JP6621369B2 - Idling sliding re-adhesion control method and idling sliding re-adhesion control device - Google Patents

Idling sliding re-adhesion control method and idling sliding re-adhesion control device Download PDF

Info

Publication number
JP6621369B2
JP6621369B2 JP2016096401A JP2016096401A JP6621369B2 JP 6621369 B2 JP6621369 B2 JP 6621369B2 JP 2016096401 A JP2016096401 A JP 2016096401A JP 2016096401 A JP2016096401 A JP 2016096401A JP 6621369 B2 JP6621369 B2 JP 6621369B2
Authority
JP
Japan
Prior art keywords
natural frequency
rotational angular
sliding
idling
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016096401A
Other languages
Japanese (ja)
Other versions
JP2017203724A (en
Inventor
信吾 牧島
信吾 牧島
和樹 藤本
和樹 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2016096401A priority Critical patent/JP6621369B2/en
Publication of JP2017203724A publication Critical patent/JP2017203724A/en
Application granted granted Critical
Publication of JP6621369B2 publication Critical patent/JP6621369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、鉄道車両の台車枠の振動による空転及び滑走の誤検知を防止する空転滑走再粘着制御方法及び空転滑走再粘着制御装置に関するものである。 The present invention relates to idle skid readhesion control method and slipping skid readhesion control device to prevent erroneous detection of slipping and sliding by vibration of the bogie frame of a railway vehicle.

粘着式鉄道は鉄レール(以下、「レール」という)と鉄車輪(以下、「車輪」という)との摩擦力により駆動力及び制動力を発生させるため、車輪とレールとの間の摩擦係数のピーク値である粘着係数より大きな駆動力や制動力がかかると、空転(駆動時)や滑走(制動時)が発生する。特に、雨天時や降雪時は粘着係数が大きく低下することから、空転及び滑走が多く発生する。 Adhesive railways generate driving and braking forces by the frictional force between iron rails (hereinafter referred to as “rails”) and iron wheels (hereinafter referred to as “wheels”). When a driving force or braking force larger than the peak value of the adhesion coefficient is applied, idling (during driving) or sliding (during braking) occurs. In particular, when the weather is raining or snowing, the adhesion coefficient is greatly reduced.

一般に主電動機を制御する主制御装置(例えばVVVFインバータ)は、運転台の主幹制御装置や自動運転装置等の指令に基づき、駆動力及び制動力を発生させるが、空転及び滑走が発生すると加減速性能に支障があるだけでなく、騒音及び振動の悪化や、レールや車輪の損傷を招くため、極力防止する必要がある。そこで、鉄道車両では空転滑走を検知次第、トルクを制御する空転滑走再粘着制御が用いられている。   Generally, a main control device (for example, a VVVF inverter) that controls a main motor generates a driving force and a braking force based on a command from a master control device or an automatic driving device of a cab, but acceleration / deceleration occurs when idling and sliding occur. Not only does this impede performance, but it also causes noise and vibration deterioration and damage to the rails and wheels. Therefore, in the rolling stock, as soon as the idling is detected, idling re-adhesion control for controlling the torque is used.

空転滑走再粘着制御では、空転及び滑走を如何にして検知するかというのが一つの重要なポイントであり、その手法の一つとして主制御装置が主電動機の制御に用いる主電動機の回転速度(角速度)の微分値である主電動機の回転角加速度の値によって決定する方法が広く用いられている。この方法では、例えば、主電動機の回転角加速度がある値を超過すると、空転検知として、トルクを引き下げる制御に移行する。なお、主電動機の回転角速度は、主電動機に設けられたセンサを用いる方法の他に、主電動機に印加される電圧及び主電動機に流れる電流から推定する、センサレスベクトル制御も広く用いられている(例えば特許文献1参照)。   In the idling / sliding / re-adhesion control, one important point is how to detect idling / sliding, and one of the methods is the rotation speed of the main motor used by the main controller to control the main motor ( A method is widely used which is determined by the value of the rotational angular acceleration of the main motor, which is a differential value of (angular velocity). In this method, for example, when the rotational angular acceleration of the main motor exceeds a certain value, the control shifts to control for reducing the torque as idling detection. In addition to the method of using the sensor provided in the main motor, sensorless vector control in which the rotational angular velocity of the main motor is estimated from the voltage applied to the main motor and the current flowing through the main motor is also widely used ( For example, see Patent Document 1).

特開2002−325307号公報JP 2002-325307 A

平行カルダン方式の鉄道車両の場合、図5に示すように主電動機51は台車枠52に装着されており、歯車装置(駆動装置)53は吊りリンク534により台車枠52から吊られている。図6及び図7に示すように、台車枠52と車軸54との間に軸ばね56が設けられ、また台車枠52と車体との間にはまくらばね57が設けられており、レール面の凹凸やレールの継目等による振動を吸収、分散して車体1への振動の伝達を抑制する働きを有している。かかる構成により、台車枠52は車軸54及び車体1のどちらとも異なる動きで振動する。   In the case of a parallel cardan type railway vehicle, as shown in FIG. 5, the main motor 51 is mounted on a carriage frame 52, and a gear device (drive device) 53 is suspended from the carriage frame 52 by a suspension link 534. As shown in FIGS. 6 and 7, a shaft spring 56 is provided between the carriage frame 52 and the axle 54, and a pillow spring 57 is provided between the carriage frame 52 and the vehicle body. It has a function of suppressing vibration transmission to the vehicle body 1 by absorbing and dispersing vibration due to unevenness and rail joints. With this configuration, the bogie frame 52 vibrates with a different movement from both the axle 54 and the vehicle body 1.

台車枠52の振動は、回転角加速度を用いる空転及び滑走の検知に影響を与える。具体的に、台車枠52が振動すると、台車枠52の振動の影響で主電動機51の回転速度にも振動が重畳し、その微分値である主電動機51の回転角加速度にも振動成分が重畳する。そのため、例えば、実際に空転が発生していなくても、台車枠52の振動によって主電動機51の回転角加速度が空転検知閾値を超過した場合、空転が発生したと判断してトルクを引き下げる制御に移行してしまう。空転が発生していないのにも関わらずトルクの引下げを行うと、加減速度の低下だけでなく、トルク変動の発生による乗り心地悪化も招くため、望ましくない。   The vibration of the carriage frame 52 affects the detection of slipping and sliding using the rotational angular acceleration. Specifically, when the bogie frame 52 vibrates, the vibration is also superimposed on the rotational speed of the main motor 51 due to the vibration of the bogie frame 52, and the vibration component is also superimposed on the rotational angular acceleration of the main motor 51 that is the differential value. To do. Therefore, for example, even if no idling actually occurs, if the rotational angular acceleration of the main motor 51 exceeds the idling detection threshold due to the vibration of the carriage frame 52, it is determined that idling has occurred and the torque is reduced. Will migrate. If the torque is reduced even though idling does not occur, not only the acceleration / deceleration speed is lowered but also the ride comfort is deteriorated due to the occurrence of torque fluctuation, which is not desirable.

図8(a)及び図8(b)は、車両走行時の同一台車内の2台の主電動機51の回転角加速度の一例である。横軸は時刻、縦軸は回転角加速度を示す。図8に示すように、レール面の凹凸やレールの継目に起因する台車枠の振動により、空転が発生していないのにも関わらず、回転角加速度が所定の値である空転検知閾値を超え、空転誤検知が発生している(図8の矢印参照)。   FIGS. 8A and 8B are examples of rotational angular accelerations of the two main motors 51 in the same carriage when the vehicle is traveling. The horizontal axis represents time, and the vertical axis represents rotational angular acceleration. As shown in FIG. 8, the rotational angular acceleration exceeds a predetermined value of the idling detection threshold even though no idling has occurred due to the vibration of the carriage frame caused by the unevenness of the rail surface or the rail joint. Misdetection of slipping has occurred (see the arrow in FIG. 8).

台車枠52の振動による空転誤検知を防止する方法として、空転検知閾値を大きくする手法がある。また、主電動機51の回転角加速度を演算する際に挿入されるローパスフィルタのカットオフ周波数を低くして、振動の影響を除外するという手法も考えられる。しかしながら、いずれの手法も誤検知を少なくできる反面、軽度の空転の検知が困難になるため、結果的に空転からの再粘着制御の性能低下を導く。また、振動の振幅によって空転検知閾値又はローパスフィルタのカットオフ周波数が異なることと、軌道やレールの継目の状態が異なるために路線によって設定値が異なることにより、空転検知閾値又はカットオフ周波数の設定が難しいという問題がある。   As a method for preventing slipping erroneous detection due to vibration of the carriage frame 52, there is a method of increasing the slipping detection threshold. Further, a method of eliminating the influence of vibration by lowering the cutoff frequency of the low-pass filter inserted when calculating the rotational angular acceleration of the main motor 51 can be considered. However, either method can reduce false detections, but it is difficult to detect light slipping. As a result, the performance of re-adhesion control from slipping is reduced. Also, the setting of the idling detection threshold or the cut-off frequency is different because the idling detection threshold or the cut-off frequency of the low-pass filter differs depending on the vibration amplitude, and the setting value differs depending on the route because the track or rail joint state is different. There is a problem that is difficult.

また、空転に限らず、滑走においても、同様の課題がある。   Moreover, there is a similar problem not only in idling but also in sliding.

かかる事情に鑑みてなされた本発明の目的は、車両の台車枠の固有振動数を用いて空転及び滑走の誤検知を防止することが可能な空転滑走再粘着制御方法及び空転滑走再粘着制御装置を提供することにある。 An object of the present invention was made in view of such circumstances, idle and capable of preventing erroneous detection of the sliding slipping sliding readhesion control method and slipping skid readhesion control using the unique frequency of the bogie frame of the vehicle To provide an apparatus.

