JP2017128921A - Slope stabilization structure - Google Patents

Slope stabilization structure Download PDF

Info

Publication number
JP2017128921A
JP2017128921A JP2016008892A JP2016008892A JP2017128921A JP 2017128921 A JP2017128921 A JP 2017128921A JP 2016008892 A JP2016008892 A JP 2016008892A JP 2016008892 A JP2016008892 A JP 2016008892A JP 2017128921 A JP2017128921 A JP 2017128921A
Authority
JP
Japan
Prior art keywords
pile
straight
slope
slant
piles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016008892A
Other languages
Japanese (ja)
Other versions
JP6624730B2 (en
Inventor
直人 渡邊
Naoto Watanabe
直人 渡邊
洋一 鱸
Yoichi Suzuki
洋一 鱸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GODAI KAIHATSU KK
KFC Ltd
Original Assignee
GODAI KAIHATSU KK
KFC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GODAI KAIHATSU KK, KFC Ltd filed Critical GODAI KAIHATSU KK
Priority to JP2016008892A priority Critical patent/JP6624730B2/en
Publication of JP2017128921A publication Critical patent/JP2017128921A/en
Application granted granted Critical
Publication of JP6624730B2 publication Critical patent/JP6624730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slope stabilization structure in which the front side of piles and the subgrade reaction between the piles can effectively be utilized to the maximum by pile casting with respect to a landslide slope, and the constraint on the site and the constraint in the construction are reduced, and thereby it is superior in versatility and is rational.SOLUTION: A slope stabilization structure has: a straight pile 1 placed to the far side of a sliding surface 102 substantially in the perpendicular direction to the sliding surface 102 in the slope of a natural ground 100; and a first angular pile 2 inclined so as to horizontally approach substantially from the perpendicular direction to the sliding surface 102 at a spaced position of an upper side of the straight pile 1, and placed to the far side of the sliding surface 102. More preferably, a second angular pile 3 is provided which is inclined so as to horizontally approach substantially from the perpendicular direction to the sliding surface 102 at the spaced position of the upper side of the straight pile 2, and placed to the far side of the sliding surface 102. Pile heads 12, 22, 32 of the straight pile 1, the first angular pile 2 and the second angular pile 3 are rigidly connected.SELECTED DRAWING: Figure 1

Description

本発明は、地山に杭を打設して斜面を安定化する斜面の安定化構造に関する。   The present invention relates to a slope stabilization structure that stabilizes a slope by placing a pile on a natural ground.

地山に杭を打設して斜面を安定化する手法として、特許文献1の組杭抑止工法が知られている。この組杭抑止工法は、長大切土法面対策として、切土法面における途中の小段に鉛直杭を一列に打設すると共に、その直上部分の斜面に対して斜杭を一列に打設し、これらの杭頭部同士を基礎梁により剛結して組杭とし、斜面を安定化するものである。この工法は、水平力に対して抑止杭的に用いられる地滑り補強であり、用地に十分な余裕がある切土斜面で汎用の鉄筋補強土工法等に組み合わせて用い、引張、曲げ、剪断力等に対して大きな耐力を発現させようとしているものである。   As a technique for stabilizing a slope by placing a pile on a natural ground, a method for inhibiting pile piles of Patent Document 1 is known. In this method of preventing pile piles, vertical piles are placed in a row on a small step in the middle of the cut slope, and slant piles are placed in a row on the slope directly above. These pile heads are rigidly connected to each other by foundation beams to form a pile, and the slope is stabilized. This method is a landslide reinforcement used as a pile that restrains against horizontal force, and is used in combination with a general-purpose reinforcing steel reinforced earth method for cutting slopes with sufficient margin on the site, such as tension, bending, shearing force, etc. It is trying to express a great proof strength against.

また、特許文献2の図11には、地山に補強材として鉄筋と固化材によるパイル(小口径杭)を網目状に打設し、土の変形を抑制するルートパイル工法が示されている。ここで網目状とは、鉄筋芯材入りパイルを方向の異なる斜め網状に打設配置するもので、これにより、土の変形・パイル間の土のすりぬけを抑制し、鉄筋等の補強材と土を一体化させている。 Further, FIG. 11 of Patent Document 2 shows a route pile construction method in which piles (small-diameter piles) of reinforcing bars and solidifying materials are placed in a ground as a reinforcing material in a mesh shape to suppress soil deformation. . Here, the net-like shape is a method in which piles with reinforcing bar cores are placed and arranged in diagonal meshes with different directions. This prevents soil deformation and soil slippage between piles, and reinforcing materials such as reinforcing bars and soil. Are integrated.

特開2002−275907号公報JP 2002-275907 A 特開2003−268767号公報JP 2003-268767 A

ところで、特許文献1の組杭抑止工法で施工を行う際には、切土法面を上部側から下部側へ段階的に形成しながら、第1の領域Iの途中の小段で鉛直杭と斜杭を一列づつ打設し、これらの杭頭部同士を基礎梁により剛結し、その後、その下側の第2の領域IIを切土形成してまた小段を設け、鉛直杭と斜杭を一列づつ打設して基礎梁により剛結し、という作業を繰り返すため、用地と施工上の制約を大きく受けてしまう。このため、適用範囲が狭く、限られたものとなる。   By the way, when constructing with the group pile restraint method of Patent Document 1, the cut slope is formed in stages from the upper side to the lower side, while the vertical pile and the diagonal pile are inclined at a small step in the middle of the first region I. Pile piles one by one, and these pile heads are rigidly connected to each other by foundation beams, and then the second region II underneath is cut and a small step is provided. Repeating the work of placing one row at a time and rigidly connecting it with the foundation beam will greatly impose restrictions on the site and construction. For this reason, the application range is narrow and limited.

また、この組杭抑止工法は鉛直杭と斜杭の組み合わせではあるが、基本的には従来の単列の鉛直杭の曲げ耐力(水平方向支持力)不足を補うために、鉛直杭と斜杭を組み合わせて頭部剛結しただけのものである。そのため、単列の鉛直杭よりは補強効果が見込まれるが、斜杭Nが、鉛直杭Mの背面ですべり面201に対してほぼ直交する状態で背面土圧を全面的に受け止めて剪断力に抗してしまう為、鉛直杭Mにかかる土圧が減って鉛直杭としての支持力は確保されるものの、鉛直杭Aと斜杭Bからなる組杭としての相乗的な補強効果が望めるものではない(図13参照、図中202は切土斜面である)。従って、斜杭の施工で増加する施工コストや施工時間に見合うだけの十分な補強効果の増大があるとは言い難く、コストパフォーマンスに劣る。   In addition, this method for preventing pile piles is a combination of vertical piles and diagonal piles. Basically, in order to compensate for the lack of bending strength (horizontal bearing capacity) of conventional single row vertical piles, vertical piles and diagonal piles are used. It is just a combination of the head and rigid. Therefore, although the reinforcement effect is expected from the single row vertical pile, the slant pile N receives the back side earth pressure in a state almost orthogonal to the sliding surface 201 on the back side of the vertical pile M, and generates shear force. In order to resist, the earth pressure applied to the vertical pile M is reduced and the supporting force as the vertical pile is secured, but the synergistic reinforcing effect as a combined pile consisting of the vertical pile A and the diagonal pile B is not expected. There is no (see FIG. 13, 202 is a cut slope). Therefore, it cannot be said that there is an increase in the reinforcing effect sufficient to meet the construction cost and construction time that are increased in the construction of the slant pile, and the cost performance is inferior.

また、特許文献2のルートパイル工法は、あくまでも補強土工法であり、土を一体化させることができるように多数の細径補強材を網目状に打設し、土と補強材との相互作用により、補強材が地山の変形に追随して補強効果を発揮できるようにするものである。即ち、すべり力に対する杭の軸抵抗、杭の支持力を期待することができる抑止杭ではない。   In addition, the route pile method of Patent Document 2 is a reinforced earth method, and a large number of small-diameter reinforcing materials are cast in a mesh shape so that the soil can be integrated, and the interaction between the soil and the reinforcing material. Thus, the reinforcing material can follow the deformation of the natural ground and exhibit the reinforcing effect. In other words, it is not a deterred pile that can expect the axial resistance of the pile against the sliding force and the support force of the pile.

本発明は上記課題に鑑み提案するものであって、地滑り斜面に対して組杭により杭の前面及び杭間の地盤反力を最大限有効に活用することができると共に、用地上の制約や施工上の制約が少なく、汎用性に優れ合理的な斜面の安定化構造を提供することを目的とする。   The present invention is proposed in view of the above problems, and it is possible to make the most effective use of the ground reaction force between the front surface of the pile and the pile by using the pile pile on the landslide slope, and the restrictions and construction on the ground. The purpose is to provide a rational slope stabilization structure with few limitations and excellent versatility.

