JP6624730B2 - Slope stabilization structure - Google Patents

Slope stabilization structure Download PDF

Info

Publication number
JP6624730B2
JP6624730B2 JP2016008892A JP2016008892A JP6624730B2 JP 6624730 B2 JP6624730 B2 JP 6624730B2 JP 2016008892 A JP2016008892 A JP 2016008892A JP 2016008892 A JP2016008892 A JP 2016008892A JP 6624730 B2 JP6624730 B2 JP 6624730B2
Authority
JP
Japan
Prior art keywords
pile
slope
straight
ground
slant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016008892A
Other languages
Japanese (ja)
Other versions
JP2017128921A (en
Inventor
直人 渡邊
直人 渡邊
洋一 鱸
洋一 鱸
Original Assignee
株式会社ケー・エフ・シー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケー・エフ・シー filed Critical 株式会社ケー・エフ・シー
Priority to JP2016008892A priority Critical patent/JP6624730B2/en
Publication of JP2017128921A publication Critical patent/JP2017128921A/en
Application granted granted Critical
Publication of JP6624730B2 publication Critical patent/JP6624730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Description

本発明は、地山に杭を打設して斜面を安定化する斜面の安定化構造に関する。   The present invention relates to a slope stabilizing structure for stabilizing a slope by driving a pile into a ground.

地山に杭を打設して斜面を安定化する手法として、特許文献1の組杭抑止工法が知られている。この組杭抑止工法は、長大切土法面対策として、切土法面における途中の小段に鉛直杭を一列に打設すると共に、その直上部分の斜面に対して斜杭を一列に打設し、これらの杭頭部同士を基礎梁により剛結して組杭とし、斜面を安定化するものである。この工法は、水平力に対して抑止杭的に用いられる地滑り補強であり、用地に十分な余裕がある切土斜面で汎用の鉄筋補強土工法等に組み合わせて用い、引張、曲げ、剪断力等に対して大きな耐力を発現させようとしているものである。   As a technique for stabilizing a slope by driving a pile into the ground, a pile-blocking construction method disclosed in Patent Document 1 is known. In this method, the vertical piles are laid in a row on a small step in the cut slope, and slant piles are laid in a row on the slope immediately above the slope. The pile heads are rigidly connected to each other by a foundation beam to form a pile and stabilize the slope. This method is landslide reinforcement that is used as a pile to prevent horizontal forces. It is used in combination with a general-purpose reinforced soil method on a cut slope where there is sufficient room for the site, and tension, bending, shearing force, etc. It is intended to develop a large proof stress.

また、特許文献2の図11には、地山に補強材として鉄筋と固化材によるパイル(小口径杭)を網目状に打設し、土の変形を抑制するルートパイル工法が示されている。ここで網目状とは、鉄筋芯材入りパイルを方向の異なる斜め網状に打設配置するもので、これにより、土の変形・パイル間の土のすりぬけを抑制し、鉄筋等の補強材と土を一体化させている。 FIG. 11 of Patent Document 2 shows a route pile construction method in which piles (small-diameter piles) made of reinforcing steel and solidified material are laid in a mesh shape as reinforcing materials on the ground to suppress deformation of the soil. . Here, the mesh shape means that the pile containing the rebar core material is cast and arranged in an oblique mesh shape having different directions, thereby suppressing the deformation of the soil and the slipping of the soil between the piles, and the reinforcing material such as reinforcing steel and the soil. Are integrated.

特開2002−275907号公報JP 2002-275907 A 特開2003−268767号公報JP 2003-268767 A

ところで、特許文献1の組杭抑止工法で施工を行う際には、切土法面を上部側から下部側へ段階的に形成しながら、第1の領域Iの途中の小段で鉛直杭と斜杭を一列づつ打設し、これらの杭頭部同士を基礎梁により剛結し、その後、その下側の第2の領域IIを切土形成してまた小段を設け、鉛直杭と斜杭を一列づつ打設して基礎梁により剛結し、という作業を繰り返すため、用地と施工上の制約を大きく受けてしまう。このため、適用範囲が狭く、限られたものとなる。   By the way, when the construction is carried out by the pile pile restraining method of Patent Document 1, while the cut slope is formed in a stepwise manner from the upper side to the lower side, the vertical pile is inclined with the small pile in the middle of the first area I. Pile is piled up one by one, these pile heads are rigidly connected by foundation beam, then the lower second area II is cut and another step is provided. Repeating the work of laying out one row and stiffening it with the foundation beam is repeated, which greatly restricts the site and construction. Therefore, the applicable range is narrow and limited.

また、この組杭抑止工法は鉛直杭と斜杭の組み合わせではあるが、基本的には従来の単列の鉛直杭の曲げ耐力(水平方向支持力)不足を補うために、鉛直杭と斜杭を組み合わせて頭部剛結しただけのものである。そのため、単列の鉛直杭よりは補強効果が見込まれるが、斜杭Nが、鉛直杭Mの背面ですべり面201に対してほぼ直交する状態で背面土圧を全面的に受け止めて剪断力に抗してしまう為、鉛直杭Mにかかる土圧が減って鉛直杭としての支持力は確保されるものの、鉛直杭Aと斜杭Bからなる組杭としての相乗的な補強効果が望めるものではない(図13参照、図中202は切土斜面である)。従って、斜杭の施工で増加する施工コストや施工時間に見合うだけの十分な補強効果の増大があるとは言い難く、コストパフォーマンスに劣る。   In addition, although this pile pile restraint method is a combination of vertical piles and slanted piles, basically, in order to compensate for the lack of bending strength (horizontal bearing capacity) of conventional single row vertical piles, It is just the one with the head rigidly combined. For this reason, a reinforcing effect is expected more than a single row of vertical piles, but the inclined pile N receives the earth pressure on the entire surface in a state substantially perpendicular to the sliding surface 201 on the rear surface of the vertical pile M and reduces the shear force. In order to resist, the earth pressure applied to the vertical pile M is reduced and the supporting force as a vertical pile is secured, but a synergistic reinforcing effect as a set pile composed of the vertical pile A and the inclined pile B can be expected. No (see FIG. 13, 202 is a cut slope in the figure). Accordingly, it is difficult to say that there is a sufficient increase in the reinforcing effect that is compatible with the construction cost and the construction time that are increased by the construction of the inclined pile, and the cost performance is inferior.

また、特許文献2のルートパイル工法は、あくまでも補強土工法であり、土を一体化させることができるように多数の細径補強材を網目状に打設し、土と補強材との相互作用により、補強材が地山の変形に追随して補強効果を発揮できるようにするものである。即ち、すべり力に対する杭の軸抵抗、杭の支持力を期待することができる抑止杭ではない。   In addition, the root pile method of Patent Document 2 is a reinforced earth method, and a large number of small-diameter reinforcing materials are cast in a mesh so that the soil can be integrated, and the interaction between the soil and the reinforcing material. Accordingly, the reinforcing material can exhibit the reinforcing effect following the deformation of the ground. In other words, the pile is not a deterrent pile that can expect the axial resistance of the pile to the sliding force and the supporting force of the pile.

本発明は上記課題に鑑み提案するものであって、地滑り斜面に対して組杭により杭の前面及び杭間の地盤反力を最大限有効に活用することができると共に、用地上の制約や施工上の制約が少なく、汎用性に優れ合理的な斜面の安定化構造を提供することを目的とする。   The present invention has been proposed in view of the above-described problems, and the ground reaction force between the front surface of the pile and the pile can be effectively utilized by the pile group on the landslide slope, and at the same time, restrictions on the ground and construction work. It is an object of the present invention to provide a reasonable slope stabilizing structure which has few restrictions on the above and is excellent in versatility.