上記課題を解決するため、本発明の第1の態様として、車両の台車の台車枠の固有振動数を把握し、空転及び滑走を検知してトルク制御を行う空転滑走再粘着制御方法であって、前記台車は、駆動及び制動のための電動機を備え、前記車両の走行時に取得した前記電動機の回転角速度又は回転角加速度を用いて前記台車枠の固有振動数を把握する把握ステップと、前記電動機の回転角加速度を用いて、前記台車枠の固有振動数にもとづき求められた時素を用いて前記空転及び滑走を検知する検知ステップと、を含み、前記台車は前記台車枠に2台の前記電動機を備え、前記把握ステップは、前記2台の電動機の回転角速度又は回転角加速度の和から前記台車枠のピッチング振動の固有振動数を把握することを特徴とする。 In order to solve the above problems, as a first aspect of the present invention, there is provided an idling sliding re-adhesion control method for grasping the natural frequency of a bogie frame of a bogie of a vehicle, detecting slipping and sliding and performing torque control. The carriage includes an electric motor for driving and braking, and grasping the natural frequency of the bogie frame using the rotational angular velocity or rotational angular acceleration of the electric motor acquired when the vehicle is running; Detecting the idling and gliding using a time element obtained based on the natural frequency of the bogie frame using the rotational angular acceleration of the bogie frame, and the bogie frame includes two pieces of the bogie frame in the bogie frame. An electric motor is provided, and the grasping step grasps a natural frequency of pitching vibration of the bogie frame from a sum of rotational angular velocities or rotational angular accelerations of the two motors .

本発明の第2の態様として、車両の台車の台車枠の固有振動数を把握し、空転及び滑走を検知してトルク制御を行う空転滑走再粘着制御方法であって、前記台車は、駆動及び制動のための電動機を備え、前記車両の走行時に取得した前記電動機の回転角速度又は回転角加速度を用いて前記台車枠の固有振動数を把握する把握ステップと、前記電動機の回転角加速度を用いて、前記台車枠の固有振動数にもとづき求められた時素を用いて前記空転及び滑走を検知する検知ステップと、を含み、前記台車は前記台車枠に2台の前記電動機を備え、前記把握ステップは、前記2台の電動機の回転角速度又は回転角加速度の差から前記台車枠の上下振動の固有振動数を把握することを特徴とする。 As a second aspect of the present invention, there is provided an idling sliding re-adhesion control method for grasping the natural frequency of the bogie frame of the bogie of the vehicle, detecting slipping and sliding, and performing torque control, wherein the bogie is driven and A grasping step comprising a motor for braking, and grasping the natural frequency of the bogie frame using the rotational angular velocity or rotational angular acceleration of the motor acquired during travel of the vehicle, and using the rotational angular acceleration of the motor Detecting the idling and sliding using a time element obtained based on the natural frequency of the bogie frame, the bogie comprising the two electric motors in the bogie frame, and the grasping step Is characterized by grasping the natural frequency of the vertical vibration of the bogie frame from the difference in rotational angular velocity or rotational angular acceleration of the two motors .

本発明の第3の態様として、車両の台車の台車枠の固有振動数を把握し、空転及び滑走を検知してトルク制御を行う空転滑走再粘着制御方法であって、前記台車は、駆動及び制動のための電動機を備え、前記車両の走行時に取得した前記電動機の回転角速度又は回転角加速度を用いて前記台車枠の固有振動数を把握する把握ステップと、前記電動機の回転角加速度を用いて、前記台車枠の固有振動数にもとづき求められた時素を用いて前記空転及び滑走を検知する検知ステップと、を含み、前記台車は前記台車枠に2台の前記電動機を備え、前記把握ステップは、前記2台の電動機の回転角速度又は回転角加速度の和から前記台車枠のピッチング振動の固有振動数を把握し、前記2台の電動機の回転角速度又は回転角加速度の差から前記台車枠の上下振動の固有振動数を把握することを特徴とする。 As a third aspect of the present invention, there is provided an idling sliding re-adhesion control method for grasping the natural frequency of a bogie frame of a bogie of a vehicle, detecting slipping and sliding and performing torque control, wherein the cart is driven and A grasping step comprising a motor for braking, and grasping the natural frequency of the bogie frame using the rotational angular velocity or rotational angular acceleration of the motor acquired during travel of the vehicle, and using the rotational angular acceleration of the motor Detecting the idling and sliding using a time element obtained based on the natural frequency of the bogie frame, the bogie comprising the two electric motors in the bogie frame, and the grasping step Grasps the natural frequency of the pitching vibration of the carriage frame from the sum of the rotational angular velocities or rotational angular accelerations of the two motors, and determines the cart from the difference between the rotational angular velocities or the rotational angular accelerations of the two motors. Characterized in that to understand the natural frequency of the vertical vibration.

また、前記検知ステップは、前記時素を前記台車枠のピッチング振動の固有振動数と前記台車枠の上下振動の固有振動数とのうちいずれか一方の半周期以上とすることを特徴とする。   Further, the detecting step is characterized in that the timepiece is set to a half period or more of either the natural frequency of pitching vibration of the bogie frame or the natural frequency of vertical vibration of the bogie frame.

また、前記いずれか一方の半周期は前記台車枠のピッチング振動の固有振動数と前記台車枠の上下振動の固有振動数とのうち振動数の低いほうの半周期であることを特徴とする。   Further, one of the half cycles is a lower half cycle of the natural frequency of pitching vibration of the bogie frame and the natural frequency of vertical vibration of the bogie frame.

本発明の第の態様として、車両の台車の台車枠の固有振動数を把握し、空転及び滑走を検知してトルク制御を行う空転滑走再粘着制御装置であって、前記車両は、駆動及び制動のための電動機を備え、前記車両の走行時に取得した前記電動機の回転角速度又は回転角加速度を用いて前記台車枠の固有振動数を把握し、前記台車枠の固有振動数にもとづき求められた時素を用いて前記空転及び滑走を検知し、前記台車は、前記台車枠に2台の前記電動機を備え、前記2台の電動機の回転角速度又は回転角加速度の和から前記台車枠のピッチング振動の固有振動数を把握することを特徴とする。 According to a fourth aspect of the present invention, there is provided an idling sliding re-adhesion control device that grasps the natural frequency of the bogie frame of the bogie of the vehicle, detects idling and sliding, and performs torque control. An electric motor for braking is provided, the natural frequency of the bogie frame is grasped by using the rotational angular velocity or the rotational angular acceleration of the electric motor acquired when the vehicle is running, and is obtained based on the natural frequency of the bogie frame. The idling and sliding are detected using a time element, and the cart includes two motors in the cart frame, and pitching vibration of the cart frame is calculated from the sum of the rotational angular velocities or the rotational angular accelerations of the two motors. It is characterized by grasping the natural frequency of .

本発明の第5の態様として、車両の台車の台車枠の固有振動数を把握し、空転及び滑走を検知してトルク制御を行う空転滑走再粘着制御装置であって、前記車両は、駆動及び制動のための電動機を備え、前記車両の走行時に取得した前記電動機の回転角速度又は回転角加速度を用いて前記台車枠の固有振動数を把握し、前記台車枠の固有振動数にもとづき求められた時素を用いて前記空転及び滑走を検知し、前記台車は、前記台車枠に2台の前記電動機を備え、前記2台の電動機の回転角速度又は回転角加速度の差から前記台車枠の上下振動の固有振動数を把握することを特徴とする。 According to a fifth aspect of the present invention, there is provided an idling sliding re-adhesion control device that grasps the natural frequency of a bogie frame of a bogie of a vehicle, detects slipping and sliding, and performs torque control. An electric motor for braking is provided, the natural frequency of the bogie frame is grasped by using the rotational angular velocity or the rotational angular acceleration of the electric motor acquired when the vehicle is running, and is obtained based on the natural frequency of the bogie frame. The idling and sliding are detected using a time element, and the carriage includes two electric motors in the carriage frame, and the vertical vibration of the carriage frame is determined from a difference in rotational angular velocity or rotational angular acceleration of the two electric motors. It is characterized by grasping the natural frequency of .

本発明の第6の態様として、車両の台車の台車枠の固有振動数を把握し、空転及び滑走を検知してトルク制御を行う空転滑走再粘着制御装置であって、前記車両は、駆動及び制動のための電動機を備え、前記車両の走行時に取得した前記電動機の回転角速度又は回転角加速度を用いて前記台車枠の固有振動数を把握し、前記台車枠の固有振動数にもとづき求められた時素を用いて前記空転及び滑走を検知し、前記台車は、前記台車枠に2台の前記電動機を備え、前記2台の電動機の回転角速度又は回転角加速度の和から前記台車枠のピッチング振動の固有振動数を把握し、前記2台の電動機の回転角速度又は回転角加速度の差から前記台車枠の上下振動の固有振動数を把握することを特徴とする。 As a sixth aspect of the present invention, there is provided an idling sliding re-adhesion control device that grasps the natural frequency of the bogie frame of the bogie of the vehicle, detects idling and sliding, and performs torque control, wherein the vehicle is driven and An electric motor for braking is provided, the natural frequency of the bogie frame is grasped by using the rotational angular velocity or the rotational angular acceleration of the electric motor acquired when the vehicle is running, and is obtained based on the natural frequency of the bogie frame. The idling and sliding are detected using a time element, and the cart includes two motors in the cart frame, and pitching vibration of the cart frame is calculated from the sum of the rotational angular velocities or the rotational angular accelerations of the two motors. And the natural frequency of the vertical vibration of the carriage frame is grasped from the difference in rotational angular velocity or rotational angular acceleration of the two motors .

