotubes (CNT) instead of CB as an electron conductive material (see Patent Documents 4 and 5). Since the fine carbon fiber has a large aspect ratio (length / outer diameter), it can impart conductivity to the resin with a relatively small amount of compounding, as compared with CB or the like. Has a characteristic that the conductivity can be easily controlled because the relationship changes linearly.

ところで、電子写真用シームレスベルトは、画像形成装置内で通電を繰り返し行うに従い電気抵抗が上昇すること(通電上昇)が知られている。この電子写真用シームレスベルトの通電上昇は、電子写真方式の画像形成において、初期の抵抗値に対しトナー像の転写を行うのに最適な転写電流値を設定していても、抵抗上昇後にトナー像の転写が最適に行われず、画像不良を引き起こす恐れがある。このトナー像の転写不良を抑制するには、一般的に、電子写真用シームレスベルトの通電上昇を1桁以内とする必要があるとされている。このため、電子写真方式の画像形成装置に用いられる電子写真用シームレスベルトには、電気抵抗の均一性(電気抵抗のバラつき、環境変動による電気抵抗の変化が小さいこと)に加え、電気抵抗の通電上昇が小さいこと(通電上昇が1桁以内)が求められる。   By the way, it is known that the electric resistance of an electrophotographic seamless belt increases as the energization is repeated in an image forming apparatus (increase in energization). The energization of the electrophotographic seamless belt increases even if an optimal transfer current value for transferring the toner image to the initial resistance value is set in the electrophotographic image formation, even after the toner image has been increased in resistance. Transfer is not performed optimally, which may cause image defects. In order to suppress the transfer failure of the toner image, it is generally considered that the energization rise of the electrophotographic seamless belt must be within one digit. For this reason, the seamless belt for electrophotography used in the electrophotographic image forming apparatus has not only uniformity of electric resistance (variation of electric resistance and small change of electric resistance due to environmental fluctuation) but also energization of electric resistance. It is required that the rise is small (the rise in energization is within one digit).

特開2000−347513JP 2000-347513 特開2001−142315JP-A-2001-142315 特開2001−350347JP-A-2001-350347 特開2004−339316JP-A-2004-339316 特開2012−168529JP 2012-168529A

しかしながら、ポリアミド樹脂に微細炭素繊維を配合した半導電性ポリアミド樹脂組成物をフィルム状又はチューブ状に溶融押出し成形する場合、微細炭素繊維の配合量の調製により、所望する半導電性領域の電気抵抗に制御することは比較的容易にできるが、微細炭素繊維の配合量と電気抵抗の通電上昇との間には直接的な関係性が見られず、電気抵抗の通電上昇を抑えることが困難であるという問題がある。   However, when a semiconductive polyamide resin composition obtained by blending fine carbon fibers with a polyamide resin is melt-extruded and formed into a film or a tube, the electric resistance of a desired semiconductive region is adjusted by adjusting the blending amount of the fine carbon fibers. Can be controlled relatively easily, but there is no direct relationship between the amount of fine carbon fiber blended and the increase in electrical resistance, and it is difficult to suppress the increase in electrical resistance. There is a problem that there is.

本発明はこのような問題に鑑みなされたもので、ポリアミド樹脂と微細炭素繊維とを含む半導電性ポリアミド樹脂組成物をフィルム状又はチューブ状に溶融押出し成形する場合において、半導電性領域の電気抵抗の均一性が高く、電気抵抗の通電上昇が小さく、電子写真用シームレスベルトとして好適に用いることができる半導電性ポリアミド樹脂成形体の製造方法を提供することを目的する。   The present invention has been made in view of such problems, and when a semiconductive polyamide resin composition containing a polyamide resin and fine carbon fibers is melt-extruded into a film or a tube, the electric conductivity of the semiconductive region is reduced. An object of the present invention is to provide a method for producing a semiconductive polyamide resin molded article having high uniformity of resistance, small rise in electric resistance, and suitable for use as a seamless belt for electrophotography.

本発明によれば、
(1) ポリアミド樹脂と微細炭素繊維とを含む半導電性ポリアミド樹脂組成物を、ダイスより溶融押出しした後、冷却手段により冷却固化する半導電性ポリアミド樹脂成形体の製造方法において、
1.ポリアミド樹脂と微細炭素繊維とを含む半導電性ポリアミド樹脂組成物をダイスより溶融押出する工程と、
2.前記工程にて溶融押出した樹脂を冷却手段により冷却固化して測定用の半導電性ポリアミド樹脂成形体を得る工程と、
3.前記測定用の半導電性ポリアミド樹脂成形体を1分以上放置したのち電気抵抗測定機を用いて体積抵抗率を測定する工程と、
4.前記工程にて測定した体積抵抗率及び前記ポリアミド樹脂の融点を式(1)に代入して押出樹脂温度を算出する工程と、
5.前記押出樹脂温度にて半導電性ポリアミド樹脂組成物を溶融押出する工程とを
この順で含むことを特徴とする半導電性ポリアミド樹脂成形体の製造方法。
0<(Tc−Tm)/(logρv)≦0.500・・・式(1)
[式(1)中、Tm(℃)はポリアミド樹脂の融点であり、Tc(℃)はダイスからの押出樹脂温度であり、ρv(Ω・cm)は半導電性ポリアミド樹脂成形体の体積抵抗率の測定値である。]
(2)前記半導電性ポリアミド樹脂組成物における前記ポリアミド樹脂と前記微細炭素繊維との配合割合は、前記ポリアミド樹脂を80〜99重量%に対して、前記微細炭素繊維を20〜1重量%含むことを特徴とする(1)記載の半導電性ポリアミド樹脂成型体の製造方法が提供され、
(3)前記ポリアミド樹脂は、ナイロン11、ナイロン12、ナイロン6,10、ナイロン6,12から選ばれる少なくとも一種であることを特徴とする(1)又は(2)記載の半導電性ポリアミド樹脂成形体の製造方法が提供され、
(4)前記微細炭素繊維は、単層カーボンナノチューブ、多層カーボンナノチューブ、釣鐘状構造連結集合型体から選ばれる少なくとも一種を含有することを特徴とする(1)乃至(3)のいずれか記載の半導電性ポリアミド樹脂成形体の製造方法が提供され、
(5)前記成形体は電子写真用シームレスベルトであることを特徴とする(1)乃至(4)のいずれか記載の半導電性ポリアミド樹脂成形体の製造方法が提供される。
According to the present invention,
(1) A method for producing a semiconductive polyamide resin molded body, which comprises: extruding a semiconductive polyamide resin composition containing a polyamide resin and fine carbon fibers from a die and then cooling and solidifying the composition by cooling means.
1. A step of melt-extruding a semiconductive polyamide resin composition containing a polyamide resin and fine carbon fibers from a die,
2. A step of obtaining a semiconductive polyamide resin molded body for measurement by cooling and solidifying the resin melt-extruded in the above step by cooling means,
3. After leaving the semiconductive polyamide resin molded body for measurement for 1 minute or more, measuring the volume resistivity using an electric resistance measuring device,
4. Calculating the extruded resin temperature by substituting the volume resistivity measured in the above step and the melting point of the polyamide resin into equation (1);
5. Melt extruding the semiconductive polyamide resin composition at the extrusion resin temperature.
A method for producing a semiconductive polyamide resin molded product, characterized by including the components in this order .
0 <(Tc−Tm) / (logρv) 2 ≦ 0.500 Expression (1)
[In the formula (1), Tm (° C.) is the melting point of the polyamide resin, Tc (° C.) is the temperature of the resin extruded from the die, and ρv (Ω · cm) is the volume resistance of the semiconductive polyamide resin molded body. It is a measure of the rate. ]
(2) The compounding ratio of the polyamide resin and the fine carbon fibers in the semiconductive polyamide resin composition includes 20 to 1% by weight of the fine carbon fibers with respect to 80 to 99% by weight of the polyamide resin. A method for producing a semiconductive polyamide resin molded product according to (1) is provided,
(3) The semiconductive polyamide resin molding according to (1) or (2), wherein the polyamide resin is at least one selected from nylon 11, nylon 12, nylon 6,10, and nylon 6,12. A method of manufacturing the body is provided,
(4) The fine carbon fiber according to any one of (1) to (3), wherein the fine carbon fiber contains at least one selected from a single-walled carbon nanotube, a multi-walled carbon nanotube, and a bell-shaped structure-linked aggregate. A method for producing a semiconductive polyamide resin molded article is provided,
(5) The method for producing a semiconductive polyamide resin molded article according to any one of (1) to (4), wherein the molded article is a seamless belt for electrophotography.