本発明の斜面の安定化構造は、地山の斜面内部の一のすべり面に対して略直交方向に、前記一のすべり面の奥側まで打設される直杭と、前記直杭の上側の離間した位置で、前記一のすべり面に対して略直交方向より水平に近づくように傾いて寝て、前記一のすべり面の奥側まで打設される斜杭を有し、地山斜面に沿って離れた位置に配置されている前記直杭の杭頭部と前記斜杭の杭頭部とが剛結され、前記一のすべり面より地山斜面表層に近い側の前記直杭と前記斜杭間に地盤自体が保有する内部応力を維持している非塑性化領域が残されていることを特徴とする。
これによれば、すべり面に対して略直交する方向より水平に近づくように傾いた斜杭が杭背面側の土圧を効果的に支持することにより、斜杭と直杭の間及び直杭の前面側の地盤反力が維持され、杭の前面及び杭間の地盤の塑性化が可及的に抑止される。従って、前後方向に2列をなす組杭として剛結された斜杭と直杭の双方が互いに最大限の支持力を発現して斜面を安定化することができる。即ち、斜杭がすべり面に対して略直交する方向より水平に近づくように傾いている、つまりは寝ていることによって、局所的な剪断力を杭の曲げ耐力だけで抗する状態になるのを避け、長さ方向に応力分散させることができ、土圧分散による地盤反力を効果的に発現させることができる。この結果、斜杭の前面と直杭の間にも外力を受け持つ土圧が発生し、直杭の荷重分担を大幅に減じる一方で、直杭前面側の地盤反力も維持される。そして、斜杭により安定化が保持された地盤中に位置し、すべり面に略直交することで直接的な引張剛性が期待される直杭が組杭の前面に位置することになり、この直杭の配置によって斜杭の変形が防止される。また、直杭と斜杭が頭部剛結されていることでも互いの変形が防止される。これによって、斜杭が直杭を守る一方で直杭が斜杭を守る状態となり、杭背面と杭前面及び杭間の土壌の塑性化が可及的に防止されると共に、斜杭、直杭それぞれが変位発生の早期段階から効果的な支持力を発現できると共に、終局的にも双方の杭が最大限の支持力を発現することができる。また、本発明において直杭、斜杭とは、斜面内部のすべり面に対して略直交方向とそれより水平に近づくように傾く方向に打設されるものであることから、鉛直杭のように斜面途中に段部を形成する必要がなく、施工に当たって用地上の制約や施工上の制約が少なく、汎用性に優れている。また、既存の抑止杭による安定化構造では、大きな抑止力が必要な場合に、杭径を大きくし、杭材質を高張力のものにして対処していたため、施工機械が大型化したり、施工に制約を受けたり、経済性が損なわれていたが、本発明では機動性の良い小口径による組杭を用いても地盤自体が保有する内部応力を崩壊させることなく最大限に活かして大きな抑止力を得、斜面を安定化させることができ、優れた経済性、施工効率で合理的に斜面補強をすることができる。
The slope stabilizing structure of the present invention includes a straight pile that is driven to a depth side of the one slip surface in a direction substantially perpendicular to the one slip surface inside the slope of the ground, and an upper side of the straight pile. at spaced locations, said sleeping inclined to approach horizontally from a direction substantially perpendicular to one of the sliding surface, has a Hasukui being pouring deep side of the one sliding surface, the natural ground slope The pile head of the straight pile and the pile head of the slant pile, which are arranged at positions separated from each other , are rigidly connected, and the straight pile closer to the ground slope surface layer than the one slip surface, A non-plasticized region maintaining the internal stress of the ground itself is left between the inclined piles .
According to this, the inclined piles inclined so as to approach the horizontal from the direction substantially perpendicular to the slip surface effectively support the earth pressure on the back side of the pile, and between the inclined pile and the straight pile and the straight pile. The ground reaction force on the front side of the pile is maintained, and the plasticization of the ground between the pile front and the pile is suppressed as much as possible. Therefore, both the inclined pile and the straight pile rigidly connected as a set of piles in two rows in the front-rear direction can express the maximum supporting force and stabilize the slope. That is, the inclined pile is inclined so as to approach horizontal more than the direction substantially perpendicular to the slip surface, that is, by sleeping, the local shear force is resisted only by the bending strength of the pile. , Stress can be dispersed in the length direction, and the ground reaction force due to the earth pressure dispersion can be effectively developed. As a result, an earth pressure is generated between the front of the inclined pile and the straight pile, which bears the external force, and the load sharing of the straight pile is greatly reduced, while the ground reaction force on the front side of the straight pile is also maintained. Then, the straight pile, which is located in the ground where the stabilization is maintained by the inclined piles and is expected to have a direct tensile rigidity by being substantially perpendicular to the slip surface, is located in front of the group pile. The arrangement of the piles prevents deformation of the slant piles. Further, since the straight pile and the oblique pile are rigidly connected to the head, the mutual deformation is prevented. As a result, the slanted pile protects the straight pile while the straight pile protects the slanted pile, and the plasticization of the soil at the back and front of the pile and between the piles is prevented as much as possible. Each of the piles can exhibit an effective bearing force from an early stage of displacement generation, and both piles can ultimately exhibit a maximum bearing force. Further, in the present invention, the straight pile and the inclined pile are those which are driven in a direction substantially perpendicular to the slip surface inside the slope and in a direction inclined closer to horizontal than the same, so that the vertical pile and the inclined pile are There is no need to form a step in the middle of the slope, and there are few restrictions on the land used in the construction and there are no restrictions on the construction, and the versatility is excellent. In addition, the existing stabilization structure using deterrent piles, when a large deterrent force was required, had to deal with a larger pile diameter and a higher tensile strength pile material. Although it was restricted or the economic efficiency was impaired, in the present invention, even with the use of a small-diameter group pile with good mobility, the large deterrent is utilized by maximizing the internal stress held by the ground itself without collapsing. And the slope can be stabilized, and the slope can be reinforced rationally with excellent economic efficiency and construction efficiency.

本発明の斜面の安定化構造は、前記斜杭を第1の斜杭とし、前記第1の斜杭の上側の離間した位置で、前記一のすべり面に対して略直交方向より水平に近づくように傾斜して寝て、前記一のすべり面の奥側まで打設される第2の斜杭を有し、地山斜面に沿って離れた位置に配置されている前記直杭の杭頭部と前記第1の斜杭の杭頭部と前記第2の斜杭の杭頭部とが剛結され、前記一のすべり面より地山斜面表層に近い側の前記直杭と前記第1の斜杭間、及び前記第1の斜杭と前記第2の斜杭間に、それぞれ地盤自体が保有する内部応力を維持している非塑性化領域が残されていることを特徴とする。
これによれば、第2の斜杭を用いると共に、直杭、第1の斜杭、第2の斜杭の杭頭部を剛結することにより、すべり面に対する終局的な剪断強度を一層高めることができる。
In the slope stabilizing structure of the present invention, the slanted pile is a first slanted pile, and approaches a horizontal plane in a direction substantially orthogonal to the one slip plane at a position above and separated from the first slanted pile. sleeping inclined such, has a second Hasukui being pouring deep side of the one sliding surface, the vertical piles which are positioned away along the natural ground slope pile The part, the pile head of the first slant pile and the pile head of the second slant pile are rigidly connected, and the straight pile and the first pile closer to the ground slope surface layer than the one slip surface. Non-plasticized regions that maintain the internal stress of the ground itself are left between the slanted piles and between the first slanted pile and the second slanted pile .
According to this, the ultimate shear strength on the slip surface is further enhanced by using the second inclined pile and rigidly connecting the pile heads of the straight pile, the first inclined pile, and the second inclined pile. be able to.

本発明の斜面の安定化構造は、前記直杭と前記斜杭の剛結体、若しくは前記直杭と前記第1の斜杭と前記第2の斜杭の剛結体が、前記地山の斜面の横方向に沿って並設されていることを特徴とする。
これによれば、地滑り抑制力の高い安定した斜面構造を広範囲に形成することができる。
The slope stabilizing structure of the present invention is characterized in that the rigid body of the straight pile and the inclined pile, or the rigid body of the straight pile, the first inclined pile, and the second inclined pile, It is characterized by being arranged side by side along the lateral direction of the slope.
According to this, a stable slope structure having a high landslide suppression force can be formed in a wide range.

本発明の斜面の安定化構造は、前記直杭と前記斜杭、若しくは前記直杭と前記第1の斜杭と前記第2の斜杭のそれぞれが、直径100〜300mmの鋼管と、グラウト材の注入で形成される定着層とから構成されていることを特徴とする。
これによれば、直径100〜300mmの小口径の鋼管による杭を用いることで、より施工上の制約が少なくすることができると共に、斜面のすべり面に対して略直交方向に或いは傾斜角度をつけて打設することも容易に行うことができる。
In the slope stabilizing structure of the present invention, the straight pile and the slope pile, or the straight pile, the first slope pile, and the second slope pile each include a steel pipe having a diameter of 100 to 300 mm and a grout material. And a fixing layer formed by the injection of
According to this, by using a pile made of a small-diameter steel pipe having a diameter of 100 to 300 mm, it is possible to further reduce the restrictions on construction, and to attach a substantially perpendicular direction or an inclination angle to the slip surface of the slope. Can be easily performed.

本発明の斜面の安定化構造は、前記斜杭と前記斜杭の直下の前記一のすべり面とがなす角度が65度〜75度に設定されている、若しくは前記第1の斜杭と前記第1の斜杭の直下の前記一のすべり面とがなす角度が65度〜75度、前記第2の斜杭と前記第2の斜杭の直下の前記一のすべり面とがなす角度が65度〜75度に設定されていることを特徴とする。
これによれば、斜杭若しくは第1、第2の斜杭の軸方向を剪断面と最適に斜交させることで、早い段階から斜杭若しくは第1、第2の斜杭の周面摩擦を生かして引張方向の力が働かせ、又、斜杭若しくは第1、第2の斜杭の前側の地盤反力を得ることができ、剪断変位の小さいうちに剪断抵抗力を早く確実に働かせることができる。従って、大きな剪断変位、剪断応力の発生を抑制し、斜面の安定性を一層高めることができる。
In the slope stabilizing structure of the present invention, an angle formed between the inclined pile and the one slip surface immediately below the inclined pile is set to 65 ° to 75 °, or the first inclined pile and the The angle formed by the one slip surface immediately below the first slant pile is 65 degrees to 75 degrees, and the angle formed by the second slant pile and the one slip surface immediately below the second slant pile is It is characterized in that the angle is set to 65 degrees to 75 degrees.
According to this, by making the axial direction of the slant pile or the first and second slant piles optimally obliquely intersect with the shear plane, the peripheral friction of the slant pile or the first and second slant piles can be reduced from an early stage. By utilizing the force in the tensile direction, it is possible to obtain the ground reaction force on the front side of the slanted pile or the first and second slanted piles, and to quickly and surely exert the shear resistance force while the shear displacement is small. it can. Therefore, generation of large shear displacement and shear stress can be suppressed, and the stability of the slope can be further enhanced.

本発明の斜面の安定化構造は、地滑り斜面に対して組杭により杭の前面及び杭間の地盤反力を最大限有効に活用することができ、剛結された斜杭と直杭の双方に互いに最大限の支持力を発現させて斜面を安定化することができる。また、用地上の制約や施工上の制約が少なく、汎用性に優れ、極めて高い合理的を有する。   The stabilizing structure of the slope of the present invention enables the ground reaction force between the front of the pile and the pile to be used to the utmost with the pile pile on the landslide slope, and the rigidly connected slope pile and the straight pile are both used. In this way, the maximum supporting force can be expressed to each other to stabilize the slope. In addition, there are few restrictions on land use and construction, and it has excellent versatility and has extremely high rationality.