本発明の斜面の安定化構造は、地山の斜面内部のすべり面に対して略直交方向に、前記すべり面の奥側まで打設される直杭と、前記直杭の上側の離間した位置で、前記すべり面に対して略直交方向より水平に近づくように傾いて、前記すべり面の奥側まで打設される斜杭を有し、前記直杭の杭頭部と前記斜杭の杭頭部とが剛結されていることを特徴とする。
これによれば、すべり面に対して略直交する方向より水平に近づくように傾いた斜杭が杭背面側の土圧を効果的に支持することにより、斜杭と直杭の間及び直杭の前面側の地盤反力が維持され、杭の前面及び杭間の地盤の塑性化が可及的に抑止される。従って、前後方向に2列をなす組杭として剛結された斜杭と直杭の双方が互いに最大限の支持力を発現して斜面を安定化することができる。即ち、斜杭がすべり面に対して略直交する方向より水平に近づくように傾いている、つまりは寝ていることによって、局所的な剪断力を杭の曲げ耐力だけで抗する状態になるのを避け、長さ方向に応力分散させることができ、土圧分散による地盤反力を効果的に発現させることができる。この結果、斜杭の前面と直杭の間にも外力を受け持つ土圧が発生し、直杭の荷重分担を大幅に減じる一方で、直杭前面側の地盤反力も維持される。そして、斜杭により安定化が保持された地盤中に位置し、すべり面に略直交することで直接的な引張剛性が期待される直杭が組杭の前面に位置することになり、この直杭の配置によって斜杭の変形が防止される。また、直杭と斜杭が頭部剛結されていることでも互いの変形が防止される。これによって、斜杭が直杭を守る一方で直杭が斜杭を守る状態となり、杭背面と杭前面及び杭間の土壌の塑性化が可及的に防止されると共に、斜杭、直杭それぞれが変位発生の早期段階から効果的な支持力を発現できると共に、終局的にも双方の杭が最大限の支持力を発現することができる。また、本発明において直杭、斜杭とは、斜面内部のすべり面に対して略直交方向とそれより水平に近づくように傾く方向に打設されるものであることから、鉛直杭のように斜面途中に段部を形成する必要がなく、施工に当たって用地上の制約や施工上の制約が少なく、汎用性に優れている。また、既存の抑止杭による安定化構造では、大きな抑止力が必要な場合に、杭径を大きくし、杭材質を高張力のものにして対処していたため、施工機械が大型化したり、施工に制約を受けたり、経済性が損なわれていたが、本発明では機動性の良い小口径による組杭を用いても地盤自体が保有する内部応力を崩壊させることなく最大限に活かして大きな抑止力を得、斜面を安定化させることができ、優れた経済性、施工効率で合理的に斜面補強をすることができる。
The slope stabilization structure of the present invention includes a straight pile that is driven to the back side of the slip surface in a direction substantially orthogonal to the slip surface inside the slope of the natural ground, and a spaced position above the straight pile. The slant pile that is inclined so as to approach a horizontal direction from the substantially orthogonal direction with respect to the slip surface and is driven to the back side of the slip surface, the pile head of the straight pile and the pile of the slant pile The head is rigidly connected.
According to this, the slanted pile inclined so as to approach the horizontal from the direction substantially orthogonal to the slip surface effectively supports the earth pressure on the back side of the pile, and between the slanted pile and the straight pile and between the straight piles The ground reaction force on the front side of the pile is maintained, and the plasticization of the ground between the front face of the pile and the pile is suppressed as much as possible. Accordingly, both the slant pile and the straight pile rigidly combined as a pair of piles arranged in two rows in the front-rear direction can exhibit the maximum support force and stabilize the slope. In other words, the slanted pile is tilted so as to be closer to the horizontal than the direction substantially perpendicular to the sliding surface, that is, by lying down, the local shear force is resisted only by the bending strength of the pile. Therefore, the stress can be dispersed in the length direction, and the ground reaction force due to the earth pressure dispersion can be effectively expressed. As a result, the earth pressure responsible for the external force is also generated between the front face of the diagonal pile and the straight pile, and the load sharing of the straight pile is greatly reduced, while the ground reaction force on the front face of the straight pile is also maintained. The straight pile, which is located in the ground where stabilization is maintained by the slant piles and is expected to have direct tensile rigidity by being substantially orthogonal to the slip surface, is located in front of the assembled pile. The pile arrangement prevents the oblique pile from being deformed. Moreover, mutual deformation | transformation is also prevented by the straight pile and the slant pile being rigidly connected to the head. As a result, the diagonal pile protects the straight pile while the direct pile protects the diagonal pile, and the plasticization of the soil between the back of the pile, the front of the pile and the pile is prevented as much as possible. Each can express an effective bearing force from the early stage of displacement occurrence, and both piles can finally develop the maximum bearing force. Further, in the present invention, a straight pile and a diagonal pile are driven in a direction substantially inclined to the sliding surface inside the slope and in a direction inclined so as to be closer to the horizontal, so that it is like a vertical pile. There is no need to form a step part in the middle of the slope, and there are few restrictions on the ground and construction, and it is excellent in versatility. In addition, in the stabilization structure with existing deterrent piles, when large deterrence is required, the pile diameter was increased and the pile material was handled with high tension, so the construction machine was increased in size and installed. Although it was constrained and the economic efficiency was impaired, in the present invention, even if using a pile with a small diameter that has good mobility, the internal stress held by the ground itself is utilized to the maximum without breaking down, and a large deterrent The slope can be stabilized and the slope can be reasonably reinforced with excellent economic efficiency and construction efficiency.

本発明の斜面の安定化構造は、前記斜杭を第1の斜杭とし、前記第1の斜杭の上側の離間した位置で、前記すべり面に対して略直交方向より水平に近づくように傾斜して、前記すべり面の奥側まで打設される第2の斜杭を有し、前記直杭の杭頭部と前記第1の斜杭の杭頭部と前記第2の斜杭の杭頭部とが剛結されていることを特徴とする。
これによれば、第2の斜杭を用いると共に、直杭、第1の斜杭、第2の斜杭の杭頭部を剛結することにより、すべり面に対する終局的な剪断強度を一層高めることができる。
In the slope stabilization structure of the present invention, the slant pile is the first slant pile, and at a spaced position on the upper side of the first slant pile, the slip surface approaches a horizontal direction from a substantially orthogonal direction. A second inclined pile that is inclined and driven to the back side of the sliding surface, the pile head of the straight pile, the pile head of the first inclined pile, and the second inclined pile; The pile head is rigidly connected.
According to this, while using a 2nd diagonal pile, the ultimate shear strength with respect to a sliding surface is further raised by rigidly connecting the pile head of a straight pile, a 1st diagonal pile, and a 2nd diagonal pile. be able to.

本発明の斜面の安定化構造は、前記直杭と前記斜杭の剛結体、若しくは前記直杭と前記第1の斜杭と前記第2の斜杭の剛結体が、前記地山の斜面の横方向に沿って並設されていることを特徴とする。
これによれば、地滑り抑制力の高い安定した斜面構造を広範囲に形成することができる。
The slope stabilization structure of the present invention is characterized in that the straight pile and the slant pile rigid body, or the straight pile, the first slant pile and the second slant pile rigid body, It is characterized by being juxtaposed along the lateral direction of the slope.
According to this, a stable slope structure with a high landslide suppression force can be formed in a wide range.

本発明の斜面の安定化構造は、前記直杭と前記斜杭、若しくは前記直杭と前記第1の斜杭と前記第2の斜杭のそれぞれが、直径100〜300mmの鋼管と、グラウト材の注入で形成される定着層とから構成されていることを特徴とする。
これによれば、直径100〜300mmの小口径の鋼管による杭を用いることで、より施工上の制約が少なくすることができると共に、斜面のすべり面に対して略直交方向に或いは傾斜角度をつけて打設することも容易に行うことができる。
The slope stabilization structure of the present invention includes a steel pipe having a diameter of 100 to 300 mm, a grout material, each of the straight pile and the oblique pile, or the straight pile, the first oblique pile, and the second oblique pile. And a fixing layer formed by injection.
According to this, by using a pile made of a small diameter steel pipe having a diameter of 100 to 300 mm, it is possible to further reduce the restrictions on the construction, and to add an inclination angle in a direction substantially orthogonal to the slip surface of the slope. Can be easily placed.

本発明の斜面の安定化構造は、前記斜杭と前記斜杭の直下の前記すべり面とがなす角度が65度〜75度に設定されている、若しくは前記第1の斜杭と前記第1の斜杭の直下の前記すべり面とがなす角度が65度〜75度、前記第2の斜杭と前記第2の斜杭の直下の前記すべり面とがなす角度が65度〜75度に設定されていることを特徴とする。
これによれば、斜杭若しくは第1、第2の斜杭の軸方向を剪断面と最適に斜交させることで、早い段階から斜杭若しくは第1、第2の斜杭の周面摩擦を生かして引張方向の力が働かせ、又、斜杭若しくは第1、第2の斜杭の前側の地盤反力を得ることができ、剪断変位の小さいうちに剪断抵抗力を早く確実に働かせることができる。従って、大きな剪断変位、剪断応力の発生を抑制し、斜面の安定性を一層高めることができる。
In the slope stabilization structure of the present invention, an angle formed by the inclined pile and the sliding surface immediately below the inclined pile is set to 65 degrees to 75 degrees, or the first inclined pile and the first An angle formed by the sliding surface immediately below the diagonal pile is 65 degrees to 75 degrees, and an angle formed by the second inclined pile and the sliding surface immediately below the second inclined pile is 65 degrees to 75 degrees. It is characterized by being set.
According to this, by making the axial direction of the inclined pile or the first and second inclined piles obliquely intersect with the shear plane optimally, the peripheral friction of the inclined pile or the first and second inclined piles can be reduced from an early stage. It is possible to use the force in the tensile direction by making use of it, and to obtain the ground reaction force on the front side of the slant pile or the first and second slant piles, so that the shear resistance force can be exerted quickly and reliably while the shear displacement is small. it can. Therefore, generation of large shear displacement and shear stress can be suppressed and slope stability can be further enhanced.

本発明の斜面の安定化構造は、地滑り斜面に対して組杭により杭の前面及び杭間の地盤反力を最大限有効に活用することができ、剛結された斜杭と直杭の双方に互いに最大限の支持力を発現させて斜面を安定化することができる。また、用地上の制約や施工上の制約が少なく、汎用性に優れ、極めて高い合理的を有する。   The slope stabilization structure of the present invention can make the most effective use of the ground reaction force between the front surface of the pile and the pile by means of the assembled pile against the landslide slope. The slopes can be stabilized by expressing the maximum support force to each other. Moreover, there are few restrictions on the ground and restrictions on construction, it is excellent in versatility and has extremely high rationality.

