JP6628273B2 - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP6628273B2
JP6628273B2 JP2015101402A JP2015101402A JP6628273B2 JP 6628273 B2 JP6628273 B2 JP 6628273B2 JP 2015101402 A JP2015101402 A JP 2015101402A JP 2015101402 A JP2015101402 A JP 2015101402A JP 6628273 B2 JP6628273 B2 JP 6628273B2
Authority
JP
Japan
Prior art keywords
coil
relay
power transmission
coil member
relay coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015101402A
Other languages
Japanese (ja)
Other versions
JP2016220355A (en
Inventor
名雪 琢弥
琢弥 名雪
根本 孝七
孝七 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2015101402A priority Critical patent/JP6628273B2/en
Publication of JP2016220355A publication Critical patent/JP2016220355A/en
Application granted granted Critical
Publication of JP6628273B2 publication Critical patent/JP6628273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、一方側(電力を供給する側:一次側)から他方側(電力が供給される側:二次側)に非接触で電力を送る非接触電力伝送装置に関する。 The present invention is, one side (the side for supplying power: primary side): about non-contact power transmission apparatus that sent the power in a non-contact manner from the other side (secondary side side to which electric power is supplied).

一方側(電力を供給する側:一次側)から他方側(電力が供給される側:二次側)に非接触で電力を送る非接触充電技術としては、電磁誘導を利用した非接触充電方式と磁気共鳴を利用した非接触充電方式とが知られている。磁気共鳴方式を利用した電力伝送の技術として、特許文献1に開示する非接触給電システムが知られている。特許文献1に開示された技術は、一次側、二次側のコイルとして複数のコイルを並設し、一次側のコイルから二次側のコイルに磁気共鳴方式を利用して電力を伝送する電力伝送回路を有している。   Non-contact charging technology that uses electromagnetic induction to contactlessly transfer power from one side (the side that supplies power: the primary side) to the other side (the side that receives power: the secondary side) And a non-contact charging system using magnetic resonance. As a power transmission technique using a magnetic resonance method, a non-contact power supply system disclosed in Patent Document 1 is known. The technique disclosed in Patent Literature 1 discloses a technique in which a plurality of coils are arranged in parallel as primary and secondary coils, and power is transmitted from the primary coil to the secondary coil by using a magnetic resonance method. It has a transmission circuit.

一次側、二次側のコイルとして複数のコイルを並設したことで、一次側のコイルの間隔(一次側コイルの幅)、及び、二次側のコイルの間隔(二次側コイルの幅)をある程度大きくすることができる。このため、例えば、電気自動車に対する充電装置、電気自動車と家屋との双方向の送電装置に対し、利便性良く適用できる環境を構築することができる。   By arranging a plurality of coils in parallel as the primary and secondary coils, the interval between the primary coils (the width of the primary coil) and the interval between the secondary coils (the width of the secondary coil) Can be increased to some extent. Therefore, for example, an environment that can be conveniently applied to a charging device for an electric vehicle and a bidirectional power transmission device between an electric vehicle and a house can be constructed.

一方、一次側から二次側に非接触で電力を送る非接触充電技術の適用として、高い箇所に設置された電力消費部材への給電、例えば、送電鉄塔の航空障害灯への給電に適用することが考えられる。非接触充電技術を適用することにより、電気絶縁距離を確保しながらの給電が可能になる。これまで、送電鉄塔の航空障害灯への給電に非接触で電力を供給する技術を適用する場合、架空地線からの誘導電流や太陽光発電付蓄電池等が用いられている。しかし、架空地線からの誘導電流を用いた場合、雷撃による電圧の上昇が生じる問題があり、太陽光発電付蓄電池を用いた場合、蓄電池の保守点検のための高所作業が必要になってしまう。   On the other hand, as an application of non-contact charging technology for transmitting electric power from the primary side to the secondary side in a non-contact manner, it is applied to power supply to a power consuming member installed at a high place, for example, to power supply to an aviation obstacle light of a power transmission tower. It is possible. By applying the non-contact charging technology, power can be supplied while securing an electrical insulation distance. Heretofore, when a technology for supplying electric power in a non-contact manner to supply power to an aviation obstacle light of a power transmission tower is applied, an induced current from an overhead ground wire, a storage battery with solar power generation, and the like have been used. However, when an induced current from an overhead ground wire is used, there is a problem that a voltage rise occurs due to a lightning strike, and when a storage battery with a photovoltaic power generation is used, work at a high place for maintenance and inspection of the storage battery is required. I will.

電圧の上昇や高所作業を減らすため、磁気共鳴方式における一次側のコイル、二次側のコイルとして複数のコイルを並設し、非接触で高所まで電力を供給することが考えられる。この場合、一次側のコイルの幅と二次側のコイルの幅をある程度大きくすることができるが、一次側のコイルの端部と二次側コイルの端部との間隔を大きくすることはできない。即ち、一次側のコイルの端部と二次側のコイルの端部との距離を長くすることはできず、送電鉄塔の地上近傍から最上部近傍までの長い距離を非接触で電力を送ることは困難である。このため、送電鉄塔等、高い構造物で電力供給装置を地上近傍に設けざるを得ない構造物の最上部近傍までの電力供給に対して、非接触の電力伝送装置が適用されていないのが現状である。   In order to reduce voltage rise and work at high places, it is conceivable to provide a plurality of coils in parallel as a primary side coil and a secondary side coil in the magnetic resonance system, and to supply power to a high place without contact. In this case, the width of the primary coil and the width of the secondary coil can be increased to some extent, but the distance between the end of the primary coil and the end of the secondary coil cannot be increased. . In other words, the distance between the end of the primary coil and the end of the secondary coil cannot be increased, and power must be transmitted in a non-contact manner over a long distance from near the ground to near the top of the transmission tower. It is difficult. For this reason, a non-contact power transmission device is not applied to power supply up to the vicinity of the uppermost part of a structure such as a power transmission tower in which a power supply device must be provided near the ground with a high structure. It is the current situation.

特開2014−217117号公報JP 2014-217117 A

発明は上記状況に鑑みてなされたもので、一方側(電力を供給する側:一次側)の一方コイル部材と他方側(電力が供給される側:二次側)の他方コイル部材との距離を長くすることができる非接触電力伝送回路を備えた非接触電力伝送装置を提供することを目的とする。 The present invention has been made in view of the above situation, and includes one coil member on one side (a side on which power is supplied: a primary side) and another coil member on the other side (a side on which power is supplied: a secondary side). It is an object of the present invention to provide a non-contact power transmission device including a non-contact power transmission circuit capable of increasing a distance.