本発明による第1実施形態の斜面の安定化構造を示す模式断面図。FIG. 2 is a schematic cross-sectional view illustrating a stabilization structure of a slope according to the first embodiment of the present invention. 第1実施形態の斜面の安定化構造における直杭、第1の斜杭、第2の斜杭の剛結部分を示す断面説明図。Sectional explanatory drawing which shows the rigid connection part of the straight pile, the 1st slope pile, and the 2nd slope pile in the slope stabilization structure of 1st Embodiment. (a)〜(e)は第1実施形態の斜面の安定化構造における杭の施工工程を示す断面説明図。(A)-(e) is sectional explanatory drawing which shows the construction process of the pile in the slope stabilization structure of 1st Embodiment. 本発明による第2実施形態の斜面の安定化構造を示す模式断面図。FIG. 9 is a schematic cross-sectional view illustrating a stabilization structure of a slope according to a second embodiment of the present invention. モデル実験装置の構成図。The block diagram of a model experiment apparatus. (a)、(b)はモデル実験装置における第1実施例及び第1比較例の杭配置を示す説明図、(c)、(d)はモデル実験装置における第2実施例及び第2比較例の杭配置を示す説明図。(A), (b) is explanatory drawing which shows the pile arrangement | positioning of the 1st Example and 1st comparative example in a model experiment apparatus, (c), (d) 2nd Example and 2nd comparative example in a model experimental apparatus. FIG. (1)はモデル実験による第1実施例及び第1比較例の剪断変位と剪断応力の関係を示すグラフ、(2)はモデル実験による第2実施例及び第2比較例の剪断変位と剪断応力の関係を示すグラフ。(1) is a graph showing the relationship between the shear displacement and the shear stress of the first embodiment and the first comparative example based on the model experiment, and (2) is the shear displacement and the shear stress of the second embodiment and the second comparative example based on the model experiment. The graph which shows the relationship. (a)は第1実施例に対応する3次元FEM解析用モデル図、(b)は第1比較例に対応する3次元FEM解析用モデル図、(c)は第2実施例に対応する3次元FEM解析用モデル図、(b)は第2比較例に対応する3次元FEM解析用モデル図。(A) is a model diagram for three-dimensional FEM analysis corresponding to the first embodiment, (b) is a model diagram for three-dimensional FEM analysis corresponding to the first comparative example, and (c) is a model diagram corresponding to the second embodiment. FIG. 4B is a model diagram for three-dimensional FEM analysis, and FIG. 4B is a model diagram for three-dimensional FEM analysis corresponding to the second comparative example. (a)は第1実施例対応解析用モデルにおける縦断方向の塑性域分布図、(b)は第1比較例対応解析用モデルにおける縦断方向の塑性域分布図。(A) is a plastic region distribution diagram in the longitudinal direction in the model for analysis according to the first embodiment, and (b) is a plastic region distribution diagram in the longitudinal direction in the model for analysis corresponding to the first comparative example. (a)は第1実施例対応解析用モデルにおける剪断面(すべり面)直上の塑性域分布をあらわす3Dモデル図、(b)は第1比較例対応解析用モデルにおける剪断面(すべり面)直上の塑性域分布をあらわす3Dモデル図。(A) is a 3D model diagram showing a plastic zone distribution immediately above a shear surface (slip surface) in the analysis model corresponding to the first embodiment, and (b) is a shear surface (slip surface) immediately above the analysis model corresponding to the first comparative example. 3D model diagram showing a plastic region distribution of FIG. (a)は第2実施例対応解析用モデルにおける縦断方向の塑性域分布図、(b)は第2比較例対応解析用モデルにおける縦断方向の塑性域分布図。(A) is a distribution diagram of the plastic region in the longitudinal direction in the model for analysis according to the second embodiment, and (b) is a distribution map of the plastic region in the longitudinal direction in the model for analysis corresponding to the second comparative example. (a)は第2実施例対応解析用モデルにおける剪断面(すべり面)直上の塑性域分布をあらわす3Dモデル図、(b)は第2比較例対応解析用モデルにおける剪断面(すべり面)直上の塑性域分布をあらわす3Dモデル図。(A) is a 3D model diagram showing a plastic zone distribution immediately above a shear plane (slip surface) in the analysis model corresponding to the second embodiment, and (b) is a shear plane (slip surface) immediately above the analysis model corresponding to the second comparative example. 3D model diagram showing a plastic region distribution of FIG. 従来の斜面の安定化構造の参考説明図。Reference explanatory drawing of the conventional slope stabilization structure.

〔第1実施形態の斜面の安定化構造〕
本発明による第1実施形態の斜面の安定化構造は、図1及び図2に示すように、地山100の斜面101から内部にあるすべり面102に対して略直交方向に打設されている直杭1と、直杭1の上側の離間した位置で、斜面101からすべり面102に対して略直交方向より水平に近づくように傾いて打設されている第1の斜杭2と、第1の斜杭2の上側の離間した位置で、斜面101からすべり面102に対して略直交方向より水平に近づくように傾いて打設されている第2の斜杭3を備える。直杭1、第1の斜杭2、第2の斜杭3は、それぞれ斜面101から先端側の部分がすべり面102の奥側まで到達するように打設されている。
[Slope Stabilizing Structure of First Embodiment]
As shown in FIGS. 1 and 2, the slope stabilizing structure according to the first embodiment of the present invention is cast in a direction substantially perpendicular to a slip surface 102 located inside a slope 101 of a ground 100. A straight pile 1, a first slant pile 2, which is slanted at a position above the straight pile 1 at a distance from the slope 101 so as to approach the slip surface 102 more horizontally than in a direction substantially orthogonal to the slope 101, A second slanted pile 3 is installed at a position above the slanted pile 2 at a distance from the slanted surface 101 so as to be closer to the horizontal than a direction substantially perpendicular to the sliding surface 102. The straight pile 1, the first slant pile 2, and the second slant pile 3 are each driven so that a portion on the tip side from the slope 101 reaches the inner side of the slip surface 102.

直杭1は、すべり面102に対して略直交方向に打設され、第1の斜杭2、第2の斜杭3は、すべり面102に対して略直交方向より水平に近づくように傾いて打設され、この直杭1、第1の斜杭2、第2の斜杭3の3列で組杭が構成されており、既存の鉛直方向に打設される鉛直杭と、鉛直方向に対して若干傾斜して打設される斜杭からなる組杭とは異なるものである。   The straight pile 1 is driven in a direction substantially perpendicular to the sliding surface 102, and the first inclined pile 2 and the second inclined pile 3 are inclined so as to approach the sliding surface 102 in a direction substantially perpendicular to the sliding surface 102. The pile is composed of three rows of the straight pile 1, the first slanted pile 2, and the second slanted pile 3, and the existing vertical pile which is driven in the vertical direction and the vertical pile It is different from a group pile consisting of slant piles that are cast at a slight angle to the pile.

第1の斜杭2と、第1の斜杭2の直下のすべり面102とがなす角度αは、略直交方向より水平に近づくように傾斜する角度で適宜設定することが可能であるが、65度〜75度に設定すると好適であり、図示例の角度αは70度になっており、第1の斜杭2の直杭1に対する傾斜角度は20度になっている。同様に、第2の斜杭3と、第2の斜杭3の直下のすべり面102とがなす角度βは、略直交方向より水平に近づくように傾斜する角度で適宜設定することが可能であるが、65度〜75度に設定すると好適であり、図示例の角度βは70度になっており、第2の斜杭3の直杭1に対する傾斜角度は20度になっている。この斜杭2、3の角度α、βは、すべり面に対して略直交する直杭1と打設角度が傾斜する斜杭2、3を同一の施工機械で段取り変えしながら打設するのに無理のない角度で、作業性にも支障を及ぼさない。   The angle α formed between the first inclined pile 2 and the sliding surface 102 immediately below the first inclined pile 2 can be appropriately set by an angle inclined so as to approach horizontal more than a substantially orthogonal direction, It is preferable to set the angle between 65 degrees and 75 degrees. In the illustrated example, the angle α is 70 degrees, and the inclination angle of the first inclined pile 2 with respect to the straight pile 1 is 20 degrees. Similarly, the angle β formed between the second inclined pile 3 and the slip surface 102 immediately below the second inclined pile 3 can be appropriately set by an angle inclined so as to approach horizontal more than a substantially orthogonal direction. However, it is preferable to set the angle between 65 degrees and 75 degrees. In the illustrated example, the angle β is 70 degrees, and the inclination angle of the second inclined pile 3 with respect to the straight pile 1 is 20 degrees. The angles α and β of the inclined piles 2 and 3 are set such that the straight piles 1 and the inclined piles 2 and 3 whose inclinations are inclined are set and changed by using the same construction machine. At a reasonable angle, it does not affect workability.

直杭1、第1の斜杭2、第2の斜杭3のそれぞれは、鋼管11、21、31と、グラウト材の注入で形成され、地山101に打設されている鋼管11、21、31の周囲で硬化している定着層63から構成されており(図3参照)、更に、鋼管11、21、31にはそれぞれ杭頭部12、22、32が溶接して固定されている。鋼管11、21、31には所要の杭支持力が得られる適宜の鋼管を用いることが可能であるが、直径100〜300mmの小口径の鋼管とすると、より施工上の制約が少なくすることができると共に、斜面のすべり面に対して略直交方向に或いは傾斜角度をつけて打設することも容易に行うことができて好適である。   Each of the straight pile 1, the first slanted pile 2, and the second slanted pile 3 is made of steel pipes 11, 21, 31 and steel pipes 11, 21, which are formed by injecting grout material and cast into the ground 101 , 31 (see FIG. 3), and pile heads 12, 22, 32 are fixed to the steel pipes 11, 21, 31 by welding, respectively. . As the steel pipes 11, 21, and 31, it is possible to use an appropriate steel pipe capable of obtaining a required pile supporting force. However, if the steel pipe is a small-diameter steel pipe having a diameter of 100 to 300 mm, the restriction on the construction is further reduced. It is preferable because it is possible to easily perform the driving in a direction substantially perpendicular to the slip surface of the slope or at an inclined angle.

直杭1の杭頭部12及びその近傍、第1の斜杭2の杭頭部22及びその近傍、第2の斜杭3の杭頭部32及びその近傍は、斜面101上に一体的に設けられている鉄筋コンクリート4に埋め込まれており、即ち、本実施形態においては直杭1、斜杭2、3の杭頭部12、22、32は鉄筋コンクリート4を介して剛結されている。鉄筋コンクリート4は、コンクリート部41と、コンクリート部41内に配された鉄筋42とから構成される。   The pile head 12 of the straight pile 1 and its vicinity, the pile head 22 of the first inclined pile 2 and its vicinity, and the pile head 32 of the second inclined pile 3 and its vicinity are integrally formed on the slope 101. The pile heads 12, 22, 32 of the straight pile 1, the inclined piles 2, 3 are rigidly connected via the reinforced concrete 4 in this embodiment. The reinforced concrete 4 includes a concrete portion 41 and a reinforcing bar 42 arranged in the concrete portion 41.