本発明による第1実施形態の斜面の安定化構造を示す模式断面図。The schematic cross section which shows the stabilization structure of the slope of 1st Embodiment by this invention. 第1実施形態の斜面の安定化構造における直杭、第1の斜杭、第2の斜杭の剛結部分を示す断面説明図。Cross-sectional explanatory drawing which shows the rigid connection part of the direct pile in the stabilization structure of the slope of 1st Embodiment, a 1st diagonal pile, and a 2nd diagonal pile. (a)〜(e)は第1実施形態の斜面の安定化構造における杭の施工工程を示す断面説明図。(A)-(e) is sectional explanatory drawing which shows the construction process of the pile in the stabilization structure of the slope of 1st Embodiment. 本発明による第2実施形態の斜面の安定化構造を示す模式断面図。The schematic cross section which shows the stabilization structure of the slope of 2nd Embodiment by this invention. モデル実験装置の構成図。The block diagram of a model experiment apparatus. (a)、(b)はモデル実験装置における第1実施例及び第1比較例の杭配置を示す説明図、(c)、(d)はモデル実験装置における第2実施例及び第2比較例の杭配置を示す説明図。(A), (b) is explanatory drawing which shows the pile arrangement | positioning of the 1st Example and 1st comparative example in a model experiment apparatus, (c), (d) is the 2nd Example and 2nd comparative example in a model experiment apparatus. Explanatory drawing which shows the pile arrangement | positioning. (1)はモデル実験による第1実施例及び第1比較例の剪断変位と剪断応力の関係を示すグラフ、(2)はモデル実験による第2実施例及び第2比較例の剪断変位と剪断応力の関係を示すグラフ。(1) is a graph showing the relationship between the shear displacement and the shear stress of the first example and the first comparative example by the model experiment, and (2) is the shear displacement and the shear stress of the second example and the second comparative example by the model experiment The graph which shows the relationship. (a)は第1実施例に対応する3次元FEM解析用モデル図、(b)は第1比較例に対応する3次元FEM解析用モデル図、(c)は第2実施例に対応する3次元FEM解析用モデル図、(b)は第2比較例に対応する3次元FEM解析用モデル図。(A) is a model diagram for 3D FEM analysis corresponding to the first embodiment, (b) is a model diagram for 3D FEM analysis corresponding to the first comparative example, and (c) is 3 corresponding to the second embodiment. Model diagram for three-dimensional FEM analysis, (b) is a model diagram for three-dimensional FEM analysis corresponding to the second comparative example. (a)は第1実施例対応解析用モデルにおける縦断方向の塑性域分布図、(b)は第1比較例対応解析用モデルにおける縦断方向の塑性域分布図。(A) is a plastic region distribution diagram in the longitudinal direction in the analysis model for the first embodiment, and (b) is a plastic region distribution diagram in the longitudinal direction in the analysis model for the first comparative example. (a)は第1実施例対応解析用モデルにおける剪断面(すべり面)直上の塑性域分布をあらわす3Dモデル図、(b)は第1比較例対応解析用モデルにおける剪断面(すべり面)直上の塑性域分布をあらわす3Dモデル図。(A) is a 3D model diagram showing the plastic region distribution immediately above the shear plane (slip plane) in the analysis model for the first embodiment, and (b) is just above the shear plane (slip plane) in the analysis model for the first comparative example. The 3D model figure showing the plastic zone distribution. (a)は第2実施例対応解析用モデルにおける縦断方向の塑性域分布図、(b)は第2比較例対応解析用モデルにおける縦断方向の塑性域分布図。(A) is a plastic region distribution diagram in the longitudinal direction in the second embodiment correspondence analysis model, and (b) is a plastic region distribution diagram in the longitudinal direction in the second comparative example correspondence analysis model. (a)は第2実施例対応解析用モデルにおける剪断面(すべり面)直上の塑性域分布をあらわす3Dモデル図、(b)は第2比較例対応解析用モデルにおける剪断面(すべり面)直上の塑性域分布をあらわす3Dモデル図。(A) is a 3D model diagram showing the plastic region distribution immediately above the shear plane (slip plane) in the model for analysis corresponding to the second embodiment, and (b) is just above the shear plane (slip plane) in the model for analysis corresponding to the second comparative example. The 3D model figure showing the plastic zone distribution. 従来の斜面の安定化構造の参考説明図。Reference explanatory diagram of a conventional slope stabilization structure.

〔第1実施形態の斜面の安定化構造〕
本発明による第1実施形態の斜面の安定化構造は、図1及び図2に示すように、地山100の斜面101から内部にあるすべり面102に対して略直交方向に打設されている直杭1と、直杭1の上側の離間した位置で、斜面101からすべり面102に対して略直交方向より水平に近づくように傾いて打設されている第1の斜杭2と、第1の斜杭2の上側の離間した位置で、斜面101からすべり面102に対して略直交方向より水平に近づくように傾いて打設されている第2の斜杭3を備える。直杭1、第1の斜杭2、第2の斜杭3は、それぞれ斜面101から先端側の部分がすべり面102の奥側まで到達するように打設されている。
[Slope stabilization structure of the first embodiment]
As shown in FIGS. 1 and 2, the slope stabilization structure of the first embodiment according to the present invention is driven from the slope 101 of the natural ground 100 in a substantially orthogonal direction to the internal sliding surface 102. The first pile 1 and the first slant pile 2 that is inclined at a position spaced apart from the upper surface of the straight pile 1 so as to approach the slide surface 102 from the substantially orthogonal direction in a horizontal direction; The first inclined pile 2 is provided with a second inclined pile 3 that is inclined and driven so as to approach the sliding surface 102 from the inclined surface 101 in a substantially orthogonal direction at a position spaced apart from the upper side of the one inclined pile 2. The straight pile 1, the first slant pile 2, and the second slant pile 3 are each placed so that the tip side portion reaches the back side of the slip surface 102 from the slope 101.

直杭1は、すべり面102に対して略直交方向に打設され、第1の斜杭2、第2の斜杭3は、すべり面102に対して略直交方向より水平に近づくように傾いて打設され、この直杭1、第1の斜杭2、第2の斜杭3の3列で組杭が構成されており、既存の鉛直方向に打設される鉛直杭と、鉛直方向に対して若干傾斜して打設される斜杭からなる組杭とは異なるものである。   The straight pile 1 is driven in a substantially orthogonal direction with respect to the sliding surface 102, and the first inclined pile 2 and the second inclined pile 3 are inclined so as to approach the sliding surface 102 more horizontally than the substantially orthogonal direction. The three piles of the straight pile 1, the first slant pile 2, and the second slant pile 3 are assembled into a pile, and the existing vertical pile and the vertical direction It is different from a group pile composed of slant piles that are driven with a slight inclination.

第1の斜杭2と、第1の斜杭2の直下のすべり面102とがなす角度αは、略直交方向より水平に近づくように傾斜する角度で適宜設定することが可能であるが、65度〜75度に設定すると好適であり、図示例の角度αは70度になっており、第1の斜杭2の直杭1に対する傾斜角度は20度になっている。同様に、第2の斜杭3と、第2の斜杭3の直下のすべり面102とがなす角度βは、略直交方向より水平に近づくように傾斜する角度で適宜設定することが可能であるが、65度〜75度に設定すると好適であり、図示例の角度βは70度になっており、第2の斜杭3の直杭1に対する傾斜角度は20度になっている。この斜杭2、3の角度α、βは、すべり面に対して略直交する直杭1と打設角度が傾斜する斜杭2、3を同一の施工機械で段取り変えしながら打設するのに無理のない角度で、作業性にも支障を及ぼさない。   The angle α formed by the first slant pile 2 and the sliding surface 102 immediately below the first slant pile 2 can be appropriately set as an angle inclined so as to approach the horizontal from the substantially orthogonal direction. It is preferable to set the angle between 65 degrees and 75 degrees, the angle α in the illustrated example is 70 degrees, and the inclination angle of the first diagonal pile 2 with respect to the straight pile 1 is 20 degrees. Similarly, the angle β formed by the second slant pile 3 and the sliding surface 102 immediately below the second slant pile 3 can be appropriately set as an angle that is inclined so as to be closer to the horizontal than the substantially orthogonal direction. However, it is preferable to set the angle to 65 degrees to 75 degrees, the angle β in the illustrated example is 70 degrees, and the inclination angle of the second diagonal pile 3 with respect to the straight pile 1 is 20 degrees. The angles α and β of the slant piles 2 and 3 are set by placing the straight pile 1 substantially perpendicular to the slip surface and the slant piles 2 and 3 having a slant angle while setting up with the same construction machine. It does not interfere with workability at a reasonable angle.

直杭1、第1の斜杭2、第2の斜杭3のそれぞれは、鋼管11、21、31と、グラウト材の注入で形成され、地山101に打設されている鋼管11、21、31の周囲で硬化している定着層63から構成されており(図3参照)、更に、鋼管11、21、31にはそれぞれ杭頭部12、22、32が溶接して固定されている。鋼管11、21、31には所要の杭支持力が得られる適宜の鋼管を用いることが可能であるが、直径100〜300mmの小口径の鋼管とすると、より施工上の制約が少なくすることができると共に、斜面のすべり面に対して略直交方向に或いは傾斜角度をつけて打設することも容易に行うことができて好適である。   Each of the straight pile 1, the first slant pile 2, and the second slant pile 3 is formed by injecting the steel pipes 11, 21, 31 and grout material, and the steel pipes 11, 21 that are driven into the natural ground 101. , 31 (see FIG. 3), and pile heads 12, 22, 32 are fixed to the steel pipes 11, 21, 31 by welding. . As the steel pipes 11, 21, and 31, it is possible to use appropriate steel pipes capable of obtaining a required pile supporting force. However, when the steel pipes have a small diameter of 100 to 300 mm, the construction restrictions may be further reduced. In addition, it can be easily placed in a direction substantially orthogonal to the sliding surface of the inclined surface or with an inclination angle, which is preferable.

直杭1の杭頭部12及びその近傍、第1の斜杭2の杭頭部22及びその近傍、第2の斜杭3の杭頭部32及びその近傍は、斜面101上に一体的に設けられている鉄筋コンクリート4に埋め込まれており、即ち、本実施形態においては直杭1、斜杭2、3の杭頭部12、22、32は鉄筋コンクリート4を介して剛結されている。鉄筋コンクリート4は、コンクリート部41と、コンクリート部41内に配された鉄筋42とから構成される。   The pile head 12 and its vicinity of the straight pile 1, the pile head 22 and its vicinity of the first diagonal pile 2, and the pile head 32 and its vicinity of the second diagonal pile 3 are integrally formed on the slope 101. The pile heads 12, 22, and 32 of the straight pile 1, the oblique piles 2 and 3 are rigidly connected via the reinforced concrete 4. The reinforced concrete 4 includes a concrete part 41 and a reinforcing bar 42 arranged in the concrete part 41.

本実施形態の直杭1、第1の斜杭2、第2の斜杭3はいずれも同様の施工方法により地山100に打設される。図3は直杭1、第1の斜杭2又は第2の斜杭3を構成する杭6を打設する施工工程を示す断面説明図である。   The straight pile 1, the first slant pile 2, and the second slant pile 3 of this embodiment are all placed in the natural ground 100 by the same construction method. FIG. 3 is a cross-sectional explanatory view showing a construction process for placing the pile 6 constituting the straight pile 1, the first slant pile 2 or the second slant pile 3.

