JP6627213B2 - Bottom-gate / bottom-contact thin film transistor, method of manufacturing bottom-gate / bottom-contact thin film transistor, and image display device - Google Patents

Bottom-gate / bottom-contact thin film transistor, method of manufacturing bottom-gate / bottom-contact thin film transistor, and image display device Download PDF

Info

Publication number
JP6627213B2
JP6627213B2 JP2014221310A JP2014221310A JP6627213B2 JP 6627213 B2 JP6627213 B2 JP 6627213B2 JP 2014221310 A JP2014221310 A JP 2014221310A JP 2014221310 A JP2014221310 A JP 2014221310A JP 6627213 B2 JP6627213 B2 JP 6627213B2
Authority
JP
Japan
Prior art keywords
gate
thin film
film transistor
electrode
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014221310A
Other languages
Japanese (ja)
Other versions
JP2016092059A (en
Inventor
妃奈 中條
妃奈 中條
亮平 松原
亮平 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2014221310A priority Critical patent/JP6627213B2/en
Publication of JP2016092059A publication Critical patent/JP2016092059A/en
Application granted granted Critical
Publication of JP6627213B2 publication Critical patent/JP6627213B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は薄膜トランジスタ、薄膜トランジスタの製造方法および画像表示装置に関する。   The present invention relates to a thin film transistor, a method for manufacturing a thin film transistor, and an image display device.

薄膜トランジスタでは、半導体層7上に保護層8を形成することで、前記半導体層7の劣化を防止する(図2および3参照)。また、ドレイン電極5と画素電極12を接続することで画像表示装置を駆動する。一方で、ソース配線6と画素電極12が接続されると誤った駆動をしてしまう。その防止策として保護層8の幅を太くしソース配線を覆う方法がある。しかしながら前記ソース配線が誤って画素電極12に接続されるのを回避するために、前記保護層8の幅を太くしてソース配線を覆う時、同時にドレイン電極5も覆ってしまい画素電極12との接続ができなくなってしまうことがある。   In the thin film transistor, the protection layer 8 is formed on the semiconductor layer 7 to prevent the semiconductor layer 7 from being deteriorated (see FIGS. 2 and 3). Further, the image display device is driven by connecting the drain electrode 5 and the pixel electrode 12. On the other hand, if the source line 6 and the pixel electrode 12 are connected, erroneous driving will be performed. As a preventive measure, there is a method of increasing the width of the protective layer 8 to cover the source wiring. However, in order to prevent the source line from being connected to the pixel electrode 12 by mistake, when the width of the protective layer 8 is increased to cover the source line, the drain electrode 5 is also covered at the same time, and Connection may not be possible.

特開2011−249674号公報JP 2011-24967 A

本発明は、前記ソース配線を保護層で覆う時に誤って前記ドレイン電極をも覆ってしまうことの無い薄膜トランジスタの製造方法、およびその方法で製造した薄膜トランジスタ、および画像表示装置を提供することを課題とする。   An object of the present invention is to provide a method of manufacturing a thin film transistor that does not erroneously cover the drain electrode when the source wiring is covered with a protective layer, and a thin film transistor manufactured by the method, and an image display device. I do.

上記の課題を解決する手段として、請求項1に記載の発明は、ボトムゲート・ボトムコンタクト型の薄膜トランジスタにおいて、
支持体である基板上に等間隔に且つストライプ状に形成されたゲート電極と、
前記ゲート電極と基板を被覆するゲート絶縁体層上に形成されたソース電極と、画素電極を有さず、平面視で前記ソース配線と平行な向きを有する部分と、前記ソース配線に直交する向きを有する部分からなるL字型であり、かつ前記ソース配線に直交する向きを有する部分が、前記ソース配線と平行な向きを有する部分より短いドレイン電極の間を接続し、且つ前記ゲート電極と直交する形で、相互に等間隔かつ平行に形成されたストライプ状の半導体層と、
前記半導体層とソース電極および前記半導体層と平行に並ぶソース電極を並列に接続するソース配線を被覆する形で、前記半導体層を保護するための保護層が形成されてなり、
前記半導体層の中心に対して前記保護層の中心が、前記ソース配線側にオフセットしており、前記保護層が前記ソース配線の上面及び側面と、少なくとも前記ドレイン電極表面の前記半導体層を被覆し、前記ドレイン電極と別体の画素電極を有することを特徴とするボトムゲート・ボトムコンタクト型の薄膜トランジスタである。

As means for solving the above problems, the invention according to claim 1 is directed to a bottom-gate / bottom-contact thin film transistor,
A gate electrode formed at regular intervals and in a stripe shape on a substrate as a support,
A source electrode formed on a gate insulator layer covering the gate electrode and a substrate, a portion having no pixel electrode and having a direction parallel to the source wiring in plan view, and a direction orthogonal to the source wiring; A portion having an L-shape and having a direction orthogonal to the source wiring connects between drain electrodes shorter than a portion having a direction parallel to the source wiring , and is orthogonal to the gate electrode. In the form of a striped semiconductor layer formed at regular intervals and parallel to each other,
A protective layer for protecting the semiconductor layer is formed so as to cover a source line connecting the semiconductor layer and the source electrode and the source electrode arranged in parallel with the semiconductor layer in parallel,
The center of the protective layer is offset to the source wiring side with respect to the center of the semiconductor layer, and the protective layer covers the upper surface and side surfaces of the source wiring and at least the semiconductor layer on the surface of the drain electrode. And a bottom-gate / bottom-contact thin film transistor having a pixel electrode separate from the drain electrode .

また、請求項2に記載の発明は、前記半導体層が有機半導体を含む材料からなることを特徴とする請求項1に記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタである。   The invention according to claim 2 is the bottom gate / bottom contact thin film transistor according to claim 1, wherein the semiconductor layer is made of a material containing an organic semiconductor.

また、請求項3に記載の発明は、前記保護層が無機化合物を含む材料からなることを特徴とする請求項1または2に記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタである。   The invention according to claim 3 is the bottom gate / bottom contact type thin film transistor according to claim 1 or 2, wherein the protective layer is made of a material containing an inorganic compound.

また、請求項4に記載の発明は、前記保護層が有機物を含む材料からなることを特徴とする請求項1〜3のいずれかに記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタである。   The invention according to claim 4 is the bottom gate / bottom contact thin film transistor according to any one of claims 1 to 3, wherein the protective layer is made of a material containing an organic substance.