本実施形態の直杭1、第1の斜杭2、第2の斜杭3はいずれも同様の施工方法により地山100に打設される。図3は直杭1、第1の斜杭2又は第2の斜杭3を構成する杭6を打設する施工工程を示す断面説明図である。   The straight pile 1, the first slanted pile 2, and the second slanted pile 3 of the present embodiment are all driven into the ground 100 by the same construction method. FIG. 3 is a cross-sectional explanatory view showing a construction step of driving a pile 6 constituting the straight pile 1, the first inclined pile 2, or the second inclined pile 3.

杭6を打設する際には、先ず斜面101から地山100に向かって削孔103を形成する。図3(a)の例では、先端部にビット53とダウンザホールハンマー52が設けられている削孔ロッド51を鋼管61内に挿入し、鋼管61をケーシングとする削孔ロッド51を施工機械で回転させて削孔103を形成する。削孔103が所要の深さまで到達したら削孔ロッド51を引き抜いて鋼管61のみ削孔103内に存置する(図3(b)参照)。なお、図示例はダウンザホールハンマー方式の削孔であるが、ロータリーパカッション方式等でも同様に鋼管61をケーシングとして削孔することができ、また、地山100の土質や鋼管61の形態によっては、打撃を伴わずに回転のみで削孔打設することも可能である。   When driving the pile 6, first, a hole 103 is formed from the slope 101 toward the ground 100. In the example of FIG. 3A, a drilling rod 51 provided with a bit 53 and a down-the-hole hammer 52 at the tip is inserted into a steel pipe 61, and the drilling rod 51 having the steel pipe 61 as a casing is rotated by a construction machine. Thus, a hole 103 is formed. When the drilling hole 103 reaches a required depth, the drilling rod 51 is pulled out and only the steel pipe 61 remains in the drilling hole 103 (see FIG. 3B). In addition, although the illustrated example is drilling of the down-the-hole hammer method, the drilling can be similarly performed using the steel pipe 61 as a casing by a rotary percussion method or the like, and depending on the soil quality of the ground 100 and the form of the steel pipe 61, It is also possible to drill a hole only by rotation without hitting.

その後、図3(c)に示すように、鋼管61内に先端部にパッカー55が設けられている注入管54を挿入し、パッカー55が孔奥近傍に到達するまで挿入する。そして、注入管54にグラウト材を圧送してパッカー55の先端から吐出させ、鋼管61の周面に長手方向に所定間隔を開けて形成されている吐出孔611から周囲の地山100内にグラウト材を注入する。グラウト材が浸透した周囲の地山100には定着層63が形成される。このグラウト材の注入をパッカー55及び注入管54を引き上げながら繰り返し行い、鋼管61の周囲に定着層63が形成される(図3(d)、(e)参照)。   Thereafter, as shown in FIG. 3 (c), the injection pipe 54 provided with the packer 55 at the tip end is inserted into the steel pipe 61, and inserted until the packer 55 reaches the vicinity of the inside of the hole. Then, the grout material is pressure-fed to the injection pipe 54 and discharged from the tip of the packer 55, and the grout is injected into the surrounding ground 100 from the discharge holes 611 formed at predetermined intervals in the longitudinal direction on the peripheral surface of the steel pipe 61. Inject the material. A fixing layer 63 is formed on the surrounding ground 100 where the grout material has penetrated. The grout material is repeatedly injected while pulling up the packer 55 and the injection pipe 54 to form the fixing layer 63 around the steel pipe 61 (see FIGS. 3D and 3E).

そして、鋼管61から注入管54及びパッカー55を引き抜き、鋼管61の斜面101から吐出する端部に杭頭部を溶接等によって固定し、直杭1、第1の斜杭2又は第2の斜杭3を構成する杭6が形成される。   Then, the injection pipe 54 and the packer 55 are pulled out from the steel pipe 61, and the pile head is fixed to the end of the steel pipe 61 discharged from the slope 101 by welding or the like, and the straight pile 1, the first diagonal pile 2 or the second diagonal pile is fixed. A stake 6 constituting the stake 3 is formed.

第1実施形態では、直杭1と第1の斜杭2と第2の斜杭3を剛結合して構成される剛結体が、地山100の斜面101の横方向に沿って並設されており、この複数並設された剛結体の直杭1の杭頭部12、第1の斜杭2の杭頭部22、第2の斜杭3の杭頭部32が、斜面101上に一体的に設けられている鉄筋コンクリート4で剛結されている(図示省略)。直杭1と第1の斜杭2と第2の斜杭3の剛結体を並設することにより、地滑り抑制力の高い安定した斜面構造を広範囲に形成することができる。   In the first embodiment, rigid bodies formed by rigidly connecting the straight pile 1, the first slant pile 2, and the second slant pile 3 are juxtaposed along the lateral direction of the slope 101 of the ground 100. The pile head 12, the pile head 22 of the first slanted pile 2, and the pile head 32 of the second slanted pile 3 are arranged on a slope 101. It is rigidly connected by a reinforced concrete 4 integrally provided thereon (not shown). By arranging the rigid bodies of the straight pile 1, the first slant pile 2, and the second slant pile 3 side by side, a stable slope structure having a high landslide suppressing force can be formed in a wide range.

第1実施形態の斜面の安定化構造によれば、すべり面に対して略直交する方向より水平に近づくように傾いた第1の斜杭2、第2の斜杭3が直杭1の背面側の土圧を効果的に支持することにより、第2の斜杭3と第1の斜杭2との間、第1の斜杭2と直杭1との間、及び直杭1の前面側の地盤反力が維持され、直杭1の前面及び杭間の地盤の塑性化を可及的に抑止できる。従って、組杭として剛結された直杭1と第1の斜杭2と第3の斜杭3が互いに最大限の支持力を発現して斜面を安定化することができる。   According to the slope stabilizing structure of the first embodiment, the first slanted pile 2 and the second slanted pile 3 that are inclined so as to be closer to the horizontal than the direction substantially orthogonal to the slip surface are the back of the straight pile 1. By effectively supporting the earth pressure on the side, between the second slant pile 3 and the first slant pile 2, between the first slant pile 2 and the straight pile 1, and in front of the straight pile 1 The ground reaction force on the side is maintained, and the plasticization of the ground between the front surface of the straight pile 1 and the pile can be suppressed as much as possible. Therefore, the straight pile 1, the first slanted pile 2, and the third slanted pile 3, which are rigidly connected as a group pile, can express the maximum supporting force to each other and stabilize the slope.

即ち、第1の斜杭2、第2の斜杭3がすべり面に対して略直交する方向より水平に近づくように傾くことによって、局所的な剪断力を杭の曲げ耐力だけで抗する状態になるのを避け、長さ方向に応力を分散させ、土圧分散による地盤反力を効果的に発現させることができる。この結果、第2の斜杭3の前面と第1の斜杭2との間、第1の斜杭2と直杭1との間にも外力を受け持つ土圧が発生し、直杭1の荷重分担を大幅に減じる一方で、直杭1の前面側の地盤反力も維持される。そして、斜杭2、3により安定化が保持された地盤中に位置し、すべり面に略直交することで直接的な引張剛性が期待される直杭1が組杭の前面に位置することになり、この直杭1の配置によって斜杭2、3の変形が防止される。また、直杭1と斜杭2、3が頭部剛結されていることでも互いの変形が防止される。これによって、斜杭2、3が直杭1を守る一方で直杭1が斜杭2、3を守る状態となり、杭背面と杭前面及び杭間の土壌の塑性化が可及的に防止されると共に、斜杭2、3、直杭1のそれぞれが変位発生の早期段階から効果的な支持力を発現できると共に、終局的にもそれぞれの杭が最大限の支持力を発現することができる。   In other words, the first slanted pile 2 and the second slanted pile 3 are inclined so as to be closer to the horizontal than the direction substantially perpendicular to the slip surface, so that the local shear force can be resisted only by the bending strength of the pile. And the stress is dispersed in the longitudinal direction, and the ground reaction force due to the earth pressure distribution can be effectively developed. As a result, earth pressure is generated between the front surface of the second slanted pile 3 and the first slanted pile 2 and between the first slanted pile 2 and the straight pile 1. While the load sharing is greatly reduced, the ground reaction force on the front side of the straight pile 1 is also maintained. Then, the straight pile 1, which is located in the ground where the stabilization is maintained by the inclined piles 2 and 3 and is expected to have a direct tensile rigidity by being substantially orthogonal to the slip surface, is located in front of the group pile. The arrangement of the straight piles 1 prevents the slanted piles 2 and 3 from being deformed. Further, since the straight pile 1 and the oblique piles 2 and 3 are rigidly connected to the head, deformation of each other is prevented. As a result, the slanted piles 2 and 3 protect the straight piles 1 while the straight piles 1 protect the slanted piles 2 and 3, and the plasticization of the soil between the pile back and the pile front and the pile is prevented as much as possible. At the same time, each of the slant piles 2, 3 and the straight pile 1 can develop an effective bearing force from an early stage of displacement occurrence, and ultimately, each pile can exhibit a maximum bearing force. .

また、直杭1、斜杭2、3とは、斜面内部のすべり面に対して略直交方向とそれより水平に近づくように傾く方向に打設されるものであることから、鉛直杭のように斜面途中に段部を形成する必要がなく、施工に当たって用地上の制約や施工上の制約が少なく、汎用性に優れている。また、既存の抑止杭による安定化構造では、大きな抑止力が必要な場合に、杭径を大きくし、杭材質を高張力のものにして対処していたため、施工機械が大型化したり、施工に制約を受けたり、経済性が損なわれていたが、第1実施形態では機動性の良い小口径による組杭を用いても地盤自体が保有する内部応力を崩壊させることなく最大限に活かして大きな抑止力を得、斜面を安定化させることができ、優れた経済性、施工効率で合理的に斜面補強をすることができる。   In addition, since the straight pile 1 and the inclined piles 2 and 3 are driven in a direction substantially perpendicular to the slip surface inside the slope and in a direction inclined so as to be more horizontal than the slip plane inside the slope, it is like a vertical pile. There is no need to form a step in the middle of the slope, and there are few restrictions on the land and construction during construction, and it is excellent in versatility. In addition, the existing stabilization structure using deterrent piles, when a large deterrent force was required, had to deal with a larger pile diameter and a higher tensile strength pile material. Although it was restricted or the economic efficiency was impaired, in the first embodiment, even if a small-diameter group pile with good mobility is used, the internal stress held by the ground itself is maximized without collapsing and the large pile is used. The deterrent can be obtained, the slope can be stabilized, and the slope can be reinforced rationally with excellent economic efficiency and construction efficiency.