杭6を打設する際には、先ず斜面101から地山100に向かって削孔103を形成する。図3(a)の例では、先端部にビット53とダウンザホールハンマー52が設けられている削孔ロッド51を鋼管61内に挿入し、鋼管61をケーシングとする削孔ロッド51を施工機械で回転させて削孔103を形成する。削孔103が所要の深さまで到達したら削孔ロッド51を引き抜いて鋼管61のみ削孔103内に存置する(図3(b)参照)。なお、図示例はダウンザホールハンマー方式の削孔であるが、ロータリーパカッション方式等でも同様に鋼管61をケーシングとして削孔することができ、また、地山100の土質や鋼管61の形態によっては、打撃を伴わずに回転のみで削孔打設することも可能である。   When placing the pile 6, first, the hole 103 is formed from the slope 101 toward the natural ground 100. In the example of FIG. 3A, a drilling rod 51 provided with a bit 53 and a down-the-hole hammer 52 at the tip is inserted into a steel pipe 61, and the drilling rod 51 having the steel pipe 61 as a casing is rotated by a construction machine. Thus, the hole 103 is formed. When the hole 103 reaches the required depth, the hole rod 51 is pulled out and only the steel pipe 61 is placed in the hole 103 (see FIG. 3B). In addition, although the example of illustration is a drilling hole of a down-the-hole hammer system, a steel pipe 61 can be similarly drilled as a casing also in a rotary percussion system etc., and depending on the soil nature of the natural ground 100 and the form of the steel pipe 61, It is also possible to perform drilling only by rotation without hitting.

その後、図3(c)に示すように、鋼管61内に先端部にパッカー55が設けられている注入管54を挿入し、パッカー55が孔奥近傍に到達するまで挿入する。そして、注入管54にグラウト材を圧送してパッカー55の先端から吐出させ、鋼管61の周面に長手方向に所定間隔を開けて形成されている吐出孔611から周囲の地山100内にグラウト材を注入する。グラウト材が浸透した周囲の地山100には定着層63が形成される。このグラウト材の注入をパッカー55及び注入管54を引き上げながら繰り返し行い、鋼管61の周囲に定着層63が形成される(図3(d)、(e)参照)。   Thereafter, as shown in FIG. 3 (c), the injection tube 54 provided with the packer 55 at the tip is inserted into the steel tube 61 and inserted until the packer 55 reaches the vicinity of the hole. Then, the grout material is pumped to the injection pipe 54 and discharged from the tip of the packer 55, and the grout is formed in the surrounding ground 100 from the discharge hole 611 formed at a predetermined interval in the longitudinal direction on the peripheral surface of the steel pipe 61. Inject the material. A fixing layer 63 is formed on the surrounding ground 100 where the grout material has permeated. The injection of the grout material is repeated while pulling up the packer 55 and the injection pipe 54, and the fixing layer 63 is formed around the steel pipe 61 (see FIGS. 3D and 3E).

そして、鋼管61から注入管54及びパッカー55を引き抜き、鋼管61の斜面101から吐出する端部に杭頭部を溶接等によって固定し、直杭1、第1の斜杭2又は第2の斜杭3を構成する杭6が形成される。   Then, the injection pipe 54 and the packer 55 are pulled out from the steel pipe 61, and the pile head is fixed to the end portion discharged from the slope 101 of the steel pipe 61 by welding or the like, and the straight pile 1, the first inclined pile 2 or the second inclined pile. A pile 6 constituting the pile 3 is formed.

第1実施形態では、直杭1と第1の斜杭2と第2の斜杭3を剛結合して構成される剛結体が、地山100の斜面101の横方向に沿って並設されており、この複数並設された剛結体の直杭1の杭頭部12、第1の斜杭2の杭頭部22、第2の斜杭3の杭頭部32が、斜面101上に一体的に設けられている鉄筋コンクリート4で剛結されている(図示省略)。直杭1と第1の斜杭2と第2の斜杭3の剛結体を並設することにより、地滑り抑制力の高い安定した斜面構造を広範囲に形成することができる。   In the first embodiment, a rigid structure formed by rigidly connecting the straight pile 1, the first slant pile 2, and the second slant pile 3 is juxtaposed along the lateral direction of the slope 101 of the natural ground 100. The pile head 12 of the straight pile 1 of the plurality of rigidly connected bodies, the pile head 22 of the first slant pile 2, and the pile head 32 of the second slant pile 3 are arranged on the slope 101. It is rigidly connected by reinforced concrete 4 provided integrally therewith (not shown). By arranging the rigid bodies of the straight pile 1, the first slant pile 2 and the second slant pile 3 in parallel, a stable slope structure with a high landslide suppression force can be formed over a wide range.

第1実施形態の斜面の安定化構造によれば、すべり面に対して略直交する方向より水平に近づくように傾いた第1の斜杭2、第2の斜杭3が直杭1の背面側の土圧を効果的に支持することにより、第2の斜杭3と第1の斜杭2との間、第1の斜杭2と直杭1との間、及び直杭1の前面側の地盤反力が維持され、直杭1の前面及び杭間の地盤の塑性化を可及的に抑止できる。従って、組杭として剛結された直杭1と第1の斜杭2と第3の斜杭3が互いに最大限の支持力を発現して斜面を安定化することができる。   According to the slope stabilization structure of the first embodiment, the first slant pile 2 and the second slant pile 3 which are inclined so as to approach the horizontal from the direction substantially orthogonal to the slip surface are the back surfaces of the straight pile 1. By effectively supporting the earth pressure on the side, between the second slant pile 3 and the first slant pile 2, between the first slant pile 2 and the straight pile 1, and the front of the straight pile 1 The ground reaction force on the side is maintained, and the plasticization of the ground between the front surface of the straight pile 1 and the pile can be suppressed as much as possible. Therefore, the straight pile 1, the first slant pile 2 and the third slant pile 3 rigidly connected as a set pile can exhibit the maximum support force with each other and can stabilize the slope.

即ち、第1の斜杭2、第2の斜杭3がすべり面に対して略直交する方向より水平に近づくように傾くことによって、局所的な剪断力を杭の曲げ耐力だけで抗する状態になるのを避け、長さ方向に応力を分散させ、土圧分散による地盤反力を効果的に発現させることができる。この結果、第2の斜杭3の前面と第1の斜杭2との間、第1の斜杭2と直杭1との間にも外力を受け持つ土圧が発生し、直杭1の荷重分担を大幅に減じる一方で、直杭1の前面側の地盤反力も維持される。そして、斜杭2、3により安定化が保持された地盤中に位置し、すべり面に略直交することで直接的な引張剛性が期待される直杭1が組杭の前面に位置することになり、この直杭1の配置によって斜杭2、3の変形が防止される。また、直杭1と斜杭2、3が頭部剛結されていることでも互いの変形が防止される。これによって、斜杭2、3が直杭1を守る一方で直杭1が斜杭2、3を守る状態となり、杭背面と杭前面及び杭間の土壌の塑性化が可及的に防止されると共に、斜杭2、3、直杭1のそれぞれが変位発生の早期段階から効果的な支持力を発現できると共に、終局的にもそれぞれの杭が最大限の支持力を発現することができる。   That is, the state where the first slant pile 2 and the second slant pile 3 are tilted so as to be closer to the horizontal than the direction substantially orthogonal to the sliding surface, thereby resisting the local shear force only by the bending strength of the pile. The stress in the length direction can be dispersed and the ground reaction force due to the earth pressure dispersion can be effectively expressed. As a result, earth pressure is generated between the front surface of the second slant pile 3 and the first slant pile 2 and between the first slant pile 2 and the straight pile 1. While significantly reducing the load sharing, the ground reaction force on the front side of the straight pile 1 is also maintained. And the straight pile 1 which is located in the ground maintained by the slant piles 2 and 3 and is expected to have direct tensile rigidity by being substantially orthogonal to the sliding surface is located at the front of the group pile. Therefore, deformation of the inclined piles 2 and 3 is prevented by the arrangement of the straight piles 1. Moreover, mutual deformation | transformation is prevented also by the straight pile 1 and the diagonal piles 2 and 3 being head-rigid. As a result, the diagonal piles 2 and 3 protect the straight pile 1 while the direct pile 1 protects the diagonal piles 2 and 3, and the plasticization of the soil between the back of the pile, the front of the pile and the pile is prevented as much as possible. In addition, each of the slant piles 2 and 3 and the straight pile 1 can exhibit an effective bearing capacity from the early stage of displacement occurrence, and each pile can also exhibit a maximum bearing capacity eventually. .

また、直杭1、斜杭2、3とは、斜面内部のすべり面に対して略直交方向とそれより水平に近づくように傾く方向に打設されるものであることから、鉛直杭のように斜面途中に段部を形成する必要がなく、施工に当たって用地上の制約や施工上の制約が少なく、汎用性に優れている。また、既存の抑止杭による安定化構造では、大きな抑止力が必要な場合に、杭径を大きくし、杭材質を高張力のものにして対処していたため、施工機械が大型化したり、施工に制約を受けたり、経済性が損なわれていたが、第1実施形態では機動性の良い小口径による組杭を用いても地盤自体が保有する内部応力を崩壊させることなく最大限に活かして大きな抑止力を得、斜面を安定化させることができ、優れた経済性、施工効率で合理的に斜面補強をすることができる。   Moreover, since the straight pile 1 and the diagonal piles 2 and 3 are driven in a direction substantially perpendicular to the sliding surface inside the slope and a direction inclined more horizontally than that, it is like a vertical pile. Therefore, there is no need to form a step part in the middle of the slope, and there are few restrictions on the ground for construction and restrictions on construction, and it is excellent in versatility. In addition, in the stabilization structure with existing deterrent piles, when large deterrence is required, the pile diameter was increased and the pile material was handled with high tension, so the construction machine was increased in size and installed. Although it was constrained and the economic efficiency was impaired, in the first embodiment, even if using a pile with a small diameter with good mobility, it is possible to make maximum use of the internal stress held by the ground itself without collapsing. Deterrence can be obtained, the slope can be stabilized, and the slope can be reasonably reinforced with excellent economic efficiency and construction efficiency.

更に、第1の斜杭2に加えて第2の斜杭3を用いると共に、直杭1、第1の斜杭2、第2の斜杭3の杭頭部12、22、32を剛結することにより、すべり面に対する終局的な剪断強度を一層高めることができる。   Further, in addition to the first slant pile 2, the second slant pile 3 is used, and the pile heads 12, 22, and 32 of the straight pile 1, the first slant pile 2, and the second slant pile 3 are rigidly connected. By doing so, the ultimate shear strength with respect to the slip surface can be further increased.