また、前記時素は前記台車枠のピッチング振動の固有振動数と前記台車枠の上下振動の固有振動数とのうちいずれか一方の半周期又は前記いずれか一方の半周期以上とすることを特徴とする。   In addition, the time element is set to one half cycle of the natural frequency of pitching vibration of the bogie frame and the natural frequency of vertical vibration of the bogie frame, or more than one half cycle of the bogie frame. And

また、前記いずれか一方の半周期は前記台車枠のピッチング振動の固有振動数と前記台車枠の上下振動の固有振動数とのうち振動数の低いほうの半周期であることを特徴とする。   Further, one of the half cycles is a lower half cycle of the natural frequency of pitching vibration of the bogie frame and the natural frequency of vertical vibration of the bogie frame.

本発明によれば、主電動機制御に用いる主電動機の回転角速度又は回転角加速度を用いて台車枠の固有振動数を把握することができる。また、その結果を用いて、空転誤検知及び滑走誤検知を防止することができる。     According to the present invention, the natural frequency of the bogie frame can be grasped using the rotational angular velocity or rotational angular acceleration of the main motor used for the main motor control. In addition, by using the result, it is possible to prevent idling erroneous detection and gliding erroneous detection.

本発明の一実施形態に係る台車振動特性把握装置及び空転滑走再粘着制御装置が設けられた車両の構成例を示す図である。It is a figure showing an example of composition of vehicles provided with a bogie vibration characteristic grasping device and an idling sliding re-adhesion control device concerning one embodiment of the present invention. 本発明の一実施形態に係る空転滑走再粘着制御装置の制御例を示すブロック図である。It is a block diagram which shows the example of control of the idling sliding re-adhesion control apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る台車振動特性把握装置の制御例を示すブロック図である。It is a block diagram which shows the example of control of the cart vibration characteristic grasping | ascertainment apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る台車振動特性把握方法及び空転滑走再粘着制御方法を示すフローチャートである。It is a flowchart which shows the bogie vibration characteristic grasping | ascertainment method and idling sliding re-adhesion control method which concern on one Embodiment of this invention. 図1に示す車両の台車の構成例を示す図である。It is a figure which shows the structural example of the trolley | bogie of the vehicle shown in FIG. 台車枠のピッチング振動により主電動機の回転角速度が変動することを示す図である。It is a figure which shows that the rotational angular velocity of a main motor is fluctuate | varied by the pitching vibration of a trolley | bogie frame. 台車枠の上下振動により主電動機の回転角速度が変動することを示す図である。It is a figure which shows that the rotation angular velocity of a main motor is fluctuate | varied by the vertical vibration of a trolley | bogie frame. 台車枠の振動により空転誤検知が発生する例を示す図である。It is a figure which shows the example in which idling | slipping false detection generate | occur | produces by the vibration of a trolley | bogie frame. 本発明の一実施形態にかかる台車振動特性把握方法による解析例を示す図である。It is a figure which shows the example of an analysis by the bogie vibration characteristic grasping | ascertaining method concerning one Embodiment of this invention. 本発明の一実施形態にかかる空転滑走再粘着制御方法を説明する図である。It is a figure explaining the idle run re-adhesion control method concerning one Embodiment of this invention. 台車枠の振動により滑走誤検知が発生する例を示す図である。It is a figure which shows the example which gliding misdetection generate | occur | produces with the vibration of a trolley | bogie frame.

図1は、本発明の一実施形態に係る台車振動特性把握装置100、及び本発明の一実施形態に係る空転滑走再粘着制御装置としての主制御装置2が設けられた車両の構成例を示す図である。図1に示すように、車両は、車体1と、車体1への駆動力や制動力を発生させる主制御装置(空転滑走再粘着制御装置)2と、動力を供給する集電装置3と、車両がレール4上を走行するための台車5とを備える。また、本実施形態では、台車振動特性把握装置100が車両の外部に設けられている。   FIG. 1 shows a configuration example of a vehicle provided with a bogie vibration characteristic grasping device 100 according to an embodiment of the present invention and a main control device 2 as an idling sliding re-adhesion control device according to an embodiment of the present invention. FIG. As shown in FIG. 1, the vehicle includes a vehicle body 1, a main control device (idling sliding re-adhesion control device) 2 that generates driving force and braking force to the vehicle body 1, a current collector 3 that supplies power, The vehicle includes a carriage 5 for traveling on the rail 4. Moreover, in this embodiment, the cart vibration characteristic grasping device 100 is provided outside the vehicle.

図2は、主制御装置(空転滑走再粘着制御装置)2の構成例を示すブロック図である。図2に示す例では、主制御装置2は、回転角加速度算出部21と、空転滑走検知部22と、トルク制御部23と、ベクトル制御部24と、インバータ25とを備える。   FIG. 2 is a block diagram illustrating a configuration example of the main control device (idling sliding re-adhesion control device) 2. In the example shown in FIG. 2, the main control device 2 includes a rotation angular acceleration calculation unit 21, an idling / sliding detection unit 22, a torque control unit 23, a vector control unit 24, and an inverter 25.

主制御装置2は、回転角速度を入力する。回転角速度は主電動機51に設けられたセンサ(不図示)から取得しもよいし、主電動機51に流れる電流から推定してもよい。   The main control device 2 inputs the rotational angular velocity. The rotational angular velocity may be acquired from a sensor (not shown) provided in the main motor 51, or may be estimated from the current flowing through the main motor 51.

回転角加速度算出部21は、入力された回転角速度を微分することにより回転角加速度を算出し、空転滑走検知部22に出力する。   The rotational angular acceleration calculation unit 21 calculates the rotational angular acceleration by differentiating the input rotational angular velocity and outputs the rotational angular acceleration to the idling / sliding detection unit 22.

空転滑走検知部22は、台車振動特性把握装置100によって求められた時素を入力し、回転角加速度に適用して空転検知及び滑走検知を行う。時素については後述する。   The idling / sliding detection unit 22 inputs the time element obtained by the cart vibration characteristic grasping apparatus 100 and applies the rotation to the rotational angular acceleration to detect idling and sliding. The time element will be described later.

トルク制御部23は、トルク指令値を生成し、ベクトル制御部24に出力する。空転滑走検知部22から空転又は滑走が発生したことを通知されると、再粘着を試みるためにトルクの大きさ(絶対値)が小さくなるように引下げを行うようなトルク指令値を生成する。   The torque control unit 23 generates a torque command value and outputs it to the vector control unit 24. When notified from the idling / sliding detection unit 22 that idling or gliding has occurred, a torque command value is generated so as to reduce the magnitude (absolute value) of the torque in order to attempt re-adhesion.

ベクトル制御部24は、トルク制御部23からのトルク指令値に対応する電圧指令値を生成し、インバータ25に出力する。   The vector control unit 24 generates a voltage command value corresponding to the torque command value from the torque control unit 23 and outputs the voltage command value to the inverter 25.

インバータ25は、集電装置3から入力される架線電圧を、一般的にはVVVF(Variable VoltageVariable Frequency)制御により三相交流電力に変換し、主電動機51に出力する。   The inverter 25 converts the overhead line voltage input from the current collector 3 into three-phase AC power, generally by VVVF (Variable Voltage Variable Frequency) control, and outputs it to the main motor 51.

図3は、本発明の一実施形態に係る台車振動特性把握装置100の構成例を示すブロック図である。図3に示す例では、台車振動特性把握装置100は、ピッチング振動成分抽出部101と、上下振動成分抽出部102と、ピッチング固有振動数算出部103と、上下固有振動数算出部104と、時素取得部105とを備える。   FIG. 3 is a block diagram illustrating a configuration example of the cart vibration characteristic grasping apparatus 100 according to an embodiment of the present invention. In the example shown in FIG. 3, the cart vibration characteristic grasping device 100 includes a pitching vibration component extraction unit 101, a vertical vibration component extraction unit 102, a pitching natural frequency calculation unit 103, a vertical natural frequency calculation unit 104, And an element acquisition unit 105.

ピッチング振動成分抽出部101は、2台の主電動機51の回転角加速度の和をとることにより、ピッチング振動成分を抽出し、ピッチング固有振動数算出部103に出力する。ピッチング振動成分とは、台車枠52が前後に回転する方向に振動する成分である。詳細は後述する。   The pitching vibration component extraction unit 101 extracts the pitching vibration component by taking the sum of the rotational angular accelerations of the two main electric motors 51, and outputs it to the pitching natural frequency calculation unit 103. The pitching vibration component is a component that vibrates in the direction in which the carriage frame 52 rotates forward and backward. Details will be described later.

上下振動成分抽出部102は、2台の主電動機51の回転角加速度の差をとることにより、上下振動成分を抽出し、上下固有振動数算出部104に出力する。上下振動成分とは、台車枠52が鉛直方向上下に振動する成分である。詳細は後述する。   The vertical vibration component extraction unit 102 extracts the vertical vibration component by taking the difference in rotational angular acceleration between the two main motors 51, and outputs the vertical vibration component to the vertical natural frequency calculation unit 104. The vertical vibration component is a component in which the bogie frame 52 vibrates vertically. Details will be described later.