更に、第1の斜杭2に加えて第2の斜杭3を用いると共に、直杭1、第1の斜杭2、第2の斜杭3の杭頭部12、22、32を剛結することにより、すべり面に対する終局的な剪断強度を一層高めることができる。   Further, the second slanted pile 3 is used in addition to the first slanted pile 2, and the pile heads 12, 22, 32 of the straight pile 1, the first slanted pile 2, and the second slanted pile 3 are rigidly connected. By doing so, the ultimate shear strength on the slip surface can be further increased.

また、第1の斜杭2の角度α、第2の斜杭3の角度βを65度〜75度に設定することにより、第1の斜杭2、第2の斜杭3の軸方向を剪断面と最適に斜交させて、早い段階から第1の斜杭2、第2の斜杭3の周面摩擦を生かして引張方向の力が働かせ、又、第1の斜杭2、第2の斜杭3の前側の地盤反力を得ることができ、剪断変位の小さいうちに剪断抵抗力を早く確実に働かせることができる。従って、大きな剪断変位、剪断応力の発生を抑制し、斜面の安定性を一層高めることができる。   Also, by setting the angle α of the first slanted pile 2 and the angle β of the second slanted pile 3 to 65 degrees to 75 degrees, the axial direction of the first slanted pile 2 and the second slanted pile 3 can be changed. By making an oblique cross-section optimally with the shear plane, the force in the tensile direction is exerted from the early stage by utilizing the peripheral friction of the first slant pile 2 and the second slant pile 3, and the first slant pile 2, the second slant pile 2 The ground reaction force on the front side of the inclined pile 3 can be obtained, and the shear resistance can be quickly and reliably applied while the shear displacement is small. Therefore, generation of large shear displacement and shear stress can be suppressed, and the stability of the slope can be further enhanced.

〔第2実施形態の斜面の安定化構造〕
本発明による第2実施形態の斜面の安定化構造は、図4に示すように、第1実施形態における第2の斜杭3を設けない斜面の安定化構造であり、地山100の斜面101から内部にあるすべり面102に対して略直交方向に打設されている直杭1aと、直杭1aの上側の離間した位置で、斜面101からすべり面102に対して略直交方向より水平に近づくように傾いて打設されている斜杭2aを備え、直杭1a、斜杭2aが、それぞれ斜面101から先端側の部分がすべり面102の奥側まで到達するように打設されているものである。直杭1a、斜杭2aは第1実施形態の直杭1、第1の斜杭2とそれぞれ同一構成であり、直杭1、第1の斜杭2と同様に打設される。
[Slope Stabilization Structure of Second Embodiment]
As shown in FIG. 4, the slope stabilizing structure of the second embodiment according to the present invention is the slope stabilizing structure without the second slope pile 3 in the first embodiment, and the slope 101 of the ground 100. And a straight pile 1a which is driven in a direction substantially perpendicular to the slip surface 102 inside, and at a position above the straight pile 1a and separated from the slope 101 in a direction substantially perpendicular to the slip surface 102. The sloping pile 2a is installed so as to be inclined so as to approach, and the straight stake 1a and the sloping pile 2a are installed so that a portion on the tip side from the slope 101 reaches the inner side of the slip surface 102, respectively. Things. The straight pile 1a and the slanted pile 2a have the same configuration as the straight pile 1 and the first slanted pile 2 of the first embodiment, and are driven in the same manner as the straight pile 1 and the first slanted pile 2.

直杭1aの杭頭部及びその近傍、斜杭2aの杭頭部及びその近傍は、斜面101上に一体的に設けられている鉄筋コンクリート4に埋め込まれており、即ち、本実施形態においては直杭1aの杭頭部と斜杭2aの杭頭部とが鉄筋コンクリート4を介して剛結されている。鉄筋コンクリート4は、第1実施形態と同様、コンクリート部41と、コンクリート部41内に配された鉄筋42とから構成されるものである。第2実施形態では直杭1aと斜杭2aとで組杭が構成されている。   The pile head of the straight pile 1a and the vicinity thereof, and the pile head of the slant pile 2a and the vicinity thereof are embedded in the reinforced concrete 4 provided integrally on the slope 101. The pile head of the pile 1a and the pile head of the inclined pile 2a are rigidly connected via reinforced concrete 4. As in the first embodiment, the reinforced concrete 4 includes a concrete portion 41 and a reinforcing bar 42 disposed in the concrete portion 41. In the second embodiment, a set pile is constituted by the straight pile 1a and the inclined pile 2a.

この直杭1a、斜杭2aは第1実施形態の直杭1、第1の斜杭2とそれぞれ同一構成であり、又、図3の杭6の打設工程の如く、直杭1、第1の斜杭2と同様に打設される。また、斜杭2aと直下のすべり面102とがなす角度αは、第1の斜杭2と直下のすべり面102とがなす角度αと同様に設定される。   The straight pile 1a and the slanted pile 2a have the same configuration as the straight pile 1 and the first slanted pile 2 of the first embodiment, respectively, and as shown in FIG. It is driven in the same way as the slant pile 1. The angle α formed between the inclined pile 2a and the slip surface 102 immediately below is set in the same manner as the angle α formed between the first inclined pile 2 and the slip surface 102 immediately below.

第2実施形態では、直杭1aと斜杭2aを剛結合して構成される剛結体が、地山100の斜面101の横方向に沿って並設されており、この複数並設された剛結体の直杭1aの杭頭部、斜杭2aの杭頭部が、斜面101上に一体的に設けられている鉄筋コンクリート4で剛結されている(図示省略)。直杭1aと斜杭2aの剛結体を並設することにより、地滑り抑制力の高い安定した斜面構造を広範囲に形成することができる。   In the second embodiment, rigid bodies formed by rigidly connecting the straight pile 1a and the inclined pile 2a are arranged side by side along the lateral direction of the slope 101 of the ground 100, and the plurality of rigid bodies are arranged side by side. The pile head of the rigid pile 1a and the pile head of the inclined pile 2a are rigidly connected by reinforced concrete 4 integrally provided on the slope 101 (not shown). By arranging the rigid bodies of the straight pile 1a and the inclined pile 2a side by side, a stable slope structure having a high landslide suppressing force can be formed in a wide range.

第2実施形態の斜面の安定化構造によれば、すべり面に対して略直交する方向より水平に近づくように傾いた斜杭2aが直杭1aの背面側の土圧を効果的に支持することにより、斜杭2aと直杭1aとの間、及び直杭1aの前面側の地盤反力が維持され、直杭1aの前面及び杭間の地盤の塑性化を可及的に抑止できる。従って、組杭として剛結された直杭1aと斜杭2aが互いに最大限の支持力を発現して斜面を安定化することができる。   According to the slope stabilizing structure of the second embodiment, the inclined pile 2a inclined so as to approach horizontal more than the direction substantially perpendicular to the slip surface effectively supports the earth pressure on the back side of the straight pile 1a. Thereby, the ground reaction force between the inclined pile 2a and the straight pile 1a and on the front side of the straight pile 1a is maintained, and the plasticization of the ground between the front face of the straight pile 1a and the pile can be suppressed as much as possible. Therefore, the straight pile 1a and the inclined pile 2a rigidly connected as a group pile can express the maximum supporting force to each other and stabilize the slope.

即ち、斜杭2aがすべり面に対して略直交する方向より水平に近づくように傾くことによって、局所的な剪断力を杭の曲げ耐力だけで抗する状態になるのを避け、長さ方向に応力を分散させ、土圧分散による地盤反力を効果的に発現させることができる。この結果、斜杭2aと直杭1aとの間にも外力を受け持つ土圧が発生し、直杭1aの荷重分担を大幅に減じる一方で、直杭1aの前面側の地盤反力も維持される。そして、斜杭2aにより安定化が保持された地盤中に位置し、すべり面に略直交することで直接的な引張剛性が期待される直杭1aが組杭の前面に位置することになり、この直杭1aの配置によって斜杭2aの変形が防止される。また、直杭1aと斜杭2aが頭部剛結されていることでも互いの変形が防止される。これによって、斜杭2aが直杭1aを守る一方で直杭1aが斜杭2aを守る状態となり、杭背面と杭前面及び杭間の土壌の塑性化が可及的に防止されると共に、斜杭2a、直杭1aのそれぞれが変位発生の早期段階から効果的な支持力を発現できると共に、終局的にもそれぞれの杭が最大限の支持力を発現することができる。   That is, by inclining the inclined pile 2a so as to be closer to the horizontal than the direction substantially perpendicular to the slip surface, it is possible to avoid a state in which local shearing force is resisted only by the bending strength of the pile, and in the longitudinal direction. The stress can be dispersed, and the ground reaction force due to the earth pressure dispersion can be effectively developed. As a result, an earth pressure is generated between the slanted pile 2a and the straight pile 1a, which bears the external force, and the load sharing of the straight pile 1a is greatly reduced, while the ground reaction force on the front side of the straight pile 1a is also maintained. . Then, the straight pile 1a, which is located in the ground where the stabilization is maintained by the inclined pile 2a and is expected to have a direct tensile rigidity by being substantially orthogonal to the slip surface, is located in front of the group pile, The arrangement of the straight piles 1a prevents the slant piles 2a from being deformed. Further, since the straight pile 1a and the inclined pile 2a are rigidly connected to the head, deformation of each other is prevented. As a result, the slanted pile 2a protects the straight pile 1a while the straight pile 1a protects the slanted pile 2a, and the plasticization of the soil between the pile back surface and the pile front surface and between the piles is prevented as much as possible. Each of the stake 2a and the straight stake 1a can exhibit an effective supporting force from an early stage of the occurrence of displacement, and each of the stakes can ultimately exhibit a maximum supporting force.