また、第1の斜杭2の角度α、第2の斜杭3の角度βを65度〜75度に設定することにより、第1の斜杭2、第2の斜杭3の軸方向を剪断面と最適に斜交させて、早い段階から第1の斜杭2、第2の斜杭3の周面摩擦を生かして引張方向の力が働かせ、又、第1の斜杭2、第2の斜杭3の前側の地盤反力を得ることができ、剪断変位の小さいうちに剪断抵抗力を早く確実に働かせることができる。従って、大きな剪断変位、剪断応力の発生を抑制し、斜面の安定性を一層高めることができる。   Moreover, the axial direction of the 1st slant pile 2 and the 2nd slant pile 3 is set by setting the angle (alpha) of the 1st slant pile 2 and the angle (beta) of the 2nd slant pile 3 to 65 degree-75 degree | times. By making the crossing with the shearing surface optimally, the force in the tensile direction works from the early stage by making use of the peripheral surface friction of the first slant pile 2 and the second slant pile 3, and the first slant pile 2 and the second slant pile 2 The ground reaction force on the front side of the two slant piles 3 can be obtained, and the shear resistance can be acted quickly and reliably while the shear displacement is small. Therefore, generation of large shear displacement and shear stress can be suppressed and slope stability can be further enhanced.

〔第2実施形態の斜面の安定化構造〕
本発明による第2実施形態の斜面の安定化構造は、図4に示すように、第1実施形態における第2の斜杭3を設けない斜面の安定化構造であり、地山100の斜面101から内部にあるすべり面102に対して略直交方向に打設されている直杭1aと、直杭1aの上側の離間した位置で、斜面101からすべり面102に対して略直交方向より水平に近づくように傾いて打設されている斜杭2aを備え、直杭1a、斜杭2aが、それぞれ斜面101から先端側の部分がすべり面102の奥側まで到達するように打設されているものである。直杭1a、斜杭2aは第1実施形態の直杭1、第1の斜杭2とそれぞれ同一構成であり、直杭1、第1の斜杭2と同様に打設される。
[Slope stabilization structure of the second embodiment]
As shown in FIG. 4, the slope stabilization structure of the second embodiment according to the present invention is a slope stabilization structure in which the second slant pile 3 in the first embodiment is not provided, and the slope 101 of the natural ground 100. The straight pile 1a that is driven in a substantially orthogonal direction from the inside to the sliding surface 102, and a position spaced above the straight pile 1a from the inclined surface 101 to the sliding surface 102 in a more horizontal direction than the substantially orthogonal direction. Inclined piles 2a that are inclined so as to approach each other, and straight piles 1a and inclined piles 2a are respectively arranged so that a portion on the tip side from slope 101 reaches the back side of slip surface 102. Is. The direct pile 1a and the oblique pile 2a have the same configuration as the direct pile 1 and the first oblique pile 2 of the first embodiment, respectively, and are driven in the same manner as the direct pile 1 and the first oblique pile 2.

直杭1aの杭頭部及びその近傍、斜杭2aの杭頭部及びその近傍は、斜面101上に一体的に設けられている鉄筋コンクリート4に埋め込まれており、即ち、本実施形態においては直杭1aの杭頭部と斜杭2aの杭頭部とが鉄筋コンクリート4を介して剛結されている。鉄筋コンクリート4は、第1実施形態と同様、コンクリート部41と、コンクリート部41内に配された鉄筋42とから構成されるものである。第2実施形態では直杭1aと斜杭2aとで組杭が構成されている。   The pile head of the straight pile 1a and the vicinity thereof, and the pile head of the inclined pile 2a and the vicinity thereof are embedded in the reinforced concrete 4 integrally provided on the slope 101, that is, in this embodiment, The pile head of the pile 1 a and the pile head of the oblique pile 2 a are rigidly connected via the reinforced concrete 4. The reinforced concrete 4 is comprised from the concrete part 41 and the reinforcing bar 42 distribute | arranged in the concrete part 41 like 1st Embodiment. In the second embodiment, a set pile is constituted by the straight pile 1a and the diagonal pile 2a.

この直杭1a、斜杭2aは第1実施形態の直杭1、第1の斜杭2とそれぞれ同一構成であり、又、図3の杭6の打設工程の如く、直杭1、第1の斜杭2と同様に打設される。また、斜杭2aと直下のすべり面102とがなす角度αは、第1の斜杭2と直下のすべり面102とがなす角度αと同様に設定される。   The straight pile 1a and the oblique pile 2a have the same configuration as the direct pile 1 and the first oblique pile 2 of the first embodiment, respectively, and, as in the placing process of the pile 6 in FIG. It is placed in the same way as the slant pile 2 of 1. Further, the angle α formed between the diagonal pile 2a and the sliding surface 102 immediately below is set in the same manner as the angle α formed between the first inclined pile 2 and the sliding surface 102 directly below.

第2実施形態では、直杭1aと斜杭2aを剛結合して構成される剛結体が、地山100の斜面101の横方向に沿って並設されており、この複数並設された剛結体の直杭1aの杭頭部、斜杭2aの杭頭部が、斜面101上に一体的に設けられている鉄筋コンクリート4で剛結されている(図示省略)。直杭1aと斜杭2aの剛結体を並設することにより、地滑り抑制力の高い安定した斜面構造を広範囲に形成することができる。   In 2nd Embodiment, the rigid connection body comprised by rigidly connecting the straight pile 1a and the slant pile 2a was juxtaposed along the horizontal direction of the slope 101 of the natural ground 100, and this plural juxtaposition was carried out. The pile head of the straight pile 1a of the rigid body and the pile head of the slant pile 2a are rigidly connected by a reinforced concrete 4 integrally provided on the slope 101 (not shown). By arranging the rigid bodies of the straight pile 1a and the diagonal pile 2a side by side, a stable slope structure having a high landslide suppression force can be formed over a wide range.

第2実施形態の斜面の安定化構造によれば、すべり面に対して略直交する方向より水平に近づくように傾いた斜杭2aが直杭1aの背面側の土圧を効果的に支持することにより、斜杭2aと直杭1aとの間、及び直杭1aの前面側の地盤反力が維持され、直杭1aの前面及び杭間の地盤の塑性化を可及的に抑止できる。従って、組杭として剛結された直杭1aと斜杭2aが互いに最大限の支持力を発現して斜面を安定化することができる。   According to the slope stabilization structure of the second embodiment, the inclined pile 2a tilted so as to approach the horizontal from the direction substantially orthogonal to the slip surface effectively supports the earth pressure on the back side of the straight pile 1a. Thus, the ground reaction force between the diagonal pile 2a and the straight pile 1a and the front side of the straight pile 1a is maintained, and the plasticization of the ground between the front face of the straight pile 1a and the pile can be suppressed as much as possible. Therefore, the straight pile 1a and the slant pile 2a rigidly connected as a set pile can express the maximum support force with each other and can stabilize the slope.

即ち、斜杭2aがすべり面に対して略直交する方向より水平に近づくように傾くことによって、局所的な剪断力を杭の曲げ耐力だけで抗する状態になるのを避け、長さ方向に応力を分散させ、土圧分散による地盤反力を効果的に発現させることができる。この結果、斜杭2aと直杭1aとの間にも外力を受け持つ土圧が発生し、直杭1aの荷重分担を大幅に減じる一方で、直杭1aの前面側の地盤反力も維持される。そして、斜杭2aにより安定化が保持された地盤中に位置し、すべり面に略直交することで直接的な引張剛性が期待される直杭1aが組杭の前面に位置することになり、この直杭1aの配置によって斜杭2aの変形が防止される。また、直杭1aと斜杭2aが頭部剛結されていることでも互いの変形が防止される。これによって、斜杭2aが直杭1aを守る一方で直杭1aが斜杭2aを守る状態となり、杭背面と杭前面及び杭間の土壌の塑性化が可及的に防止されると共に、斜杭2a、直杭1aのそれぞれが変位発生の早期段階から効果的な支持力を発現できると共に、終局的にもそれぞれの杭が最大限の支持力を発現することができる。   That is, the slant pile 2a is tilted so as to be closer to the horizontal than the direction substantially perpendicular to the sliding surface, thereby avoiding a state in which the local shear force is resisted only by the bending strength of the pile, and in the length direction. It is possible to disperse stress and effectively develop ground reaction force due to earth pressure dispersion. As a result, earth pressure responsible for external force is also generated between the slant pile 2a and the straight pile 1a, and the ground reaction force on the front side of the straight pile 1a is maintained while greatly reducing the load sharing of the straight pile 1a. . And the straight pile 1a which is located in the ground where the stabilization is maintained by the slant pile 2a and is expected to have direct tensile rigidity by being substantially orthogonal to the sliding surface is located at the front surface of the assembled pile, By the arrangement of the straight pile 1a, deformation of the oblique pile 2a is prevented. Moreover, mutual deformation | transformation is prevented also by the straight pile 1a and the diagonal pile 2a being head-rigid. As a result, the slant pile 2a protects the straight pile 1a while the straight pile 1a protects the slant pile 2a, and the plasticization of the soil between the back of the pile, the front of the pile and the pile is prevented as much as possible. Each of the piles 2a and the straight piles 1a can express an effective supporting force from an early stage of the occurrence of displacement, and each pile can express a maximum supporting force finally.

また、直杭1a、斜杭2aとは、斜面内部のすべり面に対して略直交方向とそれより水平に近づくように傾く方向に打設されるものであることから、鉛直杭のように斜面途中に段部を形成する必要がなく、施工に当たって用地上の制約や施工上の制約が少なく、汎用性に優れている。また、既存の抑止杭による安定化構造では、大きな抑止力が必要な場合に、杭径を大きくし、杭材質を高張力のものにして対処していたため、施工機械が大型化したり、施工に制約を受けたり、経済性が損なわれていたが、第2実施形態では機動性の良い小口径による組杭を用いても地盤自体が保有する内部応力を崩壊させることなく最大限に活かして大きな抑止力を得、斜面を安定化させることができ、優れた経済性、施工効率で合理的に斜面補強をすることができる。その他、第1実施形態と対応する構成から対応する効果を奏する。   Moreover, since the straight pile 1a and the slant pile 2a are driven in a direction substantially inclined with respect to the sliding surface inside the slope and in a direction inclined so as to approach the horizontal, the slope is like a vertical pile. There is no need to form a step in the middle, and there are few restrictions on the ground and construction, and the versatility is excellent. In addition, in the stabilization structure with existing deterrent piles, when large deterrence is required, the pile diameter was increased and the pile material was handled with high tension, so the construction machine was increased in size and installed. Although it was constrained and the economic efficiency was impaired, in the second embodiment, even if a pile with a small diameter with good mobility is used, the internal stress held by the ground itself can be utilized to the maximum without collapse. Deterrence can be obtained, the slope can be stabilized, and the slope can be reasonably reinforced with excellent economic efficiency and construction efficiency. In addition, there exists an effect corresponding from the structure corresponding to 1st Embodiment.