本発明の製造方法によれば、冷却固化された半導電性ポリアミド樹脂成形体の体積抵抗率を測定し、体積抵抗率の測定値に基づき式(1)を満たすよう押出樹脂温度を調整することにより、電気抵抗の均一性が高く、電気抵抗の通電上昇が小さい半導電性ポリアミド樹脂成形体を得ることができる。また、本発明の製造方法によって得られた半導電性ポリアミド樹脂成形体は、上記の特性を備える為、電子写真用シームレスベルトとして好適に使用することができる。   According to the production method of the present invention, the volume resistivity of the cooled and solidified semiconductive polyamide resin molded article is measured, and the extruded resin temperature is adjusted so as to satisfy the expression (1) based on the measured value of the volume resistivity. As a result, a semiconductive polyamide resin molded article having a high uniformity of electric resistance and a small increase in current flow of electric resistance can be obtained. Further, the semiconductive polyamide resin molded article obtained by the production method of the present invention has the above-mentioned characteristics, and thus can be suitably used as a seamless belt for electrophotography.

本発明の半導電性ポリアミド樹脂形成体の製造方法の実施形態を示す概略図である。It is the schematic which shows embodiment of the manufacturing method of the semiconductive polyamide resin formed body of this invention. 本発明の半導電性ポリアミド樹脂成形体の製造方法の別の実施形態を示す概略断面図である。It is an outline sectional view showing another embodiment of the manufacturing method of the semiconductive polyamide resin fabrication object of the present invention. 本発明の半導電性ポリアミド樹脂成形体の製造方法における、ポリアミド樹脂の融点Tm(℃)と押出樹脂温度Tc(℃)との差を半導電性ポリアミド樹脂成形体の常用対数表記の体積抵抗率ρv(Ω・cm)の2乗で除した値((Tc−Tm)/(logρv))と電気抵抗の通電上昇との関係を示すグラフである。In the method for producing a semiconductive polyamide resin molded article of the present invention, the difference between the melting point Tm (° C.) of the polyamide resin and the extruded resin temperature Tc (° C.) is expressed by a common logarithmic volume resistivity of the semiconductive polyamide resin molded article. 6 is a graph showing a relationship between a value ((Tc−Tm) / (logρv) 2 ) divided by a square of ρv (Ω · cm) and an increase in energization of electric resistance.

以下、本発明の半導電性ポリアミド樹脂成形体の製造方法について説明する。本発明は、ポリアミド樹脂と微細炭素繊維とを含む半導電性ポリアミド樹脂組成物を、ダイスより溶融押出しした後、冷却手段により冷却固化する半導電性ポリアミド樹脂成形体の製造方法において、冷却固化された半導電性ポリアミド樹脂成形体の体積抵抗率を測定し、体積抵抗率の測定値に基づき下記式(1)を満たすよう押出樹脂温度を調整する半導電性ポリアミド樹脂成形体の製造方法である。
0<(Tc−Tm)/(logρv)≦0.500・・・式(1)
[式(1)中、Tm(℃)はポリアミド樹脂の融点であり、Tc(℃)はダイスからの押出樹脂温度であり、ρv(Ω・cm)は半導電性ポリアミド樹脂成形体の体積抵抗率の測定値である。]
Hereinafter, the method for producing the semiconductive polyamide resin molded article of the present invention will be described. The present invention provides a method for producing a semiconductive polyamide resin molded body, which is obtained by melt-extruding a semiconductive polyamide resin composition containing a polyamide resin and fine carbon fibers from a die, and then cooling and solidifying the same by cooling means. A method for producing a semiconductive polyamide resin molded article, comprising measuring the volume resistivity of the semiconductive polyamide resin molded article and adjusting the extruded resin temperature so as to satisfy the following formula (1) based on the measured value of the volume resistivity. .
0 <(Tc−Tm) / (logρv) 2 ≦ 0.500 Expression (1)
[In the formula (1), Tm (° C.) is the melting point of the polyamide resin, Tc (° C.) is the temperature of the resin extruded from the die, and ρv (Ω · cm) is the volume resistance of the semiconductive polyamide resin molded body. It is a measure of the rate. ]

本発明の製造方法によれば、半導電性ポリアミド樹脂組成物を溶融押出しした後、冷却固化した半導電性ポリアミド樹脂成形体の体積抵抗率を測定し、体積抵抗率の測定値に基づき式(1)を満たすよう押出樹脂温度を調整して半導電性ポリアミド樹脂成形体を製造することにより、電気抵抗の均一性が高く、電気抵抗の通電上昇が小さい、具体的には、電気抵抗の通電上昇が1桁以内である半導電性ポリアミド樹脂成形体を得ることができる。   According to the production method of the present invention, after the semiconductive polyamide resin composition is melt-extruded, the volume resistivity of the cooled and solidified semiconductive polyamide resin molded body is measured. By adjusting the temperature of the extruded resin so as to satisfy 1) to produce a semiconductive polyamide resin molded article, the uniformity of electric resistance is high, and the increase in electric resistance is small. It is possible to obtain a semiconductive polyamide resin molded article whose rise is within one digit.

ここで、本発明の製造方法の特徴である式(1)を説明するにあたり、表1の実施例1と比較例1とを比較する。実施例1と比較例1とは、ともにポリアミド樹脂に同量の微細炭素繊維を配合した半導電性ポリアミド樹脂組成物を、フラットダイを備えた押出成形装置を用いてフィルム状の半導電性ポリアミド樹脂成形体としたものであるが、製造条件において押出樹脂温度が異なっている。結果、実施例1と比較例1とは、ポリアミド樹脂に同量の微細炭素繊維を配合しているにもかかわらず、押出樹脂温度が比較例1に比べて低い実施例1の方が、電気抵抗の通電上昇が小さい。また、ポリアミド樹脂に同量の微細炭素繊維を配合した他の実施例と比較例とをそれぞれ比較しても同様の傾向を示す。この傾向から解るように、半導電性ポリアミド樹脂成形体の電気抵抗の通電上昇は、溶融押出し時の押出樹脂温度と密接に関係している。   Here, in describing the formula (1), which is a feature of the manufacturing method of the present invention, Example 1 in Table 1 and Comparative Example 1 are compared. In Example 1 and Comparative Example 1, a semiconductive polyamide resin composition in which the same amount of fine carbon fiber was mixed with a polyamide resin was used to form a film-shaped semiconductive polyamide using an extrusion molding apparatus equipped with a flat die. Although it was a resin molded body, the extruded resin temperature was different under the manufacturing conditions. As a result, in Example 1 and Comparative Example 1, even though the same amount of fine carbon fiber was blended in the polyamide resin, Example 1 in which the extruded resin temperature was lower than that in Comparative Example 1 was lower in electric power. The resistance rise is small. Further, the same tendency is shown when comparing the other examples in which the same amount of fine carbon fibers are blended with the polyamide resin with the comparative examples. As can be seen from this tendency, the increase in the electrical resistance of the semiconductive polyamide resin molded article is closely related to the temperature of the extruded resin during melt extrusion.

そして、本発明者らは、この傾向を定量化する為、各種パラメータと電気抵抗の通電上昇との関係性を検討した結果、ポリアミド樹脂の融点Tm(℃)と押出樹脂温度Tc(℃)との差を半導電性ポリアミド樹脂成形体の常用対数表記の体積抵抗率ρv(Ω・cm)の2乗で除算した値(以下、除算値と称する)が特定値以下であれば、電気抵抗の通電上昇が小さい半導電性ポリアミド樹脂成形体が得られることを見出し、本発明の製造方法に至った。   In order to quantify this tendency, the present inventors examined the relationship between the various parameters and the increase in the electric resistance, and found that the melting point Tm (° C.) of the polyamide resin and the extruded resin temperature Tc (° C.) Is divided by the square of the volume resistivity ρv (Ω · cm) of the semi-conducting polyamide resin molded product in a common logarithm (hereinafter referred to as a division value), if the value is not more than a specific value, It has been found that a semiconductive polyamide resin molded article with a small rise in current can be obtained, and the production method of the present invention has been achieved.

つまり、本発明の製造方法は、ある製造条件において溶融押出しされた半導電性ポリアミド樹脂組成物を冷却手段により冷却固化した後、冷却固化された半導電性ポリアミド樹脂成形体の体積抵抗率を測定し、ポリアミド樹脂の融点と押出樹脂温度と体積抵抗率の測定値とに基づき除算値を算出し、除算値が式(1)の範囲を超える場合、除算値が式(1)の範囲内となるよう押出樹脂温度を調整することにより、電気抵抗の通電上昇が小さい半導電性ポリアミド樹脂成形体を得ることができるものである。なお、押出樹脂温度の調整は、除算値が式(1)の範囲内である場合、押出樹脂温度を変更しなくても良い。   In other words, the production method of the present invention measures the volume resistivity of the semi-conductive polyamide resin molded body that has been cooled and solidified after cooling and solidifying the melt-extruded semi-conductive polyamide resin composition under certain production conditions by cooling means. Then, a division value is calculated based on the melting point of the polyamide resin, the extruded resin temperature, and the measured value of the volume resistivity, and when the division value exceeds the range of the formula (1), the division value falls within the range of the formula (1). By adjusting the temperature of the extruded resin so as to make it possible to obtain a semiconductive polyamide resin molded article having a small increase in the electric resistance of the electric resistance. In addition, the adjustment of the extruded resin temperature does not require changing the extruded resin temperature when the division value is within the range of the expression (1).