上記目的を達成するための請求項1に係る本発明の非接触電力伝送装置は、一方側の一方コイルと前記一方コイルに並列に接続された一方コンデンサとで閉回路を形成し、送電鉄塔の地上側に設置して一方コイル部材とし、他方側の他方コイルと前記他方コイルに並列に接続された他方コンデンサとで閉回路を形成し、送電鉄塔の最上部の部位に設置して他方コイル部材とする一方、中継コイルと前記中継コイルに並列に接続された中継コンデンサとで閉回路を形成して中継コイル部材とし、前記一方コイル部材と前記他方コイル部材との間に、前記中継コイル部材を少なくとも一つ配置して非接触電力伝送回路とし、前記非接触電力伝送回路と、直流電源が接続され、前記直流電源の直流出力電圧を交流電圧に変換すると共に、変換した交流電圧が前記他方コイルに印加されるように前記一方コイルが接続されてインバータとして駆動される一方電力変換装置と、前記他方コイルに接続され、前記他方コイルを介して印加される交流電圧を直流出力電圧に変換し、直流出力電圧を直流負荷に印加するコンバータとして駆動される他方電力変換装置とを備えたことを特徴とする。 According to a first aspect of the present invention, there is provided a non-contact power transmission device according to the present invention, wherein a closed circuit is formed by one coil on one side and one capacitor connected in parallel to the one coil . It is installed on the ground side as one coil member, and the other coil on the other side and the other capacitor connected in parallel with the other coil form a closed circuit, and installed on the topmost part of the power transmission tower, the other coil member On the other hand, a relay coil and a relay capacitor connected in parallel to the relay coil form a closed circuit to form a relay coil member, and the relay coil member is provided between the one coil member and the other coil member. At least one is disposed as a non-contact power transmission circuit, wherein the non-contact power transmission circuit is connected to a DC power supply, and converts a DC output voltage of the DC power supply into an AC voltage, and converts the converted AC voltage. A power converter connected to the one coil and driven as an inverter so that a voltage is applied to the other coil; and a DC output connected to the other coil and applied to the AC voltage through the other coil. And a power converter that is driven as a converter that converts the voltage into a voltage and applies a DC output voltage to a DC load.

請求項1に係る本発明では、磁気共鳴方式において、一方コイル部材と他方コイル部材との間に、中継コイル部材を少なくとも一つ配置したので、中継コイルを介して一方コイル部材から他方コイル部材に向けてコイル電流を確保し、各コイル部材の間の距離のトータルにより、一方側(電力を供給する側:一次側)の一方コイル部材と他方側(電力が供給される側:二次側)の他方コイル部材との距離を確保することができる。
そして、一方側(一次側)の一方コイル部材と他方側(二次側)の他方コイル部材との距離を確保した状態で、インバータおよびコンバータを介した電力伝送を行うことができる。
In the present invention according to claim 1, in the magnetic resonance system, at least one relay coil member is disposed between the one coil member and the other coil member, so that the one coil member is connected to the other coil member via the relay coil. One coil member on one side (power supply side: primary side) and the other side (power supply side: secondary side) based on the total coil distance between the coil members. The distance from the other coil member can be ensured.
Then, power can be transmitted via the inverter and the converter in a state where the distance between the one coil member on one side (primary side) and the other coil member on the other side (secondary side) is ensured.

この結果、一方側(一次側)の一方コイル部材と他方側(二次側)の他方コイル部材との距離を長くすることが可能になる。中継コイル部材の数を任意に選択することで、一方コイル部材と他方コイル部材との距離を任意の所望の距離に設定することができる。   As a result, it is possible to increase the distance between one coil member on one side (primary side) and the other coil member on the other side (secondary side). By arbitrarily selecting the number of relay coil members, the distance between the one coil member and the other coil member can be set to any desired distance.

そして、請求項2に係る本発明の非接触電力伝送装置は、請求項1に記載の非接触電力伝送装置において、前記中継コイル部材は2つ以上配置され、前記一方コイル部材と前記中継コイル部材の距離、前記中継コイル同士の距離、前記中継コイル部材と前記他方コイル部材との距離は、同じ距離に設定されていることを特徴とする。 The contactless power transmission apparatus of the present invention according to claim 2, in the non-contact power transmission apparatus according to claim 1, wherein the relay coil member is disposed two or more, the one coil element and the relay coil member , The distance between the relay coils, and the distance between the relay coil member and the other coil member are set to the same distance.

請求項2に係る本発明では、一方コイル部材と中継コイル部材の距離、中継コイル同士の距離、中継コイル部材と他方コイル部材との距離が等しくなり、各コイルの損失(導線損失)を均等にすることができる。   In the present invention according to claim 2, the distance between the one coil member and the relay coil member, the distance between the relay coils, and the distance between the relay coil member and the other coil member become equal, and the loss (conductive wire loss) of each coil is evenly reduced. can do.

また、請求項3に係る本発明の非接触電力伝送装置は、請求項1もしくは請求項2に記載の非接触電力伝送装置において、前記中継コイル部材は、少なくとも前記中継コイルが絶縁体に保持されていることを特徴とする。 The non-contact power transmission apparatus of the present invention according to claim 3, in the non-contact power transmission apparatus according to claim 1 or claim 2, wherein the relay coil member, at least the relay coil is held in the insulator It is characterized by having.

請求項3に係る本発明では、中継コイルが絶縁体に保持されて中継コイル部材となっているので、一方コイル部材と他方コイル部材との間の電気絶縁を確実に確保することができる。   According to the third aspect of the present invention, since the relay coil is held by the insulator to form the relay coil member, electrical insulation between the one coil member and the other coil member can be reliably ensured.

また、請求項4に係る本発明の非接触電力伝送装置は、請求項3に記載の非接触電力伝送装置において、前記中継コイルは、前記一方コイル、前記他方コイルに対して方向性が存在しないコイルであることを特徴とする。 The non-contact power transmission apparatus of the present invention according to claim 4, in the non-contact power transmission apparatus according to claim 3, wherein the relay coil is the one coil, there is no directionality with respect to the other coil It is a coil.

請求項4に係る本発明では、絶縁体に保持された中継コイルの方向性が問われないため、絶縁体で中継コイルを保持した部材の設置方向の制約がなく扱いが容易となる。   In the present invention according to claim 4, since the directionality of the relay coil held by the insulator does not matter, there is no restriction on the installation direction of the member holding the relay coil with the insulator, and the handling is easy.

発明の非接触電力伝送装置は、一方側(電力を供給する側:一次側)の一方コイル部材と他方側(電力が供給される側:二次側)の他方コイル部材との距離を長くすることができる非接触電力伝送回路を備えた非接触電力伝送装置とすることが可能になる。 The contactless power transmission device of the present invention increases the distance between one coil member on one side (the side that supplies power: the primary side) and the other coil member on the other side (the side that receives power: the secondary side). It is possible to provide a non-contact power transmission device including a non-contact power transmission circuit capable of performing the following.