また、請求項5に記載の発明は、前記保護層が無機化合物と有機物の混合物を含む材料からなることを特徴とする請求項1〜4のいずれかに記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタである。   The invention according to claim 5 is the bottom-gate / bottom-contact thin-film transistor according to claim 1, wherein the protective layer is made of a material containing a mixture of an inorganic compound and an organic substance. It is.

また、請求項6に記載の発明は、請求項1〜5のいずれかに記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタの製造方法であって、
薄膜トランジスタの支持体となる基板上にゲート電極を形成する工程と、
前記ゲート電極と前記基板上にゲート絶縁体層を形成する工程と、
前記ゲート絶縁体層上に、前記ソース配線とソース電極と、画素電極を有さず、平面視で前記ソース配線と平行な向きを有する部分と、前記ソース配線に直交する向きを有する部分からなるL字型であり、かつ前記ソース配線に直交する向きを有する部分が、前記ソース配線と平行な向きを有する部分より短いドレイン電極を形成する工程
と、
前記半導体層の形成工程と、
前記保護層の形成工程と、を備えており、
前記保護層の形成工程は、前記ソース配線の上面及び側面と前記ソース電極と、少なくとも前記ドレイン電極上面の前記半導体層を被覆するように形成することを特徴とするボトムゲート・ボトムコンタクト型の薄膜トランジスタの製造方法である。
The invention according to claim 6 is a method for manufacturing a bottom-gate / bottom-contact thin film transistor according to any one of claims 1 to 5,
Forming a gate electrode on a substrate serving as a support for the thin film transistor;
Forming a gate insulator layer on the gate electrode and the substrate;
On the gate insulator layer, the source line, the source electrode , a portion having no pixel electrode and having a direction parallel to the source line in plan view, and a portion having a direction orthogonal to the source line. Forming a drain electrode which is L-shaped and has a direction perpendicular to the source wiring, and which is shorter than a part having a direction parallel to the source wiring ;
Forming the semiconductor layer,
Forming the protective layer,
A bottom-gate / bottom-contact thin film transistor, wherein the protective layer is formed so as to cover an upper surface and a side surface of the source wiring , the source electrode, and at least the semiconductor layer on an upper surface of the drain electrode. Is a manufacturing method.

また、請求項7に記載の発明は、前記半導体層が塗布法にて形成されることを特徴とする請求項6に記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタの製造方法である。   The invention according to claim 7 is the method for manufacturing a bottom-gate / bottom-contact thin film transistor according to claim 6, wherein the semiconductor layer is formed by a coating method.

また、請求項8に記載の発明は、前記保護層が塗布法にて形成されることを特徴とする請求項6または7に記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタの製造方法である。   The invention according to claim 8 is the method for manufacturing a bottom-gate / bottom-contact thin film transistor according to claim 6 or 7, wherein the protective layer is formed by a coating method.

また、請求項9に記載の発明は、前記保護層のソース電極およびドレイン電極の幅方向に直交する方向の中心が、前記半導体層のソース電極およびドレイン電極の幅方向に直交する方向の中心から、前記ソース配線と前記半導体層を被覆するように前記ソース配線側にオフセットして形成することを特徴とする請求項6〜8のいずれかに記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタの製造方法である。   According to a ninth aspect of the present invention, the center of the protective layer in the direction orthogonal to the width direction of the source electrode and the drain electrode is from the center of the semiconductor layer in the direction orthogonal to the width direction of the source electrode and the drain electrode. 9. The method of manufacturing a bottom-gate / bottom-contact thin film transistor according to claim 6, wherein the source line and the semiconductor layer are formed so as to be offset to the side of the source line so as to cover the semiconductor layer. It is.

また、請求項10に記載の発明は、前記塗布法は、凸版印刷、凹版印刷、平版印刷、スクリーン印刷、インクジェット、熱転写印刷、ディスペンサ、スピンコート、ダイコート、マイクログラビアコート、ディップコートのいずれかであることを特徴とする請求項7〜のいずれかに記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタの製造方法である。 In the invention according to claim 10, the coating method is any one of a relief printing, an intaglio printing, a lithographic printing, a screen printing, an ink jet, a thermal transfer printing, a dispenser, a spin coat, a die coat, a microgravure coat, and a dip coat. a bottom-gate bottom-contact thin film transistor manufacturing method according to any one of claims 7-8, characterized in that.

また、請求項11に記載の発明は、請求項1〜5のいずれかに記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタを使用したことを特徴とする画像表示装置である。   An eleventh aspect of the present invention is an image display device using the bottom gate / bottom contact type thin film transistor according to any one of the first to fifth aspects.

また、請求項12に記載の発明は、画像表示装置が、電気泳動型反射表示装置、透過型液晶表示装置、反射型液晶表示装置、半透過型液晶表示装置、有機EL表示装置および無機EL表示装置のいずれかであることを特徴とする請求項11に記載の画像表示装置である。 According to a twelfth aspect of the present invention, the image display device is an electrophoretic reflective display device, a transmissive liquid crystal display device, a reflective liquid crystal display device, a transflective liquid crystal display device, an organic EL display device, and an inorganic EL display. The image display device according to claim 11, wherein the image display device is any one of devices.

本発明によれば、前記保護層をソース電極およびドレイン電極の幅方向に平行にストライプ状に形成する際に、前記半導体層のソース電極およびドレイン電極の幅方向に直交する方向の中心に対して、前記保護層のソース電極およびドレイン電極の幅方向に直交する方向の中心を、前記ソース電極の幅方向に平行で、ソース電極を並列に接続するソース配線側にオフセットすることで、前記半導体層だけでなく前記ソース配線も被覆することで
保護し、前記ソース配線と前記画素電極が接続することをなくす事により、画像表示時の誤った駆動を防止することが可能である。
According to the present invention, when the protective layer is formed in a stripe shape in parallel with the width direction of the source electrode and the drain electrode, with respect to the center of the semiconductor layer in the direction orthogonal to the width direction of the source electrode and the drain electrode. By offsetting the center of the protective layer in the direction perpendicular to the width direction of the source electrode and the drain electrode toward the source wiring side parallel to the width direction of the source electrode and connecting the source electrodes in parallel, the semiconductor layer In addition, it is possible to protect the source wiring by covering it and to prevent the source wiring from being connected to the pixel electrode, thereby preventing erroneous driving during image display.