[原料調製]
本発明の製造方法における原料調製は、特に制限されるものではないが、例えば、ポリアミド樹脂、微細炭素繊維、及び必要に応じて用いられる添加剤を配合してドライブレンドする方法、ポリアミド樹脂を予め溶融混練し、ここに所定量の微細炭素繊維、及び必要に応じて用いられる添加剤を配合する方法、ポリアミド樹脂に所定量の微細炭素繊維、及び必要に応じて用いられる添加剤を配合して溶融混練する方法、ポリアミド樹脂に所定量の微細炭素繊維を配合し、次いで、溶融混練してマスターバッチを作製し、押出成型時にマスターバッチとポリアミド樹脂とを溶融混練する方法等が挙げられる。ポリアミド樹脂と微細炭素繊維とを均一に混合する観点から、ポリアミド樹脂に所定量の微細炭素繊維を配合して溶融混練する工程を有することが好ましい。
[Raw material preparation]
Although the raw material preparation in the production method of the present invention is not particularly limited, for example, a polyamide resin, a fine carbon fiber, and a method of dry blending by blending additives used as necessary, Melt kneading, a method of blending a predetermined amount of fine carbon fibers, and additives used as needed here, blending a predetermined amount of fine carbon fibers, and additives used as needed in the polyamide resin A method of melt-kneading, a method of blending a predetermined amount of fine carbon fibers with a polyamide resin, then melt-kneading to prepare a masterbatch, and melt-kneading the masterbatch and the polyamide resin at the time of extrusion molding may be used. From the viewpoint of uniformly mixing the polyamide resin and the fine carbon fibers, it is preferable to have a step of blending a predetermined amount of the fine carbon fibers with the polyamide resin and melt-kneading.

溶融混練するための装置としては、バッチ式混練機、ニーダー、コニーダー、バンバリーミキサー、ロールミル、単軸もしくは二軸押出機等、従来公知の種々の混練機が挙げられる。これらの中でも、単軸押出機や二軸押出機は、混練能力や生産性に優れることから好ましい。   Examples of the apparatus for melt-kneading include various kneading apparatuses known in the art, such as a batch-type kneader, a kneader, a co-kneader, a Banbury mixer, a roll mill, a single-screw or twin-screw extruder. Among these, a single-screw extruder and a twin-screw extruder are preferable because of their excellent kneading capacity and productivity.

溶融混練時の温度は、使用するポリアミド樹脂の種類や溶融粘度等により適宜選択でき、通常、185℃〜300℃の範囲であり、ポリアミド樹脂の劣化防止、及び成形性の観点から、好ましくは190〜280℃である。   The temperature at the time of melt-kneading can be appropriately selected depending on the type and melt viscosity of the polyamide resin to be used, and is usually in a range of 185 ° C. to 300 ° C., and is preferably 190 from the viewpoint of prevention of polyamide resin deterioration and moldability. 280 ° C.

[押出成形]
本発明の製造方法は、ダイスを備えた押出機と、該ダイスから押し出される溶融樹脂を冷却固化するための冷却手段と、が配設された押出成形装置を用いる。ダイスとしては、従来公知の種々のダイスを用いることができ、特に制限されるものではないが、例えば、フラットダイ或いは環状ダイスが挙げられる。また、冷却手段としては、フラットダイを備えた押出成形装置の場合、冷却ロール等が挙げられ、環状ダイスを備えた押出成形装置の場合、インサイド或いはアウトサイドマンドレルやエアリング等が挙げられる。
[Extrusion molding]
The production method of the present invention uses an extrusion molding apparatus provided with an extruder provided with a die and cooling means for cooling and solidifying a molten resin extruded from the die. As the dice, various types of dice known in the art can be used, and there is no particular limitation. For example, a flat die or an annular die may be used. Further, as the cooling means, a cooling roll or the like is used in the case of an extrusion molding apparatus having a flat die, and an inside or outside mandrel or an air ring is used in the case of an extrusion molding apparatus having an annular die.

また、本発明の製造方法においては、冷却固化された半導電性ポリアミド樹脂成形体の体積抵抗率を測定するために、押出成型工程或いは押出成形工程の後工程などのいずれかの工程において、電気抵抗測定手段を設ける必要がある。電気抵抗測定手段は、溶融状態の半導電性ポリアミド樹脂組成物が冷却固化した後であればいずれの工程に設けても良く、特に制限されるものではないが、例えば、押出成形工程に設ける場合、押出成形装置における冷却手段の後に配設すれば良く、押出成形工程の後工程に設ける場合、押出成形装置を用いて半導電性ポリアミド樹脂成形体を製造した後、次工程に電気抵抗測定手段を配設すれば良い。なお、冷却固化直後の半導電性ポリアミド樹脂成形体は、体積抵抗率が安定していない可能性がある為、体積抵抗率の測定は、冷却固化後、1分以上経過した地点で行うことが好ましい。   Further, in the production method of the present invention, in order to measure the volume resistivity of the cooled and solidified semiconductive polyamide resin molded article, in one of the steps such as an extrusion molding step or a post-step of the extrusion molding step, an electric It is necessary to provide resistance measuring means. The electric resistance measuring means may be provided in any step as long as the semiconductive polyamide resin composition in a molten state is cooled and solidified, and is not particularly limited. If it is provided after the cooling means in the extrusion molding apparatus, and is provided in the subsequent step of the extrusion molding step, after manufacturing the semiconductive polyamide resin molded body using the extrusion molding apparatus, the electric resistance measuring means is provided in the next step. Should be arranged. In addition, since the volume resistivity of the semiconductive polyamide resin molded body immediately after cooling and solidification may not be stable, the measurement of the volume resistivity may be performed at a point where one minute or more has elapsed after cooling and solidification. preferable.

電気抵抗測定手段としては、従来公知の電気抵抗測定機を用いることができ、特に制限されるものではないが、例えば、電気抵抗測定手段を押出成形工程に設ける場合、特開平9−201870号公報、特開平9−201871号公報に記載の電気抵抗測定機が挙げられる。押出成形装置を用いて半導電性ポリアミド樹脂成形体を製造した後、次工程に電気抵抗測定手段を設ける場合、JIS K 6911に記載の電気抵抗測定機が挙げられる。   As the electric resistance measuring means, a conventionally known electric resistance measuring instrument can be used and is not particularly limited. For example, when the electric resistance measuring means is provided in the extrusion molding step, Japanese Patent Application Laid-Open No. 9-201870 discloses And an electric resistance measuring device described in JP-A-9-201871. When an electric resistance measuring means is provided in the next step after manufacturing a semiconductive polyamide resin molded body using an extrusion molding apparatus, an electric resistance measuring machine described in JIS K 6911 may be mentioned.

押出樹脂温度とは、ダイス先端における溶融状態の半導電性ポリアミド樹脂組成物の温度である。ダイス先端における押出樹脂温度は、熱電対や放射温度計を用いて測定することができる。   The extruded resin temperature is the temperature of the semiconductive polyamide resin composition in the molten state at the die tip. The extruded resin temperature at the die tip can be measured using a thermocouple or a radiation thermometer.

押出樹脂温度は、ポリアミド樹脂の種類により好適な範囲が異なる為、特に制限されるものではないが、例えば、ナイロン12の場合、融点は176〜180℃であり、その押出樹脂温度は、185〜280℃であり、好ましくは190〜270℃であり、さらに好ましくは195〜260℃である。ナイロン6、12共重合体の場合、融点は、共重合割合(ナイロン12の共重合割合は、通常20〜60重量%)にもよるが、130〜205℃であり、それに対応して押出樹脂温度を設定する。   The extruded resin temperature is not particularly limited because the suitable range varies depending on the type of polyamide resin. For example, in the case of nylon 12, the melting point is 176 to 180 ° C., and the extruded resin temperature is 185 to 180 ° C. The temperature is 280 ° C, preferably 190 to 270 ° C, and more preferably 195 to 260 ° C. In the case of nylon 6,12 copolymer, the melting point is 130 to 205 ° C., depending on the copolymerization ratio (the copolymerization ratio of nylon 12 is usually 20 to 60% by weight). Set the temperature.

ダイスと冷却手段とのエアーギャップ(フラットダイ先端又は環状ダイス先端から冷却手段までの距離)は、特に制限されるものではないが、通常、10〜500mmである。エアーギャップは、20〜450mmであることが好ましく、30〜400mmであることがより好ましい。   The air gap between the die and the cooling means (the distance from the tip of the flat die or the annular die to the cooling means) is not particularly limited, but is usually 10 to 500 mm. The air gap is preferably from 20 to 450 mm, more preferably from 30 to 400 mm.

押出速度(或いは引取速度)は、特に制限されるものではないが、通常、0.5m/min以上である。押出速度は、1.0m/min以上であることが好ましく、1.5m/min以上であるとこがより好ましい。   The extrusion speed (or take-up speed) is not particularly limited, but is usually 0.5 m / min or more. The extrusion speed is preferably at least 1.0 m / min, more preferably at least 1.5 m / min.