本発明の一実施例に係る非接触電力伝送回路を備えた非接触電力伝送装置の概略系統図である。1 is a schematic system diagram of a wireless power transmission device including a wireless power transmission circuit according to an embodiment of the present invention. コイルの配置説明図である。FIG. 3 is an explanatory view of a coil arrangement. 本発明の一実施例に係る非接触電力伝送回路の等価回路図である。FIG. 2 is an equivalent circuit diagram of the wireless power transmission circuit according to one embodiment of the present invention. 比較例に係る非接触電力伝送回路の等価回路図である。It is an equivalent circuit diagram of the non-contact electric power transmission circuit concerning a comparative example. 結合係数を説明する表図である。It is a table | surface figure explaining a coupling coefficient. 入力インピーダンスの周波数特性を表すグラフである。5 is a graph showing a frequency characteristic of an input impedance. 電力伝送効率を表すグラフである。It is a graph showing power transmission efficiency. コイルの損失状況を説明するグラフである。It is a graph explaining the loss situation of a coil. 本発明の一実施例に係る非接触電力伝送装置の適用例の説明図である。It is an explanatory view of an example of application of a non-contact electric power transmission device concerning one example of the present invention.

図1から図2に基づいて本発明の非接触電力伝送回路、及び、非接触電力伝送装置の構成を説明する。   The configuration of the wireless power transmission circuit and the wireless power transmission device according to the present invention will be described with reference to FIGS.

図1には本発明の一実施例に係る非接触電力伝送回路を備えた非接触電力伝送装置の全体の概略を説明する概略系統、図2には一方コイル部材、他方コイル部材、中継コイル部材の配置の状況を示してある。   FIG. 1 is a schematic diagram illustrating the overall outline of a non-contact power transmission device including a non-contact power transmission circuit according to one embodiment of the present invention. FIG. 2 is a diagram illustrating one coil member, the other coil member, and a relay coil member. The situation of the arrangement is shown.

図1に示すように、非接触電力伝送装置1は、一方コイル部材2を備えた一方側(電力を供給する側:一次側)の設備(電源装置)である一次側設備3と、他方コイル部材5を備えた他方側(電力が供給される側:二次側)の設備である二次側設備6とを備えている。   As shown in FIG. 1, a non-contact power transmission device 1 includes a primary-side facility 3 that is a facility (power supply device) on one side (a side that supplies power: a primary side) including a one-side coil member 2 and a coil on the other side. A secondary-side facility 6 which is a facility on the other side (a side to which electric power is supplied: a secondary side) provided with the member 5 is provided.

二次側設備6の例としては、例えば、送電鉄塔の航空障害灯が適用される。具体的には後述するが、一次側設備3としての電源装置を送電鉄塔の下に設置することで、高い箇所である送電鉄塔の上部に設置された航空障害灯への給電を地上の電源装置から絶縁部位を介在させて実施することができる。   As an example of the secondary facility 6, an aviation obstruction light of a power transmission tower is applied, for example. As will be described in detail later, by installing a power supply as the primary-side equipment 3 below the transmission tower, the power supply to the aviation obstruction light installed above the transmission tower, which is a high place, is supplied by a ground power supply. From an insulating part.

図2に示すように、一方コイル部材2は、一方コイル4と一方コイル4に並列に接続された一方コンデンサ8とで閉回路が形成されて構成されている。また、他方コイル部材5は、他方コイル7と他方コイル7に並列に接続された他方コンデンサ9とで閉回路が形成されて構成されている。   As shown in FIG. 2, one-sided coil member 2 is configured by forming a closed circuit by one-sided coil 4 and one-sided capacitor 8 connected in parallel to one-sided coil 4. Further, the other coil member 5 is configured such that a closed circuit is formed by the other coil 7 and the other capacitor 9 connected in parallel to the other coil 7.

図1に示すように、一次側設備3には直流電源11が備えられ、直流電源11には一方電力変換装置としてのインバータ12が接続され、インバータ12には一方コイル部材2の一方コイルが接続されている。インバータ12は、直流電源11の直流出力電圧を交流電圧に変換し、一方コイル4を介して変換した交流電圧が他方コイル7に印加されるように駆動される。   As shown in FIG. 1, the primary-side facility 3 is provided with a DC power supply 11, the DC power supply 11 is connected with an inverter 12 as one power converter, and the inverter 12 is connected with one coil of the one coil member 2. Have been. The inverter 12 is driven such that the DC output voltage of the DC power supply 11 is converted into an AC voltage, and the AC voltage converted via one coil 4 is applied to the other coil 7.

二次側設備6には負荷15(直流負荷:例えば、航空障害灯)が備えられ、負荷15には他方電力変換装置としての整流器16が接続され、整流器16は他方コイル7に接続されている。整流器16は、他方コイル7を介して印加される交流電圧を直流出力電圧に変換し、直流出力電圧を負荷15に印加するコンバータとして駆動される。   The secondary facility 6 is provided with a load 15 (DC load: for example, an aviation obstruction light), and the load 15 is connected to a rectifier 16 as the other power converter, and the rectifier 16 is connected to the other coil 7. . The rectifier 16 is driven as a converter that converts an AC voltage applied via the other coil 7 to a DC output voltage and applies the DC output voltage to the load 15.

図1、図2に示すように、一方コイル部材2と他方コイル部材5の間には、中継コイル部材21が2個配置されている。中継コイル部材21は、中継コイル22と中継コイル22に並列に接続された中継コンデンサ23とで閉回路が形成されて構成されている。中継コイル部材21は、少なくとも一つ配置されていればよく、3個以上配置されていてもよい。隣接するコイル部材同士(コイル同士)が共振回路を構成している。   As shown in FIGS. 1 and 2, two relay coil members 21 are arranged between the one coil member 2 and the other coil member 5. The relay coil member 21 includes a relay coil 22 and a relay capacitor 23 connected in parallel to the relay coil 22 to form a closed circuit. At least one relay coil member 21 may be provided, and three or more relay coil members 21 may be provided. Adjacent coil members (coils) constitute a resonance circuit.

一方コイル部材2と他方コイル部材5の間に中継コイル部材21を配置したので、磁気共鳴方式において、中継コイル22を介して一方コイル部材2から他方コイル部材5に向けてコイル電流を確保し、各コイル部材の間の距離のトータルにより、一次側(電力を供給する側)の一方コイル部材2と二次側(電力が供給される側)の他方コイル部材5との距離Dを確保することができる。   Since the relay coil member 21 is arranged between the one coil member 2 and the other coil member 5, in the magnetic resonance system, a coil current is secured from the one coil member 2 to the other coil member 5 via the relay coil 22, A distance D between one coil member 2 on the primary side (the side on which power is supplied) and the other coil member 5 on the secondary side (the side on which power is supplied) is secured by the total distance between the coil members. Can be.

このため、一次側の一方コイル部材2と二次側の他方コイル部材5との距離Dを長くすることが可能になる。中継コイル部材21の数を任意に選択することで、一方コイル部材2と他方コイル部材5との距離Dを任意の所望の距離に設定することができる。   For this reason, it is possible to increase the distance D between the one coil member 2 on the primary side and the other coil member 5 on the secondary side. By arbitrarily selecting the number of relay coil members 21, the distance D between one coil member 2 and the other coil member 5 can be set to any desired distance.