本発明の保護層がソース配線と半導体層を被覆した薄膜トランジスタアレイの薄膜トランジスタの構造(a)および画素電極、画像表示装置を接続した薄膜トランジスタの構造(b)の一例を示す側断面図。FIG. 4 is a side sectional view showing an example of the structure of a thin film transistor (a) of a thin film transistor array in which a protective layer of the present invention covers a source wiring and a semiconductor layer, and a structure (b) of a thin film transistor in which a pixel electrode and an image display device are connected. 図1に対応した平面図であって、保護層がソース配線と半導体層を被覆した薄膜トランジスタの構造の一例を示す平面図。FIG. 2 is a plan view corresponding to FIG. 1, showing an example of the structure of a thin film transistor in which a protective layer covers a source wiring and a semiconductor layer. 保護層が無い薄膜トランジスタの構造の一例を示した平面図。FIG. 3 is a plan view illustrating an example of a structure of a thin film transistor without a protective layer. 図1に対して、保護層と画素電極間に層間絶縁体層を形成した構造の一例を示す側断面図。FIG. 2 is a side sectional view showing an example of a structure in which an interlayer insulator layer is formed between a protective layer and a pixel electrode with respect to FIG. 従来の薄膜トランジスタおよび画像表示装置の構造の一例を示した側断面図であって、図1に対して、保護層をオフセットせずに形成した構造の一例を示す側断面図。FIG. 2 is a side cross-sectional view illustrating an example of the structure of a conventional thin film transistor and an image display device, and is a side cross-sectional view illustrating an example of a structure in which a protective layer is formed without being offset with respect to FIG. 従来の薄膜トランジスタおよび画像表示装置の構造の一例を示した側断面図であって、図1に対して、保護層をオフセットせずに形成した構造の一例を示す側断面図。FIG. 2 is a side cross-sectional view illustrating an example of the structure of a conventional thin film transistor and an image display device, and is a side cross-sectional view illustrating an example of a structure in which a protective layer is formed without being offset with respect to FIG. 従来の薄膜トランジスタおよび画像表示装置の構造の一例を示した側断面図であって、図4に対して、保護層をオフセットせずに形成した構造の一例を示す側断面図。FIG. 5 is a side cross-sectional view illustrating an example of the structure of a conventional thin film transistor and an image display device, and is a side cross-sectional view illustrating an example of a structure in which a protective layer is formed without being offset with respect to FIG.

本発明の薄膜トランジスタの製造方法を一実施形態に基づいて以下説明する。
図1(a)は、図2にその平面図を示した薄膜トランジスタアレイの側断面図の一例を示したものであって、ソース電極4とドレイン電極5に挟まれた部位のスリット部に沿ってストライプ状に形成された半導体層7とソース配線の上に、保護層8をソース配線側にオフセットしてストライプ状に形成し、それらを被覆することで、前記半導体層7と前記ソース配線を保護し、且つ画素電極12を形成した際の誤った接続を防止することが可能である。図1(b)は、図1(a)の薄膜トランジスタアレイを使用して作製した画像表示装置の側断面図の例である。
A method for manufacturing a thin film transistor according to the present invention will be described below based on one embodiment.
FIG. 1A shows an example of a side cross-sectional view of the thin film transistor array whose top view is shown in FIG. 2 and is taken along a slit portion between a source electrode 4 and a drain electrode 5. The semiconductor layer 7 and the source wiring are protected by forming a protective layer 8 in a stripe shape on the semiconductor layer 7 and the source wiring formed in a stripe shape, offset to the source wiring side, and covering them. In addition, it is possible to prevent erroneous connection when the pixel electrode 12 is formed. FIG. 1B is an example of a side sectional view of an image display device manufactured by using the thin film transistor array of FIG.

図1と図2を使用して薄膜トランジスタの製造工程を説明する。まず、基板1上にゲート電極2のストライプ状のパターンを、等間隔に、且つ相互に平行に形成する。次に、前記基板1およびゲート電極2上にゲート絶縁体層3をほぼ基板1の全面に形成する。ゲート絶縁体層3の形成は全面でなくても良く、少なくとも薄膜トランジスタ素子が形成される部位にゲート絶縁体層として形成されていれば良い。次に、前記ゲート絶縁体層3の上に、ソース電極4およびドレイン電極5のパターンを形成する。図示していないが、同時に基板1上にマトリックス状に形成されるソース電極4とドレイン電極5のうち、ソース電極4をゲート電極2と直交する方向に並列接続するように、等間隔且つ相互に平行なストライプ状にソース配線6を形成する(図3参照)。前記ゲート電極2と前記ゲート絶縁体層3と前記ソース電極4および前記ドレイン電極5を形成した前記基板1の上のうち、ソース電極4とドレイン電極5間に、それらの電極に挟まれた部位に、それらの電極を接続する形で半導体層7を形成する。更に具体的には、薄膜トランジスタのソース電極4とドレイン電極5は通常、均一な電極間距離を隔て、且つ各電極の幅方向がその電極間距離より大きく形成されるのが通常である。半導体層7は、そのソース電極4とドレイン電極5の間に、それらの電極と重さなるように形成される。このようにする事で、各電極と半導体層7の電気的な接続が確実なものになる。   The manufacturing process of the thin film transistor will be described with reference to FIGS. First, a stripe pattern of the gate electrode 2 is formed on the substrate 1 at regular intervals and in parallel with each other. Next, a gate insulator layer 3 is formed on substantially the entire surface of the substrate 1 on the substrate 1 and the gate electrode 2. The gate insulator layer 3 need not be formed on the entire surface, but may be formed as a gate insulator layer at least at a portion where a thin film transistor element is formed. Next, a pattern of the source electrode 4 and the drain electrode 5 is formed on the gate insulator layer 3. Although not shown, of the source electrode 4 and the drain electrode 5 simultaneously formed in a matrix on the substrate 1, the source electrode 4 and the drain electrode 5 are equally spaced and mutually connected so as to be connected in parallel in a direction orthogonal to the gate electrode 2. The source lines 6 are formed in parallel stripes (see FIG. 3). On the substrate 1 on which the gate electrode 2, the gate insulator layer 3, the source electrode 4 and the drain electrode 5 are formed, a portion sandwiched between the source electrode 4 and the drain electrode 5 between the electrodes. Then, a semiconductor layer 7 is formed in such a manner that these electrodes are connected. More specifically, the source electrode 4 and the drain electrode 5 of the thin film transistor are usually formed with a uniform distance between the electrodes, and the width direction of each electrode is generally formed larger than the distance between the electrodes. The semiconductor layer 7 is formed between the source electrode 4 and the drain electrode 5 so as to overlap with those electrodes. By doing so, the electrical connection between each electrode and the semiconductor layer 7 is ensured.