ピッチング固有振動数算出部103は、ピッチング振動の固有振動数(以下、「ピッチング固有振動数」という)を算出し、時素取得部105に出力する。振動数の算出には公知の方法を用いることができ、例えば、フーリエ変換を用いる方法や、単位時間あたりの波の数をカウントする方法等による。   The pitching natural frequency calculation unit 103 calculates the natural frequency of the pitching vibration (hereinafter, referred to as “pitching natural frequency”) and outputs it to the timepiece acquisition unit 105. A known method can be used for the calculation of the frequency, for example, a method using Fourier transform, a method of counting the number of waves per unit time, or the like.

上下固有振動数算出部104は、上下振動の固有振動数(以下、「上下固有振動数」という)を算出し、時素取得部105に出力する。   The vertical natural frequency calculation unit 104 calculates the natural frequency of the vertical vibration (hereinafter referred to as “vertical natural frequency”), and outputs the natural frequency to the timepiece acquisition unit 105.

時素取得部105は、回転角加速度が空転検知閾値を超過した場合に空転検知と判断するための閾値超過の継続時間である時素を求め、主制御装置2に出力する。時素を求める方法及び時素を適用する方法について詳細は後述する。   When the rotational angular acceleration exceeds the idling detection threshold, the hourly element obtaining unit 105 obtains an hourly element that is a duration exceeding the threshold for determining idling detection, and outputs it to the main control device 2. Details of the method for obtaining the time element and the method for applying the time element will be described later.

図5は、台車5の構成例を示す図である。図5に示すように、台車5は、中心に車軸54が貫通する車輪55と、車体1と車輪55との間に設けられた台車枠52と、車輪55に与えるトルクを発生する電動機としての主電動機51と、トルクを伝達する歯車装置53及び継手58と、車軸54と台車枠52との間に設けられた軸ばね56(図6、図7参照)と、台車枠52と車体1との間に設けられたまくらばね57と、を備える。また、歯車装置53は吊りリンク534(図6、図7参照)により台車枠52から吊られている。主電動機51は、回転子511と、固定子512とを備える(図6、図7参照)。また、主電動機51は、固定子512を介して台車枠52に装着されている。歯車装置53は、内部に小歯車531及び大歯車533を有する歯車箱532を備える。なお、本構成例では、主電動機51は同一の台車枠52に2つ設けられている。以下、図6の左側を特に「第1主電動機51l」、図6の右側を特に「第2主電動機51r」と記載する。   FIG. 5 is a diagram illustrating a configuration example of the carriage 5. As shown in FIG. 5, the carriage 5 includes a wheel 55 through which an axle 54 penetrates in the center, a carriage frame 52 provided between the vehicle body 1 and the wheel 55, and an electric motor that generates torque to be applied to the wheel 55. The main motor 51, a gear device 53 and a joint 58 for transmitting torque, a shaft spring 56 (see FIGS. 6 and 7) provided between the axle 54 and the carriage frame 52, the carriage frame 52 and the vehicle body 1 And a pillow spring 57 provided between the two. The gear device 53 is suspended from the carriage frame 52 by suspension links 534 (see FIGS. 6 and 7). The main motor 51 includes a rotor 511 and a stator 512 (see FIGS. 6 and 7). The main motor 51 is attached to the carriage frame 52 via a stator 512. The gear device 53 includes a gear box 532 having a small gear 531 and a large gear 533 therein. In this configuration example, two main motors 51 are provided in the same bogie frame 52. Hereinafter, the left side of FIG. 6 is particularly referred to as “first main motor 51l”, and the right side of FIG. 6 is particularly referred to as “second main motor 51r”.

車両を走行させた際の主電動機51の回転角速度及び回転角加速度には、台車枠52の振動が重畳される。図8は、レール4の継目がある区間での走行において、同一台車5内の2台の主電動機51の駆動時の回転角加速度の一例であり、図8(a)は第1主電動機51lの回転角加速度を示し、図8(b)は第2主電動機51rの回転角加速度を示す。図8(a)及び図8(b)共に、横軸は時刻、縦軸は回転角加速度を示す。図8に示すように、第1主電動機51lの回転角加速度及び第2主電動機51rの回転角加速度は共に、複数の振動成分が重畳され複雑な波形となっている。   The vibration of the carriage frame 52 is superimposed on the rotational angular velocity and rotational angular acceleration of the main motor 51 when the vehicle is running. FIG. 8 is an example of the rotational angular acceleration when driving the two main motors 51 in the same carriage 5 during traveling in a section where the rail 4 is connected. FIG. 8A shows the first main motor 51l. FIG. 8B shows the rotational angular acceleration of the second main electric motor 51r. 8A and 8B, the horizontal axis indicates time, and the vertical axis indicates rotational angular acceleration. As shown in FIG. 8, both the rotational angular acceleration of the first main motor 51l and the rotational angular acceleration of the second main motor 51r have a complicated waveform in which a plurality of vibration components are superimposed.

振動の重畳について具体的に説明する。歯車装置53が台車枠52から吊りリンク534により吊られていることから、台車枠52が振動した際に、歯車装置53が車軸54を中心とした回転運動を行う。それに伴い、歯車装置53内の歯車箱532に取り付けられた小歯車531が車軸54を中心とした公転運動を行う。また、小歯車531と大歯車533とは遊星歯車と同様の構成になっていることから、小歯車531は公転運動と同時に自転運動も行う。小歯車531は継手58(図5参照)を介して主電動機51の回転子511とつながっていることから、回転子511は小歯車531と同じ方向に回転する。一方で、主電動機51の固定子512は台車枠52に装着されていることから、台車枠52の回転方向と同じ方向に回転する。   The superimposition of vibration will be specifically described. Since the gear device 53 is suspended from the carriage frame 52 by the suspension link 534, the gear device 53 performs a rotational motion around the axle 54 when the carriage frame 52 vibrates. Accordingly, the small gear 531 attached to the gear box 532 in the gear device 53 performs a revolving motion around the axle 54. Further, since the small gear 531 and the large gear 533 have the same configuration as that of the planetary gear, the small gear 531 also performs the rotation motion simultaneously with the revolution motion. Since the small gear 531 is connected to the rotor 511 of the main motor 51 via the joint 58 (see FIG. 5), the rotor 511 rotates in the same direction as the small gear 531. On the other hand, since the stator 512 of the main motor 51 is mounted on the carriage frame 52, it rotates in the same direction as the rotation direction of the carriage frame 52.

さらに具体的に、本構成例において、駆動の際に台車枠52がピッチング振動を起こした場合に関して図6を用いて説明する。図6は、台車枠52のピッチング振動により主電動機51の回転角速度が変動することを示す図である。ここでは、台車枠52の左側52lが押し下げられ、右側52rが押し上げられるように反時計回りに回転する例を示す。かかるピッチング振動により、第1の歯車箱532lは、第1の吊りリンク534lを介して押し下げられ、第1の車軸54lを中心軸として時計回りに回転する。これに伴い、第1の小歯車531lは、第1の大歯車533lに対して下がる方向に公転運動し、これにより時計回りに自転運動する(図6の矢印参照)。そして、第1の回転子511lは、第1の小歯車531lと同じ方向、すなわち時計回りに回転する(図6の矢印参照)。一方、第1の固定子512lは台車枠52の回転方向である反時計回り方向、すなわち第1の小歯車531lの回転と反対方向に回転する(図6の矢印参照)。このとき生じる、第1の回転子511lの回転と、第1の固定子512lの回転との相対的な回転角速度が、回転数の変動として第1主電動機51lに重畳される。すなわち、台車枠52のピッチング振動により第1主電動機51lの回転子511lと固定子512lとの間に振動成分が重畳されることから、主電動機51の回転角速度及び回転角加速度に振動成分が重畳され、回転角速度が変動すると共に回転角加速度も変動する。   More specifically, in this configuration example, the case where the carriage frame 52 causes pitching vibration during driving will be described with reference to FIG. FIG. 6 is a diagram showing that the rotational angular velocity of the main motor 51 fluctuates due to the pitching vibration of the bogie frame 52. Here, an example is shown in which the left side 52l of the carriage frame 52 is rotated downward so that the right side 52r is pushed up and the right side 52r is pushed up. Due to the pitching vibration, the first gear box 532l is pushed down via the first suspension link 534l and rotates clockwise around the first axle 54l. Along with this, the first small gear 531l revolves in a downward direction with respect to the first large gear 533l, and thereby rotates in a clockwise direction (see the arrow in FIG. 6). Then, the first rotor 511l rotates in the same direction as the first small gear 531l, that is, clockwise (see the arrow in FIG. 6). On the other hand, the first stator 512l rotates in the counterclockwise direction that is the rotation direction of the carriage frame 52, that is, in the direction opposite to the rotation of the first small gear 531l (see the arrow in FIG. 6). The relative rotational angular velocity of the rotation of the first rotor 511l and the rotation of the first stator 512l that occurs at this time is superimposed on the first main motor 51l as a fluctuation in the rotational speed. That is, since the vibration component is superimposed between the rotor 511l and the stator 512l of the first main motor 51l due to the pitching vibration of the carriage frame 52, the vibration component is superimposed on the rotation angular velocity and the rotation angular acceleration of the main motor 51. Thus, the rotational angular velocity varies and the rotational angular acceleration also varies.