図2に示すように、一方コイル部材2と中継コイル部材21の間の距離S、中継コイル部材21の間の距離S、中継コイル部材21と他方コイル部材5の間の距離Sは同じ距離に設定され、一次側の一方コイル部材2と二次側の他方コイル部材5との間の距離Dは、距離Sの3倍(3S)に設定されている。   As shown in FIG. 2, the distance S between the one coil member 2 and the relay coil member 21, the distance S between the relay coil members 21, and the distance S between the relay coil member 21 and the other coil member 5 are the same distance. The distance D between the primary coil member 2 on the primary side and the secondary coil member 5 on the secondary side is set to three times (3S) the distance S.

一方コイル部材2と中継コイル部材21の距離S、中継コイル部材21同士の距離S、中継コイル部材21と他方コイル部材5との距離Sを等しくしたので、各コイルの損失(導線損失)を均等にすることができる。   On the other hand, since the distance S between the coil member 2 and the relay coil member 21, the distance S between the relay coil members 21, and the distance S between the relay coil member 21 and the other coil member 5 are equalized, the loss (conductor loss) of each coil is equalized. Can be

そして、図には省略したが、中継コイル部材21の中継コイル22、中継コンデンサ23は、絶縁体(例えば、碍子)で覆い固められた部材として構成されている。尚、絶縁体としては、コンクリート、ガラス、発泡スチロール等を適用することができる。中継コイル22が絶縁体に保持されて中継コイル部材21となっているので、一方コイル部材2と他方コイル部材5との間の電気絶縁を確実に確保することができる。   Although not shown in the drawings, the relay coil 22 and the relay capacitor 23 of the relay coil member 21 are configured as members that are covered with an insulator (for example, an insulator). Note that concrete, glass, styrene foam, or the like can be used as the insulator. Since the relay coil 22 is held by the insulator to form the relay coil member 21, electrical insulation between the one coil member 2 and the other coil member 5 can be reliably ensured.

中継コイル22は、一方コイル4、他方コイル7に対して方向性が存在しないコイルで形成されている。このため、絶縁体(例えば、碍子)で保持された中継コイルの方向性が問われず、中継コイル22が覆い固められた部材の設置方向の制約がなく扱いが容易となる。   The relay coil 22 is formed of a coil having no directivity with respect to the one coil 4 and the other coil 7. For this reason, regardless of the directionality of the relay coil held by the insulator (for example, an insulator), there is no restriction on the installation direction of the member in which the relay coil 22 is covered and solidified, and the handling is easy.

上記構成の非接触電力伝送回路を備えた非接触電力伝送装置1では、直流電源11からの直流出力電圧が、インバータ12により交流電圧に変換され、変換された交流電圧が一方コイル4を介して中継コイル22を介して他方コイル7に印加される。他方コイル7に印加された交流電圧が整流器16により直流出力電圧に変換され、直流出力電圧が負荷15に印加される。これにより、直流電源11からの電力が磁気共鳴方式によって非接触で負荷15に供給される。   In the non-contact power transmission device 1 including the non-contact power transmission circuit having the above configuration, the DC output voltage from the DC power supply 11 is converted into an AC voltage by the inverter 12, and the converted AC voltage is transmitted through the one coil 4. The voltage is applied to the other coil 7 via the relay coil 22. On the other hand, the AC voltage applied to the coil 7 is converted by the rectifier 16 into a DC output voltage, and the DC output voltage is applied to the load 15. Thereby, the power from the DC power supply 11 is supplied to the load 15 in a non-contact manner by the magnetic resonance method.

上述した非接触電力伝送回路を備えた非接触電力伝送装置1は、一方コイル部材2と他方コイル部材5の間に中継コイル部材21を配置したので、間に電気絶縁を確保した状態で、直流電源11を備えた一次側の一方コイル部材2と負荷15を備えた二次側の他方コイル部材5を配置することができる。   In the non-contact power transmission device 1 including the above-described non-contact power transmission circuit, the relay coil member 21 is disposed between the one coil member 2 and the other coil member 5, so that the DC power can be maintained in a state where electrical insulation is secured therebetween. The primary one-sided coil member 2 having the power supply 11 and the secondary-side other coil member 5 having the load 15 can be arranged.

これにより、一方コイル部材2と他方コイル部材5との距離Dを長くすることが可能になる。そして、中継コイル部材21を任意の数で配置することにより、一次側の一方コイル部材2と二次側の他方コイル部材5との距離Dを任意の所望の距離に設定することができる。   Thereby, the distance D between the one coil member 2 and the other coil member 5 can be increased. By arranging the relay coil members 21 in an arbitrary number, the distance D between the one coil member 2 on the primary side and the other coil member 5 on the secondary side can be set to any desired distance.

図3から図8に基づいて、中継コイル部材21を導入した際における一方コイル部材2、中継コイル部材21、他方コイル部材5のコイルの間の電気的な結合係数の状況、及び、電力の伝送効率の状況、及び、電力の伝送損失の状況を説明する。   3 to 8, the state of the electric coupling coefficient between the coils of the one coil member 2, the relay coil member 21, and the other coil member 5 when the relay coil member 21 is introduced, and the power transmission The situation of efficiency and the situation of power transmission loss will be described.

図3には中継コイル部材21を2個備えた非接触伝送回路の等価回路の状況を示してある。比較の例として、図4(a)には中継コイル部材21を備えていない非接触伝送回路の等価回路の状況、図4(b)には中継コイル部材21を1個備えた非接触伝送回路の等価回路の状況を示してある。そして、図5には図3、図4の等価回路におけるコイルの間の結合係数を説明する表図、図6には図3、図4の等価回路における入力インピーダンスの周波数の特性、図7には図3、図4の等価回路における電力の伝送効率の状況、図8には図3、図4の等価回路におけるコイルの損失の状況を示してある。   FIG. 3 shows the state of an equivalent circuit of a non-contact transmission circuit including two relay coil members 21. As a comparative example, FIG. 4A shows the state of an equivalent circuit of a non-contact transmission circuit without the relay coil member 21, and FIG. 4B shows a non-contact transmission circuit with one relay coil member 21. Of the equivalent circuit of FIG. FIG. 5 is a table illustrating the coupling coefficient between the coils in the equivalent circuits of FIGS. 3 and 4, FIG. 6 is the frequency characteristic of the input impedance in the equivalent circuits of FIGS. 3 and 4, and FIG. 8 shows the state of power transmission efficiency in the equivalent circuits of FIGS. 3 and 4, and FIG. 8 shows the state of coil loss in the equivalent circuits of FIGS.

図3、図4に示すように、直流電源11から負荷15に電力を伝送する回路において、伝送側から順に各コイル(一方コイル4、中継コイル22、他方コイル7)の自己インダクタンスをL0、1、2、(例えば、それぞれ約53.30μH)とし、各コイルの巻線抵抗をr0、1、2、(例えば、それぞれ0.08Ω)とし、共振コンデンサをC0、1、2、(例えば、それぞれ1μF)としている。また、各コイルの間の結合係数をk01、20、12、23、30、31としている。 As shown in FIGS. 3 and 4, in a circuit for transmitting power from the DC power supply 11 to the load 15, the self-inductance of each coil (one coil 4, the relay coil 22, and the other coil 7) is L0 , L 1, L 2, L 3 ( e.g., each about 53.30MyuH) and, as the winding resistance of each coil r 0, r 1, r 2 , r 3 ( e.g., each 0.08Omu), a resonance capacitor C 0, C 1, C 2, C 3 (for example, each 1 μF). Also the coupling coefficient between the coils and k 01, k 20, k 12 , k 23, k 30, k 31.