冷却手段における冷却温度は、溶融状態の半導電性ポリアミド樹脂組成物を冷却固化することが可能な温度に制御されていればよく、特に制限されるものではないが、例えば、冷却手段が冷却ロール又はマンドレルである場合、1〜50℃であることが好ましく、5〜40℃であることがより好ましく、10〜30℃であることがより好ましい。このような温度制御は冷却ロール又はマンドレル内部に温調した液体、気体を通すことで達成できる。冷却手段がエアーである場合、吹き出すエアー温度を上記範囲に設定し、溶融状態の半導電性ポリアミド樹脂組成物が冷却固化するようエアー量を適宜設定すれば良い。   The cooling temperature in the cooling means is not particularly limited as long as it is controlled to a temperature at which the semiconductive polyamide resin composition in a molten state can be cooled and solidified, and is not particularly limited. Alternatively, in the case of a mandrel, the temperature is preferably 1 to 50 ° C, more preferably 5 to 40 ° C, and even more preferably 10 to 30 ° C. Such temperature control can be achieved by passing a temperature-controlled liquid or gas inside the cooling roll or mandrel. When the cooling means is air, the temperature of the blown air may be set in the above range, and the amount of air may be appropriately set so that the semiconductive polyamide resin composition in a molten state is cooled and solidified.

次に、本発明の半導電性ポリアミド樹脂成形体の製造方法の実施形態の一例について、図1及び図2に基づき説明する。   Next, an example of an embodiment of a method for producing a semiconductive polyamide resin molded article of the present invention will be described with reference to FIGS.

[第1の実施形態]
図1は、本発明の半導電性ポリアミド樹脂成形体の製造方法の実施形態に係る押出成形装置1を示す概略図である。本装置には、ホッパー2を備えた押出機3と、押出機3の下方に押出機3に連通してフラットダイ4が配設され、該フラットダイ4の下方には、該フラットダイから押し出される溶融樹脂を冷却固化するための冷却ロール5とタッチロール6とが配設され、該冷却ロール5と巻取りロールフィルム8との間に電気抵抗測定機7が配設されている。
[First Embodiment]
FIG. 1 is a schematic diagram showing an extrusion molding apparatus 1 according to an embodiment of the method for producing a semiconductive polyamide resin molded article of the present invention. In the present apparatus, an extruder 3 having a hopper 2 and a flat die 4 disposed below the extruder 3 and communicating with the extruder 3 are disposed below the flat die 4 and extruded from the flat die. A cooling roll 5 and a touch roll 6 for cooling and solidifying the molten resin to be cooled are provided, and an electric resistance measuring device 7 is provided between the cooling roll 5 and the winding roll film 8.

本装置を用いた本発明の製造方法の一例を説明する。まず、ポリアミド樹脂に微細炭素繊維を配合した半導電性ポリアミド樹脂組成物を用意し、これをホッパー2に投入し、押出機3に供給する。押出機3にて溶融され加圧された半導電性ポリアミド樹脂組成物はフラットダイ4へと供給され、フラットダイ4の先端から所定の樹脂温度でフィルム状に押出される。押出された直後の半導電性ポリアミド樹脂組成物は溶融状態であるが、冷却ロール5にて冷却固化されてフィルム状の半導電性ポリアミド樹脂成形体となる。ここで、半導電性ポリアミド樹脂成形体の体積抵抗率が冷却ロール5と巻取りロールフィルム8との間に配設された電気抵抗測定機7により測定される。本発明の製造方法では、測定される体積抵抗率及び押出樹脂温度が常に式(1)を満たすように押出機3やフラットダイ4の温度設定を制御する。本発明においては、このような手順により押出樹脂温度と体積抵抗率との関係が所定の条件を満たすよう制御することにより、電気抵抗の通電上昇が小さい半導電性ポリアミド樹脂成型体を得ることができる。なお、本発明においては、測定される体積抵抗率及び押出樹脂温度が式(1)を満たす範囲で、押出速度や冷却ロール5の冷却温度等、その他の製造条件を変更しても良い。半導電性ポリアミド樹脂成形体の形状は、特に限定されず、成形体の形状としては、フィルム、シートなどが挙げられる。   An example of the manufacturing method of the present invention using the present apparatus will be described. First, a semiconductive polyamide resin composition in which fine carbon fibers are blended with a polyamide resin is prepared, and the composition is put into the hopper 2 and supplied to the extruder 3. The semiconductive polyamide resin composition melted and pressed by the extruder 3 is supplied to the flat die 4 and extruded from the tip of the flat die 4 into a film at a predetermined resin temperature. The semiconductive polyamide resin composition immediately after being extruded is in a molten state, but is cooled and solidified by the cooling roll 5 to be a film-shaped semiconductive polyamide resin molded product. Here, the volume resistivity of the semiconductive polyamide resin molded body is measured by an electric resistance measuring device 7 disposed between the cooling roll 5 and the winding roll film 8. In the manufacturing method of the present invention, the temperature settings of the extruder 3 and the flat die 4 are controlled so that the measured volume resistivity and extruded resin temperature always satisfy the formula (1). In the present invention, by controlling the relationship between the extruded resin temperature and the volume resistivity so as to satisfy a predetermined condition by such a procedure, it is possible to obtain a semiconductive polyamide resin molded article having a small increase in electric resistance. it can. In the present invention, other manufacturing conditions such as the extrusion speed and the cooling temperature of the cooling roll 5 may be changed as long as the measured volume resistivity and the extruded resin temperature satisfy the formula (1). The shape of the semiconductive polyamide resin molded body is not particularly limited, and examples of the shape of the molded body include a film and a sheet.

図1ではタッチロールを用いて半導電性ポリアミド樹脂組成物を冷却ロール5に押し当てたが、タッチロール6は必須ではなく、必要に応じて使用すればよい。また、静電ピニング方法を用いて半導電性ポリアミド樹脂組成物を冷却ロール5に沿わせても良い。   In FIG. 1, the semiconductive polyamide resin composition is pressed against the cooling roll 5 using a touch roll, but the touch roll 6 is not essential, and may be used as needed. Further, the semiconductive polyamide resin composition may be made to follow the cooling roll 5 by using an electrostatic pinning method.

[第2の実施形態]
図2は、本発明の半導電性ポリアミド樹脂成形体の製造方法の別の実施形態に係る押出成型装置11を示す概略図である。本装置には、ホッパー12を備えた押出機13と、押出機13の下方に押出機13に連通して環状ダイス14が配設され、該環状ダイス14の下方には、該環状ダイス14から押し出される溶融樹脂をその外周に担持させて冷却固化するマンドレル15が配設され、該マンドレル15の下方に電気抵抗測定機16が配設されている。
[Second embodiment]
FIG. 2 is a schematic view showing an extrusion molding apparatus 11 according to another embodiment of the method for producing a semiconductive polyamide resin molded article of the present invention. In the present apparatus, an extruder 13 having a hopper 12 and an annular die 14 disposed below the extruder 13 and communicating with the extruder 13 are provided. A mandrel 15 for supporting the molten resin to be extruded on its outer periphery and solidifying by cooling is provided, and an electric resistance measuring device 16 is provided below the mandrel 15.

本装置を用いた本発明の製造方法を説明する。まず、ポリアミド樹脂に微細炭素繊維を配合した半導電性ポリアミド樹脂組成物を用意し、これをホッパー12に投入し、押出機13に供給する。押出機13にて溶融され加圧された半導電性ポリアミド樹脂組成物は環状ダイス14へと供給され、環状ダイス14からチューブ状に押出される。押出された直後の半導電性ポリアミド樹脂組成物は溶融状態であるが、マンドレル15の外周に担持させて冷却固化することによりチューブ状の半導電性ポリアミド樹脂成形体となる。ここで、半導電性ポリアミド樹脂成形体の体積抵抗率がマンドレル15の下方に配設された電気抵抗測定機16により測定される。本発明の製造方法では、測定される体積抵抗率及び押出樹脂温度が常に式(1)を満たすように押出機13や環状ダイス14の温度設定を制御する。本発明においては、このような手順により押出樹脂温度と体積抵抗率との関係が所定の条件をみたすよう制御することにより、電気抵抗の通電上昇が小さい半導電性ポリアミド樹脂成型体を得ることができる。なお、本発明においては、測定される体積抵抗率及び押出樹脂温度が式(1)を満たす範囲で、押出速度やマンドレル15の冷却温度等、その他の製造条件を変更しても良い。チューブ状の成形体は、所望の幅に切断することでベルト状の成形体とすることができる。   The manufacturing method of the present invention using the present apparatus will be described. First, a semiconductive polyamide resin composition in which fine carbon fibers are mixed with a polyamide resin is prepared, and the composition is put into a hopper 12 and supplied to an extruder 13. The semiconductive polyamide resin composition melted and pressed by the extruder 13 is supplied to the annular die 14 and extruded from the annular die 14 into a tube shape. Although the semiconductive polyamide resin composition immediately after extruding is in a molten state, it is supported on the outer periphery of the mandrel 15 and cooled and solidified to form a tube-shaped semiconductive polyamide resin molded body. Here, the volume resistivity of the semiconductive polyamide resin molded body is measured by an electric resistance measuring device 16 disposed below the mandrel 15. In the manufacturing method of the present invention, the temperature settings of the extruder 13 and the annular die 14 are controlled so that the measured volume resistivity and extruded resin temperature always satisfy the formula (1). In the present invention, by controlling the relationship between the extruded resin temperature and the volume resistivity so as to satisfy a predetermined condition by such a procedure, it is possible to obtain a semiconductive polyamide resin molded article having a small increase in the electric current flowing therethrough. it can. In the present invention, other manufacturing conditions such as the extrusion speed and the cooling temperature of the mandrel 15 may be changed as long as the measured volume resistivity and the extruded resin temperature satisfy the formula (1). The tubular molded body can be formed into a belt-shaped molded body by cutting it into a desired width.