このようにして形成された半導体層7の直下には、ゲート絶縁体層3を介してゲート電極2が、ソース電極4とドレイン電極5に重なるように形成されており、そのゲート電極2の電圧によって制御された電流が流れるチャネル部が、ソース電極4とドレイン電極5の間の半導体層7のゲート絶縁体層3側に形成される。   Immediately below the semiconductor layer 7 thus formed, the gate electrode 2 is formed via the gate insulator layer 3 so as to overlap the source electrode 4 and the drain electrode 5. Is formed on the gate insulator layer 3 side of the semiconductor layer 7 between the source electrode 4 and the drain electrode 5.

次いで、図1(a)では、前記ゲート電極2と前記ゲート絶縁体層3と前記ソース電極4および前記ドレイン電極5と前記半導体層7を形成した前記基板1の上に、半導体層7におけるソース電極4からドレイン電極5に向かう方向、またはその逆方向(以後、チャネル方向と記す)の中心、言い換えればチャネル方向の半導体層7の中心9に対して、チャネル方向の保護層8の中心10を、前記ソース配線側にオフセットして半導体層7およびソース配線が保護層8によって被覆されるように形成する。このようにすることで、半導体層7に沿って形成するストライプ状の保護層8の幅を、必要以上に太くする必要が無くなり、ドレイン電極5が保護層8によって被覆されてしまうことを回避できる。   Next, in FIG. 1A, the source in the semiconductor layer 7 is placed on the substrate 1 on which the gate electrode 2, the gate insulator layer 3, the source electrode 4, the drain electrode 5, and the semiconductor layer 7 are formed. The center 10 of the protective layer 8 in the channel direction is set with respect to the center in the direction from the electrode 4 to the drain electrode 5 or in the opposite direction (hereinafter referred to as the channel direction), that is, the center 9 of the semiconductor layer 7 in the channel direction. The semiconductor layer 7 and the source wiring are formed so as to be covered with the protective layer 8 offset from the source wiring. By doing so, it is not necessary to make the width of the stripe-shaped protection layer 8 formed along the semiconductor layer 7 unnecessarily large, so that the drain electrode 5 can be prevented from being covered with the protection layer 8. .

本発明の実施形態における基板1に用いる材料は、特に限定されるものではなく、使用可能な材料として、例えばポリエチレンテレフタレート(PET)やポリイミド、ポリエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)、ポリカーボネートなどのフレキシブルなプラスチック材料、石英などのガラス基板やシリコンウェハーなどがある。しかしながら、フレキシブル化や各プロセス温度などを考慮すると、基板としてPENやポリイミドなどを用いることが望ましい。   The material used for the substrate 1 in the embodiment of the present invention is not particularly limited. Examples of usable materials include polyethylene terephthalate (PET), polyimide, polyether sulfone (PES), polyethylene naphthalate (PEN), There are flexible plastic materials such as polycarbonate, glass substrates such as quartz, and silicon wafers. However, considering flexibility and each process temperature, it is desirable to use PEN or polyimide as the substrate.

本発明の実施形態において、ゲート電極2とソース電極4およびドレイン電極5の電極材料として用いられる材料は、特に限定されるものではないが、使用可能な材料には、金、白金、ニッケル、インジウム錫酸化物などの金属あるいは酸化物の薄膜若しくはポリ(3、4−エチレンジオキシチオフェン)/ポリスチレンスルホネート(PEDOT/PSS)やポリアニリンなどの導電性高分子や金や銀、ニッケルなどの金属コロイド粒子を分散させた溶液若しくは銀など金属粒子を導電材料として用いた厚膜ペーストなどがある。ゲート電極2を形成する方法としては、インクジェット法、フレキソ印刷、スクリーン印刷、ディスペンサなどがある。   In the embodiment of the present invention, the material used as the electrode material of the gate electrode 2, the source electrode 4, and the drain electrode 5 is not particularly limited, but usable materials include gold, platinum, nickel, and indium. Thin film of metal or oxide such as tin oxide or conductive polymer such as poly (3,4-ethylenedioxythiophene) / polystyrenesulfonate (PEDOT / PSS) or polyaniline, or metal colloid particles such as gold, silver or nickel Or a thick film paste using metal particles such as silver as a conductive material. Examples of a method for forming the gate electrode 2 include an inkjet method, flexographic printing, screen printing, a dispenser, and the like.

本発明の実施形態において、ゲート絶縁体層3として用いられる材料は、特に限定されるものではないが、使用可能な材料には、ポリビニルフェノール、ポリメタクリル酸メチル、ポリイミド、ポリビニルアルコールなどの高分子溶液、アルミナやシリカゲルなどの粒子を分散させた溶液などがある。   In the embodiment of the present invention, the material used for the gate insulator layer 3 is not particularly limited, but usable materials include polymers such as polyvinyl phenol, polymethyl methacrylate, polyimide, and polyvinyl alcohol. Solutions include solutions in which particles such as alumina and silica gel are dispersed.

本発明の実施形態において、半導体層7の半導体材料として用いられる材料は、特に限定されるものではないが、使用可能な材料には、ポリチオフェン、ポリアリルアミン、フルオレンビチオフェン共重合体、およびそれらの誘導体のような高分子有機半導体材料、およびペンタセン、テトラセン、銅フタロシアニン、ペリレン、およびそれらの誘導体のような低分子有機半導体材料を用いることができるが、低コスト化、フレキシブル化、大面積化を考慮すると印刷法が適用できる有機半導体を用いることが望ましい。   In the embodiment of the present invention, the material used as the semiconductor material of the semiconductor layer 7 is not particularly limited. Examples of usable materials include polythiophene, polyallylamine, fluorenebithiophene copolymer, and the like. High molecular weight organic semiconductor materials such as derivatives and low molecular weight organic semiconductor materials such as pentacene, tetracene, copper phthalocyanine, perylene and derivatives thereof can be used, but cost reduction, flexibility and large area can be achieved. Considering this, it is desirable to use an organic semiconductor to which a printing method can be applied.