直流電源11から見た入力インピーダンスと電力の伝送効率は、コイルにかかる電圧、コイルの流れる電流との関係に基づき与えられ、相互インダクタンスは、結合係数、及び、自己インダクタンスを用いて導き出すことができる。そして、各コイルの損失は、電流の値、及び、コイルの巻線抵抗に基づく発熱量により導き出すことができる。   The input impedance and the power transmission efficiency as viewed from the DC power supply 11 are given based on the relationship between the voltage applied to the coil and the current flowing through the coil, and the mutual inductance can be derived using the coupling coefficient and the self-inductance. . The loss of each coil can be derived from the value of the current and the amount of heat generated based on the winding resistance of the coil.

図5に基づいてコイルの間の結合係数を説明する。   The coupling coefficient between the coils will be described with reference to FIG.

一方コイル4に隣接するコイルとの間の結合係数k01は、コイルなし(図4(a))の場合、1コイル(図4(b))の場合、2コイル(図3)の場合のいずれに0.23となっている。 On the other hand the coupling coefficient k 01 between the coil adjacent to the coil 4, if no coil (FIG. 4 (a)), 1 case of coil (FIG. 4 (b)), when the second coil (3) In each case, it is 0.23.

1コイル(図4(b))の場合の一方コイル4と一つ間をあけた他方コイル7との間の結合係数k20、2コイル(図3)の場合の一方コイル4と一つ間をあけた中継コイル22との間の結合係数k20は、いずれも0.09となっている。 1 coil (FIG. 4 (b)) the coupling coefficient k 20 between one coil 4 and the other coil 7 spaced between one case, 2 coils between one and one coil 4 in the case of (3) coupling coefficient k 20 between the relay coil 22 spaced are both 0.09.

1コイル(図4(b))の場合の中継コイル22と他方コイル7との間の結合係数k12、2コイル(図3)の場合の中継コイル22と他方コイル7との間の結合係数k12は、いずれも0.23となっている。 The coupling coefficient k 12 between the relay coil 22 and the other coil 7 in the case of one coil (FIG. 4B), and the coupling coefficient between the relay coil 22 and the other coil 7 in the case of two coils (FIG. 3) k 12 are all made with 0.23.

また、2コイル(図3)の場合の中継コイル22と他方コイル7との間の結合係数k23は0.23となっている。2コイル(図3)の場合の一方コイル4と二つ間をあけた他方コイル7との間の結合係数k30は0.03であり、2コイル(図3)の場合の中継コイル22と一つ間をあけた他方コイル7との間の結合係数k31は0.09となっている。 The two coil coupling coefficient k 23 between the relay coil 22 and the other coil 7 in the case of (3) has a 0.23. Coupling coefficient k 30 between the second coil while the other coil 7 spaced between the coils 4 and two cases (Figure 3) is 0.03, the relay coil 22 when the second coil (3) coupling factor k 31 in between the other coil 7 spaced between one and has a 0.09.

上述したように、本実施例における一方コイル4と中継コイル22との間の結合係数k01は0.23、中継コイル22同士の間の結合係数k12は0.23、中継コイル22と他方コイル7との間の結合係数k23は0.23となっている。また、中継コイル22が一つの場合、一方コイル4と中継コイル22との間の結合係数k01は0.23、中継コイル22と他方コイル7との間の結合係数k12は0.23となっている。 As described above, the coupling coefficient k 01 is 0.23, the coupling coefficient k 12 between between the relay coil 22 between the other hand coil 4 in this embodiment and the relay coil 22 is 0.23, the relay coil 22 and the other coupling coefficient k 23 between the coil 7 has a 0.23. Further, when the relay coil 22 is one, whereas the coupling coefficient k 01 between the coil 4 and the relay coil 22 is 0.23, the coupling coefficient k 12 0.23 between the relay coil 22 and the other coil 7 Has become.

即ち、隣接するコイルの間の結合係数が0.23となっていることがわかる。そして、一つ間をあけたコイルの間の結合係数が0.09となり、二つ間をあけたコイルの間の結合係数が0.03となっていることがわかる。   That is, it can be seen that the coupling coefficient between adjacent coils is 0.23. It can be seen that the coupling coefficient between the coils separated by one is 0.09, and the coupling coefficient between the coils separated by two is 0.03.

従って、非接触電力伝送装置1は、中継コイル部材21を介在させても、隣接するコイル同士の結合係数は、電力の伝送に必要な十分な値(例えば、0.23)が維持されていることがわかる。つまり、本実施例の非接触電力伝送装置1では、中継コイル部材21を介在させても、直流電源11から負荷15への電力の伝送が可能になっている。   Therefore, in the non-contact power transmission device 1, even if the relay coil member 21 is interposed, the coupling coefficient between adjacent coils maintains a sufficient value (for example, 0.23) necessary for power transmission. You can see that. That is, in the non-contact power transmission device 1 of the present embodiment, power can be transmitted from the DC power supply 11 to the load 15 even with the relay coil member 21 interposed.

図6に基づいて入力インピーダンスの周波数の特性を説明し、図7に基づいて、入力インピーダンスのピークに合わせてスイッチングを行った際の電力の伝送効率を説明する。   The frequency characteristics of the input impedance will be described with reference to FIG. 6, and the transmission efficiency of power when switching is performed in accordance with the peak of the input impedance will be described with reference to FIG.

図6に点線で示すように、中継コイル22がない場合の入力インピーダンスのピークfが約19.60kHzの近傍に存在し、図6に一点鎖線で示すように、中継コイル22が一つ存在している場合の入力インピーダンスのピークfが約23.10kHzの近傍に存在し、図6に実線で示すように、中継コイル22が二つ存在している本実施例の場合の入力インピーダンスのピークfが21.30kHzの近傍に存在している。 As shown by the dotted line in FIG. 6, present in the vicinity of the peak f a is approximately 19.60kHz of the input impedance in the case where there is no relay coil 22, as indicated by one-dot chain lines in FIG. 6, the relay coil 22 is one present and present in the vicinity peak f b of the input impedance is approximately 23.10kHz if are, as shown by the solid line in FIG. 6, the input impedance in the case of this embodiment the relay coil 22 is present twice peak f c is present in the vicinity of 21.30KHz.

つまり、中継コイル部材21を介在させても、14kHzから24kHzの間に入力インピーダンスのピークが存在することがわかる。   That is, it can be seen that the peak of the input impedance exists between 14 kHz and 24 kHz even when the relay coil member 21 is interposed.