また、直杭1a、斜杭2aとは、斜面内部のすべり面に対して略直交方向とそれより水平に近づくように傾く方向に打設されるものであることから、鉛直杭のように斜面途中に段部を形成する必要がなく、施工に当たって用地上の制約や施工上の制約が少なく、汎用性に優れている。また、既存の抑止杭による安定化構造では、大きな抑止力が必要な場合に、杭径を大きくし、杭材質を高張力のものにして対処していたため、施工機械が大型化したり、施工に制約を受けたり、経済性が損なわれていたが、第2実施形態では機動性の良い小口径による組杭を用いても地盤自体が保有する内部応力を崩壊させることなく最大限に活かして大きな抑止力を得、斜面を安定化させることができ、優れた経済性、施工効率で合理的に斜面補強をすることができる。その他、第1実施形態と対応する構成から対応する効果を奏する。   In addition, since the straight pile 1a and the inclined pile 2a are driven in a direction substantially orthogonal to the slip surface inside the slope and in a direction inclined closer to horizontal than the same, the slope like a vertical pile is used. There is no need to form a step on the way, and there are few restrictions on land and construction during construction, and it is excellent in versatility. In addition, the existing stabilization structure using deterrent piles, when a large deterrent force was required, had to deal with a larger pile diameter and a higher tensile strength pile material. Although it was restricted or the economic efficiency was impaired, in the second embodiment, even if a pile with a small diameter having good mobility was used, the internal stress held by the ground itself was maximized without collapsing and the large pile was used. The deterrent can be obtained, the slope can be stabilized, and the slope can be reinforced rationally with excellent economic efficiency and construction efficiency. In addition, the corresponding effects are obtained from the configuration corresponding to the first embodiment.

〔実施例と比較例の対比〕
本発明による斜面安定化構造のうち、直杭1+第1の斜杭2+第2の斜杭3の3列で1組をなす第1実施形態の構造に対応するモデル実施例の第1実施例と、直杭1a+斜杭2aの2列で1組をなす第2実施形態の構造に対応するモデル実施例の第2実施例とが、同本数の直杭に比して有する有効性を確認するため、第1実施例、第2実施例と比較例のモデル実験を行った。このモデル実験では杭や地盤のモデルにセンサを設けておくことにより、各位置での挙動を数値として計測することができる。
[Comparison between Example and Comparative Example]
In the slope stabilization structure according to the present invention, a first example of a model example corresponding to the structure of the first embodiment in which three rows of a straight pile 1 + a first slope pile 2 + a second slope pile 3 forms one set. And the second example of the model example corresponding to the structure of the second embodiment in which two rows of the straight pile 1a and the slanted pile 2a form one set, confirms the effectiveness of the model example compared to the same number of straight piles. For this purpose, model experiments of the first embodiment, the second embodiment, and the comparative example were performed. In this model experiment, the behavior at each position can be measured as a numerical value by providing a sensor in the pile or ground model.

図5はモデル実験装置の構成図である。モデル実験装置500は、上箱部502と下箱部503で一対の剪断箱501を有し、剪断箱501内に珪砂7号を相対密度80%となるように充填して模擬地盤を作成し、この模擬地盤内に、φ114.3mm鋼管杭を想定して相似比1/10となるアルミ角棒10mm×10mm×260mm(中空、厚さ1mm)を模型杭504として、実施例及び比較例となるように配置した。図5中、505はすべり面102に対応する剪断面である。   FIG. 5 is a configuration diagram of the model experiment apparatus. The model experiment apparatus 500 has a pair of shear boxes 501 in an upper box section 502 and a lower box section 503, and fills the shear box 501 with silica sand 7 so as to have a relative density of 80% to create a simulated ground. In this simulated ground, an aluminum square bar 10 mm x 10 mm x 260 mm (hollow, 1 mm thick) having a similarity ratio of 1/10 was assumed as a model pile 504, assuming a φ114.3 mm steel pipe pile, as an example and a comparative example. It was arranged so that it might become. In FIG. 5, reference numeral 505 denotes a shear plane corresponding to the slip surface 102.

モデル実験における杭配置を図6に示す。図6(a)、(b)は第1実施例及びその比較例である第1比較例の杭配置を示しており、第1実施例では直杭1+第1の斜杭2+第2の斜杭3の3本に対応するように模型杭504を上箱部502及び下箱部503内に配置し、3本の模型杭504の頭部を同様に相似比を考慮したアルミ棒φ3mmで剛結した。第1比較例では直杭1を3列で打設する場合に対応するように剪断面505に対して略直交する3本の模型杭504を上箱部502及び下箱部503内に配置し、3本の模型杭504の頭部を同様に相似比を考慮したアルミ棒φ3mmで剛結した。   FIG. 6 shows the pile arrangement in the model experiment. 6A and 6B show pile arrangements of the first embodiment and a first comparative example which is a comparative example thereof. In the first embodiment, a straight pile 1 + a first oblique pile 2 + a second oblique pile are shown. The model pile 504 is arranged in the upper box part 502 and the lower box part 503 so as to correspond to the three piles 3, and the heads of the three model piles 504 are similarly rigidized with an aluminum rod φ3 mm considering the similarity ratio. Tied. In the first comparative example, three model piles 504 substantially orthogonal to the shear surface 505 are arranged in the upper box portion 502 and the lower box portion 503 so as to correspond to the case where the straight piles 1 are driven in three rows. The heads of the three model piles 504 were similarly rigidly connected with an aluminum rod φ3 mm in consideration of the similarity ratio.

図6(c)、(d)は第2実施例及びその比較例である第2比較例の杭配置を示しており、第2実施例では直杭1a+斜杭2aの2本に対応するように模型杭504を上箱部502及び下箱部503内に先端部を保持して配置し、2本の模型杭504の後端部に位置する頭部を同様に相似比を考慮したアルミ棒φ3mmで剛結した。第2比較例では直杭1aを2列で打設する場合に対応するように剪断面505に対して略直交する2本の模型杭504を上箱部502及び下箱部503内に先端部を保持して配置し、2本の模型杭504の後端部に位置する頭部を同様に相似比を考慮したアルミ棒φ3mmで剛結した。   FIGS. 6 (c) and 6 (d) show pile arrangements of the second embodiment and a second comparative example which is a comparative example thereof. In the second embodiment, the pile arrangement corresponds to two of the straight pile 1a and the inclined pile 2a. The model pile 504 is placed in the upper box part 502 and the lower box part 503 while holding the tip thereof, and the heads located at the rear ends of the two model piles 504 are similarly made of aluminum rods in consideration of the similarity ratio. It was rigidly connected at φ3mm. In the second comparative example, two model piles 504 that are substantially perpendicular to the shear surface 505 are placed in the upper box portion 502 and the lower box portion 503 in the tip portions so as to correspond to the case where the straight piles 1a are driven in two rows. And the heads located at the rear ends of the two model piles 504 were similarly rigidly connected with an aluminum rod φ3 mm in consideration of the similarity ratio.

そして、剪断箱501の上面を拘束圧25kN/mで拘束した状態で、下箱部503を側方から速度1mm/minで剪断力を付与する形式で実験した。各模型杭504には、土圧計、歪み計等のセンサを深さ方向に所定ピッチで取り付けておき、各模型杭504に負荷される土圧や歪み等を求めた。 Then, with the upper surface of the shearing box 501 constrained at a confining pressure of 25 kN / m 2 , an experiment was performed on the lower box portion 503 by applying a shearing force from the side at a speed of 1 mm / min. Sensors such as an earth pressure gauge and a strain gauge were attached to each model pile 504 at a predetermined pitch in the depth direction, and the earth pressure, strain, and the like applied to each model pile 504 were obtained.

このモデル実験により得られた剪断変位と剪断応力の関係を図7に示す。図7(1)における黒色点の軌跡の実線は第1実施例の結果、白色点の軌跡の点線は第1比較例の結果であり、図7(2)における黒色点の軌跡の実線は第2実施例の結果、白色点の軌跡の点線は第2比較例の結果であり、それぞれモデル実験装置500に設置されている剪断応力測定センサー及び変位センサーにより、得られた信号をコンピューターで変換し、グラフ化したものである。尚、ここに言う剪断応力は、模型杭504の剪断応力ではなく、実験箱の中に再現された模擬地盤の剪断応力であり、又、ここに言う剪断変位は、模擬地盤の剪断変位である。   FIG. 7 shows the relationship between the shear displacement and the shear stress obtained by this model experiment. The solid line of the locus of the black point in FIG. 7A is the result of the first example, the dotted line of the locus of the white point is the result of the first comparative example, and the solid line of the locus of the black point in FIG. As a result of the second embodiment, the dotted line of the locus of the white point is the result of the second comparative example, and the signals obtained by the shear stress measurement sensor and the displacement sensor respectively installed in the model experiment apparatus 500 are converted by a computer. , In a graph. In addition, the shear stress referred to here is not the shear stress of the model pile 504, but the shear stress of the simulated ground reproduced in the experimental box, and the shear displacement referred to herein is the shear displacement of the simulated ground. .

本モデル実験の結果によると、第1実施例は、直杭1の3列の頭部剛結に対応する第1比較例の剪断実験結果に対し、初期剛性はほぼ変わらないものの、終局的に大きな剪断応力を発現する、つまりは高い補強効果を有することが分かる。   According to the results of this model experiment, in the first example, although the initial stiffness is almost the same as the shear experiment result of the first comparative example corresponding to the three rows of head stiffening of the straight pile 1, the first example eventually ends up. It turns out that it expresses a large shear stress, that is, it has a high reinforcing effect.

一方、第2実施例と、直杭1aの2列の頭部剛結に対応する第2比較例では、第2実施例の方が初期剛性で第2比較例を上回るものの、その後の剪断応力−剪断変位曲線ではあまり差が見られず、終局的には第2比較例より剪断応力が落ちている。しかし、この結果は剪断応力−剪断変位曲線であるが、同時に検出された土圧計のデータによれば、模型杭504に生じる土圧分布には第2実施例と第2比較例とで大きな差が生じることが分かった。   On the other hand, in the second embodiment and the second comparative example corresponding to the two rows of head stiffening of the straight pile 1a, the initial rigidity of the second embodiment is higher than that of the second comparative example, but the subsequent shear stress is higher. -There is not much difference in the shear displacement curve, and ultimately the shear stress is lower than in the second comparative example. However, although the result is a shear stress-shear displacement curve, according to the data of the earth pressure gauge detected at the same time, the distribution of the earth pressure generated in the model pile 504 differs greatly between the second embodiment and the second comparative example. Was found to occur.