〔実施例と比較例の対比〕
本発明による斜面安定化構造のうち、直杭1+第1の斜杭2+第2の斜杭3の3列で1組をなす第1実施形態の構造に対応するモデル実施例の第1実施例と、直杭1a+斜杭2aの2列で1組をなす第2実施形態の構造に対応するモデル実施例の第2実施例とが、同本数の直杭に比して有する有効性を確認するため、第1実施例、第2実施例と比較例のモデル実験を行った。このモデル実験では杭や地盤のモデルにセンサを設けておくことにより、各位置での挙動を数値として計測することができる。
[Contrast of Examples and Comparative Examples]
Of the slope stabilization structure according to the present invention, a first example of a model example corresponding to the structure of the first embodiment in which one set is formed by three rows of a straight pile 1 + a first slant pile 2 + a second slant pile 3. And the effectiveness of the second example of the model example corresponding to the structure of the second embodiment that forms one set in two rows of the straight pile 1a and the diagonal pile 2a as compared to the straight pile of the same number Therefore, model experiments of the first example, the second example and the comparative example were performed. In this model experiment, it is possible to measure the behavior at each position as a numerical value by providing a sensor for a pile or ground model.

図5はモデル実験装置の構成図である。モデル実験装置500は、上箱部502と下箱部503で一対の剪断箱501を有し、剪断箱501内に珪砂7号を相対密度80%となるように充填して模擬地盤を作成し、この模擬地盤内に、φ114.3mm鋼管杭を想定して相似比1/10となるアルミ角棒10mm×10mm×260mm(中空、厚さ1mm)を模型杭504として、実施例及び比較例となるように配置した。図5中、505はすべり面102に対応する剪断面である。   FIG. 5 is a configuration diagram of the model experiment apparatus. The model experimental apparatus 500 has a pair of shear boxes 501 in an upper box section 502 and a lower box section 503, and a simulated ground is created by filling the shear box 501 with silica sand 7 so as to have a relative density of 80%. In this simulated ground, an aluminum square bar 10mm x 10mm x 260mm (hollow, thickness 1mm) with a similarity ratio of 1/10 assuming a φ114.3mm steel pipe pile is used as a model pile 504. Arranged to be. In FIG. 5, reference numeral 505 denotes a shearing surface corresponding to the sliding surface 102.

モデル実験における杭配置を図6に示す。図6(a)、(b)は第1実施例及びその比較例である第1比較例の杭配置を示しており、第1実施例では直杭1+第1の斜杭2+第2の斜杭3の3本に対応するように模型杭504を上箱部502及び下箱部503内に配置し、3本の模型杭504の頭部を同様に相似比を考慮したアルミ棒φ3mmで剛結した。第1比較例では直杭1を3列で打設する場合に対応するように剪断面505に対して略直交する3本の模型杭504を上箱部502及び下箱部503内に配置し、3本の模型杭504の頭部を同様に相似比を考慮したアルミ棒φ3mmで剛結した。   The pile arrangement in the model experiment is shown in FIG. 6 (a) and 6 (b) show the pile arrangement of the first embodiment and the first comparative example which is a comparative example thereof. In the first embodiment, the straight pile 1 + the first slant pile 2 + the second slant The model piles 504 are arranged in the upper box portion 502 and the lower box portion 503 so as to correspond to the three piles 3, and the heads of the three model piles 504 are similarly rigid with an aluminum rod φ3 mm considering the similarity ratio. I concluded. In the first comparative example, three model piles 504 substantially orthogonal to the shear plane 505 are arranged in the upper box portion 502 and the lower box portion 503 so as to correspond to the case where the straight piles 1 are driven in three rows. The heads of the three model piles 504 were similarly rigidly connected with an aluminum rod φ3 mm considering the similarity ratio.

図6(c)、(d)は第2実施例及びその比較例である第2比較例の杭配置を示しており、第2実施例では直杭1a+斜杭2aの2本に対応するように模型杭504を上箱部502及び下箱部503内に先端部を保持して配置し、2本の模型杭504の後端部に位置する頭部を同様に相似比を考慮したアルミ棒φ3mmで剛結した。第2比較例では直杭1aを2列で打設する場合に対応するように剪断面505に対して略直交する2本の模型杭504を上箱部502及び下箱部503内に先端部を保持して配置し、2本の模型杭504の後端部に位置する頭部を同様に相似比を考慮したアルミ棒φ3mmで剛結した。   6 (c) and 6 (d) show the pile arrangement of the second embodiment and the second comparative example which is a comparative example thereof. In the second embodiment, the piles correspond to the straight pile 1a and the diagonal pile 2a. The model pile 504 is placed in the upper box portion 502 and the lower box portion 503 with the tip portions held, and the heads located at the rear end portions of the two model piles 504 are similarly considered in the similarity ratio. It was rigidly connected with φ3mm. In the second comparative example, two model piles 504 that are substantially orthogonal to the shear plane 505 are disposed in the upper box portion 502 and the lower box portion 503 so as to correspond to the case where the straight piles 1a are driven in two rows. The heads located at the rear ends of the two model piles 504 were similarly rigidly connected with an aluminum rod φ3 mm considering the similarity ratio.

そして、剪断箱501の上面を拘束圧25kN/mで拘束した状態で、下箱部503を側方から速度1mm/minで剪断力を付与する形式で実験した。各模型杭504には、土圧計、歪み計等のセンサを深さ方向に所定ピッチで取り付けておき、各模型杭504に負荷される土圧や歪み等を求めた。 Then, the experiment was performed in a state in which a shear force was applied to the lower box portion 503 from the side at a speed of 1 mm / min in a state where the upper surface of the shear box 501 was restrained at a restraining pressure of 25 kN / m 2 . Sensors such as earth pressure gauges and strain gauges were attached to each model pile 504 at a predetermined pitch in the depth direction, and the earth pressure and strain applied to each model pile 504 were determined.

このモデル実験により得られた剪断変位と剪断応力の関係を図7に示す。図7(1)における黒色点の軌跡の実線は第1実施例の結果、白色点の軌跡の点線は第1比較例の結果であり、図7(2)における黒色点の軌跡の実線は第2実施例の結果、白色点の軌跡の点線は第2比較例の結果であり、それぞれモデル実験装置500に設置されている剪断応力測定センサー及び変位センサーにより、得られた信号をコンピューターで変換し、グラフ化したものである。尚、ここに言う剪断応力は、模型杭504の剪断応力ではなく、実験箱の中に再現された模擬地盤の剪断応力であり、又、ここに言う剪断変位は、模擬地盤の剪断変位である。   The relationship between the shear displacement and the shear stress obtained by this model experiment is shown in FIG. The solid line of the black point locus in FIG. 7 (1) is the result of the first example, the dotted line of the white point locus is the result of the first comparative example, and the solid line of the black point locus in FIG. As a result of the second example, the dotted line of the locus of the white point is the result of the second comparative example, and the obtained signal is converted by a computer by the shear stress measurement sensor and the displacement sensor respectively installed in the model experimental apparatus 500. It is a graph. The shear stress referred to here is not the shear stress of the model pile 504 but the simulated ground shear stress reproduced in the experimental box, and the shear displacement referred to here is the shear displacement of the simulated ground. .

本モデル実験の結果によると、第1実施例は、直杭1の3列の頭部剛結に対応する第1比較例の剪断実験結果に対し、初期剛性はほぼ変わらないものの、終局的に大きな剪断応力を発現する、つまりは高い補強効果を有することが分かる。   According to the results of this model experiment, although the first example is substantially the same as the shear test result of the first comparative example corresponding to the three rows of heads of the straight pile 1, the initial stiffness is not substantially changed. It can be seen that a large shear stress is expressed, that is, it has a high reinforcing effect.

一方、第2実施例と、直杭1aの2列の頭部剛結に対応する第2比較例では、第2実施例の方が初期剛性で第2比較例を上回るものの、その後の剪断応力−剪断変位曲線ではあまり差が見られず、終局的には第2比較例より剪断応力が落ちている。しかし、この結果は剪断応力−剪断変位曲線であるが、同時に検出された土圧計のデータによれば、模型杭504に生じる土圧分布には第2実施例と第2比較例とで大きな差が生じることが分かった。   On the other hand, in the 2nd example and the 2nd comparative example corresponding to two rows of head rigid connection of straight pile 1a, although the 2nd example is the initial rigidity and exceeds the 2nd comparative example, the subsequent shear stress -There is not much difference in the shear displacement curve, and eventually the shear stress is lower than in the second comparative example. However, although this result is a shear stress-shear displacement curve, according to the data of the earth pressure gauge detected at the same time, the earth pressure distribution generated in the model pile 504 is greatly different between the second embodiment and the second comparative example. Was found to occur.

自然地盤は常に動き得るものであり、ある載荷荷重に対し変位が同じ地盤であっても「壊れた地盤」と「壊れていない地盤」がある。壊れていない地盤は変形しても弾性体として地盤崩壊を免れるように自身を維持し、地盤が壊れていて塑性化していれば、杭の支持力を超えたところで崩壊する。このような地盤性状の相違は、土圧分布の相違と相関性を有すると考えられる。   Natural ground can always move, and even if the displacement is the same for a given load, there are “broken ground” and “unbroken ground”. An unbroken ground maintains itself as an elastic body even if it deforms, and if the ground is broken and plasticized, it collapses beyond the support capacity of the pile. Such a difference in ground properties is considered to have a correlation with a difference in earth pressure distribution.

そのため、第1、第2実施例と第1、第2比較例の剪断試験において生じる土圧の違いに着目し、モデル実験に対応するモデルにより、杭の前面・背面及び杭間の地盤における地盤性状を三次元FEM解析により評価した。三次元FEM解析は、静的な条件下で地盤を弾塑性体として見て3次元軸上で要素分割し、その応力と変形について解析を行うものであり、杭が打設された地盤全体の連続的な挙動、三次元的な挙動を把握するのに有利である。   Therefore, paying attention to the difference in earth pressure that occurs in the shear test between the first and second embodiments and the first and second comparative examples, the model corresponding to the model experiment, the ground in the front and back of the pile and the ground between the piles Properties were evaluated by three-dimensional FEM analysis. The three-dimensional FEM analysis is to analyze the stress and deformation of the entire ground where the piles are placed by looking at the ground as an elasto-plastic body under static conditions and dividing the elements on the three-dimensional axis. It is advantageous for grasping continuous behavior and three-dimensional behavior.