同様に、同一台車5内に備えられている、第2主電動機51rの振動成分の重畳方向を見ると、第2の歯車箱532rは、第2の吊りリンク534rを介して押し上げられ、第2の車軸54rを中心軸として時計回りに回転するため、第2の小歯車531rは、第2の大歯車533rに対して上がる方向に公転運動し、これにより時計回りに自転運動する(図6の矢印参照)。そして、第2の回転子511rは第2の小歯車531rと同じ方向、すなわち時計回りに回転する(図6の矢印参照)。一方、第2の固定子512rは台車枠52の回転方向である反時計回り方向、すなわち第2の小歯車531rと反対方向に回転する(図6の矢印参照)。以上のように、第2の回転子511r及び第2の固定子512rは、第1の回転子511l及び第1の固定子512lとそれぞれ同じ方向に回転する。このようにして、台車枠52のピッチング振動に対しては、第2主電動機51rに、第1主電動機51lと同一方向の振動成分が重畳する。   Similarly, when looking at the superimposing direction of the vibration component of the second main motor 51r provided in the same carriage 5, the second gear box 532r is pushed up via the second suspension link 534r, and the second The second small gear 531r revolves in the upward direction with respect to the second large gear 533r, and thereby rotates in a clockwise direction (FIG. 6). See arrow). The second rotor 511r rotates in the same direction as the second small gear 531r, that is, in the clockwise direction (see the arrow in FIG. 6). On the other hand, the second stator 512r rotates in the counterclockwise direction that is the rotation direction of the carriage frame 52, that is, in the direction opposite to the second small gear 531r (see the arrow in FIG. 6). As described above, the second rotor 511r and the second stator 512r rotate in the same direction as the first rotor 511l and the first stator 512l, respectively. Thus, for the pitching vibration of the bogie frame 52, the vibration component in the same direction as the first main motor 51l is superimposed on the second main motor 51r.

図7は、台車枠52の上下振動により主電動機51の回転角速度が変動することを示す図である。図7のように台車枠52が上下振動を起こした場合にも主電動機51に振動成分が重畳する。しかしながら、上下振動では、ピッチング振動とは異なり、台車枠52の回転運動が生じないため、主電動機51の固定子512の回転運動はせず、回転子511のみが回転運動をする。また、図7に示すように、第1の歯車箱532l及び第2の歯車箱532rは共に押し上げられる方向に回転するため、回転子511l、511rは互いに反対方向に回転する(図7の矢印参照)。このようにして、上下振動では、同一台車内の2台の主電動機51l、51rのそれぞれの回転子511l、511rは互いに反対方向の振動成分が重畳する。   FIG. 7 is a diagram showing that the rotational angular velocity of the main motor 51 fluctuates due to the vertical vibration of the bogie frame 52. As shown in FIG. 7, the vibration component is superimposed on the main motor 51 even when the bogie frame 52 causes vertical vibration. However, in the vertical vibration, unlike the pitching vibration, the rotating motion of the carriage frame 52 does not occur. Therefore, the stator 512 of the main motor 51 does not rotate, and only the rotor 511 rotates. Further, as shown in FIG. 7, both the first gear box 532l and the second gear box 532r rotate in the direction in which they are pushed up, so that the rotors 511l and 511r rotate in directions opposite to each other (see arrows in FIG. 7). ). Thus, in vertical vibration, vibration components in opposite directions are superimposed on the rotors 511l and 511r of the two main motors 51l and 51r in the same carriage.

すなわち、2台の主電動機51l、51rの回転角速度及び回転角加速度には、ピッチング振動成分は互いに同位相で重畳され、上下振動成分は互いに逆位相で重畳される。   That is, the pitching vibration component is superimposed on the rotation angular velocity and the rotation angular acceleration of the two main motors 51l and 51r, and the vertical vibration component is superimposed on the opposite phase.

そのため、実際に走行した際の台車5内の2台の主電動機51l、51rの回転角速度又は回転角加速度の和をとることにより、台車枠52のピッチング振動成分が重畳されて台車枠52の上下振動成分が含まれないデータをとることができる。一方で、同様に2台の主電動機51l、51rの回転角速度又は回転角加速度の差をとることにより、台車枠52の上下振動成分が重畳されて台車枠52のピッチング振動成分が含まれないデータをとることができる。すなわち、主電動機51の回転角速度又は回転角加速度に重畳される台車枠52の振動成分を、ピッチング振動成分と上下振動成分に分離することができる。   Therefore, by taking the sum of the rotational angular velocities or rotational angular accelerations of the two main motors 51l and 51r in the cart 5 when actually traveling, the pitching vibration component of the cart frame 52 is superimposed and the cart frame 52 is moved up and down. Data that does not contain vibration components can be taken. On the other hand, similarly, by taking the difference between the rotational angular velocities or rotational angular accelerations of the two main motors 51l and 51r, the vertical vibration component of the carriage frame 52 is superimposed and the pitching vibration component of the carriage frame 52 is not included. Can be taken. That is, the vibration component of the carriage frame 52 superimposed on the rotation angular velocity or rotation angular acceleration of the main motor 51 can be separated into a pitching vibration component and a vertical vibration component.

図4は、本発明の一実施形態に係る台車振動特性把握方法及び空転滑走再粘着制御方法を示すフローチャートである。本実施形態では、上述したように台車振動特性把握装置100が車両の外部に設けられており、台車5の振動特性の把握は車両の外部で行う。換言すれば、時素は、走行中にリアルタイムで更新する値として求めるのではなく、別途実施する試験走行によって、固定パラメータとして予め設定する値として求める。   FIG. 4 is a flowchart showing a bogie vibration characteristic grasping method and an idling sliding re-adhesion control method according to an embodiment of the present invention. In the present embodiment, as described above, the cart vibration characteristic grasping device 100 is provided outside the vehicle, and the vibration characteristics of the cart 5 are grasped outside the vehicle. In other words, the time base is not determined as a value that is updated in real time during traveling, but as a value that is preset as a fixed parameter by a test traveling that is performed separately.

主制御装置2は、2台の主電動機51の回転角速度をそれぞれ取得し(ステップS1)、回転角加速度算出部21にて回転角加速度を算出する(ステップS2)。台車枠52の固有振動数を把握する台車振動特性把握方法(ステップS30)では、ピッチング振動成分抽出部101にてピッチング振動成分を抽出し(ステップS3)、上下振動成分抽出部102にて上下振動成分を抽出し(ステップS4)、ピッチング固有振動数算出部103にてピッチング固有振動数を算出し(ステップS5)、上下固有振動数算出部104にて上下固有振動数を算出する(ステップS6)。   The main controller 2 acquires the rotational angular velocities of the two main motors 51 (step S1), and the rotational angular acceleration calculator 21 calculates the rotational angular acceleration (step S2). In the bogie vibration characteristic grasping method (step S30) for grasping the natural frequency of the bogie frame 52, the pitching vibration component extracting unit 101 extracts the pitching vibration component (step S3), and the vertical vibration component extracting unit 102 performs the vertical vibration. The components are extracted (step S4), the pitching natural frequency calculation unit 103 calculates the pitching natural frequency (step S5), and the vertical natural frequency calculation unit 104 calculates the vertical natural frequency (step S6). .

図9は本発明の一実施形態にかかる台車振動特性把握方法による解析例であり、図9(a)及び図9(b)は、それぞれ、図8のデータの2台の主電動機51l、51rの回転角加速度の和及び差をとったものである。図9(a)及び図9(b)共に横軸は時刻、縦軸は回転角加速度を示す。図9(a)に示すように、2台の主電動機51l、51rの角速度の和から台車枠52のピッチング振動の振動数は8Hz程度であり、図9(b)に示すように、2台の主電動機51l、51rの回転角速度の差から台車枠52の上下振動の振動数は5Hz程度である。このようにして、両者が分離されておりそれぞれの固有振動数を明確に把握できる。なお、ピッチング固有振動数及び上下固有振動数は互いに異なり、それぞれ10Hz程度又はそれ以下である場合が多い。   FIG. 9 is an example of analysis by the bogie vibration characteristic grasping method according to the embodiment of the present invention. FIGS. 9A and 9B are respectively two main motors 51l and 51r of the data of FIG. The sum and difference of the rotational angular accelerations are taken. 9A and 9B, the horizontal axis indicates time, and the vertical axis indicates rotational angular acceleration. As shown in FIG. 9A, the frequency of the pitching vibration of the carriage frame 52 is about 8 Hz from the sum of the angular velocities of the two main motors 51l and 51r, and as shown in FIG. The frequency of the vertical vibration of the carriage frame 52 is about 5 Hz from the difference in the rotational angular velocities of the main motors 51l and 51r. In this way, both are separated, and the natural frequency of each can be clearly understood. Note that the pitching natural frequency and the vertical natural frequency are different from each other, and are often about 10 Hz or less.

固有振動数把握ステップS30では、続いて時素取得部105にて時素を取得する(ステップS7)。時素は、空転誤検知を発生させる振動成分の振動数の半周期以上とするのが好適である。例えば、空転誤検知を発生させる振動成分の振動数の半周期、あるいは振動数の半周期に僅かな余裕を持たせた値とする。例えば、半周期の半分程度の余裕を持たせた値とする。   In the natural frequency grasping step S30, the time element acquisition unit 105 subsequently acquires the time element (step S7). It is preferable that the time element is set to be equal to or more than a half cycle of the frequency of the vibration component that causes the erroneous rotation detection. For example, it is set to a value that gives a slight margin to the half cycle of the frequency of the vibration component that causes the erroneous rotation detection or the half cycle of the frequency. For example, it is a value with a margin of about half of a half cycle.