自然地盤は常に動き得るものであり、ある載荷荷重に対し変位が同じ地盤であっても「壊れた地盤」と「壊れていない地盤」がある。壊れていない地盤は変形しても弾性体として地盤崩壊を免れるように自身を維持し、地盤が壊れていて塑性化していれば、杭の支持力を超えたところで崩壊する。このような地盤性状の相違は、土圧分布の相違と相関性を有すると考えられる。   The natural ground can always move, and there are “broken ground” and “unbroken ground” even if the ground has the same displacement for a certain load. Unbroken ground keeps itself as an elastic body even if deformed, so that it does not collapse. If the ground is broken and plasticized, it collapses beyond the support capacity of the pile. Such a difference in ground properties is considered to have a correlation with a difference in earth pressure distribution.

そのため、第1、第2実施例と第1、第2比較例の剪断試験において生じる土圧の違いに着目し、モデル実験に対応するモデルにより、杭の前面・背面及び杭間の地盤における地盤性状を三次元FEM解析により評価した。三次元FEM解析は、静的な条件下で地盤を弾塑性体として見て3次元軸上で要素分割し、その応力と変形について解析を行うものであり、杭が打設された地盤全体の連続的な挙動、三次元的な挙動を把握するのに有利である。   Therefore, paying attention to the difference in earth pressure generated in the shear test between the first and second examples and the first and second comparative examples, the ground corresponding to the front / rear surfaces of the pile and the ground between the piles was determined by a model corresponding to the model experiment. Properties were evaluated by three-dimensional FEM analysis. The three-dimensional FEM analysis is to analyze the stress and deformation of the ground on a three-dimensional axis by viewing the ground as an elasto-plastic body under static conditions, and to analyze the stress and deformation of the ground. This is advantageous for grasping continuous behavior and three-dimensional behavior.

この三次元FEM解析では、モデル実験により得た各データと最も整合するよう解析条件を定めてパラメータを設定し、当該条件及びパラメータを用いてFEM解析を行った。そして、視覚的に見識可能となるようにデータを加工することにより、杭間及び組杭の前後の地盤状態を確認した。   In the three-dimensional FEM analysis, analysis conditions were determined and parameters were set so as to be most consistent with each data obtained by a model experiment, and FEM analysis was performed using the conditions and parameters. Then, by processing the data so that it could be visually recognized, the ground condition between the piles and before and after the pile was confirmed.

図8(a)、(b)は第1実施例と第1比較例に対応する3次元FEM解析用モデル図、図8(c)、(d)は第2実施例と第2比較例に対応する3次元FEM解析用モデル図であり、これらのモデル図中の601はモデル直杭、602はモデル斜杭、603は剪断面である。各モデルでは、第1実施例の組杭、第1比較例の組杭、第2実施例の組杭、第2比較例の組杭を横方向に3組並設し、各例の各杭の頭部は全体的に剛結している。   FIGS. 8A and 8B show three-dimensional FEM analysis model diagrams corresponding to the first embodiment and the first comparative example, and FIGS. 8C and 8D show the second embodiment and the second comparative example. It is a corresponding three-dimensional FEM analysis model diagram, in which 601 is a model straight pile, 602 is a model oblique pile, and 603 is a shear plane. In each model, three sets of the set pile of the first example, the set pile of the first comparative example, the set pile of the second example, and the set pile of the second comparative example are juxtaposed in the horizontal direction. Is generally rigidly connected.

図9〜図12は、図8(a)、(b)、(c)、(d)に対応したモデルで三次元FEM解析を行ったものから、所定の応力状態下における縦断面と、剪断面(すべり面)直上の解析結果を取り出し、所定の閾値で2値化し、黒く塗りつぶした箇所を塑性化地盤、塗りつぶされていない箇所を非塑性化地盤として表したものである。図9(a)及び図10(a)は第1実施例対応解析用モデル、図9(b)及び図10(b)は第1比較例対応解析用モデル、図11(a)及び図12(a)は第2実施例対応解析用モデル、図11(b)及び図12(b)は第2比較例対応解析用モデルのものをそれぞれ示している。   FIGS. 9 to 12 show three-dimensional FEM analysis using models corresponding to FIGS. 8A, 8B, 8C, and 8D. The analysis result immediately above the surface (slip surface) is taken out, binarized with a predetermined threshold value, and the portion painted black is represented as plasticized ground, and the portion not painted is represented as non-plasticized ground. 9 (a) and 10 (a) are the model for analysis of the first embodiment, FIGS. 9 (b) and 10 (b) are the model for analysis of the first comparative example, FIGS. 11 (a) and 12 (A) shows the model for analysis of the second embodiment, and FIGS. 11 (b) and 12 (b) show the model for analysis of the second comparative example.

図9及び図11の縦断方向の塑性域分布図によれば、第1実施例、第2実施例対応のモデルでは、すべり面より上側(斜面表層に近い側)の杭間に非塑性化領域が残り、終局的な変位状態においても、壊れることなく地盤反力を維持している地盤が残ることが分かる。一方、第1比較例、第2比較例対応のモデルでは、杭間の地盤がほぼ全て塑性化してしまうことが分かる。このように一旦塑性化した地盤は杭間において弾性体として地盤反力を発現することはできない。   According to the distribution of the plastic zone in the longitudinal direction in FIGS. 9 and 11, in the models corresponding to the first and second embodiments, the non-plasticized zone is located between the piles above the slip surface (closer to the slope surface layer). It can be seen that even in the eventual displacement state, the ground that maintains the ground reaction force without breaking remains. On the other hand, in the models corresponding to the first comparative example and the second comparative example, it can be seen that the ground between the piles is almost entirely plasticized. The ground once plasticized cannot exhibit ground reaction force as an elastic body between the piles.

また、図10及び図12の剪断面(すべり面)直上近傍の横断面における塑性域分布状態によれば、第1実施例、第2実施例対応のモデルでは、杭の前面・背面及び杭間でも非塑性化領域が残り、地盤反力が見込めるのに対し、第1比較例、第2比較例対応のモデルでは、地盤のほとんどが塑性化してしまうことが分かる。即ち、本発明は、単に載荷荷重的なメリットがあるということではなく、杭材周辺の土圧を効果的に生かして、斜面の安定化を合理的に図ることができると言える。   According to the distribution of the plastic zone in the cross section immediately above the shear plane (slip surface) in FIGS. 10 and 12, in the models corresponding to the first and second embodiments, the front and rear surfaces of the pile and the distance between the piles are different. However, it can be seen that the unplasticized region remains and a ground reaction force can be expected, whereas the models corresponding to the first comparative example and the second comparative example plasticize most of the ground. That is, it can be said that the present invention does not merely have a merit in terms of a load, but can effectively utilize the earth pressure around the pile material to stably stabilize the slope.

〔実施形態の変形例等〕
本明細書開示の発明は、各発明、各実施形態、各例の他に、適用可能な範囲で、これらの部分的な構成を本明細書開示の他の構成に変更して特定したもの、或いはこれらの構成に本明細書開示の他の構成を付加して特定したもの、或いはこれらの部分的な構成を部分的な作用効果が得られる限度で削除して特定した上位概念化したものを含むものであり、下記変形例も包含する。
(Modifications of the embodiment, etc.)
The invention disclosed in the present specification, in addition to each invention, each embodiment, and each example, those in which these partial configurations are changed to other configurations disclosed in the present specification and specified within an applicable range, Alternatively, these include configurations specified by adding other configurations disclosed in the present specification to the configurations, or superordinate concepts specified by deleting and specifying these partial configurations to the extent that a partial operation and effect can be obtained. And the following modifications are also included.

例えば直杭1の杭頭部12と第1の斜杭2の杭頭部22と第2の斜杭3の杭頭部32を剛結する部材、或いは直杭1aの杭頭部と斜杭2aの杭頭部を剛結する部材は、鉄筋コンクリート4に限定されず、ヒンジ等回転可能なものでない限り剛結可能な部材であれば適宜であり、例えば直杭1の杭頭部12と第1の斜杭2の杭頭部22と第2の斜杭3の杭頭部32を、或いは直杭1aの杭頭部と斜杭2aの杭頭部を鋼材で連結することにより剛結する構成等としてもよい。   For example, a member that rigidly connects the pile head 12 of the straight pile 1, the pile head 22 of the first slant pile 2, and the pile head 32 of the second slant pile 3, or the pile head of the straight pile 1a and the slant pile The member for rigidly connecting the pile head 2a is not limited to the reinforced concrete 4 and may be any member that can be rigidly connected unless it is rotatable, such as a hinge. The pile head 22 of the first slanted pile 2 and the pile head 32 of the second slanted pile 3 or the pile head of the straight pile 1a and the pile head of the slanted pile 2a are rigidly connected by steel. The configuration may be adopted.

本発明は、地山の斜面を安定化する際に利用することができる。   INDUSTRIAL APPLICATION This invention can be utilized at the time of stabilizing the slope of the ground.