この三次元FEM解析では、モデル実験により得た各データと最も整合するよう解析条件を定めてパラメータを設定し、当該条件及びパラメータを用いてFEM解析を行った。そして、視覚的に見識可能となるようにデータを加工することにより、杭間及び組杭の前後の地盤状態を確認した。   In this three-dimensional FEM analysis, analysis conditions were set so as to best match each data obtained by the model experiment, parameters were set, and FEM analysis was performed using the conditions and parameters. And the ground condition before and after the pile between piles and the pile was confirmed by processing data so that it became visually insightful.

図8(a)、(b)は第1実施例と第1比較例に対応する3次元FEM解析用モデル図、図8(c)、(d)は第2実施例と第2比較例に対応する3次元FEM解析用モデル図であり、これらのモデル図中の601はモデル直杭、602はモデル斜杭、603は剪断面である。各モデルでは、第1実施例の組杭、第1比較例の組杭、第2実施例の組杭、第2比較例の組杭を横方向に3組並設し、各例の各杭の頭部は全体的に剛結している。   8A and 8B are three-dimensional FEM analysis model diagrams corresponding to the first embodiment and the first comparative example, and FIGS. 8C and 8D are the second embodiment and the second comparative example. It is a corresponding 3D FEM analysis model diagram. In these model diagrams, 601 is a model direct pile, 602 is a model oblique pile, and 603 is a shear plane. In each model, the piles of the first example, the grouped piles of the first comparative example, the grouped piles of the second example, and the grouped piles of the second comparative example were arranged in parallel in the horizontal direction. The head of is totally rigid.

図9〜図12は、図8(a)、(b)、(c)、(d)に対応したモデルで三次元FEM解析を行ったものから、所定の応力状態下における縦断面と、剪断面(すべり面)直上の解析結果を取り出し、所定の閾値で2値化し、黒く塗りつぶした箇所を塑性化地盤、塗りつぶされていない箇所を非塑性化地盤として表したものである。図9(a)及び図10(a)は第1実施例対応解析用モデル、図9(b)及び図10(b)は第1比較例対応解析用モデル、図11(a)及び図12(a)は第2実施例対応解析用モデル、図11(b)及び図12(b)は第2比較例対応解析用モデルのものをそれぞれ示している。   FIGS. 9 to 12 show a longitudinal section under a predetermined stress state and a shearing force obtained from three-dimensional FEM analysis using models corresponding to FIGS. 8 (a), (b), (c), and (d). The analysis result immediately above the surface (sliding surface) is taken out, binarized with a predetermined threshold value, and the blacked portion is represented as plasticized ground, and the unpainted portion is represented as nonplasticized ground. 9 (a) and 10 (a) are models for analysis corresponding to the first embodiment, FIGS. 9 (b) and 10 (b) are models for analysis corresponding to the first comparative example, and FIGS. 11 (a) and 12 (b). FIG. 11A shows the model for analysis corresponding to the second embodiment, and FIGS. 11B and 12B show the model for analysis corresponding to the second comparative example, respectively.

図9及び図11の縦断方向の塑性域分布図によれば、第1実施例、第2実施例対応のモデルでは、すべり面より上側(斜面表層に近い側)の杭間に非塑性化領域が残り、終局的な変位状態においても、壊れることなく地盤反力を維持している地盤が残ることが分かる。一方、第1比較例、第2比較例対応のモデルでは、杭間の地盤がほぼ全て塑性化してしまうことが分かる。このように一旦塑性化した地盤は杭間において弾性体として地盤反力を発現することはできない。   According to the plastic zone distribution diagrams in the longitudinal direction of FIGS. 9 and 11, in the model corresponding to the first embodiment and the second embodiment, the non-plasticization region between the piles on the upper side (closer to the slope surface layer) than the slip surface. It can be seen that even in the ultimate displacement state, there remains a ground that maintains the ground reaction force without breaking. On the other hand, in the models corresponding to the first comparative example and the second comparative example, it can be seen that the ground between the piles is almost entirely plasticized. The ground once plasticized in this way cannot exhibit a ground reaction force as an elastic body between piles.

また、図10及び図12の剪断面(すべり面)直上近傍の横断面における塑性域分布状態によれば、第1実施例、第2実施例対応のモデルでは、杭の前面・背面及び杭間でも非塑性化領域が残り、地盤反力が見込めるのに対し、第1比較例、第2比較例対応のモデルでは、地盤のほとんどが塑性化してしまうことが分かる。即ち、本発明は、単に載荷荷重的なメリットがあるということではなく、杭材周辺の土圧を効果的に生かして、斜面の安定化を合理的に図ることができると言える。   Further, according to the plastic zone distribution in the cross section immediately above the shear plane (slip plane) in FIGS. 10 and 12, in the models corresponding to the first embodiment and the second embodiment, the front and back surfaces of the pile and the space between the piles However, it can be seen that the non-plasticized region remains and the ground reaction force can be expected, whereas in the models corresponding to the first comparative example and the second comparative example, most of the ground is plasticized. That is, it can be said that the present invention does not simply have an advantage in terms of load, but can effectively stabilize the slope by effectively utilizing the earth pressure around the pile material.

〔実施形態の変形例等〕
本明細書開示の発明は、各発明、各実施形態、各例の他に、適用可能な範囲で、これらの部分的な構成を本明細書開示の他の構成に変更して特定したもの、或いはこれらの構成に本明細書開示の他の構成を付加して特定したもの、或いはこれらの部分的な構成を部分的な作用効果が得られる限度で削除して特定した上位概念化したものを含むものであり、下記変形例も包含する。
[Modifications of Embodiment, etc.]
In addition to each invention, each embodiment, and each example, the invention disclosed in this specification is specified by changing these partial configurations to other configurations disclosed in this specification, to the extent applicable. Or, those that are specified by adding other configurations disclosed in the present specification to these configurations, or those that have been identified by deleting these partial configurations to the extent that partial effects can be obtained are included. The following modifications are also included.

例えば直杭1の杭頭部12と第1の斜杭2の杭頭部22と第2の斜杭3の杭頭部32を剛結する部材、或いは直杭1aの杭頭部と斜杭2aの杭頭部を剛結する部材は、鉄筋コンクリート4に限定されず、ヒンジ等回転可能なものでない限り剛結可能な部材であれば適宜であり、例えば直杭1の杭頭部12と第1の斜杭2の杭頭部22と第2の斜杭3の杭頭部32を、或いは直杭1aの杭頭部と斜杭2aの杭頭部を鋼材で連結することにより剛結する構成等としてもよい。   For example, a member that rigidly connects the pile head 12 of the straight pile 1, the pile head 22 of the first diagonal pile 2, and the pile head 32 of the second diagonal pile 3, or the pile head and the diagonal pile of the direct pile 1 a The member that rigidly binds the pile head of 2a is not limited to the reinforced concrete 4 and is appropriate as long as it is a rigid member as long as it is not rotatable, such as a hinge. The pile head 22 of the first slant pile 2 and the pile head 32 of the second slant pile 3 or the pile head of the straight pile 1a and the pile head of the slant pile 2a are connected by steel. It is good also as a structure.

本発明は、地山の斜面を安定化する際に利用することができる。   The present invention can be utilized when stabilizing a natural slope.

1、1a…直杭 11…鋼管 12…杭頭部 2…第1の斜杭 21…鋼管 22…杭頭部 2a…斜杭 3…第2の斜杭 31…鋼管 32…杭頭部 4…鉄筋コンクリート 41…コンクリート部 42…鉄筋 51…削孔ロッド 52…ダウンザホールハンマー 53…ビット 54…注入管 55…パッカー 6…杭 61…鋼管 611…吐出孔 63…定着層 100…地山 101…斜面 102…すべり面 103…削孔 α…第1の斜杭と直下のすべり面とがなす角度 β…第2の斜杭と直下のすべり面とがなす角度 M…鉛直杭 N…斜杭 201…すべり面 202…切土斜面 500…モデル実験装置 501…剪断箱 502…上箱部 503…下箱部 504…模型杭 505…剪断面 601…モデル直杭 602…モデル斜杭 603…剪断面
DESCRIPTION OF SYMBOLS 1, 1a ... Straight pile 11 ... Steel pipe 12 ... Pile head 2 ... 1st inclined pile 21 ... Steel pipe 22 ... Pile head 2a ... Oblique pile 3 ... 2nd inclined pile 31 ... Steel pipe 32 ... Pile head 4 ... Reinforced concrete 41 ... Concrete part 42 ... Reinforcing bar 51 ... Drilling rod 52 ... Down the hole hammer 53 ... Bit 54 ... Injection pipe 55 ... Packer 6 ... Pile 61 ... Steel pipe 611 ... Discharge hole 63 ... Fixation layer 100 ... Ground mountain 101 ... Slope 102 ... Sliding surface 103 ... Drilling hole α ... Angle between the first slant pile and the sliding surface directly below β ... Angle between the second slant pile and the sliding surface directly below M ... Vertical pile N ... Slant pile 201 ... Sliding surface 202 ... Cut slope 500 ... Model test equipment 501 ... Shear box 502 ... Upper box part 503 ... Lower box part 504 ... Model pile 505 ... Shear surface 601 ... Model straight pile 602 ... Model diagonal pile 603 ... Shear surface

Claims (5)