また、ポリアミド樹脂と微炭素繊維とを含む半導電性ポリアミド樹脂成形体の製造においては、製造現場における季節変動の影響や昼夜の気温変化等の要因により、連続生産中に体積抵抗率が変動することがある。このため、本発明の半導電性ポリアミド樹脂成形体の製造においては、体積抵抗率を連続的に測定して、体積抵抗率が一定の基準範囲を超えないよう傾向管理し、得られた傾向管理の結果に基づき押出機やダイスの温度設定を調整するようフィードバックすることで、電気抵抗の通電上昇が小さい半導電性ポリアミド樹脂成形体を安定的に連続生産することができる。   Further, in the production of a semiconductive polyamide resin molded article containing a polyamide resin and fine carbon fibers, the volume resistivity fluctuates during continuous production due to factors such as seasonal variations at the production site and changes in temperature during the day and night. Sometimes. For this reason, in the production of the semiconductive polyamide resin molded article of the present invention, the volume resistivity is continuously measured, the tendency is controlled so that the volume resistivity does not exceed a certain reference range, and the obtained tendency management is performed. By feeding back to adjust the temperature settings of the extruder and the die based on the results of the above, a semiconductive polyamide resin molded article with a small increase in the electric resistance can be continuously produced stably.

なお、これらの説明は単層に関するものであったが、2層の場合は更に別の押出機を配設し、2層用のダイスにそれぞれの押出機から溶融状態の組成物を供給し、ダイスから2層同時に押し出すことで得ることができる。また、3層以上の時は、層数に応じ相応に押出機を準備すれば良い。   In addition, these descriptions were related to a single layer, but in the case of two layers, another extruder was provided, and a molten composition was supplied from each extruder to a two-layer die, It can be obtained by extruding two layers simultaneously from a die. In the case of three or more layers, an extruder may be prepared according to the number of layers.

[半導電性ポリアミド樹脂組成物]
次に、本発明に用いられる半導電性ポリアミド樹脂組成物について説明する。本発明の半導電性ポリアミド樹脂組成物は、ポリアミド樹脂と微細炭素繊維とを含み、半導電性領域の体積抵抗率を示すものである。なお、ここでいう半導電性領域とは、温度23℃、相対湿度50%RHにおける体積抵抗率が10〜1013Ω・cmである。
[Semiconductive polyamide resin composition]
Next, the semiconductive polyamide resin composition used in the present invention will be described. The semiconductive polyamide resin composition of the present invention contains a polyamide resin and fine carbon fibers, and exhibits a volume resistivity of a semiconductive region. Here, the semiconductive region has a volume resistivity of 10 6 to 10 13 Ω · cm at a temperature of 23 ° C. and a relative humidity of 50% RH.

本発明に用いるポリアミド樹脂とは、ジアミンとジカルボン酸との重縮合、ω−アミノカルボン酸の自己縮合、ラクタム類の開館重合などによって得られ、十分な分子量を有する熱可塑性樹脂である。   The polyamide resin used in the present invention is a thermoplastic resin obtained by polycondensation of a diamine and a dicarboxylic acid, self-condensation of an ω-aminocarboxylic acid, open polymerization of lactams, and the like, and having a sufficient molecular weight.

ポリアミド樹脂としては、例えば、ナイロン6、ナイロン4、ナイロン6,6、ナイロン11、ナイロン12、ナイロン6,10、ナイロン6,12、ナイロン6/6,6、ナイロン6/6,6/12、ナイロン6,MXD(MXDはm−キシリレンジアミン成分を表す)、ナイロン6,6T(Tはテレフタル酸成分を表す)、ナイロン6,6I(Iはイソフタル酸成分を表す)などが挙げられる。   As the polyamide resin, for example, nylon 6, nylon 4, nylon 6,6, nylon 11, nylon 12, nylon 6,10, nylon 6,12, nylon 6 / 6,6, nylon 6 / 6,6 / 12, Nylon 6, MXD (MXD represents an m-xylylenediamine component), nylon 6,6T (T represents a terephthalic acid component), nylon 6,6I (I represents an isophthalic acid component), and the like.

また、ジアミンとジカルボン酸の重縮合により得られるポリアミド樹脂の場合、ジアミンの具体例としては、テトラメチレンジアミン、ヘキサメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、1,9−ノナンジアミン、2−メチル−1,8−オクタンジアミン、イソホロンジアミン、1,3−ビスアミノメチルシクロヘキサン、m−キシリレンジアミン、p−キシリレンジアミンなどの脂肪族および芳香族ジアミンが挙げられる。ジカルボン酸の具体例としては、アジピン酸、スリン酸、アゼライン酸、セバシン酸、ドデカン二酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ダイマー酸、シュウ酸、シュウ酸エステル等の脂肪族、脂環族、芳香族ジカルボン酸が挙げられる。   In the case of a polyamide resin obtained by polycondensation of a diamine and a dicarboxylic acid, specific examples of the diamine include tetramethylene diamine, hexamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 1,9-nonanediamine, and 2-methyl And aliphatic and aromatic diamines such as -1,8-octanediamine, isophoronediamine, 1,3-bisaminomethylcyclohexane, m-xylylenediamine, and p-xylylenediamine. Specific examples of dicarboxylic acids include adipic acid, succinic acid, azelaic acid, sebacic acid, dodecane diacid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, Examples thereof include aliphatic, alicyclic, and aromatic dicarboxylic acids such as dimer acid, oxalic acid, and oxalic acid ester.

これらの中でも、吸水率が低いポリアミド樹脂が好ましく、吸水率が低いポリアミド樹脂は、微細炭素繊維の分散性に優れるとともに、湿潤環境における電気抵抗の安定性に優れる。ポリアミド樹脂の吸水率は、1.5%以下であることが好ましく、1.0%以下であることがより好ましい。吸水率が1.5%以下のポリアミド樹脂としては、ナイロン11、ナイロン12、ナイロン6,10、ナイロン6,12などが挙げられ、吸水率が1.0%以下のポリアミド樹脂としては、ナイロン11、ナイロン12が挙げられる。なお、これらのポリアミド樹脂は単独、或いは2種以上を組み合わせて用いても良い。   Among these, a polyamide resin having a low water absorption is preferable, and a polyamide resin having a low water absorption has excellent dispersibility of fine carbon fibers and excellent stability of electric resistance in a wet environment. The water absorption of the polyamide resin is preferably 1.5% or less, more preferably 1.0% or less. Examples of the polyamide resin having a water absorption of 1.5% or less include nylon 11, nylon 12, nylon 6,10, and nylon 6,12. The polyamide resin having a water absorption of 1.0% or less is nylon 11 And nylon 12. In addition, you may use these polyamide resins individually or in combination of 2 or more types.

本発明に用いる微細炭素繊維とは、繊維の芯部に中空空間を有するものであり、繊維径が小さく、アスペクト比の高い繊維状のものが好ましく、カーボンナノチューブと通称されるものも含まれる。具体的には、平均繊維径が1nm〜200nm、平均繊維長が0.1μm〜100μm、アスペクト比が10〜10000の範囲内であることが好ましい。   The fine carbon fiber used in the present invention has a hollow space in the core of the fiber, and is preferably a fibrous fiber having a small fiber diameter and a high aspect ratio, and includes those commonly called carbon nanotubes. Specifically, it is preferable that the average fiber diameter is 1 nm to 200 nm, the average fiber length is 0.1 μm to 100 μm, and the aspect ratio is 10 to 10,000.

微細炭素繊維としては、単層カーボンナノチューブ、多層カーボンナノチューブ(特開平1−270543、特公平3−64606、特公平3−77288、特開2004−299986)、カップ積層型カーボンナノチューブ(特開2003−73928、特開2004−360099)、プレートレット型カーボンナノファイバー(特開2004−300631)、釣鐘状構造単位集合体(特開2012−46864、特開2011−47081、特開2011−46852)などが挙げられる。これらの中でも、釣鐘状構造単位集合体は、ファンデルワールス力の弱い力で結合している釣鐘状構造単位の集合体の連結部が、混練や押出しにおける剪断力によりその接合部で容易に分離し、微炭素繊維同士が絡まり合った凝集物となりにくく、分散性に優れることから好ましい。   Examples of the fine carbon fibers include single-walled carbon nanotubes, multi-walled carbon nanotubes (Japanese Patent Laid-Open No. 1-270543, Japanese Patent Publication No. 3-64606, Japanese Patent Publication No. 3-77288, Japanese Patent Application Laid-Open No. 2004-299986), and cup-laminated carbon nanotubes (Japanese Patent Application Laid-Open No. 2003-29986). 73928, JP-A-2004-360999), platelet-type carbon nanofibers (JP-A-2004-300631), bell-shaped structural unit aggregates (JP-A-2012-46864, JP-A-2011-47081, JP-A-2011-46852) and the like. No. Among these, the bell-shaped structural unit aggregates are easily separated at the joints of the bell-shaped structural unit aggregates that are connected by a weak force of Van der Waals force due to shearing force in kneading and extrusion. However, it is preferable because it is difficult to form aggregates in which the fine carbon fibers are entangled with each other and has excellent dispersibility.