入力インピーダンスのピークに合わせてスイッチング周波数を設定し、入力電力と出力電力を測定して伝送効率を確認した。中継コイル22がない場合、図7の□印を結ぶ点線で示す結果となり、中継コイル22が一つ存在している場合、図7の×印を結ぶ一点鎖線で示す結果となり、中継コイル22が二つ存在している本実施例の場合、図7の○印を結ぶ実線で示す結果となった。   The switching frequency was set according to the peak of the input impedance, the input power and the output power were measured, and the transmission efficiency was confirmed. When the relay coil 22 is not provided, the result is indicated by a dotted line connecting □ marks in FIG. 7, and when one relay coil 22 is present, the result is indicated by a dashed line connecting the X marks in FIG. In the case of the present embodiment in which two exist, the result is indicated by a solid line connecting the circles in FIG.

中継コイル22がない場合の効率が若干高いが、いずれの場合も、出力が約750Wまで徐々に効率が高くなり、出力が約1000Wを超えると、効率が低下することなく高い効率が維持されている。   Although the efficiency is slightly higher without the relay coil 22, the efficiency gradually increases up to about 750 W in any case, and when the output exceeds about 1000 W, the high efficiency is maintained without lowering the efficiency. I have.

つまり、中継コイル部材21を一つ、もしくは二つ介在させても、所定の出力を超えると高い伝送効率が維持されることが示されている。従って、中継コイル22を複数存在させても、即ち、一方コイル部材2と他方コイル部材5との距離Dを長くしても高い伝送効率を維持することが可能になる。   That is, it is shown that even if one or two relay coil members 21 are interposed, a high transmission efficiency is maintained when the output exceeds a predetermined output. Therefore, even if a plurality of relay coils 22 exist, that is, even if the distance D between the one coil member 2 and the other coil member 5 is increased, high transmission efficiency can be maintained.

図8に基づいて各コイルの損失の状況を説明する。コイルの損失は、前述したように、各コイルの発熱量により導き出している。   The state of loss of each coil will be described with reference to FIG. As described above, the loss of the coil is derived from the heat value of each coil.

図8に示したNo1(白抜き)は一方コイル4、No2(点)、No3(斜線)は中継コイル22、No4(黒塗り)が他方コイル7である。   In FIG. 8, No. 1 (open) indicates one coil 4, No. 2 (dot), No. 3 (oblique line) indicates the relay coil 22, and No. 4 (black) indicates the other coil 7.

中継コイル22がない場合、図8の左側に示すように、No1(白抜き)とNo4(黒塗り)の総損失のうち、No1(白抜き)の一方コイル4の損失が約8割を占めている。   When there is no relay coil 22, as shown on the left side of FIG. 8, of the total loss of No. 1 (open) and No. 4 (filled black), the loss of one coil 4 of No. 1 (open) accounts for about 80%. ing.

中継コイル22が一つの場合、図8の中央に示すように、No1(白抜き)とNo2(点)とNo4(黒塗り)の総損失はほとんど増加せず、No2(点)の中継コイル22の損失が、No1(白抜き)の一方コイル4、No4(黒塗り)の他方コイル7よりも多くなっている。   When there is one relay coil 22, as shown in the center of FIG. 8, the total loss of No. 1 (open), No. 2 (dot) and No. 4 (black) hardly increases, and the relay coil 22 of No. 2 (dot) does not increase. Is larger than the other coil 7 of No1 (open) and the other coil 7 of No4 (black).

中継コイル22が二つの本実施例の場合、図8の右側に示すように、No1(白抜き)とNo2(点)とNo3(斜線)とNo4(黒塗り)の総損失はほとんど増加せず、No1(白抜き)の一方コイル4の損失が少し多いが、No2(点)とNo3(斜線)の中継コイル22とNo4(黒塗り)の他方コイル7の損失が略同じになっている。   When two relay coils 22 are used in the present embodiment, as shown on the right side of FIG. 8, the total loss of No. 1 (open), No. 2 (dot), No. 3 (oblique), and No. 4 (filled) hardly increases. , No. 1 (white), the loss of the coil 4 is slightly larger, but the losses of the relay coils 22 of No. 2 (dots) and No. 3 (hatched) and the other coil 7 of No. 4 (black) are substantially the same.

つまり、中継コイル部材21を一つ、もしくは二つ介在させても、一方コイル4から他方コイル7までのトータルの損失(熱損失)はほとんど増加しない。そして、一方コイル4から他方コイル7までのトータルの熱損失が複数のコイルにほぼ均等に配分される。従って、一方コイル部材2と他方コイル部材5との距離Dを長くするために、中継コイル部材21を設けても、トータルの熱損失がほとんど増加せず、一つの中継コイル22の発熱を抑制することができる。   That is, even if one or two relay coil members 21 are interposed, the total loss (heat loss) from one coil 4 to the other coil 7 hardly increases. Then, the total heat loss from the one coil 4 to the other coil 7 is almost equally distributed to the plurality of coils. Therefore, even if the relay coil member 21 is provided to increase the distance D between the one coil member 2 and the other coil member 5, the total heat loss hardly increases, and the heat generation of one relay coil 22 is suppressed. be able to.

上述したように、本実施例の非接触電力伝送装置1は、中継コイル部材21を介在させても、隣接するコイル同士の結合係数は、電力の伝送に必要な十分な値が維持され、中継コイル部材21を介在させても、直流電源11から負荷15への電力の伝送が可能になる。そして、中継コイル部材21を介在させても、高い伝送効率が維持され、一方コイル4から他方コイル7までのトータルの熱損失はほとんど増加せず、熱損失が複数のコイルにほぼ均等に配分されて、コイル一つ当たりの発熱を抑制することが可能になる。   As described above, in the non-contact power transmission device 1 according to the present embodiment, even when the relay coil member 21 is interposed, the coupling coefficient between adjacent coils maintains a sufficient value necessary for power transmission, Even with the coil member 21 interposed, power can be transmitted from the DC power supply 11 to the load 15. And even if the relay coil member 21 is interposed, high transmission efficiency is maintained, the total heat loss from the one coil 4 to the other coil 7 hardly increases, and the heat loss is distributed almost equally to the plurality of coils. As a result, heat generation per coil can be suppressed.

このため、一方コイル部材2と他方コイル部材5との距離Dを長くしても高い伝送効率を維持し、複数のコイルの発熱を抑制した状態で、電力を伝送することが可能になる。従って、本実施例の非接触電力伝送装置1を用いることにより、一次側(電力を供給する側)の一方コイル部材2と二次側(電力が供給される側)の他方コイル部材5との距離を任意の長さで長くすることが可能になる。   For this reason, even if the distance D between the one coil member 2 and the other coil member 5 is increased, high transmission efficiency can be maintained, and power can be transmitted in a state in which heat generation of the plurality of coils is suppressed. Therefore, by using the non-contact power transmission device 1 of this embodiment, the one coil member 2 on the primary side (supply side) and the other coil member 5 on the secondary side (supply side) are connected. The distance can be increased by an arbitrary length.