地山の斜面内部のすべり面に対して略直交方向に、前記すべり面の奥側まで打設される直杭と、
前記直杭の上側の離間した位置で、前記すべり面に対して略直交方向より水平に近づくように傾いて、前記すべり面の奥側まで打設される斜杭を有し、
前記直杭の杭頭部と前記斜杭の杭頭部とが剛結されていることを特徴とする斜面の安定化構造。
A direct pile driven to the back side of the slip surface in a direction substantially orthogonal to the slip surface inside the slope of the natural ground,
Inclined piles that are placed up to the back side of the slip surface, tilted so as to be closer to the horizontal than the direction substantially perpendicular to the slide surface, at a spaced position on the upper side of the straight pile,
A slope stabilization structure, wherein a pile head of the straight pile and a pile head of the oblique pile are rigidly connected.
前記斜杭を第1の斜杭とし、
前記第1の斜杭の上側の離間した位置で、前記すべり面に対して略直交方向より水平に近づくように傾斜して、前記すべり面の奥側まで打設される第2の斜杭を有し、
前記直杭の杭頭部と前記第1の斜杭の杭頭部と前記第2の斜杭の杭頭部とが剛結されていることを特徴とする請求項1記載の斜面の安定化構造。
The diagonal pile is the first diagonal pile,
A second inclined pile that is inclined to approach the horizontal direction from the substantially orthogonal direction with respect to the sliding surface at a spaced position on the upper side of the first inclined pile, and is driven to the back side of the sliding surface. Have
The slope stabilization according to claim 1, wherein the pile head of the straight pile, the pile head of the first diagonal pile, and the pile head of the second diagonal pile are rigidly connected. Construction.
前記直杭と前記斜杭の剛結体、若しくは前記直杭と前記第1の斜杭と前記第2の斜杭の剛結体が、前記地山の斜面の横方向に沿って並設されていることを特徴とする請求項1又は2記載の斜面の安定化構造。   The rigid body of the straight pile and the oblique pile, or the rigid body of the straight pile, the first oblique pile, and the second oblique pile are arranged side by side along the lateral direction of the slope of the natural ground. The slope stabilizing structure according to claim 1 or 2, wherein the structure is stabilized. 前記直杭と前記斜杭、若しくは前記直杭と前記第1の斜杭と前記第2の斜杭のそれぞれが、直径100〜300mmの鋼管と、グラウト材の注入で形成される定着層とから構成されていることを特徴とする請求項1〜3の何れかに記載の斜面の安定化構造。   Each of the straight pile and the oblique pile, or the straight pile, the first oblique pile, and the second oblique pile each has a steel pipe having a diameter of 100 to 300 mm, and a fixing layer formed by injection of a grout material. The slope stabilization structure according to any one of claims 1 to 3, wherein the slope stabilization structure is configured. 前記斜杭と前記斜杭の直下の前記すべり面とがなす角度が65度〜75度に設定されている、
若しくは前記第1の斜杭と前記第1の斜杭の直下の前記すべり面とがなす角度が65度〜75度、前記第2の斜杭と前記第2の斜杭の直下の前記すべり面とがなす角度が65度〜75度に設定されている
ことを特徴とする請求項1〜4の何れかに記載の斜面の安定化構造。
The angle formed by the slant pile and the sliding surface directly below the slant pile is set to 65 degrees to 75 degrees,
Alternatively, an angle formed by the first inclined pile and the sliding surface immediately below the first inclined pile is 65 degrees to 75 degrees, and the sliding surface immediately below the second inclined pile and the second inclined pile. The angle formed between and is set to 65 degrees to 75 degrees. The slope stabilization structure according to any one of claims 1 to 4, wherein:
JP2016008892A 2016-01-20 2016-01-20 Slope stabilization structure Active JP6624730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016008892A JP6624730B2 (en) 2016-01-20 2016-01-20 Slope stabilization structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016008892A JP6624730B2 (en) 2016-01-20 2016-01-20 Slope stabilization structure

Publications (2)

Publication Number Publication Date
JP2017128921A true JP2017128921A (en) 2017-07-27
JP6624730B2 JP6624730B2 (en) 2019-12-25

Family

ID=59396564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016008892A Active JP6624730B2 (en) 2016-01-20 2016-01-20 Slope stabilization structure

Country Status (1)

Country Link
JP (1) JP6624730B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108660866A (en) * 2018-06-10 2018-10-16 中铁二院工程集团有限责任公司 A kind of talus slide area high-speed railway resistant slide deformation subgrade strengthening structure
CN109208619A (en) * 2018-11-01 2019-01-15 重庆市交通规划勘察设计院 Treatment method suitable for subgrade slope collapse
CN110004948A (en) * 2019-04-19 2019-07-12 贵州省交通规划勘察设计研究院股份有限公司 A kind of landslide reinforcement system and its reinforcement means
CN110864743A (en) * 2019-12-05 2020-03-06 河北工业大学 Reverse slope stability determination method capable of pre-determining fracture surface position
CN110984187A (en) * 2019-12-05 2020-04-10 中铁第四勘察设计院集团有限公司 Method for treating slope deformation
JP2020169511A (en) * 2019-04-04 2020-10-15 日本製鉄株式会社 Sloped face reinforcement structure, and sloped face reinforcement method
JP7029149B1 (en) 2021-10-29 2022-03-03 学校法人五島育英会 Seismic retrofitting method for existing masonry retaining walls
CN115370187A (en) * 2022-09-14 2022-11-22 中铁十局集团有限公司 Method for reinforcing railway contact net stand column in soft soil layer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111704A (en) * 1980-02-02 1981-09-03 Hirose Kozai Sangyo Net like pile structure
JPS63110319A (en) * 1986-10-28 1988-05-14 Dainippon Doboku Kk Stabilization work of banking
JP2000160572A (en) * 1998-11-25 2000-06-13 Ohbayashi Corp Natural ground reinforcing construction method
JP2002138486A (en) * 2000-11-07 2002-05-14 Tone Geo Tech Co Ltd Head rigidly-coupling member for landslide suppressing combined pile group composed of steel pipe
JP2002275907A (en) * 2001-03-16 2002-09-25 Toyo Constr Co Ltd Stabilization construction method for slope
US6524027B1 (en) * 2000-05-03 2003-02-25 Dst Consulting Engineers Inc. Stabilization system for soil slopes
JP2012149514A (en) * 2012-05-14 2012-08-09 Kfc Ltd Slope stabilization method
JP2014177835A (en) * 2013-03-15 2014-09-25 Japan Found Eng Co Ltd Foundation construction method of vegetation base material spray work and foundation support frame used therefor
CN104863148A (en) * 2015-05-20 2015-08-26 山东大学 Crossed anchor group structure and construction method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111704A (en) * 1980-02-02 1981-09-03 Hirose Kozai Sangyo Net like pile structure
JPS63110319A (en) * 1986-10-28 1988-05-14 Dainippon Doboku Kk Stabilization work of banking
JP2000160572A (en) * 1998-11-25 2000-06-13 Ohbayashi Corp Natural ground reinforcing construction method
US6524027B1 (en) * 2000-05-03 2003-02-25 Dst Consulting Engineers Inc. Stabilization system for soil slopes
JP2002138486A (en) * 2000-11-07 2002-05-14 Tone Geo Tech Co Ltd Head rigidly-coupling member for landslide suppressing combined pile group composed of steel pipe
JP2002275907A (en) * 2001-03-16 2002-09-25 Toyo Constr Co Ltd Stabilization construction method for slope
JP2012149514A (en) * 2012-05-14 2012-08-09 Kfc Ltd Slope stabilization method
JP2014177835A (en) * 2013-03-15 2014-09-25 Japan Found Eng Co Ltd Foundation construction method of vegetation base material spray work and foundation support frame used therefor
CN104863148A (en) * 2015-05-20 2015-08-26 山东大学 Crossed anchor group structure and construction method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108660866A (en) * 2018-06-10 2018-10-16 中铁二院工程集团有限责任公司 A kind of talus slide area high-speed railway resistant slide deformation subgrade strengthening structure
CN108660866B (en) * 2018-06-10 2024-01-05 中铁二院工程集团有限责任公司 Anti-slip deformation roadbed reinforcing structure of high-speed railway in rock mass landslide area
CN109208619A (en) * 2018-11-01 2019-01-15 重庆市交通规划勘察设计院 Treatment method suitable for subgrade slope collapse
JP2020169511A (en) * 2019-04-04 2020-10-15 日本製鉄株式会社 Sloped face reinforcement structure, and sloped face reinforcement method
JP7260768B2 (en) 2019-04-04 2023-04-19 日本製鉄株式会社 Slope reinforcement structure and slope reinforcement method
CN110004948A (en) * 2019-04-19 2019-07-12 贵州省交通规划勘察设计研究院股份有限公司 A kind of landslide reinforcement system and its reinforcement means
CN110004948B (en) * 2019-04-19 2024-05-07 贵州省交通规划勘察设计研究院股份有限公司 Landslide reinforcement system and reinforcement method thereof
CN110864743A (en) * 2019-12-05 2020-03-06 河北工业大学 Reverse slope stability determination method capable of pre-determining fracture surface position
CN110984187A (en) * 2019-12-05 2020-04-10 中铁第四勘察设计院集团有限公司 Method for treating slope deformation
JP7029149B1 (en) 2021-10-29 2022-03-03 学校法人五島育英会 Seismic retrofitting method for existing masonry retaining walls
JP2023066992A (en) * 2021-10-29 2023-05-16 学校法人五島育英会 Seismic reinforcement method for existing masonry retaining wall
CN115370187A (en) * 2022-09-14 2022-11-22 中铁十局集团有限公司 Method for reinforcing railway contact net stand column in soft soil layer

Also Published As

Publication number Publication date
JP6624730B2 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
JP6624730B2 (en) Slope stabilization structure
JP4975460B2 (en) Load bearing material
US20140010600A1 (en) Soil reinforcement system including angled soil reinforcement elements to resist seismic shear forces and methods of making same
JP6268698B2 (en) Protective body and its construction method
JP5505959B2 (en) A slanted group pile method using a large-diameter core with a bearing plate structure at the head to allow pile deformation
JP2009079415A (en) Banking reinforcing structure, reinforcing method and linear banking
Ranjan et al. Analysis of the effect of anchor rod on the behavior of diaphragm wall using plaxis 3d
JP2015183439A (en) Steel pipe sheet pile and installation auxiliary implement of steel pipe sheet pile
JP2010031568A (en) Aseismatic reinforcing construction method for existing foundation and aseismatic reinforcing structure of existing foundation
Oakland et al. Finite-element analysis of drilled piers used for slope stabilization
JP2016003550A (en) Reinforcement structure and method of masonry wall
JP5504951B2 (en) Seismic reinforcement method for structures and seismic reinforcement structure for structures
JP2007040028A (en) Reinforcing structure and reinforcing method for ground
KR101744378B1 (en) Method for Constructing Retaining Wall
JP5504463B2 (en) Reinforcing method of concrete frame
KR101865075B1 (en) Method of Forming for Grouting Root
KR100721605B1 (en) Bearing plate of soil nail for pull-out test
JP7137358B2 (en) Retaining wall support structure
Lindsay et al. Testing of self-drilled hollow bar soil nails
JP4607485B2 (en) Expanded caisson foundation structure and seismic reinforcement structure for existing caisson foundation
Kong et al. A study on soil behaviour due to tunnelling under embedded pile using close range photogrammetry
KR102503844B1 (en) Upper reinforcement support to increase horizontal force of foundation pile
JP6218130B2 (en) Seismic reinforcement structure and method for reinforced concrete
JP7028818B2 (en) How to insert reinforcements and reinforcements to prevent collapse of slopes and how to reinforce slopes to prevent collapse
KR200405354Y1 (en) Bearing plate of soil nail for pull-out test

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R150 Certificate of patent or registration of utility model

Ref document number: 6624730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250