本発明の半導電性ポリアミド樹脂組成物におけるポリアミド樹脂(A)と微細炭素繊維(B)との配合割合は、特に制限されるものではないが、ポリアミド樹脂(A)80〜99重量%に対して、微細炭素繊維(B)を20〜1重量%含むことが好ましく、ポリアミド樹脂(A)90〜99重量%に対して、微細炭素繊維(B)を10〜1重量%含むことがより好ましい。微細炭素繊維(B)の配合量が20重量%を超えると半導電性ポリアミド樹脂組成物は押出適正に劣る為、得られる成形体の表面が平滑でなくなる恐れがある。また、微細炭素繊維(B)の配合量が1重量%未満では、半導電性領域の体積抵抗率(10〜1013Ω・cm)の性能を付与することが困難となる。 The mixing ratio of the polyamide resin (A) and the fine carbon fibers (B) in the semiconductive polyamide resin composition of the present invention is not particularly limited, but is preferably 80 to 99% by weight of the polyamide resin (A). The fine carbon fiber (B) preferably contains 20 to 1% by weight, and the polyamide resin (A) more preferably contains 10 to 1% by weight with respect to 90 to 99% by weight. . If the compounding amount of the fine carbon fiber (B) exceeds 20% by weight, the semiconductive polyamide resin composition is inferior in extrusion suitability, and the surface of the obtained molded article may not be smooth. If the amount of the fine carbon fiber (B) is less than 1% by weight, it is difficult to impart the performance of the volume resistivity (10 6 to 10 13 Ω · cm) of the semiconductive region.

本発明の半導電性ポリアミド樹脂組成物には、必要に応じてその特性を損なわない範囲で他の樹脂や添加剤を配合してもよい。添加剤としては、イオン伝導性材料、カーボンブラックや金属酸化物等の電子伝導性材料、酸化防止剤、熱安定剤、有機フィラーや無機フィラー、可塑剤、滑剤、相溶化剤、加工助剤、顔料等が挙げられる。これらの添加剤は、それぞれの目的に応じて適量を使用することができる。   The semiconductive polyamide resin composition of the present invention may optionally contain other resins and additives as long as the properties are not impaired. Additives include ion conductive materials, electron conductive materials such as carbon black and metal oxides, antioxidants, heat stabilizers, organic and inorganic fillers, plasticizers, lubricants, compatibilizers, processing aids, Pigments and the like. These additives can be used in an appropriate amount according to each purpose.

以下、本発明の製造方法について、実施例によりさらに詳しく説明する。尚、実施例において行った物性の測定方法は次の通りである。
(1)溶融粘度
長さ10mm×直径1mmのダイを取り付けた島津製作所製高化式フローテスターを用い、測定温度200℃、荷重100kgの条件にて溶融粘度を測定した。尚、その単位を(poise)として表した。
(2)電気抵抗(体積抵抗率)及び電気抵抗の均一性
URSプローブを取り付けたハイレスタUP(MCP−HT450、ダイヤインスツルメンツ社製)を用い、100mm×1000mmのサンプルをTD方向に3点、MD方向に20点の合計60点で体積抵抗率を測定した。上記60点の体積抵抗率の測定値の平均値を求め、それをサンプルの体積抵抗率とした。(測定条件:温度23℃、相対湿度50%RH、荷重2kg、印加電圧500V、10秒)また、体積抵抗率の測定値の最大値と最小値との差(バラつき)を求め、以下の評価基準に基づき評価した。
○:体積抵抗率のバラつきが1.0桁以内
×:体積抵抗率のバラつきが1.0桁を超える
(3)電気抵抗(体積抵抗率)の通電上昇
下記装置を用い、サンプルに500Vの電圧を5時間連続で印加し、所定時間毎に電流値を読み取り、下記式を用いて所定時間毎の体積抵抗率を算出した。次いで、得られた体積抵抗率を常用対数表記に換算し、電圧印加後の常用対数表記の体積抵抗率から電圧印加前の常用対数表記の体積抵抗率で引くことにより算出した。
・電源:MODEL 610C(Trek製)、印可電圧:500V
・電極:P−618(主電極外径50mm、ガード電極内径70mm(両側導電ゴム付)、川口電機製作所製)
・電流計:DIGITAL MULTIMETER(IWATSU製)
ρv=(V[V]/I[A])×(W[cm]×L[cm])/t[cm]
[ここで、V=印加電圧[V]、I=測定電流値[A]、W×L=主電極面積[cm]=19.625cm、t=厚さ[cm]]
Hereinafter, the production method of the present invention will be described in more detail with reference to examples. In addition, the measuring method of the physical property performed in the Example is as follows.
(1) Melt Viscosity The melt viscosity was measured at a measurement temperature of 200 ° C. and a load of 100 kg using a high-grade flow tester manufactured by Shimadzu Corporation with a die having a length of 10 mm and a diameter of 1 mm. In addition, the unit was represented as (poise).
(2) Electric resistance (volume resistivity) and uniformity of electric resistance Using a Hiresta UP (MCP-HT450, manufactured by Diamond Instruments) equipped with a URS probe, a 100 mm × 1000 mm sample was sampled at three points in the TD direction and in the MD direction. And the volume resistivity was measured at a total of 60 points. The average value of the measured values of the volume resistivity at the above 60 points was determined, and this was defined as the volume resistivity of the sample. (Measurement conditions: temperature 23 ° C., relative humidity 50% RH, load 2 kg, applied voltage 500 V, 10 seconds) Further, the difference (fluctuation) between the maximum value and the minimum value of the measured volume resistivity was determined, and the following evaluation was made. The evaluation was based on criteria.
:: Variation in volume resistivity is within 1.0 digit ×: Variation in volume resistivity exceeds 1.0 digit (3) Increase in energization of electric resistance (volume resistivity) A voltage of 500 V is applied to a sample using the following apparatus. Was applied continuously for 5 hours, the current value was read every predetermined time, and the volume resistivity every predetermined time was calculated using the following equation. Next, the obtained volume resistivity was converted into a common logarithmic notation, and calculated by subtracting the common logarithmic volume resistivity before the voltage application from the common logarithmic volume resistivity after the voltage application.
・ Power supply: MODEL 610C (manufactured by Trek), applied voltage: 500V
-Electrode: P-618 (main electrode outer diameter 50 mm, guard electrode inner diameter 70 mm (with conductive rubber on both sides), manufactured by Kawaguchi Electric Works)
・ Ammeter: DIGITAL MULTIMETER (IWATSU)
ρv = (V [V] / I [A]) × (W [cm] × L [cm]) / t [cm]
[Here, V = applied voltage [V], I = measured current value [A], W × L = main electrode area [cm 2 ] = 19.625 cm 2 , t = thickness [cm]]

原料としては、下記のものを用いた。
<ポリアミド樹脂(A)>
・ポリアミド樹脂(A−1)[ナイロン12、Tm:178℃、比重:1.02、溶融粘度:1700poise]
・ポリアミド樹脂(A−2)[ナイロン12、Tm:178℃、比重:1.02、溶融粘度:5400poise]
<微炭素繊維(B)>
・微細炭素繊維(B)[釣鐘状構造単位集合体、平均繊維径:11nm、DBP吸油量:330ml/100g、比表面積:230m/g]
The following were used as raw materials.
<Polyamide resin (A)>
-Polyamide resin (A-1) [Nylon 12, Tm: 178 ° C, specific gravity: 1.02, melt viscosity: 1700 poise]
-Polyamide resin (A-2) [Nylon 12, Tm: 178 ° C, specific gravity: 1.02, melt viscosity: 5,400 poise]
<Fine carbon fiber (B)>
・ Fine carbon fiber (B) [bell-shaped structural unit aggregate, average fiber diameter: 11 nm, DBP oil absorption: 330 ml / 100 g, specific surface area: 230 m 2 / g]

[マスターバッチの調製]
ポリアミド樹脂(A−1)90重量%と微細炭素繊維(B)10重量%とをスクリュー径38φmm二軸混練機押出機を用いて溶融混練し、微細炭素繊維10重量%のマスターバッチを調製した。
[Preparation of master batch]
90% by weight of the polyamide resin (A-1) and 10% by weight of the fine carbon fiber (B) were melt-kneaded using a twin-screw extruder with a screw diameter of 38 mm to prepare a master batch of 10% by weight of fine carbon fiber. .