空転誤検知は、ピッチング振動及び上下振動の両者が影響する場合と、一方のみが影響する場合とがある。一方のみが影響する場合は影響するほうの振動成分に基づき時素を設定し、両者が影響する場合は振動周期が長いほう、すなわち振動数の低いほうの振動成分に基づき時素を設定する。例えば、図8と図9とを照らし合わせることにより、台車枠52のピッチング固有振動数である8Hz程度の振動の影響で空転誤検知が発生したことが分かる。この場合、時素を8Hzの振動の半周期程度、すなわち16Hzに相当する約0.0625秒に設定する。   The idling detection may be affected by both pitching vibration and vertical vibration, or only one may be affected. When only one influences, the time element is set based on the vibration component having the influence, and when both influences, the time element is set based on the vibration component having the longer vibration period, that is, the lower vibration frequency. For example, by comparing FIG. 8 and FIG. 9, it can be seen that the idling erroneous detection occurs due to the influence of the vibration of about 8 Hz which is the pitching natural frequency of the carriage frame 52. In this case, the time element is set to about a half period of vibration of 8 Hz, that is, about 0.0625 seconds corresponding to 16 Hz.

次に、空転滑走再粘着制御方法では、空転滑走検知部22にて、時素取得部105にて求められた時素を走行中に取得する回転角加速度にリアルタイムで適用し、空転滑走を検知し(ステップS8)、空転又は滑走が検知された場合は、トルク制御部23にてトルク制御を行い再粘着させる(ステップS9)。   Next, in the idling / sliding re-adhesion control method, the idling / sliding detection unit 22 detects the idling / sliding in real time by applying to the rotational angular acceleration acquired during the travel, which is obtained by the time element acquisition unit 105. However, if slipping or sliding is detected (step S8), the torque control unit 23 performs torque control to re-adhere (step S9).

主電動機51の回転角加速度を用いる従来の空転検知方法では、回転角加速度の大きさが瞬間的にであっても空転検知閾値を超過したものを全て空転と判断する。そのため、台車枠52の振動により主電動機51l、51rの回転角加速度に振動成分が重畳することに起因して回転角加速度が空転検知閾値を超過した場合に、空転していないにも関わらず空転が発生したものと判断してしまう空転誤検知の問題があった。同様に、従来の滑走検知方法では、回転角加速度の大きさが瞬間的にであっても滑走検知閾値を下回ったものを全て滑走と判断するため、台車枠52の振動にに起因して回転角加速度が滑走検知閾値を下回った場合に、滑走していないにも関わらず滑走が発生したものと判断してしまう滑走誤検知の問題があった。本発明では時素を設けているため、空転滑走誤検知を防止することができる。   In the conventional idling detection method using the rotational angular acceleration of the main electric motor 51, even if the magnitude of the rotational angular acceleration is instantaneous, all those that exceed the idling detection threshold are determined to be idling. Therefore, when the rotation angular acceleration exceeds the idling detection threshold due to the vibration component being superimposed on the rotation angular acceleration of the main motors 51l and 51r due to the vibration of the bogie frame 52, the idling is performed although the idling is not occurring. There has been a problem of false detection of slipping that is considered to have occurred. Similarly, in the conventional sliding detection method, even if the rotational angular acceleration is momentary, all of those that fall below the sliding detection threshold are determined to be sliding, so that the rotation is caused by the vibration of the carriage frame 52. When the angular acceleration falls below the sliding detection threshold, there is a problem of erroneous sliding detection that determines that the sliding has occurred even though the sliding is not performed. In the present invention, since the time element is provided, it is possible to prevent erroneous detection of idling.

図10は、本発明の一実施形態にかかる空転滑走再粘着制御方法を説明する図であり、図10(a)は駆動時の第1主電動機51lの回転角加速度を示し、図10(b)は駆動時の第2主電動機51rの回転角加速度を示す。図10(a)及び図10(b)共に、横軸は時刻、縦軸は回転角加速度を示す。矢印は時素を示す。空転滑走検知部22は、通常の車両走行における回転角加速度が空転検知閾値を超えている継続時間が時素よりも長い場合、空転が発生したものと判断し、時素よりも短い場合は、空転が発生していないものと判断する(図10矢印参照)。図10に示す例では、回転角加速度が空転閾値を超える領域がいくつか発生しているが、いずれも空転閾値を超えている継続時間が時素より短く、空転検知とされない。このようにすることにより、図10に示すように、台車枠52の振動による空転誤検知を防ぐことができる。   FIG. 10 is a diagram for explaining the idling / sliding / re-adhesion control method according to the embodiment of the present invention. FIG. 10 (a) shows the rotational angular acceleration of the first main motor 51l during driving, and FIG. ) Indicates the rotational angular acceleration of the second main motor 51r during driving. In both FIG. 10A and FIG. 10B, the horizontal axis indicates time, and the vertical axis indicates rotational angular acceleration. An arrow indicates a timepiece. The idling / sliding detection unit 22 determines that idling has occurred when the rotation angular acceleration in normal vehicle travel exceeds the idling detection threshold when the duration is longer than the time element. It is determined that no idling has occurred (see arrow in FIG. 10). In the example shown in FIG. 10, there are several regions where the rotational angular acceleration exceeds the slipping threshold value. However, the duration of the rotation angular acceleration exceeding the slipping threshold value is shorter than the time base, and the slipping detection is not performed. By doing so, as shown in FIG. 10, it is possible to prevent erroneous slipping due to vibration of the carriage frame 52.

上述した空転誤検知の抑制方法は、制動の際の滑走誤検知にも適用することができる。図11は台車枠の振動により滑走誤検知が発生する例であり、図11(a)は制動時の第1主電動機51lの回転角加速度を示し、図11(b)は制動時の第2主電動機51rの回転角加速度を示す。図11(a)及び図11(b)共に、横軸は時刻、縦軸は回転角加速度を示す。図11(a)(b)に示すように、滑走の場合、滑走検知閾値が負の値を持つ点と、滑走検知を判断する際に回転角加速度が滑走検知閾値より下回っている継続時間を使用する点で、空転検知と異なる。   The above-described method for suppressing idling erroneous detection can also be applied to gliding misdetection during braking. FIG. 11 is an example in which erroneous sliding detection occurs due to vibration of the bogie frame. FIG. 11 (a) shows the rotational angular acceleration of the first main motor 51l during braking, and FIG. 11 (b) shows the second angular acceleration during braking. The rotational angular acceleration of the main motor 51r is shown. In both FIG. 11A and FIG. 11B, the horizontal axis indicates time, and the vertical axis indicates rotational angular acceleration. As shown in FIGS. 11 (a) and 11 (b), in the case of sliding, the point that the sliding detection threshold has a negative value and the duration during which the rotational angular acceleration is lower than the sliding detection threshold when determining sliding detection are shown. It differs from slipping detection in that it is used.

本発明に係る台車振動特性把握方法及び台車振動特性把握装置によると、主電動機制御に用いる主電動機の回転角速度又は回転角速度情報を用いて台車枠52の振動の固有振動数を把握することが可能である。そのため、台車枠52の振動を検出するためのセンサ等は不要である。   According to the bogie vibration characteristic grasping method and the bogie vibration characteristic grasping apparatus according to the present invention, it is possible to grasp the natural frequency of vibration of the bogie frame 52 using the rotation angular velocity of the main motor used for the main motor control or the rotation angular velocity information. It is. Therefore, a sensor or the like for detecting the vibration of the carriage frame 52 is unnecessary.

また、本発明に係る空転滑走再粘着制御方法及び空転滑走再粘着制御装置によると、空転及び滑走の誤検知を防ぐことが可能である。台車枠52の固有振動数は振幅によらず一定となる傾向があるため、想定外の振幅の振動であっても対応可能であり、従来のローパスフィルタによる振動成分を減衰する方法や、空転検知閾値を上げる方法で起こる空転検知の遅れを抑制できる。   In addition, according to the idling / sliding / re-adhesion control method and idling / sliding / re-adhesion control device according to the present invention, it is possible to prevent erroneous detection of idling and sliding. Since the natural frequency of the carriage frame 52 tends to be constant regardless of the amplitude, it is possible to cope with vibrations with unexpected amplitudes, such as a method of damping vibration components using a conventional low-pass filter, and idling detection. It is possible to suppress the delay in idling detection that occurs by increasing the threshold value.

さらに、台車枠52の振動の影響を受けなくなることから、空転閾値を下げることが可能となる。そのため、結果的に空転検知の遅れを抑制できる。   Furthermore, since it is not affected by the vibration of the carriage frame 52, the idling threshold value can be lowered. As a result, it is possible to suppress the delay in idling detection.

なお、鉄道車両用の台車として、特開2013−177097号公報に記載のように従来の台車枠に変えて横ばり及び板バネを用いた構成の台車も発明されている。この構成は、電動機は横ばりに装着されており、歯車装置も連結機構によって横ばりに吊られており、横ばりと車体の間に空気バネがあることから、上記文献における横ばりは本発明における台車枠に相当する。そのため、本発明は上記文献に記載の構成の台車にも適用可能である。その他、様々な構成の台車にも適用可能である。   In addition, as described in Japanese Patent Application Laid-Open No. 2013-177097, there is also invented a cart having a configuration using a horizontal beam and a leaf spring instead of a conventional cart frame as described in Japanese Patent Laid-Open No. 2013-177097. In this configuration, the electric motor is mounted on the horizontal beam, the gear device is also suspended from the horizontal beam by the coupling mechanism, and there is an air spring between the horizontal beam and the vehicle body. It corresponds to the bogie frame in Therefore, the present invention can also be applied to a cart having the configuration described in the above document. In addition, the present invention can also be applied to carts having various configurations.

上述の実施形態は代表的な例として説明したが、本発明の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲に記載した発明の要旨を逸脱しない範囲で、種々の変更を行うことが可能である。   Although the above embodiment has been described as a representative example, it will be apparent to those skilled in the art that many changes and substitutions can be made within the spirit and scope of the invention. Therefore, the present invention should not be construed as being limited by the above-described embodiments, and various modifications can be made without departing from the spirit of the invention described in the claims.