1、1a…直杭 11…鋼管 12…杭頭部 2…第1の斜杭 21…鋼管 22…杭頭部 2a…斜杭 3…第2の斜杭 31…鋼管 32…杭頭部 4…鉄筋コンクリート 41…コンクリート部 42…鉄筋 51…削孔ロッド 52…ダウンザホールハンマー 53…ビット 54…注入管 55…パッカー 6…杭 61…鋼管 611…吐出孔 63…定着層 100…地山 101…斜面 102…すべり面 103…削孔 α…第1の斜杭と直下のすべり面とがなす角度 β…第2の斜杭と直下のすべり面とがなす角度 M…鉛直杭 N…斜杭 201…すべり面 202…切土斜面 500…モデル実験装置 501…剪断箱 502…上箱部 503…下箱部 504…模型杭 505…剪断面 601…モデル直杭 602…モデル斜杭 603…剪断面
1, 1a ... straight pile 11 ... steel pipe 12 ... pile head 2 ... first slant pile 21 ... steel pipe 22 ... pile head 2a ... slant pile 3 ... second slant pile 31 ... steel pipe 32 ... pile head 4 ... Reinforced concrete 41 ... Concrete part 42 ... Reinforcing rod 51 ... Drilling rod 52 ... Down the hole hammer 53 ... Bit 54 ... Injection pipe 55 ... Packer 6 ... Pile 61 ... Steel pipe 611 ... Discharge hole 63 ... Anchoring layer 100 ... Ground mountain 101 ... Slope 102 ... Slip surface 103: drilling α: angle between the first slanted pile and the slip surface immediately below β: angle between the second slant pile and the slip surface immediately below M: vertical pile N: slant pile 201: slip surface 202: Cut slope 500: Model test equipment 501: Shear box 502: Upper box 503: Lower box 504: Model pile 505: Shear section 601: Model straight pile 602: Model slope pile 603: Shear section

Claims (5)

地山の斜面内部の一のすべり面に対して略直交方向に、前記一のすべり面の奥側まで打設される直杭と、
前記直杭の上側の離間した位置で、前記一のすべり面に対して略直交方向より水平に近づくように傾いて寝て、前記一のすべり面の奥側まで打設される斜杭を有し、
地山斜面に沿って離れた位置に配置されている前記直杭の杭頭部と前記斜杭の杭頭部とが剛結され
前記一のすべり面より地山斜面表層に近い側の前記直杭と前記斜杭間に地盤自体が保有する内部応力を維持している非塑性化領域が残されていることを特徴とする斜面の安定化構造。
In a direction substantially orthogonal to one slip surface inside the slope of the ground, a straight pile that is driven to the far side of the one slip surface,
Wherein at spaced locations of the upper vertical piles, the sleeping inclined to approach horizontally from a direction substantially perpendicular to one of the sliding surfaces, have a Hasukui being pouring deep side of the one sliding surface And
The pile head of the straight pile and the pile head of the slant pile, which are arranged at positions separated along the ground slope, are rigidly connected ,
A slope characterized in that a non-plasticized region that maintains the internal stress of the ground itself is left between the straight pile and the slope pile closer to the ground slope surface layer than the one slip surface. Stabilizing structure.
前記斜杭を第1の斜杭とし、
前記第1の斜杭の上側の離間した位置で、前記一のすべり面に対して略直交方向より水平に近づくように傾斜して寝て、前記一のすべり面の奥側まで打設される第2の斜杭を有し、
地山斜面に沿って離れた位置に配置されている前記直杭の杭頭部と前記第1の斜杭の杭頭部と前記第2の斜杭の杭頭部とが剛結され
前記一のすべり面より地山斜面表層に近い側の前記直杭と前記第1の斜杭間、及び前記第1の斜杭と前記第2の斜杭間に、それぞれ地盤自体が保有する内部応力を維持している非塑性化領域が残されていることを特徴とする請求項1記載の斜面の安定化構造。
The slanted pile is a first slanted pile,
At the upper, spaced apart position of the first slant pile, slantingly slantingly approaches the one slip surface so as to approach horizontally from a direction substantially perpendicular to the one slip surface, and being driven into the inner side of the one slip surface. Having a second slant pile,
A pile head of the straight pile, a pile head of the first diagonal pile, and a pile head of the second diagonal pile, which are arranged at positions separated along the ground slope, are rigidly connected ;
The interior of the ground itself between the straight pile and the first slant pile, and between the first slant pile and the second slant pile, on the side closer to the ground slope surface layer than the one slip surface. The slope stabilizing structure according to claim 1, wherein a non-plasticized region maintaining stress is left .
前記直杭と前記斜杭の剛結体、若しくは前記直杭と前記第1の斜杭と前記第2の斜杭の剛結体が、前記地山の斜面の横方向に沿って並設されていることを特徴とする請求項1又は2記載の斜面の安定化構造。   The rigid body of the straight pile and the slant pile, or the rigid body of the straight pile, the first slant pile, and the second slant pile are juxtaposed along the lateral direction of the slope of the ground. The slope stabilizing structure according to claim 1 or 2, wherein: 前記直杭と前記斜杭、若しくは前記直杭と前記第1の斜杭と前記第2の斜杭のそれぞれが、直径100〜300mmの鋼管と、グラウト材の注入で形成される定着層とから構成されていることを特徴とする請求項1〜3の何れかに記載の斜面の安定化構造。   Each of the straight pile and the slanted pile, or the straight pile, the first slanted pile, and the second slanted pile are formed of a steel pipe having a diameter of 100 to 300 mm and a fixing layer formed by grout material injection. The slope stabilizing structure according to any one of claims 1 to 3, wherein the slope stabilizing structure is configured. 前記斜杭と前記斜杭の直下の前記一のすべり面とがなす角度が65度〜75度に設定されている、
若しくは前記第1の斜杭と前記第1の斜杭の直下の前記一のすべり面とがなす角度が65度〜75度、前記第2の斜杭と前記第2の斜杭の直下の前記一のすべり面とがなす角度が65度〜75度に設定されていることを特徴とする請求項1〜4の何れかに記載の斜面の安定化構造。
An angle formed between the inclined pile and the one slip surface immediately below the inclined pile is set to 65 degrees to 75 degrees,
Or wherein said angle 65 to 75 degrees formed between the first sliding surface immediately below the first Hasukui first Hasukui, the right under the said and second Hasukui second Hasukui The slope stabilizing structure according to any one of claims 1 to 4, wherein the angle formed by the one slip surface is set to 65 degrees to 75 degrees.
JP2016008892A 2016-01-20 2016-01-20 Slope stabilization structure Active JP6624730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016008892A JP6624730B2 (en) 2016-01-20 2016-01-20 Slope stabilization structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016008892A JP6624730B2 (en) 2016-01-20 2016-01-20 Slope stabilization structure

Publications (2)

Publication Number Publication Date
JP2017128921A JP2017128921A (en) 2017-07-27
JP6624730B2 true JP6624730B2 (en) 2019-12-25

Family

ID=59396564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016008892A Active JP6624730B2 (en) 2016-01-20 2016-01-20 Slope stabilization structure

Country Status (1)

Country Link
JP (1) JP6624730B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108660866B (en) * 2018-06-10 2024-01-05 中铁二院工程集团有限责任公司 Anti-slip deformation roadbed reinforcing structure of high-speed railway in rock mass landslide area
CN109208619B (en) * 2018-11-01 2020-10-27 重庆市交通规划勘察设计院 Treatment method suitable for subgrade slope collapse
JP7260768B2 (en) * 2019-04-04 2023-04-19 日本製鉄株式会社 Slope reinforcement structure and slope reinforcement method
CN110004948B (en) * 2019-04-19 2024-05-07 贵州省交通规划勘察设计研究院股份有限公司 Landslide reinforcement system and reinforcement method thereof
CN110984187A (en) * 2019-12-05 2020-04-10 中铁第四勘察设计院集团有限公司 Method for treating slope deformation
CN110864743B (en) * 2019-12-05 2020-10-16 河北工业大学 Reverse slope stability determination method capable of pre-determining fracture surface position
JP7029149B1 (en) 2021-10-29 2022-03-03 学校法人五島育英会 Seismic retrofitting method for existing masonry retaining walls
CN115370187A (en) * 2022-09-14 2022-11-22 中铁十局集团有限公司 Method for reinforcing railway contact net stand column in soft soil layer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111704A (en) * 1980-02-02 1981-09-03 Hirose Kozai Sangyo Net like pile structure
JPS63110319A (en) * 1986-10-28 1988-05-14 Dainippon Doboku Kk Stabilization work of banking
JP3633326B2 (en) * 1998-11-25 2005-03-30 株式会社大林組 Ground reinforcement method
US6524027B1 (en) * 2000-05-03 2003-02-25 Dst Consulting Engineers Inc. Stabilization system for soil slopes
JP3641783B2 (en) * 2000-11-07 2005-04-27 利根地下技術株式会社 Rigidity suppression steel pipe pile head rigid binding material
JP3769637B2 (en) * 2001-03-16 2006-04-26 東洋建設株式会社 Slope stabilization method
JP2012149514A (en) * 2012-05-14 2012-08-09 Kfc Ltd Slope stabilization method
JP5878886B2 (en) * 2013-03-15 2016-03-08 日本基礎技術株式会社 Foundation method of vegetation base material spraying work and base support frame used therefor
CN104863148A (en) * 2015-05-20 2015-08-26 山东大学 Crossed anchor group structure and construction method thereof

Also Published As

Publication number Publication date
JP2017128921A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP6624730B2 (en) Slope stabilization structure
JP5274941B2 (en) Reinforcing method for embankment and embankment on its back
JP4975460B2 (en) Load bearing material
JP5136270B2 (en) Synthetic friction pile construction method
JP4707177B2 (en) Seismic structure of wooden house
JP6872231B2 (en) Reinforcement structure of rock slope with long-term durability and its construction method
JP6989326B2 (en) Tunnel construction method
JP6284796B2 (en) Slope stabilization method for soil and earthquake resistance
JP4987652B2 (en) Reinforcement structure and method of embankment and linear embankment
JP5382432B2 (en) Excavation method of adjacent twin tunnel
JP6268698B2 (en) Protective body and its construction method
JP4780781B2 (en) Seismic reinforcement method for existing concrete pier
JP2015183439A (en) Steel pipe sheet pile and installation auxiliary implement of steel pipe sheet pile
KR101714610B1 (en) Steel pipe pile construction method of sacrificial steel pipe casing partial pullout
JP3889750B2 (en) Face stabilization method in underground structure construction method
KR100696309B1 (en) Anchor-nail Device for Slope-reinforcement-construction
JP5247289B2 (en) Rotating embedding method of bladed pile
JP5504951B2 (en) Seismic reinforcement method for structures and seismic reinforcement structure for structures
JP3134898U (en) Concrete pile
JP6198474B2 (en) Anchor reinforcement structure
JP6220602B2 (en) Ground anchor and ground anchor method
JP2007040028A (en) Reinforcing structure and reinforcing method for ground
JP6175791B2 (en) Ground reinforcement method and structure
KR101865075B1 (en) Method of Forming for Grouting Root
JP5504463B2 (en) Reinforcing method of concrete frame

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R150 Certificate of patent or registration of utility model

Ref document number: 6624730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250