[比較例1]
表1に示した配合比となるよう、上記マスターバッチとポリアミド樹脂(A−2)とを
ドライブレンドし、得られた混合物をフラットダイ(押出樹脂温度:215℃、リップ幅150mm)を備えた単軸押出機に供給し、溶融状態でフィルム状に押出した(押出速度:1.3m/min)。そして、このフィルム状の溶融樹脂を表面が鏡面仕上げされているチルロール(表面設定温度:30℃、エアーギャップ:100mm)上に吐出し、タッチロールで押しつけながら冷却し、厚さ170μmのフィルム状の半導電性ポリアミド樹脂成形体を得た。得られたフィルム状成形体の体積抵抗率、電気抵抗の均一性、電気抵抗の通電上昇の測定結果を表1に示す。
[Comparative Example 1]
The masterbatch and the polyamide resin (A-2) were dry-blended so that the compounding ratio shown in Table 1 was obtained, and the resulting mixture was provided with a flat die (extruded resin temperature: 215 ° C, lip width 150 mm). It was supplied to a single screw extruder and extruded into a film in a molten state (extrusion speed: 1.3 m / min). The film-like molten resin is discharged onto a chill roll (surface setting temperature: 30 ° C., air gap: 100 mm) having a mirror-finished surface, and cooled while being pressed by a touch roll to form a 170 μm-thick film. A semiconductive polyamide resin molded product was obtained. Table 1 shows the measurement results of the volume resistivity, the uniformity of the electric resistance, and the increase in the electric resistance of the obtained film-shaped molded product.

[実施例1]
比較例1にて得られたフィルム状成形体の体積抵抗率を測定し、体積抵抗率の測定値に基づき式(1)を満たすよう押出樹脂温度を210℃に調整し、厚さ170μmのフィルム状の半導電性ポリアミド樹脂成形体を得た。得られたフィルム状成形体の体積抵抗率、電気抵抗の均一性、電気抵抗の通電上昇の測定結果を表1に示す。
[Example 1]
The volume resistivity of the film-shaped molded article obtained in Comparative Example 1 was measured, and the extruded resin temperature was adjusted to 210 ° C. so as to satisfy the expression (1) based on the measured value of the volume resistivity, and a film having a thickness of 170 μm was obtained. Thus, a semiconductive polyamide resin molded article was obtained. Table 1 shows the measurement results of the volume resistivity, the uniformity of the electric resistance, and the increase in the electric resistance of the obtained film-shaped molded product.

[実施例2乃至5、比較例2乃至5]
比較例1と同様にして、表1に示した配合比及び製造条件で比較例2乃至5のフィルム状成形体を得た。さらに、比較例2乃至5のフィルム状成形体の体積抵抗率を測定し、体積抵抗率の測定値に基づき式(1)を満たすよう押出樹脂温度を調整し、実施例2乃至5のフィルム状成形体を得た。得られた各フィルム状成形体の体積抵抗率、電気抵抗の均一性、電気抵抗の通電上昇の測定結果を表1に示す。
[Examples 2 to 5, Comparative Examples 2 to 5]
In the same manner as in Comparative Example 1, film-shaped molded articles of Comparative Examples 2 to 5 were obtained at the compounding ratios and production conditions shown in Table 1. Further, the volume resistivity of the film-shaped molded articles of Comparative Examples 2 to 5 was measured, and the extruded resin temperature was adjusted so as to satisfy the expression (1) based on the measured value of the volume resistivity. A molded article was obtained. Table 1 shows the measurement results of the volume resistivity, the uniformity of the electric resistance, and the increase in the electric resistance of the electric resistance of each of the obtained film-shaped molded articles.

表1に示すように、式(1)を満たすよう押出樹脂温度を調整した実施例1乃至5の半導電性ポリアミド樹脂成形体は、半導電性領域の電気抵抗の均一性が高く、電気抵抗の通電上昇が小さい、具体的には、電気抵抗の通電上昇が1桁以内となる結果を示した。一方、表1に示すように、比較例1乃至5の半導電性ポリアミド樹脂成形体は、実施例の同量の微細炭素繊維を含む半導電性ポリアミド樹脂成形体に比べ、電気抵抗の通電上昇が1桁を超える結果をした。   As shown in Table 1, the semiconductive polyamide resin molded products of Examples 1 to 5 in which the extruded resin temperature was adjusted to satisfy the expression (1) had high uniformity of electric resistance in the semiconductive region, and The results showed that the rise in current was small, specifically, the rise in current in the electrical resistance was within one digit. On the other hand, as shown in Table 1, the semi-conductive polyamide resin molded articles of Comparative Examples 1 to 5 have a higher electrical resistance than the semi-conductive polyamide resin molded articles containing the same amount of fine carbon fibers of the examples. Had more than an order of magnitude.

[実施例6]
表2に示した配合比となるよう、上記マスターバッチとポリアミド樹脂(A−2)とをドライブレンドし、得られた混合物を環状ダイス(設定温度:205℃、押出径50φmm)を備えた単軸押出機に供給し、溶融状態でチューブ状に押出した(押出速度:3.0m/min)。そして、このチューブ状の溶融樹脂をマンドレル(表面設定温度:25℃、エアーギャップ:400mm)の外周に担持させて冷却固化し、厚さ140μmのチューブ状の半導電性ポリアミド樹脂成形体を得た。得られたチューブ状成形体の電気抵抗の均一性、電気抵抗の通電上昇の測定結果を表2に示す。
[Example 6]
The masterbatch and the polyamide resin (A-2) were dry-blended so that the compounding ratio shown in Table 2 was obtained, and the resulting mixture was singly provided with an annular die (setting temperature: 205 ° C, extrusion diameter: 50 mm). It was supplied to a screw extruder and extruded into a tube in a molten state (extrusion speed: 3.0 m / min). The tube-shaped molten resin is supported on the outer periphery of a mandrel (surface setting temperature: 25 ° C., air gap: 400 mm) and solidified by cooling to obtain a tube-shaped semiconductive polyamide resin molded article having a thickness of 140 μm. . Table 2 shows the measurement results of the uniformity of the electric resistance and the increase in the electric resistance of the electric resistance of the obtained tubular molded body.

[実施例7]
実施例6にて得られたフィルム状成形体の体積抵抗率を測定し、体積抵抗率の測定値に基づき式(1)を満たすよう押出樹脂温度を200℃に調整し、厚さ140μmのフィルム状の半導電性ポリアミド樹脂成形体を得た。得られたフィルム状成形体の体積抵抗率、電気抵抗の均一性、電気抵抗の通電上昇の測定結果を表2に示す。
[Example 7]
The volume resistivity of the film-shaped molded product obtained in Example 6 was measured, and the extruded resin temperature was adjusted to 200 ° C. so as to satisfy the formula (1) based on the measured value of the volume resistivity, and a film having a thickness of 140 μm was obtained. Thus, a semiconductive polyamide resin molded article was obtained. Table 2 shows the measurement results of the volume resistivity, the uniformity of the electric resistance, and the rise in the electric resistance of the electric resistance of the obtained film-shaped molded product.

表2に示すように、式(1)を満たす製造条件で製膜した実施例6の半導電性ポリアミド樹脂成形体は、半導電性領域の電気抵抗の均一性が高く、電気抵抗の通電上昇が小さい、具体的には、電気抵抗の通電上昇が1桁以内となる結果を示した。また、実施例6の製造条件よりも押出樹脂温度が低い製造条件で製膜した実施例7の半導電性ポリアミド樹脂成形体は、実施例6の半導電性ポリアミド樹脂成形体よりも電気抵抗の通電上昇が小さい結果を示した。   As shown in Table 2, the semiconductive polyamide resin molded product of Example 6 formed under the manufacturing conditions satisfying the formula (1) has a high uniformity of electric resistance in the semiconductive region, and a rise in electric resistance. Is small, specifically, the result is that the energization rise of the electric resistance is within one digit. Further, the semiconductive polyamide resin molded article of Example 7 formed under a production condition in which the extruded resin temperature is lower than the production condition of Example 6 has a lower electric resistance than the semiconductive polyamide resin molded article of Example 6. The result showed that the energization rise was small.

以上の如く、本発明によれば、式(1)を満たすよう、押出樹脂温度を調整することにより、電気抵抗の均一性が高く、電気抵抗の通電上昇が小さい電子写真用シームレスベルトとして好適に使用できる半導電性ポリアミド樹脂成形体を得ることができる。   As described above, according to the present invention, by adjusting the extruded resin temperature so as to satisfy the formula (1), the uniformity of the electric resistance is high and the electric resistance of the electric resistance is small. A usable semiconductive polyamide resin molded article can be obtained.