例えば、台車振動特性把握方法及び台車振動特性把握装置において、回転角加速度を用いたが、回転角速度を用いることも可能である。さらに、台車振動特性把握装置100が車両の外部に設けられている構成について説明したが、主制御装置2が台車振動特性把握装置100を有し、リアルタイムで時素を求めるような構成であってもよい。また、歯車装置53は、小歯車531及び大歯車533とを備える1段減速の構成であるが、複数段減速の構成であってもよい。また、主電動機51が車軸54に平行に配置された平行カルダン方式について説明したが、本発明は、かさ歯車等を用いて主電動機が車軸と直交するように配置された直角カルダン方式にも適用可能である。   For example, in the cart vibration characteristic grasping method and the cart vibration characteristic grasping device, the rotation angular acceleration is used, but it is also possible to use the rotation angular velocity. Furthermore, although the description has been given of the configuration in which the cart vibration characteristic grasping device 100 is provided outside the vehicle, the main control device 2 has the cart vibration characteristic grasping device 100 and obtains the time element in real time. Also good. In addition, the gear device 53 has a single-stage reduction configuration including the small gear 531 and the large gear 533, but may have a multi-step reduction configuration. The parallel cardan system in which the main motor 51 is arranged in parallel to the axle 54 has been described, but the present invention is also applicable to a right angle cardan system in which the main motor is arranged to be orthogonal to the axle using a bevel gear or the like. Is possible.

本発明により、台車枠の振動の影響があっても空転誤検知することなく確実な空転滑走再粘着制御を実現できるため、台車を有する車両に有用である。   According to the present invention, even if there is an influence of the vibration of the bogie frame, it is possible to realize reliable idling sliding re-adhesion control without detecting an idling error, which is useful for a vehicle having a bogie.

1 車体
2 主制御装置(空転滑走再粘着制御装置)
3 集電装置
4 レール
5 台車
21 回転角加速度算出部
22 空転滑走検知部
23 トルク制御部
24 ベクトル制御部
25 インバータ
30 点線枠
51 主電動機
51l 第1主電動機
51r 第2主電動機
511 回転子
511l 第1の回転子
511r 第2の回転子
512 固定子
512l 第1の固定子
512r 第2の固定子
52 台車枠
52l 台車枠の左側
52r 台車枠の右側
53 歯車装置
531 小歯車
531l 第1の小歯車
531r 第2の小歯車
532 歯車箱
532l 第1の歯車箱
532r 第2の歯車箱
533 大歯車
533l 第1の大歯車
533r 第2の大歯車
534 吊りリンク
534l 第1の吊りリンク
534r 第2の吊りリンク
54 車軸
54l 第1の車軸
54r 第2の車軸
55 車輪
56 軸ばね
57 まくらばね
58 継手
100 台車振動特性把握装置
101 ピッチング振動成分抽出部
102 上下振動成分抽出部
103 ピッチング固有振動数算出部
104 上下固有振動数算出部
105 時素取得部
1 Car body 2 Main control device (idling / re-adhesion control device)
3 current collector 4 rail 5 cart 21 rotation angular acceleration calculation unit 22 idling / sliding detection unit 23 torque control unit 24 vector control unit 25 inverter 30 dotted line frame 51 main motor 51l first main motor 51r second main motor 511 rotor 511l first 1st rotor 511r 2nd rotor 512 Stator 512l 1st stator 512r 2nd stator 52 Bogie frame 52l Left side of bogie frame 52r Right side of bogie frame 53 Gear device 531 Small gear 531l First small gear 531r second small gear 532 gear box 532l first gear box 532r second gear box 533 large gear 533l first large gear 533r second large gear 534 hanging link 534l first hanging link 534r second hanging link Link 54 axle 54l first axle 54r second axle 55 wheel 56 axle spring 57 pillow spring 58 joint 100 Car vibration characterization unit 101 pitching vibration component extracting unit 102 down vibration component extraction unit 103 pitching natural frequency calculating unit 104 vertically natural frequency calculating unit 105 Tokimoto acquiring unit

Claims (10)