次に、本発明の実施例について説明する。
<実施例1>
図2に示したように、まず基板上の互いに平行且つ等間隔に複数のゲート電極2を形成した。基板には、厚さ125μmのPEN(ポリエチレンナフタレート)フィルムを使用し、ゲート電極2の形成には、銀ナノ粒子インキを使用し、転写印刷法を用いて、PENフィルムに転写し、180℃、1時間の焼成にて、膜厚0.2μmのゲート電極パターンを形成した。
Next, examples of the present invention will be described.
<Example 1>
As shown in FIG. 2, first, a plurality of gate electrodes 2 were formed on the substrate in parallel and at equal intervals. A PEN (polyethylene naphthalate) film having a thickness of 125 μm is used for the substrate, and silver nanoparticle ink is used for forming the gate electrode 2, and is transferred to the PEN film using a transfer printing method. A gate electrode pattern having a thickness of 0.2 μm was formed by baking for 1 hour.

次に、ゲート電極2を含む基板上に、ゲート絶縁体層3を形成する。ゲート絶縁体層3を形成する材料には、ポリビニルフェノールをトルエンに50wt%溶解した溶液を、ダイコータで塗布し、その後180℃、60分間、クリーンオーブンにて乾燥した。   Next, the gate insulator layer 3 is formed on the substrate including the gate electrode 2. As a material for forming the gate insulator layer 3, a solution in which polyvinyl phenol was dissolved at 50 wt% in toluene was applied by a die coater, and then dried at 180 ° C. for 60 minutes in a clean oven.

次に、ゲート絶縁体層3上に、ソース電極4、ドレイン電極5、ソース配線6を一括して形成した。使用した材料は、ゲート電極2を形成した材料と同じ材料を使用し、パターン形成方法も同じ方法を使用した。   Next, the source electrode 4, the drain electrode 5, and the source wiring 6 were collectively formed on the gate insulator layer 3. The same material as that used to form the gate electrode 2 was used, and the same pattern forming method was used.

次に、ソース電極4とドレイン電極5が対向するチャネル部を覆う形で半導体層7を形成した。半導体層7の材料としては、フルオレン−ビチオフェンコポリマー(F8T2)をテトラリンで1.0重量%になるように溶解した溶液を用い、電極の形成に用いたのと同じ方法にて、半導体層7のパターンを形成し、その後、100℃、60分間、クリーンオーブンにて乾燥した。   Next, the semiconductor layer 7 was formed so as to cover the channel portion where the source electrode 4 and the drain electrode 5 faced each other. As a material of the semiconductor layer 7, a solution in which a fluorene-bithiophene copolymer (F8T2) is dissolved in tetralin so as to be 1.0% by weight is used, and the semiconductor layer 7 is formed by the same method as that used for forming the electrode. And then dried in a clean oven at 100 ° C. for 60 minutes.

次に、図1に示したように、半導体層7に対して、保護層8をソース配線6側(図3参照)にオフセットすることにより、半導体層7だけでなくソース配線6も被覆するように保護層8を形成した。   Next, as shown in FIG. 1, the protective layer 8 is offset from the semiconductor layer 7 toward the source wiring 6 (see FIG. 3) so that not only the semiconductor layer 7 but also the source wiring 6 is covered. Then, a protective layer 8 was formed.

保護層8の材料としては、ポリビニルアルコールを純水に5重量%で溶解させたインキを用い、転写印刷法を用いて保護層8のパターンを形成後、180℃、60分間、クリーンオーブンにて乾燥することにより、乾燥後の厚さ3μmの保護層8を形成した。   As a material for the protective layer 8, an ink in which polyvinyl alcohol is dissolved in pure water at 5% by weight is used, a pattern of the protective layer 8 is formed by using a transfer printing method, and then, at 180 ° C. for 60 minutes in a clean oven. By drying, a protective layer 8 having a thickness of 3 μm after drying was formed.

次に、図2に示す画素電極12を形成した。   Next, the pixel electrode 12 shown in FIG. 2 was formed.

画素電極12を形成する材料には、銀ナノ粒子インキを使用し、転写印刷法を用いて、PENフィルムに転写し、180℃、1時間の焼成にて、画素電極パターンを形成した。   As a material for forming the pixel electrode 12, silver nanoparticle ink was used, transferred to a PEN film using a transfer printing method, and baked at 180 ° C. for 1 hour to form a pixel electrode pattern.

次に、画素電極12まで形成した薄膜トランジスタアレイを使用して画像表示装置として液晶表示装置を作製した。   Next, a liquid crystal display device was manufactured as an image display device using the thin film transistor array formed up to the pixel electrode 12.

このようにして、半導体層7に対してソース配線6側にオフセットして保護層8を形成することで、ソース配線6と画像表示装置の画素電極12が接触しないため誤った駆動が起こらない薄膜トランジスタアレイおよび画像表示装置を作製することができる。   In this manner, the protective layer 8 is formed so as to be offset from the semiconductor layer 7 toward the source wiring 6, so that the source wiring 6 and the pixel electrode 12 of the image display device do not contact each other, so that the thin film transistor does not cause erroneous driving. Arrays and image displays can be made.

<実施例2>
図1に示したように、まず基板1上に互いに平行且つ等間隔に複数のゲート電極2を形成した。基板1には、厚さ125μmのPEN(ポリエチレンナフタレート)フィルムを使用し、ゲート電極2の形成には、銀ナノ粒子インキを使用し、転写印刷法を用いて、PENフィルムに転写し、180℃、1時間の焼成にて、膜厚0.2μmのゲート電極パターンを形成した。
<Example 2>
As shown in FIG. 1, first, a plurality of gate electrodes 2 were formed on a substrate 1 in parallel and at equal intervals. A PEN (polyethylene naphthalate) film having a thickness of 125 μm is used for the substrate 1, silver nanoparticle ink is used for forming the gate electrode 2, and the gate electrode 2 is transferred to the PEN film using a transfer printing method. A gate electrode pattern having a thickness of 0.2 μm was formed by baking at 1 ° C. for 1 hour.