1、11:押出成形装置
2、12:ホッパー
3、13:押出機
4:フラットダイ
5:冷却ロール
6:タッチロール
7、16:電気抵抗測定機
8:巻取りロールフィルム
14:環状ダイス
15:マンドレル
1, 11: Extrusion molding apparatus 2, 12: Hopper 3, 13: Extruder 4: Flat die 5: Cooling roll 6: Touch roll 7, 16: Electric resistance measuring machine 8: Winding roll film 14: Annular die 15: Mandrel

Claims (5)

ポリアミド樹脂と微細炭素繊維とを含む半導電性ポリアミド樹脂組成物を、ダイスより溶融押出しした後、冷却手段により冷却固化する半導電性ポリアミド樹脂成形体の製造方法において、
1.ポリアミド樹脂と微細炭素繊維とを含む半導電性ポリアミド樹脂組成物をダイスより溶融押出する工程と、
2.前記工程にて溶融押出した樹脂を冷却手段により冷却固化して測定用の半導電性ポリアミド樹脂成形体を得る工程と、
3.前記測定用の半導電性ポリアミド樹脂成形体を1分以上放置したのち電気抵抗測定機を用いて体積抵抗率を測定する工程と、
4.前記工程にて測定した体積抵抗率及び前記ポリアミド樹脂の融点を式(1)に代入して押出樹脂温度を算出する工程と、
5.前記押出樹脂温度にて半導電性ポリアミド樹脂組成物を溶融押出する工程とを
この順で含むことを特徴とする半導電性ポリアミド樹脂成形体の製造方法。
0<(Tc−Tm)/(logρv)≦0.500・・・式(1)
[式(1)中、Tm(℃)はポリアミド樹脂の融点であり、Tc(℃)はダイスからの押出樹脂温度であり、ρv(Ω・cm)は半導電性ポリアミド樹脂成形体の体積抵抗率の測定値である。]
A method for producing a semiconductive polyamide resin molded body, which is obtained by extruding a semiconductive polyamide resin composition containing a polyamide resin and fine carbon fibers from a die and then cooling and solidifying the same by cooling means.
1. A step of melt-extruding a semiconductive polyamide resin composition containing a polyamide resin and fine carbon fibers from a die,
2. A step of obtaining a semiconductive polyamide resin molded body for measurement by cooling and solidifying the resin melt-extruded in the above step by cooling means,
3. After leaving the semiconductive polyamide resin molded body for measurement for 1 minute or more, measuring the volume resistivity using an electric resistance measuring device,
4. Calculating the extruded resin temperature by substituting the volume resistivity measured in the above step and the melting point of the polyamide resin into equation (1);
5. Melt extruding the semiconductive polyamide resin composition at the extrusion resin temperature.
A method for producing a semiconductive polyamide resin molded product, characterized by including the components in this order .
0 <(Tc−Tm) / (logρv) 2 ≦ 0.500 Expression (1)
[In the formula (1), Tm (° C.) is the melting point of the polyamide resin, Tc (° C.) is the temperature of the resin extruded from the die, and ρv (Ω · cm) is the volume resistance of the semiconductive polyamide resin molded body. It is a measure of the rate. ]
前記半導電性ポリアミド樹脂組成物における前記ポリアミド樹脂と前記微細炭素繊維との配合割合は、前記ポリアミド樹脂を80〜99重量%に対して、前記微細炭素繊維を20〜1重量%含むことを特徴とする請求項1記載の半導電性ポリアミド樹脂成型体の製造方法。   The compounding ratio of the polyamide resin and the fine carbon fibers in the semiconductive polyamide resin composition includes 20 to 1% by weight of the fine carbon fibers with respect to 80 to 99% by weight of the polyamide resin. The method for producing a semiconductive polyamide resin molded product according to claim 1. 前記ポリアミド樹脂は、ナイロン11、ナイロン12、ナイロン6,10、ナイロン6,12から選ばれる少なくとも一種であることを特徴とする請求項1又は2記載の半導電性ポリアミド樹脂成形体の製造方法。   The method for producing a semiconductive polyamide resin molded product according to claim 1, wherein the polyamide resin is at least one selected from nylon 11, nylon 12, nylon 6,10, and nylon 6,12. 前記微細炭素繊維は、単層カーボンナノチューブ、多層カーボンナノチューブ、釣鐘状構造連結集合型体から選ばれる少なくとも一種を含有することを特徴とする請求項1乃至3のいずれか記載の半導電性ポリアミド樹脂成形体の製造方法。   The semiconductive polyamide resin according to any one of claims 1 to 3, wherein the fine carbon fibers contain at least one selected from a single-walled carbon nanotube, a multi-walled carbon nanotube, and a bell-shaped structure-linked aggregate. A method for producing a molded article. 前記成形体は電子写真用シームレスベルトであることを特徴とする請求項1乃至4のいずれか記載の半導電性ポリアミド樹脂成形体の製造方法。   The method for producing a semiconductive polyamide resin molded article according to any one of claims 1 to 4, wherein the molded article is a seamless belt for electrophotography.
JP2015235658A 2015-12-02 2015-12-02 Method for producing semiconductive polyamide resin molded article Active JP6632352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015235658A JP6632352B2 (en) 2015-12-02 2015-12-02 Method for producing semiconductive polyamide resin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015235658A JP6632352B2 (en) 2015-12-02 2015-12-02 Method for producing semiconductive polyamide resin molded article

Publications (2)

Publication Number Publication Date
JP2017101157A JP2017101157A (en) 2017-06-08
JP6632352B2 true JP6632352B2 (en) 2020-01-22

Family

ID=59016152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015235658A Active JP6632352B2 (en) 2015-12-02 2015-12-02 Method for producing semiconductive polyamide resin molded article

Country Status (1)

Country Link
JP (1) JP6632352B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171784A1 (en) * 2022-03-11 2023-09-14 パナソニックIpマネジメント株式会社 Continuous production system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214928A (en) * 2001-01-19 2002-07-31 Yuka Denshi Co Ltd Endless belt, belt for image forming device and image forming device
JP2003156902A (en) * 2001-08-03 2003-05-30 Gunze Ltd Image forming apparatus belt, sleeve or tube
JP2007512658A (en) * 2003-08-08 2007-05-17 ゼネラル・エレクトリック・カンパニイ Conductive composition and method for producing the same
JP4684840B2 (en) * 2004-10-12 2011-05-18 昭和電工株式会社 Resin composition for seamless belt and seamless belt
JP5299051B2 (en) * 2009-02-16 2013-09-25 三菱化学株式会社 Conductive polyamide resin composition, process for producing conductive polyamide resin composition, injection-molded product and extrusion-molded product
JP4936026B2 (en) * 2009-04-02 2012-05-23 宇部興産株式会社 Method for producing conductive binder
JP5581767B2 (en) * 2009-04-20 2014-09-03 三菱化学株式会社 Conductive thermoplastic resin composition, process for producing conductive thermoplastic resin composition, and injection-molded product and extrusion-molded product obtained therefrom
US8137592B2 (en) * 2010-05-04 2012-03-20 Sabic Innovative Plastics Ip B.V. Method of incorporating an additive into a polymer composition and dispersion used therein
DE102012204181A1 (en) * 2012-03-16 2013-09-19 Evonik Degussa Gmbh Electrically conductive carbon-containing polyamide composition

Also Published As

Publication number Publication date
JP2017101157A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP4684840B2 (en) Resin composition for seamless belt and seamless belt
JP4563665B2 (en) Semiconductive film, charge control member, and method for producing semiconductive film
JP6632352B2 (en) Method for producing semiconductive polyamide resin molded article
JP6930643B6 (en) Sheet-shaped member for image forming device
JP2005350621A (en) Semiconductive polyvinylidene fluoride resin composition, semiconductive resin molded product and process for production of the molded product
JP4195285B2 (en) Polyamide-based electrophotographic member
JP6808418B2 (en) Semi-conductive polyamide resin composition, molded article using it, and seamless belt for electrophotographic
JP4740566B2 (en) Semiconductive film, method for producing the same, and charge control member
JP5339836B2 (en) Electrophotographic belt and method for producing the same
JP2008044179A (en) Conductive belt, manufacturing method of the same and image forming device having the same
JP2023027848A (en) Semi-conductive polyamide-based resin composition, semi-conductive belt using the same, image formation device, and method for manufacturing conductive belt
JP2015166852A (en) Conductive resin belt, manufacturing method thereof, and image forming apparatus including the same
JP4057376B2 (en) Semiconductive resin composition, semiconductive sheet and charge control member
JP7267724B2 (en) Resin molding and its manufacturing method
JP2008138134A (en) Semiconductive ultra-high-molecular-weight polyethylene composition, film composed thereof and its manufacturing method
JP5552028B2 (en) Semiconductive resin composition, molded article, and method for producing semiconductive resin composition
JP6590708B2 (en) Method for producing semiconductive resin composition
JP2010078663A (en) Intermediate transfer belt and method of manufacturing the same
JP5724950B2 (en) Method for producing conductive resin molding
JP5052146B2 (en) Polyarylene thioether semiconductive film, charge control member formed from the film, endless belt, and transfer belt for image forming apparatus using the endless belt
JP2007246607A (en) Film, seamless belt, conductive film, conductive seamless belt and manufacturing process of them
JP2006276424A (en) Semiconductive seamless belt and method for producing the same
JP6800023B2 (en) Method for manufacturing transfer belt for image forming apparatus and transfer belt for image forming apparatus
JP2889918B2 (en) Seamless electrophotographic photosensitive member conductive substrate
JP2021147447A (en) Semi-conductive polyethylene-based resin composition and molding using the same, and seamless belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191210

R150 Certificate of patent or registration of utility model

Ref document number: 6632352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250