車両の台車の台車枠の固有振動数を把握し、空転及び滑走を検知してトルク制御を行う空転滑走再粘着制御方法であって、
前記台車は、駆動及び制動のための電動機を備え、
前記車両の走行時に取得した前記電動機の回転角速度又は回転角加速度を用いて前記台車枠の固有振動数を把握する把握ステップと、
前記電動機の回転角加速度を用いて、前記台車枠の固有振動数にもとづき求められた時素を用いて前記空転及び滑走を検知する検知ステップと、を含み、
前記台車は前記台車枠に2台の前記電動機を備え、
前記把握ステップは、前記2台の電動機の回転角速度又は回転角加速度の和から前記台車枠のピッチング振動の固有振動数を把握することを特徴とする、空転滑走再粘着制御方法。
An idling sliding re-adhesion control method for grasping the natural frequency of the bogie frame of the bogie of the vehicle, detecting slipping and sliding and performing torque control,
The carriage includes an electric motor for driving and braking,
A grasping step of grasping the natural frequency of the bogie frame using the rotational angular velocity or rotational angular acceleration of the electric motor acquired when the vehicle is traveling;
Using a rotating angular acceleration of the motor, see containing and a detection step of detecting the idle and sliding with Tokimoto determined on the basis of the natural frequency of the pre-Symbol bogie frame,
The carriage includes two electric motors in the carriage frame,
The slipping / re-adhesion control method according to claim 1, wherein the grasping step grasps a natural frequency of pitching vibration of the carriage frame from a sum of rotational angular velocities or rotational angular accelerations of the two electric motors .
車両の台車の台車枠の固有振動数を把握し、空転及び滑走を検知してトルク制御を行う空転滑走再粘着制御方法であって、
前記台車は、駆動及び制動のための電動機を備え、
前記車両の走行時に取得した前記電動機の回転角速度又は回転角加速度を用いて前記台車枠の固有振動数を把握する把握ステップと、
前記電動機の回転角加速度を用いて、前記台車枠の固有振動数にもとづき求められた時素を用いて前記空転及び滑走を検知する検知ステップと、を含み、
前記台車は前記台車枠に2台の前記電動機を備え、
前記把握ステップは、前記2台の電動機の回転角速度又は回転角加速度の差から前記台車枠の上下振動の固有振動数を把握することを特徴とする、空転滑走再粘着制御方法。
An idling sliding re-adhesion control method for grasping the natural frequency of the bogie frame of the bogie of the vehicle, detecting slipping and sliding and performing torque control,
The carriage includes an electric motor for driving and braking,
A grasping step of grasping the natural frequency of the bogie frame using the rotational angular velocity or rotational angular acceleration of the electric motor acquired when the vehicle is traveling;
Using a rotating angular acceleration of the motor, see containing and a detection step of detecting the idle and sliding with Tokimoto determined on the basis of the natural frequency of the pre-Symbol bogie frame,
The carriage includes two electric motors in the carriage frame,
The slipping / re-adhesion control method according to claim 1, wherein the grasping step grasps a natural frequency of vertical vibration of the carriage frame from a difference in rotational angular velocity or rotational angular acceleration of the two motors .
車両の台車の台車枠の固有振動数を把握し、空転及び滑走を検知してトルク制御を行う空転滑走再粘着制御方法であって、
前記台車は、駆動及び制動のための電動機を備え、
前記車両の走行時に取得した前記電動機の回転角速度又は回転角加速度を用いて前記台車枠の固有振動数を把握する把握ステップと、
前記電動機の回転角加速度を用いて、前記台車枠の固有振動数にもとづき求められた時素を用いて前記空転及び滑走を検知する検知ステップと、を含み、
前記台車は前記台車枠に2台の前記電動機を備え、
前記把握ステップは、前記2台の電動機の回転角速度又は回転角加速度の和から前記台車枠のピッチング振動の固有振動数を把握し、前記2台の電動機の回転角速度又は回転角加速度の差から前記台車枠の上下振動の固有振動数を把握することを特徴とする、空転滑走再粘着制御方法。
An idling sliding re-adhesion control method for grasping the natural frequency of the bogie frame of the bogie of the vehicle, detecting slipping and sliding and performing torque control,
The carriage includes an electric motor for driving and braking,
A grasping step of grasping the natural frequency of the bogie frame using the rotational angular velocity or rotational angular acceleration of the electric motor acquired when the vehicle is traveling;
Using a rotating angular acceleration of the motor, see containing and a detection step of detecting the idle and sliding with Tokimoto determined on the basis of the natural frequency of the pre-Symbol bogie frame,
The carriage includes two electric motors in the carriage frame,
The grasping step grasps the natural frequency of the pitching vibration of the carriage frame from the sum of the rotational angular velocities or rotational angular accelerations of the two electric motors, and calculates the difference between the rotational angular velocities or rotational angular accelerations of the two electric motors. An idle running re-adhesion control method characterized by grasping the natural frequency of the vertical vibration of the carriage frame .
前記検知ステップは、前記時素を前記台車枠のピッチング振動の固有振動数と前記台車枠の上下振動の固有振動数とのうちいずれか一方の半周期以上とすることを特徴とする、請求項に記載の空転滑走再粘着制御方法。 The detection step is characterized in that the time element is set to a half period or more of either the natural frequency of pitching vibration of the bogie frame or the natural frequency of vertical vibration of the bogie frame. 3. The idling / re-adhesion control method according to 3. 前記いずれか一方の半周期は、前記台車枠のピッチング振動の固有振動数と前記台車枠の上下振動の固有振動数とのうち振動数の低いほうの半周期であることを特徴とする、請求項に記載の空転滑走再粘着制御方法。 The one half cycle is a lower half cycle of a natural frequency of pitching vibration of the carriage frame and a natural frequency of vertical vibration of the carriage frame. Item 5. The idling sliding re-adhesion control method according to Item 4 . 車両の台車の台車枠の固有振動数を把握し、空転及び滑走を検知してトルク制御を行う空転滑走再粘着制御装置であって、
前記車両は、駆動及び制動のための電動機を備え、
前記車両の走行時に取得した前記電動機の回転角速度又は回転角加速度を用いて前記台車枠の固有振動数を把握し、
前記台車枠の固有振動数にもとづき求められた時素を用いて前記空転及び滑走を検知し、
前記台車は、前記台車枠に2台の前記電動機を備え、
前記2台の電動機の回転角速度又は回転角加速度の和から前記台車枠のピッチング振動の固有振動数を把握することを特徴とする、空転滑走再粘着制御装置。
It is an idling sliding re-adhesion control device that grasps the natural frequency of the bogie frame of the bogie of the vehicle, detects idling and sliding and performs torque control,
The vehicle includes an electric motor for driving and braking,
Grasping the natural frequency of the bogie frame using the rotational angular velocity or rotational angular acceleration of the electric motor acquired when the vehicle is running,
Detecting the idle and sliding with Tokimoto determined on the basis of the natural frequency of the bogie frame,
The carriage includes two electric motors in the carriage frame,
An idling sliding re-adhesion control device characterized by grasping the natural frequency of pitching vibration of the bogie frame from the sum of rotational angular velocities or rotational angular accelerations of the two electric motors .
車両の台車の台車枠の固有振動数を把握し、空転及び滑走を検知してトルク制御を行う空転滑走再粘着制御装置であって、
前記車両は、駆動及び制動のための電動機を備え、
前記車両の走行時に取得した前記電動機の回転角速度又は回転角加速度を用いて前記台車枠の固有振動数を把握し、
前記台車枠の固有振動数にもとづき求められた時素を用いて前記空転及び滑走を検知し、
前記台車は、前記台車枠に2台の前記電動機を備え、
前記2台の電動機の回転角速度又は回転角加速度の差から前記台車枠の上下振動の固有振動数を把握することを特徴とする、空転滑走再粘着制御装置。
It is an idling sliding re-adhesion control device that grasps the natural frequency of the bogie frame of the bogie of the vehicle, detects idling and sliding and performs torque control,
The vehicle includes an electric motor for driving and braking,
Grasping the natural frequency of the bogie frame using the rotational angular velocity or rotational angular acceleration of the electric motor acquired when the vehicle is running,
Detecting the idle and sliding with Tokimoto determined on the basis of the natural frequency of the bogie frame,
The carriage includes two electric motors in the carriage frame,
An idling sliding re-adhesion control device characterized by grasping the natural frequency of vertical vibration of the bogie frame from the difference in rotational angular velocity or rotational angular acceleration of the two motors .
車両の台車の台車枠の固有振動数を把握し、空転及び滑走を検知してトルク制御を行う空転滑走再粘着制御装置であって、
前記車両は、駆動及び制動のための電動機を備え、
前記車両の走行時に取得した前記電動機の回転角速度又は回転角加速度を用いて前記台車枠の固有振動数を把握し、
前記台車枠の固有振動数にもとづき求められた時素を用いて前記空転及び滑走を検知し、
前記台車は、前記台車枠に2台の前記電動機を備え、
前記2台の電動機の回転角速度又は回転角加速度の和から前記台車枠のピッチング振動の固有振動数を把握し、前記2台の電動機の回転角速度又は回転角加速度の差から前記台車枠の上下振動の固有振動数を把握することを特徴とする、空転滑走再粘着制御装置。
It is an idling sliding re-adhesion control device that grasps the natural frequency of the bogie frame of the bogie of the vehicle, detects idling and sliding and performs torque control,
The vehicle includes an electric motor for driving and braking,
Grasping the natural frequency of the bogie frame using the rotational angular velocity or rotational angular acceleration of the electric motor acquired when the vehicle is running,
Detecting the idle and sliding with Tokimoto determined on the basis of the natural frequency of the bogie frame,
The carriage includes two electric motors in the carriage frame,
The natural frequency of the pitching vibration of the bogie frame is grasped from the sum of the rotational angular velocities or rotational angular accelerations of the two motors, and the bogie frame vertical vibrations are calculated from the difference in the rotational angular velocities or rotational angular accelerations of the two motors. An idle running re-adhesion control device characterized by grasping the natural frequency of
前記時素は、前記台車枠のピッチング振動の固有振動数と前記台車枠の上下振動の固有振動数とのうちいずれか一方の半周期又は前記いずれか一方の半周期以上であることを特徴とする、請求項に記載の空転滑走再粘着制御装置。 The time element is at least one half cycle of the natural frequency of pitching vibration of the bogie frame and the natural frequency of vertical vibration of the bogie frame, or at least one half cycle of the bogie frame, The idling sliding re-adhesion control device according to claim 8 . 前記いずれか一方の半周期は、前記台車枠のピッチング振動の固有振動数と前記台車枠の上下振動の固有振動数とのうち振動数の低いほうの半周期であることを特徴とする、請求項に記載の空転滑走再粘着制御装置。 The one half cycle is a lower half cycle of a natural frequency of pitching vibration of the carriage frame and a natural frequency of vertical vibration of the carriage frame. Item 10. The idling / re-adhesion control device according to item 9 .
JP2016096401A 2016-05-12 2016-05-12 Idling sliding re-adhesion control method and idling sliding re-adhesion control device Active JP6621369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016096401A JP6621369B2 (en) 2016-05-12 2016-05-12 Idling sliding re-adhesion control method and idling sliding re-adhesion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016096401A JP6621369B2 (en) 2016-05-12 2016-05-12 Idling sliding re-adhesion control method and idling sliding re-adhesion control device

Publications (2)

Publication Number Publication Date
JP2017203724A JP2017203724A (en) 2017-11-16
JP6621369B2 true JP6621369B2 (en) 2019-12-18

Family

ID=60323352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016096401A Active JP6621369B2 (en) 2016-05-12 2016-05-12 Idling sliding re-adhesion control method and idling sliding re-adhesion control device

Country Status (1)

Country Link
JP (1) JP6621369B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7166432B2 (en) * 2019-03-15 2022-11-07 株式会社日立製作所 Train control device and train control system
CN111634197B (en) * 2020-06-29 2024-04-16 博格华纳驱动***(苏州)有限公司 Electric automobile motor control method and control device with jitter suppression function
CN112406559B (en) * 2020-11-25 2022-07-12 中车大连电力牵引研发中心有限公司 High-power electric locomotive idling rapid recovery control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4621377B2 (en) * 2001-04-25 2011-01-26 潔 大石 Electric vehicle control device
JP4606350B2 (en) * 2006-03-09 2011-01-05 国立大学法人長岡技術科学大学 Electric vehicle tangential force estimation method
JP5606043B2 (en) * 2009-11-09 2014-10-15 東洋電機製造株式会社 Electric vehicle drive system
JP2012126151A (en) * 2010-12-13 2012-07-05 Railway Technical Research Institute System for detecting air spring deflation in railroad vehicle, and method for detecting the air spring deflation in the railroad vehicle using the same
JP5673938B2 (en) * 2011-01-18 2015-02-18 国立大学法人長岡技術科学大学 Electric vehicle control device
DE102013201289B4 (en) * 2013-01-28 2018-03-15 Siemens Aktiengesellschaft Method for detecting a swing in a rail vehicle

Also Published As

Publication number Publication date
JP2017203724A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
CN103231714B (en) Traction motor on-line monitoring-based electric locomotive idling slippage identification method
JP6621369B2 (en) Idling sliding re-adhesion control method and idling sliding re-adhesion control device
JP4187058B1 (en) Electric vehicle wheel diameter measuring device
KR20100005136A (en) Controller for electric vehicle
EP3110657B1 (en) Dual kalman filter for torsional damping of electric traction drives
Kadowaki et al. Antislip readhesion control based on speed-sensorless vector control and disturbance observer for electric commuter train—Series 205-5000 of the East Japan Railway Company
Shimizu et al. Anti‐slip/slid re‐adhesion control based on disturbance observer considering bogie vibration
JP6237789B2 (en) Electric vehicle control device and electric vehicle control method
Uyulan et al. Re-adhesion control strategy based on the optimal slip velocity seeking method
Ishrat et al. Wheel slip control based on traction force estimaton of electric locomotives
JP5527081B2 (en) Driving force estimation device for electric vehicle
Pichlík et al. Adhesion characteristic slope estimation for wheel slip control purpose based on UKF
JP6048264B2 (en) Control device for each wheel independent drive cart
JP2007244107A (en) Method of estimating tangential force of electric railway car
Mei et al. A mechatronic approach for anti-slip control in railway traction
Pichlík et al. Extended Kalman filter utilization for a railway traction vehicle slip control
JP5109698B2 (en) Bogie running test device
Matsumoto et al. Novel re-adhesion control for train traction system of the" Shinkansen" with the estimation of wheel-to-rail adhesive force
JP5063274B2 (en) Electric vehicle control device
JP2016092954A (en) Electric vehicle control apparatus and power conversion control apparatus
CN107264297B (en) Control apparatus for electric railcar
JP3826204B2 (en) Electric vehicle tangential force coefficient estimation device
JP2000221207A (en) Apparatus for detecting travel speed
JP2010124555A (en) Electric bogie
Horikoshi et al. Novel Maximum Adhesive Force Control Without Vehicle Speed Sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191119

R150 Certificate of patent or registration of utility model

Ref document number: 6621369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150