次に、ゲート電極2を含む基板上に、ゲート絶縁体層3を形成する。ゲート絶縁体層3を形成する材料には、ポリビニルフェノールをトルエンに50wt%溶解した溶液を、ダイコータで塗布し、その後180℃、60分間、クリーンオーブンにて乾燥した。   Next, the gate insulator layer 3 is formed on the substrate including the gate electrode 2. As a material for forming the gate insulator layer 3, a solution in which polyvinyl phenol was dissolved at 50 wt% in toluene was applied by a die coater, and then dried at 180 ° C. for 60 minutes in a clean oven.

次に、ゲート絶縁体層3上に、ソース電極4、ドレイン電極5、ソース配線6を一括して形成した。使用した材料は、ゲート電極2を形成した材料と同じ材料を使用し、パターン形成方法も同じ方法を使用した。   Next, the source electrode 4, the drain electrode 5, and the source wiring 6 were collectively formed on the gate insulator layer 3. The same material as that used to form the gate electrode 2 was used, and the same pattern forming method was used.

次に、ソース電極4とドレイン電極5が対向するチャネル部を覆う形で半導体層7を形成した。半導体層7の材料としては、フルオレン−ビチオフェンコポリマー(F8T2)をテトラリンで1.0重量%になるように溶解した溶液を用い、電極の形成に用いたのと同じ方法にて、半導体層7のパターンを形成し、その後、100℃、60分間、クリーン
オーブンにて乾燥した。
Next, the semiconductor layer 7 was formed so as to cover the channel portion where the source electrode 4 and the drain electrode 5 faced each other. As a material of the semiconductor layer 7, a solution in which a fluorene-bithiophene copolymer (F8T2) is dissolved in tetralin so as to be 1.0% by weight is used, and the semiconductor layer 7 is formed by the same method as that used for forming the electrode. And then dried in a clean oven at 100 ° C. for 60 minutes.

次に、図1に示したように、半導体層7に対して、保護層8をソース配線6側(図3参照)にオフセットすることにより、半導体層7だけでなくソース配線6も被覆するように保護層8を形成した。   Next, as shown in FIG. 1, the protective layer 8 is offset from the semiconductor layer 7 toward the source wiring 6 (see FIG. 3) so that not only the semiconductor layer 7 but also the source wiring 6 is covered. Then, a protective layer 8 was formed.

保護層8の材料としては、ポリビニルアルコールを純水に5重量%で溶解させたインキを用い、転写印刷法を用いて保護層8のパターンを形成後、180℃、60分間、クリーンオーブンにて乾燥することにより、乾燥後の厚さ3μmの保護層8を形成した。   As a material for the protective layer 8, an ink in which polyvinyl alcohol is dissolved in pure water at 5% by weight is used, a pattern of the protective layer 8 is formed by using a transfer printing method, and then, at 180 ° C. for 60 minutes in a clean oven. By drying, a protective layer 8 having a thickness of 3 μm after drying was formed.

次に、図4に示す層間絶縁体層16を形成した。   Next, an interlayer insulator layer 16 shown in FIG. 4 was formed.

層間絶縁体層16を形成する材料には感光性樹脂を使用し、ダイコータで塗布し、フォトリソグラフィー法を用いてパターンを形成し、その後180℃、60分間、クリーンオーブンにて乾燥することにより層間絶縁体層16を形成した。   A photosensitive resin is used as a material for forming the interlayer insulator layer 16, applied by a die coater, a pattern is formed by a photolithography method, and then dried at 180 ° C. for 60 minutes in a clean oven. An insulator layer 16 was formed.

次に、図4に示す画素電極12を形成した。   Next, the pixel electrode 12 shown in FIG. 4 was formed.

画素電極12を形成する材料には銀ナノ粒子インキを使用し、転写印刷法を用いて、PENフィルムに転写し、180℃、1時間の焼成にて、画素電極パターンを形成した。   A silver nanoparticle ink was used as a material for forming the pixel electrode 12, and was transferred to a PEN film by a transfer printing method, and baked at 180 ° C. for 1 hour to form a pixel electrode pattern.

次に、画素電極12まで形成した薄膜トランジスタアレイを使用し、画像表示装置として液晶表示装置を作製した。   Next, a liquid crystal display device was manufactured as an image display device using the thin film transistor array formed up to the pixel electrode 12.

このようにして、半導体層7に対してソース配線6側にオフセットして保護層8を形成し、更に層間絶縁体層16を形成することで、ソース配線6と画素電極12が接触しないため誤った駆動が起こらない薄膜トランジスタアレイおよび画像表示装置を作製することができる。   In this way, by forming the protective layer 8 offset to the source wiring 6 side with respect to the semiconductor layer 7 and further forming the interlayer insulating layer 16, the source wiring 6 and the pixel electrode 12 do not come into contact with each other. In this manner, a thin film transistor array and an image display device that do not cause a drive can be manufactured.

<比較例1>
次に、比較例について説明する。
半導体層まで形成する工程は実施例1と全く同様な方法で薄膜トランジスタアレイを作製した。
<Comparative Example 1>
Next, a comparative example will be described.
A thin film transistor array was manufactured in exactly the same manner as in Example 1 except for the step of forming up to the semiconductor layer.

次に、半導体層7´に対してソース配線6´側にオフセットすることなく、半導体層7´上に保護層8´を形成した。それ以外は全て実施例1と同じ方法で薄膜トランジスタアレイおよび画像表示装置を作製した。その結果、ソース配線6´(ソース電極4´)と画素電極12´が接触し、画像表示時に誤った駆動をした(図5参照)。   Next, a protective layer 8 'was formed on the semiconductor layer 7' without being offset toward the source wiring 6 'with respect to the semiconductor layer 7'. Otherwise, a thin film transistor array and an image display device were manufactured in the same manner as in Example 1. As a result, the source wiring 6 ′ (source electrode 4 ′) and the pixel electrode 12 ′ came into contact, and erroneous driving was performed during image display (see FIG. 5).

<比較例2>
比較例1と同じ方法で薄膜トランジスタアレイを作製した。その結果、ドレイン電極5´が保護層8´によって被覆されてしまい、画素電極12´とドレイン電極5´を接続することができなくなった(図6参照)。
<Comparative Example 2>
A thin film transistor array was manufactured in the same manner as in Comparative Example 1. As a result, the drain electrode 5 'was covered with the protective layer 8', and the pixel electrode 12 'and the drain electrode 5' could not be connected (see FIG. 6).

<比較例3>
比較例1と同じ方法で保護層まで薄膜トランジスタアレイを作製した。
<Comparative Example 3>
In the same manner as in Comparative Example 1, a thin film transistor array was formed up to the protective layer.