図9に基づいて本実施例の非接触電力伝送装置1の適用例を説明する。図9には非接触電力伝送装置を送電鉄塔の航空障害灯への給電に適用した状況の概念を示してある。   An application example of the wireless power transmission device 1 according to the present embodiment will be described with reference to FIG. FIG. 9 shows a concept of a situation where the non-contact power transmission device is applied to power supply to an aviation obstacle light of a power transmission tower.

送電鉄塔の最上部には航空障害灯が設けられ、航空障害灯は決められた色の光を点灯、もしくは、明滅を繰り返すものである。航空障害灯に給電を行う場合、架空地線からの誘導電流や太陽光発電付蓄電池等の利用が考えられるが、架空地線からの誘導電流を用いた場合、前述したように、雷撃による電圧の上昇が生じる問題があり、太陽光発電付蓄電池を用いた場合、蓄電池の保守点検のための高所作業が必要になってしまう。   An aviation obstruction light is provided at the top of the power transmission tower, and the aviation obstruction light emits light of a predetermined color or blinks repeatedly. When supplying power to an aircraft obstacle light, it is conceivable to use an induced current from an overhead ground wire or a storage battery with photovoltaic power generation.However, when an induced current from an overhead ground wire is used, as described above, the voltage due to lightning When a storage battery with photovoltaic power generation is used, work at a high place for maintenance and inspection of the storage battery is required.

図に示すように、送電鉄塔31の地上部位に一次側設備3を設置し、送電鉄塔31の最上部の部位に二次側設備6を設置し、二次側設備6の負荷15を航空障害灯として運用する。一次側設備3と二次側設備6の間の送電鉄塔31には、適宜の数の中継コイル部材21が設けられている。即ち、一次側設備3と二次側設備6の距離を長く確保して、電力の伝送が可能な状態になっている。   As shown in the figure, the primary equipment 3 is installed at a site above the power transmission tower 31, the secondary equipment 6 is installed at the uppermost part of the power transmission tower 31, and the load 15 of the secondary equipment 6 is connected to an aviation obstacle. Operate as a light. The transmission tower 31 between the primary facility 3 and the secondary facility 6 is provided with an appropriate number of relay coil members 21. That is, the distance between the primary facility 3 and the secondary facility 6 is long, and power can be transmitted.

これにより、一次側設備3としての電源装置を送電鉄塔の下に設置し、一次側設備3の直流電源の電力を、送電鉄塔の上部に設置された電力消費部材である二次側設備6の負荷15(航空障害灯)に供給することができる。そして、一次側設備3と二次側設備6の間には、所定の間隔をあけて中継コイル部材21が配されているので、絶縁部位を介在させて電気絶縁距離を確保することができ、雷撃等の影響を抑制して負荷15である航空障害灯に電力を供給することができる。   Thereby, the power supply device as the primary equipment 3 is installed under the power transmission tower, and the power of the DC power supply of the primary equipment 3 is supplied to the secondary equipment 6 which is the power consuming member installed at the upper part of the power transmission tower. It can be supplied to the load 15 (aviation obstruction light). Since the relay coil member 21 is disposed at a predetermined interval between the primary equipment 3 and the secondary equipment 6, an electrical insulation distance can be secured by interposing an insulating part, Electric power can be supplied to the aviation obstacle light, which is the load 15, while suppressing the effects of lightning strikes and the like.

つまり、送受電コイルの間に、複数個の中継コイルを等間隔に挿入することで、電気絶縁距離を確保することが可能になり、架空地線からの誘導電流や太陽光発電付蓄電池等を用いた技術に対し、雷撃による電圧の上昇の影響を抑制して送電鉄塔31の保守コストを低減することができる。   In other words, by inserting a plurality of relay coils at equal intervals between the power transmitting and receiving coils, it is possible to secure an electrical insulation distance, and to reduce the induced current from the overhead ground wire, the storage battery with solar power generation, and the like. With respect to the technology used, the effect of the voltage increase due to the lightning strike can be suppressed, and the maintenance cost of the power transmission tower 31 can be reduced.

上述した非接触電力伝送装置1は、電気自動車等、電力を要する車両に対する給電に適用することができる。   The non-contact power transmission device 1 described above can be applied to power supply to a vehicle that requires power, such as an electric vehicle.

例えば、給電場所の構成として、一次側設備3及び一つの中継コイル部材21が設置され、車両には二次側設備が搭載される。車両が所定位置(例えば、中継コイル部材21の直上)に移動することで、一次側設備3から中継コイル部材21を介して二次側設備6に電力が伝送される。   For example, as a configuration of the power supply place, the primary facility 3 and one relay coil member 21 are installed, and the vehicle is equipped with the secondary facility. When the vehicle moves to a predetermined position (for example, immediately above the relay coil member 21), power is transmitted from the primary facility 3 to the secondary facility 6 via the relay coil member 21.

同じ設備で、車高が高い車両に対する給電を行う場合、中継コイル部材21を追加する。これにより、一次側設備3と二次側設備6の距離が長くなっても給電が可能な状態になるため、車高が高い車両に対して電力を伝送することができる。   When power is supplied to a vehicle with a high vehicle height using the same equipment, the relay coil member 21 is added. As a result, power can be supplied even when the distance between the primary facility 3 and the secondary facility 6 is long, so that power can be transmitted to a vehicle having a high vehicle height.

尚、上述した実施例における非接触電力伝送回路は、直流電源11から負荷15に一方向で給電を行う例を挙げて説明したが、電力変換装置(インバータ12、整流器16)の回路を適宜変更することにより、双方向で電力を伝送する装置とすることができる。   Although the non-contact power transmission circuit in the above-described embodiment has been described with an example in which the DC power supply 11 supplies power to the load 15 in one direction, the circuit of the power conversion device (the inverter 12 and the rectifier 16) is appropriately changed. By doing so, it is possible to provide a device that transmits power bidirectionally.

本発明は、一方側(電力を供給する側:一次側)から他方側(電力が供給される側:二次側)に非接触で電力を送る非接触電力伝送回路及び非接触電力伝送装置の産業分野で利用することができる。   The present invention relates to a non-contact power transmission circuit and a non-contact power transmission device that transmit power from one side (a side that supplies power: a primary side) to another side (a side to which power is supplied: a secondary side) in a non-contact manner. Can be used in industrial fields.

1 非接触電力伝送装置
2 一方コイル部材
3 一次側設備
4 一方コイル
5 他方コイル部材
6 二次側設備
7 他方コイル
8 一方コンデンサ
9 他方コンデンサ
11 直流電源
12 インバータ
15 負荷
16 整流器
21 中継コイル部材
22 中継コイル
23 中継コンデンサ
31 送電鉄塔
DESCRIPTION OF SYMBOLS 1 Non-contact power transmission device 2 One coil member 3 Primary equipment 4 One coil 5 The other coil member 6 Secondary equipment 7 The other coil 8 One capacitor 9 The other capacitor 11 DC power supply 12 Inverter 15 Load 16 Rectifier 21 Relay coil member 22 Relay Coil 23 Relay capacitor 31 Transmission tower

Claims (4)

一方側の一方コイルと前記一方コイルに並列に接続された一方コンデンサとで閉回路を形成し、送電鉄塔の地上側に設置して一方コイル部材とし、
他方側の他方コイルと前記他方コイルに並列に接続された他方コンデンサとで閉回路を形成し、送電鉄塔の最上部の部位に設置して他方コイル部材とする一方、
中継コイルと前記中継コイルに並列に接続された中継コンデンサとで閉回路を形成して中継コイル部材とし、
前記一方コイル部材と前記他方コイル部材との間に、前記中継コイル部材を少なくとも一つ配置して非接触電力伝送回路とし、
前記非接触電力伝送回路と、
直流電源が接続され、前記直流電源の直流出力電圧を交流電圧に変換すると共に、変換した交流電圧が前記他方コイルに印加されるように前記一方コイルが接続されてインバータとして駆動される一方電力変換装置と、
前記他方コイルに接続され、前記他方コイルを介して印加される交流電圧を直流出力電圧に変換し、直流出力電圧を直流負荷に印加するコンバータとして駆動される他方電力変換装置とを備えた
ことを特徴とする非接触電力伝送装置。
Forming a closed circuit with one coil on one side and one capacitor connected in parallel to the one coil , installed on the ground side of the power transmission tower as one coil member,
While forming a closed circuit with the other coil on the other side and the other capacitor connected in parallel to the other coil, it is installed at the uppermost part of the power transmission tower to serve as the other coil member,
Forming a closed circuit with a relay coil and a relay capacitor connected in parallel to the relay coil to form a relay coil member,
Between the one coil member and the other coil member, at least one of the relay coil members is arranged as a non-contact power transmission circuit,
The non-contact power transmission circuit,
A DC power supply is connected, the DC output voltage of the DC power supply is converted to an AC voltage, and the one coil is connected so that the converted AC voltage is applied to the other coil, and is driven as an inverter. Equipment and
And a second power converter that is connected to the other coil, converts an AC voltage applied through the other coil into a DC output voltage, and is driven as a converter that applies the DC output voltage to a DC load. Characteristic non-contact power transmission device.
請求項1に記載の非接触電力伝送装置において、
前記中継コイル部材は2つ以上配置され、
前記一方コイル部材と前記中継コイル部材の距離、前記中継コイル同士の距離、前記中継コイル部材と前記他方コイル部材との距離は、同じ距離に設定されている
ことを特徴とする非接触電力伝送装置。
The wireless power transmission device according to claim 1,
Two or more relay coil members are arranged,
The distance between the one coil member and the relay coil member, the distance between the relay coils, and the distance between the relay coil member and the other coil member are set to the same distance. .
請求項1もしくは請求項2に記載の非接触電力伝送装置において、
前記中継コイル部材は、少なくとも前記中継コイルが絶縁体に保持されている
ことを特徴とする非接触電力伝送装置。
The wireless power transmission device according to claim 1 or 2,
The relay coil member, wherein at least the relay coil is held by an insulator.
請求項3に記載の非接触電力伝送装置において、
前記中継コイルは、前記一方コイル、前記他方コイルに対して方向性が存在しないコイルである
ことを特徴とする非接触電力伝送装置。
The wireless power transmission device according to claim 3,
The relay coil is a coil having no directivity with respect to the one coil and the other coil.
JP2015101402A 2015-05-18 2015-05-18 Non-contact power transmission device Active JP6628273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015101402A JP6628273B2 (en) 2015-05-18 2015-05-18 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015101402A JP6628273B2 (en) 2015-05-18 2015-05-18 Non-contact power transmission device

Publications (2)

Publication Number Publication Date
JP2016220355A JP2016220355A (en) 2016-12-22
JP6628273B2 true JP6628273B2 (en) 2020-01-08

Family

ID=57581848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015101402A Active JP6628273B2 (en) 2015-05-18 2015-05-18 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP6628273B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623364A (en) * 2017-09-27 2018-01-23 哈尔滨工业大学 Two-way space magnetic field ecad electric energy receiving terminal applied to electric automobile wireless charging

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061942A (en) * 2009-09-09 2011-03-24 Showa Aircraft Ind Co Ltd Contactless power supply apparatus of relay system
JP2011160634A (en) * 2010-02-04 2011-08-18 Casio Computer Co Ltd Power transmission system and power transmission device
JP5640515B2 (en) * 2010-07-15 2014-12-17 ソニー株式会社 Power transmission relay device, power transmission device, and method of manufacturing power transmission relay device
EP2824799B1 (en) * 2012-03-06 2022-01-05 Murata Manufacturing Co., Ltd. Power transmission system
JP2014217117A (en) * 2013-04-23 2014-11-17 一般財団法人電力中央研究所 Non-contact power feeding system
US9281720B2 (en) * 2013-05-31 2016-03-08 ConvenientPower HK Ltd. Inductive power transfer using a relay coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623364A (en) * 2017-09-27 2018-01-23 哈尔滨工业大学 Two-way space magnetic field ecad electric energy receiving terminal applied to electric automobile wireless charging

Also Published As

Publication number Publication date
JP2016220355A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6432251B2 (en) Power transmission coil unit and wireless power transmission device
JP6299320B2 (en) Coil unit and wireless power transmission device
JP6303684B2 (en) Coil unit and wireless power transmission device
JP6179375B2 (en) Coil unit
US20170358955A1 (en) Induction coil assembly and wireless power transfer system
EP3427366A1 (en) Bi-plane wireless power transmission pad
US9824809B2 (en) Modular transformer system
JPWO2013145788A1 (en) Power transmission device, electronic device and wireless power transmission system
JP6628273B2 (en) Non-contact power transmission device
CN101145702A (en) Non-contact feeding device for elevator car
CN107733095B (en) Desktop wireless power supply system and power supply control method
CN103532251A (en) Electromagnetic induction charging system of energy-storage electromobile
WO2015076274A1 (en) Coil unit and contactless power transfer device
CN105811788A (en) High potential energy supply system used for high voltage power electronic device
JP6455798B2 (en) Coil unit
JP2015106938A (en) Power transmission coil unit and wireless power transmission device
Maruyama et al. A study on the design method of the light weight coils for a high power contactless power transfer systems
Sharma Application of wireless power transfer for home appliances using inductive resonance coupling
CN204465364U (en) A kind of high voltage electric and electronic device high potential energy supplying system
JP6780909B2 (en) Non-contact power transmission circuit and non-contact power transmission device
CN206098109U (en) Transposition line of reactor winding coil
JP6365108B2 (en) Coil unit
WO2012169728A2 (en) Resonant coil, wireless power transmitter using the same, wireless power receiver using the same
JP6365110B2 (en) Coil unit
CN105513773A (en) Transformer, integrated transformer circuit and inverter welding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190911

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191127

R150 Certificate of patent or registration of utility model

Ref document number: 6628273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250