次に、実施例2と同じ方法で層間絶縁体層16´を形成した。その結果、画像表示時に実施例2に比べコントラスト比が劣化した(図7参照)。   Next, an interlayer insulator layer 16 'was formed in the same manner as in Example 2. As a result, during image display, the contrast ratio was deteriorated as compared with Example 2 (see FIG. 7).

1…基板
2…ゲート電極
3…ゲート絶縁体層
4、4´…ソース電極
5、5´…ドレイン電極
6、6´…ソース配線
7、7´…半導体層
8、8´…保護層
9…半導体層の中心
10…保護層の中心
11…半導体層および保護層
12、12´…画素電極
13、13´…表示媒体
14、14´…対向電極
15、15´…対向基板
16、16´…層間絶縁体層
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Gate electrode 3 ... Gate insulator layer 4, 4 '... Source electrode 5, 5' ... Drain electrode 6, 6 '... Source wiring 7, 7' ... Semiconductor layer 8, 8 '... Protective layer 9 ... Center of semiconductor layer 10 Center of protective layer 11 Semiconductor layer and protective layers 12, 12 'Pixel electrodes 13, 13' Display media 14, 14 'Counter electrodes 15, 15' Counter substrates 16, 16 ' Interlayer insulator layer

Claims (12)

ボトムゲート・ボトムコンタクト型の薄膜トランジスタにおいて、
支持体である基板上に等間隔に且つストライプ状に形成されたゲート電極と、
前記ゲート電極と基板を被覆するゲート絶縁体層上に形成されたソース電極と、画素電極を有さず、平面視でソース配線と平行な向きを有する部分と、前記ソース配線に直交する向きを有する部分からなるL字型であり、かつ前記ソース配線に直交する向きを有する部分が、前記ソース配線と平行な向きを有する部分より短いドレイン電極の間を接続し、且つ前記ゲート電極と直交する形で、相互に等間隔かつ平行に形成されたストライプ状の半導体層と、
前記半導体層とソース電極および前記半導体層と平行に並ぶソース電極を並列に接続するソース配線を被覆する形で、前記半導体層を保護するための保護層が形成されてなり、前記半導体層の中心に対して前記保護層の中心が、前記ソース配線側にオフセットしており、前記保護層が前記ソース配線の上面及び側面と、少なくとも前記ドレイン電極表面の前記半導体層を被覆し、前記ドレイン電極と別体の画素電極を有することを特徴とするボトムゲート・ボトムコンタクト型の薄膜トランジスタ。
In the bottom gate / bottom contact type thin film transistor,
A gate electrode formed at regular intervals and in a stripe shape on a substrate as a support,
A source electrode formed on a gate insulator layer covering the gate electrode and the substrate, a portion having no pixel electrode and having a direction parallel to the source wiring in plan view, and a direction orthogonal to the source wiring. A portion having an L-shape and having a direction orthogonal to the source line connects between drain electrodes shorter than a portion having a direction parallel to the source line, and is orthogonal to the gate electrode. In the form, a stripe-shaped semiconductor layer formed at regular intervals and parallel to each other,
A protective layer for protecting the semiconductor layer is formed so as to cover a source wiring that connects the semiconductor layer and the source electrode and a source electrode that is arranged in parallel with the semiconductor layer in parallel. The center of the protective layer is offset to the source wiring side, the protective layer covers the upper surface and side surfaces of the source wiring, and at least the semiconductor layer on the surface of the drain electrode, and the drain electrode A bottom-gate / bottom-contact thin film transistor including a separate pixel electrode.
前記半導体層が有機半導体を含む材料からなることを特徴とする請求項1に記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタ。   The bottom gate / bottom contact type thin film transistor according to claim 1, wherein the semiconductor layer is made of a material containing an organic semiconductor. 前記保護層が無機化合物を含む材料からなることを特徴とする請求項1または2に記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタ。   3. The bottom-gate / bottom-contact thin film transistor according to claim 1, wherein the protective layer is made of a material containing an inorganic compound. 前記保護層が有機物を含む材料からなることを特徴とする請求項1〜3のいずれかに記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタ。   The bottom-gate / bottom-contact type thin film transistor according to claim 1, wherein the protective layer is made of a material containing an organic substance. 前記保護層が無機化合物と有機物の混合物を含む材料からなることを特徴とする請求項1〜4のいずれかに記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタ。   The bottom-gate / bottom-contact thin film transistor according to claim 1, wherein the protective layer is made of a material containing a mixture of an inorganic compound and an organic substance. 請求項1〜5のいずれかに記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタの製造方法であって、
薄膜トランジスタの支持体となる基板上にゲート電極を形成する工程と、
前記ゲート電極と前記基板上にゲート絶縁体層を形成する工程と、
前記ゲート絶縁体層上に、前記ソース配線とソース電極と、画素電極を有さず、平面視で前記ソース配線と平行な向きを有する部分と、前記ソース配線に直交する向きを有する部分からなるL字型であり、かつ前記ソース配線に直交する向きを有する部分が、前記ソース配線と平行な向きを有する部分より短いドレイン電極を形成する工程
と、
前記半導体層の形成工程と、
前記保護層の形成工程と、を備えており、
前記保護層の形成工程は、前記ソース配線の上面及び側面と前記ソース電極と、少なくとも前記ドレイン電極上面の前記半導体層を被覆するように形成することを特徴とするボトムゲート・ボトムコンタクト型の薄膜トランジスタの製造方法。
A method of manufacturing a bottom-gate / bottom-contact thin film transistor according to claim 1,
Forming a gate electrode on a substrate serving as a support for the thin film transistor;
Forming a gate insulator layer on the gate electrode and the substrate;
On the gate insulator layer, the source line, the source electrode , a portion having no pixel electrode and having a direction parallel to the source line in plan view, and a portion having a direction orthogonal to the source line. Forming a drain electrode which is L-shaped and has a direction perpendicular to the source wiring, and which is shorter than a part having a direction parallel to the source wiring ;
Forming the semiconductor layer,
Forming the protective layer,
A bottom-gate / bottom-contact thin film transistor, wherein the protective layer is formed so as to cover an upper surface and a side surface of the source wiring , the source electrode, and at least the semiconductor layer on an upper surface of the drain electrode. Manufacturing method.
前記半導体層が塗布法にて形成されることを特徴とする請求項6に記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタの製造方法。   7. The method according to claim 6, wherein the semiconductor layer is formed by a coating method. 前記保護層が塗布法にて形成されることを特徴とする請求項6または7に記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタの製造方法。   8. The method according to claim 6, wherein the protective layer is formed by a coating method. 前記保護層のソース電極およびドレイン電極の幅方向に直交する方向の中心が、前記半導体層のソース電極およびドレイン電極の幅方向に直交する方向の中心から、前記ソース配線と前記半導体層を被覆するように前記ソース配線側にオフセットして形成することを特徴とする請求項6〜8のいずれかに記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタの製造方法。   The center of the protective layer in the direction orthogonal to the width direction of the source electrode and the drain electrode covers the source wiring and the semiconductor layer from the center of the semiconductor layer in the direction orthogonal to the width direction of the source electrode and the drain electrode. 9. The method of manufacturing a bottom-gate / bottom-contact thin film transistor according to claim 6, wherein the thin film transistor is formed so as to be offset toward the source wiring. 前記塗布法は、凸版印刷、凹版印刷、平版印刷、スクリーン印刷、インクジェット、熱転写印刷、ディスペンサ、スピンコート、ダイコート、マイクログラビアコート、ディップコートのいずれかであることを特徴とする請求項7〜のいずれかに記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタの製造方法。 The coating method, relief printing, intaglio printing, planographic printing, screen printing, ink jet, thermal transfer printing, a dispenser, spin coating, die coating, micro gravure coating, claim, characterized in that either a dip coating 7-8 The method for producing a bottom-gate / bottom-contact thin film transistor according to any one of the above. 請求項1〜5のいずれかに記載のボトムゲート・ボトムコンタクト型の薄膜トランジスタを使用したことを特徴とする画像表示装置。   An image display device using the bottom-gate / bottom-contact thin film transistor according to claim 1. 画像表示装置が、電気泳動型反射表示装置、透過型液晶表示装置、反射型液晶表示装置、半透過型液晶表示装置、有機EL表示装置および無機EL表示装置のいずれかであることを特徴とする請求項11に記載の画像表示装置。
The image display device is any one of an electrophoretic reflective display device, a transmissive liquid crystal display device, a reflective liquid crystal display device, a transflective liquid crystal display device, an organic EL display device, and an inorganic EL display device. The image display device according to claim 11.
JP2014221310A 2014-10-30 2014-10-30 Bottom-gate / bottom-contact thin film transistor, method of manufacturing bottom-gate / bottom-contact thin film transistor, and image display device Expired - Fee Related JP6627213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014221310A JP6627213B2 (en) 2014-10-30 2014-10-30 Bottom-gate / bottom-contact thin film transistor, method of manufacturing bottom-gate / bottom-contact thin film transistor, and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014221310A JP6627213B2 (en) 2014-10-30 2014-10-30 Bottom-gate / bottom-contact thin film transistor, method of manufacturing bottom-gate / bottom-contact thin film transistor, and image display device

Publications (2)

Publication Number Publication Date
JP2016092059A JP2016092059A (en) 2016-05-23
JP6627213B2 true JP6627213B2 (en) 2020-01-08

Family

ID=56017118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014221310A Expired - Fee Related JP6627213B2 (en) 2014-10-30 2014-10-30 Bottom-gate / bottom-contact thin film transistor, method of manufacturing bottom-gate / bottom-contact thin film transistor, and image display device

Country Status (1)

Country Link
JP (1) JP6627213B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286826B2 (en) * 2007-03-28 2013-09-11 凸版印刷株式会社 Thin film transistor array, method for manufacturing thin film transistor array, and active matrix display
WO2014045543A1 (en) * 2012-09-21 2014-03-27 凸版印刷株式会社 Thin film transistor, method for manufacturing same, and image display apparatus
JP2014067884A (en) * 2012-09-26 2014-04-17 Toppan Printing Co Ltd Thin film transistor and manufacturing method of the same

Also Published As

Publication number Publication date
JP2016092059A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
US8110858B2 (en) Thin film transistor array, method for manufacturing the same, and active matrix type display using the same
US9865664B2 (en) Thin film transistor array and manufacturing method of the same
TWI618228B (en) Thin film transistor, manufacturing method thereof, and image display device
US10374025B2 (en) Thin film transistor array
US20170221968A1 (en) Thin-film transistor array and method of manufacturing the same
US10629654B2 (en) Thin film transistor array formed substrate, image display device substrate and manufacturing method of thin film transistor array formed substrate
JP6627213B2 (en) Bottom-gate / bottom-contact thin film transistor, method of manufacturing bottom-gate / bottom-contact thin film transistor, and image display device
US9735381B2 (en) Thin film transistor array and manufacturing method of the same
WO2014049970A1 (en) Thin film transistor array and image display apparatus
JP2020088117A (en) Thin film transistor array substrate, image display device substrate, image display device, and manufacturing method thereof
JP2016163029A (en) Thin film transistor array, thin film transistor array manufacturing method and pixel display device
TWI646668B (en) Thin film transistor array, manufacturing method thereof, and image display device
JP6244812B2 (en) THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND IMAGE DISPLAY DEVICE
JP6217162B2 (en) THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND IMAGE DISPLAY DEVICE
JP6123413B2 (en) Thin film transistor array and image display device
JP2013074191A (en) Thin film transistor array, manufacturing method therefor, and image display device
JP5532655B2 (en) Organic thin film transistor, method for manufacturing the same, and image display device
JP6627437B2 (en) Method of manufacturing thin film transistor array substrate
JP6390122B2 (en) THIN FILM TRANSISTOR, THIN FILM TRANSISTOR ARRAY MANUFACTURING METHOD, AND IMAGE DISPLAY DEVICE
JP2015195280A (en) Thin film transistor array, manufacturing method thereof, and image display device
JP2019091735A (en) Thin-film transistor array substrate, substrate for image display device, image display device, and method of manufacturing them
JP6428126B2 (en) THIN FILM TRANSISTOR, THIN FILM TRANSISTOR ARRAY MANUFACTURING METHOD, AND IMAGE DISPLAY DEVICE
JP2018182114A (en) Thin film transistor array, manufacturing method of the same, and image display device
JP2017059702A (en) Thin film transistor, thin film transistor array manufacturing method and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6627213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees