JP6614561B1 - Seismic performance evaluation method and program for wooden buildings by microtremor measurement - Google Patents

Seismic performance evaluation method and program for wooden buildings by microtremor measurement Download PDF

Info

Publication number
JP6614561B1
JP6614561B1 JP2019099677A JP2019099677A JP6614561B1 JP 6614561 B1 JP6614561 B1 JP 6614561B1 JP 2019099677 A JP2019099677 A JP 2019099677A JP 2019099677 A JP2019099677 A JP 2019099677A JP 6614561 B1 JP6614561 B1 JP 6614561B1
Authority
JP
Japan
Prior art keywords
building
value
vfi
hfi
seismic performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019099677A
Other languages
Japanese (ja)
Other versions
JP2020193874A (en
Inventor
真次 岩田
真次 岩田
貴美子 田村
貴美子 田村
Original Assignee
株式会社グリーンデザインオフィス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社グリーンデザインオフィス filed Critical 株式会社グリーンデザインオフィス
Priority to JP2019099677A priority Critical patent/JP6614561B1/en
Application granted granted Critical
Publication of JP6614561B1 publication Critical patent/JP6614561B1/en
Publication of JP2020193874A publication Critical patent/JP2020193874A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

【課題】従来からある建築物の耐震性能評価方法を補完し、あるいは、これに置き換わる、省スペース、低騒音、低コストかつ短時間で実施可能な建築物の耐震性能評価方法の提供。【解決手段】常時微動計測センサで計測した前記建築物の常時微動の水平成分のピーク周期Tiに対応するフーリエ振幅Hfiを常時微動の垂直成分のTiに対応するフーリエ振幅Vfiで除したHfi/Vfi比を算出するステップと、Hfi/Vfi比にTiと木造建築物の告示式で求められる建築物の固有周期Toとの比であるTi/To比を乗じたHfi/Vfi×Ti/To値を算出するステップと、Hfi/Vfi×Ti/To値を建築物の計測高さ、重量又は形状に応じて補正することによって、建築物の各層の保有水平耐力Quiと必要保有水平耐力Quniとの比である耐震性能評点Qui/Quni値を算定するステップと、を含むことを特徴とする耐震性能評価方法。【選択図】図2An object of the present invention is to provide a method for evaluating the seismic performance of a building that can be implemented in a space-saving, low-noise, low-cost and in a short time, which complements or replaces a conventional method for evaluating seismic performance of a building. Hfi / Vfi obtained by dividing a Fourier amplitude Hfi corresponding to the peak period Ti of the horizontal component of the fine movement of the building measured by a fine movement measuring sensor by a Fourier amplitude Vfi corresponding to Ti of the vertical component of the fine movement. Hfi / Vfi × Ti / To value obtained by multiplying the Hfi / Vfi ratio by the Ti / To ratio, which is the ratio of Ti to the natural period To of the building determined by the notification formula of the wooden building By calculating the Hfi / Vfi × Ti / To value according to the measured height, weight or shape of the building, the ratio between the retained horizontal strength Qui and the required retained horizontal strength Quini of each layer of the building And a step of calculating a seismic performance score Qui / Qui value which is a seismic performance evaluation method. [Selection] Figure 2

Description

本発明は、木造建築物の常時微動計測結果から省スペース、低騒音、低コストかつ短時間で建築物の耐震性能を評価する方法及びプログラムに関する。 The present invention relates to a method and a program for evaluating the seismic performance of a building in a short time from a result of microtremor measurement of a wooden building in a space-saving, low noise, low cost and short time.

平成12年の建築基準法改正により建築物の耐震設計に限界耐力計算法が導入され、伝統的木造住宅など地盤を考慮し、かつ仕様規定外の建築物の耐震設計が可能になった。現状の中小規模の建築物では、通常の耐震性能評価方法では、大地震被害が地盤の良し悪しによるものであることが多いにも関わらず、地盤と建築物を一体として評価されていない。この解決策として、限界耐力計算法により木造建築物の耐震性能をより精密に評価する場合は、建設地の地盤および建築物の振動特性を調査する必要がある。戸建住宅レベルで実施されている地盤調査としてはスウェーデン式サウンディング試験が一般的であるが、この方法は地盤の振動特性を把握することが難しく、ボーリング標準貫入試験は手間と費用の問題がある。また、木造建築物の多くは、超高層建築物で行われている時刻歴応答解析のような地盤を考慮した建築物の振動解析、耐震性能評価は実施されていない。また、限界耐力計算においても、個々の建築物について精密な解析に必要な固有周期、減衰定数及び地盤の加速度増幅率についての算定根拠が不十分である。そこで、経済的な簡易探査法である常時微動計測により、建設地の地盤の卓越周期、加速度増幅率と、建築物の固有周期、減衰定数を計測して、耐震設計に必要な地盤及び建築物の振動特性を正確に把握し、データを解析して地盤の影響を考慮した建築物の耐震性能を評価する方法が考えられる。 With the revision of the Building Standards Act of 2000, the method of calculating the ultimate strength was introduced in the seismic design of buildings, and the seismic design of buildings outside the specifications was made possible considering the ground such as traditional wooden houses. In the current small and medium-sized buildings, the normal seismic performance evaluation method does not evaluate the ground and the building as a whole, even though large earthquake damage is often due to the quality of the ground. As a solution to this, when the seismic performance of a wooden building is to be evaluated more precisely by the limit strength calculation method, it is necessary to investigate the vibration characteristics of the ground of the construction site and the building. Swedish-style sounding tests are common as ground surveys carried out at the level of detached houses, but this method is difficult to grasp the vibration characteristics of the ground, and the borehole standard penetration test has problems of labor and cost. . In addition, many wooden buildings have not been subjected to vibration analysis and seismic performance evaluation of buildings that take the ground into account, such as time history response analysis performed in high-rise buildings. In addition, the calculation basis for the natural period, damping constant, and ground acceleration amplification factor necessary for precise analysis of each building is not sufficient in the calculation of the ultimate strength. Therefore, the ground and buildings necessary for seismic design are measured by microtremor measurement, which is an economical simple exploration method, by measuring the dominant period and acceleration amplification factor of the construction site and the natural period and attenuation constant of the building. A method of evaluating the seismic performance of buildings in consideration of the effects of the ground by analyzing the data accurately and analyzing the data is conceivable.

従来からの地盤及び建築物の振動特性の調査方法は、地盤についてはボーリング標準貫入試験及びスウェーデン式サウンディング試験が、建築物については各種の地震計が代表的な調査方法である。また、計測機器については、対象物に応じて、それぞれ固有の調査試験装置が使用されており、地盤と建築物に共通の振動計測機器としては地震計がある。広く使用されている地震計の中で、現在では加速度計及び速度計の動コイル型地震計の内、地震エネルギーの大きさは速度が的確に表せることから、動コイル型速度計が常時微動計測機器の主流になりつつある。 Conventional methods for investigating the vibration characteristics of the ground and buildings are the borehole standard penetration test and the Swedish sounding test for the ground, and various seismometers for the building. In addition, as for the measuring equipment, an investigation and testing device specific to each object is used, and a seismometer is a vibration measuring equipment common to the ground and the building. Among the widely used seismometers, among the accelerometer and speedometer moving coil seismometers, the speed of the seismic energy can be accurately expressed. Equipment is becoming mainstream.

本発明に関連する技術としては、例えば、特許文献1に記載の「既存木造住宅の簡易耐震診断評点の算出方法・装置・プログラム」は、対象建物の2階と地盤の2か所で計測した常時微動のデータから建物の固有振動数を求め、建物モデルを1質点系のモデルとし1次モードで振動していると仮定して耐力を求めたうえで、有効質量比率の分配より2質点系のモデルに変えて1階の耐力を演算する。さらに、この評点の基本値に、躯体構成部材の接合部形式に対する補正係数と、劣化調査による補正係数を用いて、耐震診断の評点を算出することを特徴としている。 As a technique related to the present invention, for example, the “calculation method / apparatus / program of a simple earthquake-resistant diagnosis score of an existing wooden house” described in Patent Document 1 was measured at two locations on the second floor and the ground of the target building. The natural frequency of the building is obtained from microtremor data, the building model is assumed to be a one-mass system model, and the strength is calculated assuming that the building model vibrates in the first-order mode. Change the model to calculate the strength of the first floor. In addition, a characteristic of calculating the seismic diagnosis score is obtained by using, as the basic value of the score, a correction coefficient for the joint form of the casing component member and a correction coefficient by the deterioration investigation.

又、特許文献2に記載の「建物の動的耐震性能及び耐震補強後の耐震性能評価方法」は、改修前後の振動特性の比較検討により建物の耐震性能及び耐震補強の効果を定量的に表示する耐震性能評価方法。地盤と建物の所定の層で南北、東西方向の水平方向2成分の常時微動の同時測定データを利用して、地盤と建物の固有周期から耐震性能を評価することを特徴としている。 In addition, “Dynamic Seismic Performance of Buildings and Seismic Performance Evaluation Method after Seismic Reinforcement” described in Patent Document 2 quantitatively displays the effect of building seismic performance and seismic reinforcement by comparing and examining the vibration characteristics before and after renovation. Seismic performance evaluation method. It is characterized by evaluating seismic performance from the natural period of the ground and building using simultaneous measurement data of microtremors of two horizontal components in the north-south and east-west directions at a predetermined layer of the ground and the building.

又、特許文献3に記載の「常時微動計測に基づく建物の健全性診断法」は、建物の常時微動計測の振動成分から対象建物の振動特性を同定し、建物ならびに基礎部分に関する構造の健全性を評価するもので、ARMA(自己回帰移動平均)
モデルを用い、振動センサにより計測された建物全体の振動成分のみを抽出して、予め同様の方法で推定された健全時における振動特性あるいは設計図書により計算された振動特性と比較することにより健全性を診断することを特徴としている。
In addition, “Building soundness diagnosis method based on microtremor measurement” described in Patent Document 3 identifies the vibration characteristics of the target building from the vibration components of microtremor measurement of the building, and the structural soundness of the building and the foundation part. ARMA (autoregressive moving average)
Soundness can be obtained by extracting only the vibration component of the whole building measured by the vibration sensor using the model and comparing it with the vibration characteristic at the time of sound estimated in advance by the same method or the vibration characteristic calculated by the design book. It is characterized by the diagnosis.

更に、特許文献4に記載の「建物の耐震性能評価方法及びその耐震性能評価値に基づく改修費用評価方法」は、コンピュータへ評価対象建物の構造情報、地理情報、地盤情報から成る建物環境データを入力するステップと、このデータを基にデータベースの基礎データを参照して現状耐震性能評価値(Is値及びPML値)を算定するステップと、これらの評価値をモニター等の出力表示手段に出力するステップから成ることを特徴としている。 Furthermore, “the building seismic performance evaluation method and the renovation cost evaluation method based on the seismic performance evaluation value” described in Patent Document 4 is a computer that stores building environment data consisting of structural information, geographical information, and ground information of the building to be evaluated. A step of inputting, a step of calculating current seismic performance evaluation values (Is value and PML value) by referring to the basic data of the database based on this data, and outputting these evaluation values to an output display means such as a monitor It is characterized by comprising steps.

特開2014-141873号公報Japanese Patent Laid-Open No. 2014-141873 特開2005-156448号公報JP 2005-156448 特開2003-322585号公報Japanese Patent Laid-Open No. 2003-322585 特開2003-147970号公報Japanese Patent Laid-Open No. 2003-147970

特許文献1に記載された方法は、建物の耐震性能評価に重要な要素である地盤の振動特性に関する記載がされていなかった。また、耐震性能を評価するための建物の耐力及び構造体の接合部耐力、劣化に対する補正係数を別途検討する必要があり、簡易に耐震性能を評価する方法としては、付帯条件が厳しすぎる方法であり、これらの条件を常時微動計測値からすべて推定して耐震性能を評価する本発明の特徴的な構成に関しては、記載も示唆もされていなかった。 The method described in Patent Document 1 has not been described with respect to the vibration characteristics of the ground, which is an important element for the evaluation of the seismic performance of buildings. In addition, it is necessary to examine separately the building strength and the joint strength of the structure and the correction factor for deterioration to evaluate the seismic performance, and as a method of simply evaluating the seismic performance, the incidental conditions are too strict. There is no description or suggestion regarding the characteristic configuration of the present invention in which the seismic performance is evaluated by estimating all these conditions from microtremor measurement values at all times.

又、特許文献2に記載された方法は、地盤及び建物の振動特性に大きく影響を与える上下振動の影響に関する記載がなく、本発明の地盤の振動特性を考慮した耐震性能評価方法の特徴的な構成に触れる記載も示唆もされていなかった。 In addition, the method described in Patent Document 2 has no description on the influence of vertical vibration that greatly affects the vibration characteristics of the ground and buildings, and is characteristic of the seismic performance evaluation method considering the vibration characteristics of the ground of the present invention. There was no mention or suggestion of the composition.

そして、特許文献3は、既存の健全な建物の常時微動計測による振動特性(固有振動数、固有モード)と対象建物の振動特性を同定することで健全性を評価するもので、地盤を考慮して建物の耐震性能を簡易に評価するという本発明の特徴的な構成に関して、記載も示唆もされていなかった。 And patent document 3 evaluates soundness by identifying the vibration characteristic (natural frequency, natural mode) by the microtremor measurement of the existing healthy building, and the vibration characteristic of an object building, and considers the ground. Thus, there has been no description or suggestion regarding the characteristic configuration of the present invention that simply evaluates the seismic performance of a building.

更に、特許文献4は、特許文献3と同様に、基礎データを参照して耐震性能を評価するもので、対象建物の地盤及び建物の常時微動計測値に基づいて建物の耐震性能評点を直接的に算定するという本発明の特徴的な構成に関して、記載も示唆もされていなかった。 Furthermore, Patent Document 4 evaluates the seismic performance by referring to the basic data as in Patent Document 3, and directly calculates the seismic performance score of the building based on the ground of the target building and the microtremor measurement value of the building. No description or suggestion was made regarding the characteristic configuration of the present invention to be calculated.

そこで、本発明では、従来から不十分である地盤を含めた建築物の耐震性能評価方法を補完し、あるいは、これに置き換わる、省スペース、低騒音、低コストかつ短時間で実施可能な建築物の耐震性能評価方法を提供することを課題とする。 Therefore, in the present invention, a building that can be implemented in a space-saving, low-noise, low-cost and in a short time that complements or replaces the seismic performance evaluation method for buildings including the ground that has been insufficient in the past. It is an object to provide a seismic performance evaluation method for

上記課題を解決するために、請求項1記載の耐震性能評価方法は、木造建築物の地表面からの高さHi(i=1,2,・・・n(前記建築物の層の数))のi層において、常時微動計測センサで計測した前記建築物の常時微動の水平成分のピーク周期Tiに対応するフーリエ振幅Hfiを前記常時微動の垂直成分のTiに対応するフーリエ振幅Vfiで除したHfi/Vfi比を算出するHfi/Vfi比算出ステップと、前記Hfi/Vfi比に、Tiと前記地表面からの建築物の高さHo(建築物の最高高さと軒高さの平均値)の関係から木造建築物の告示式To=0.03×Hoで求められる固有周期Toとの比であるTi/To比を乗じたHfi/Vfi×Ti/To値を求めるHfi/Vfi×Ti/To値算出ステップと、前記Hfi/Vfi×Ti/To値を、前記建築物の計測高さ補正値α、重量補正値β又は形状補正値γに応じて補正した値を算定する補正ステップと、前記補正した値から各層の保有水平耐力Quiと必要保有水平耐力Quniの比である耐震性能評点Qui/Quni値を算定する耐震性能算定ステップと、を含むことを特徴とする。 In order to solve the above-mentioned problem, the method for evaluating seismic performance according to claim 1 is that the height Hi (i = 1, 2,... N (number of layers of the building) from the ground surface of the wooden building). In the i-layer, the Fourier amplitude Hfi corresponding to the peak period Ti of the horizontal component of the fine tremor of the building measured by the microtremor sensor is divided by the Fourier amplitude Vfi corresponding to the vertical component Ti of the microtremor. Hfi / Vfi ratio calculation step to calculate Hfi / Vfi ratio, and the Hfi / Vfi ratio of Ti and the building height Ho from the ground surface (the average value of the maximum height of the building and the height of the eaves) Hfi / Vfi × Ti / To value calculation to obtain Hfi / Vfi × Ti / To value multiplied by Ti / To ratio, which is the ratio of natural period To obtained by notification formula To = 0.03 × Ho of wooden building And a correction step for calculating a value obtained by correcting the Hfi / Vfi × Ti / To value according to the measured height correction value α, weight correction value β or shape correction value γ of the building. And flop, characterized in that it comprises a, and earthquake resistance calculation step of calculating a seismic performance rating Qui / Quni value is held horizontal strength Qui and must possess a ratio of lateral strength Quni of each layer from the corrected value.

建築物の固有周期Tは建築物の高さと剛性に影響され、地表面からの高さが高ければ固有周期は長くなり、振幅を表す常時微動のスペクトル比Hfi/Vfi比は大きくなり、耐力壁等が多い等により建築物の剛性が大きくなれば固有周期は短く、振幅は小さくなる。また、木造建築物の固有周期は前記告示式To=0.03×Hoで求められ、高さと剛性が同一の建築物は、Ti/To比が1.0以上であれば劣化していることになる。従って、常時微動のスペクトル比Hfi/Vfi比と固有周期の数値Ti/To比は、劣化の程度を考慮した建築物の振動特性を表示していると考えられる。 The natural period T of the building is affected by the height and rigidity of the building. If the height from the ground surface is high, the natural period becomes longer, the spectrum ratio Hfi / Vfi ratio of microtremors representing amplitude increases, and the bearing wall If the rigidity of the building increases due to a large number of factors, the natural period is shorter and the amplitude is smaller. In addition, the natural period of the wooden building is obtained by the notification formula To = 0.03 × Ho, and a building having the same height and rigidity is deteriorated if the Ti / To ratio is 1.0 or more. Therefore, the spectral ratio Hfi / Vfi ratio of microtremor and the numerical period Ti / To ratio of natural period are considered to indicate the vibration characteristics of the building in consideration of the degree of deterioration.

次に、請求項記載の耐震性能評価方法は、前記Qui/Quni値が、前記Hfi/Vfi×Ti/To値に計測高さ補正値α、重量補正値β又は形状補正値γを乗じた値の自然対数の一次関数であることを特徴とする。 Next, in the seismic performance evaluation method according to claim 1 , the Qui / Quni value is obtained by multiplying the Hfi / Vfi × Ti / To value by a measured height correction value α, a weight correction value β, or a shape correction value γ. It is a linear function of the natural logarithm of the value.

次に、請求項記載の耐震性能評価方法は、前記Hfi/Vfi×Ti/To値に、計測高さ補正値α、重量補正値β又は形状補正値γを考慮した前記Qui/Quni値が、次の(数1)又は(数2)で表わされることを特徴とする。
(数1)
X方向(桁行方向)
xQui/Quni=−0.309×ln(Hfi/Vfi×Ti/To ×α×β×γ)+1.8899
(数2)
Y方向(張間方向)
yQui/Quni=−0.334×ln(Hfi/Vfi×Ti/To ×α×β×γ)+2.0243
Next, in the seismic performance evaluation method according to claim 2 , the Qui / Quni value in consideration of the measurement height correction value α, the weight correction value β or the shape correction value γ is added to the Hfi / Vfi × Ti / To value. It is expressed by the following (Equation 1) or (Equation 2).
(Equation 1)
X direction (column line direction)
xQui / Quni = −0.309 × ln (Hfi / Vfi × Ti / To × α × β × γ) +1.8899
(Equation 2)
Y direction (stretch direction)
yQui / Quni = −0.334 × ln (Hfi / Vfi × Ti / To × α × β × γ) +2.0243

次に、請求項記載の耐震性能評価方法は、前記計測高さ補正値αが(数3)で表され、前記重量補正値βが(数4)で表され、前記形状補正値γが(数5)で表わされることを特徴とする。
(数3)
α=Ho/Hi
Ho:建築物の最高高さと軒高さの平均値
(数4)
β=√(Wo/Wi)
Wo:(一財)日本建築防災協会「木造住宅の耐震診断と補強方法」に規定されている非常に重い建物の重量、Wi:前記建築物の重量
(数5)
γ=max(γ1,γ2), γ1,γ2≧1.0
γ1 (建築物で、張間方向に比べて桁行方向が極端に長い場合(B/D>3)、桁行方向について適用する。)
γ1=√(B×D)/Ho
B:建築物の長さ(m)、D:建築物の奥行(m)
γ2(建築物で、部屋、耐力壁の偏在により偏心が大きい場合に適用する。)
γ2= (Ti’/Ti)^2(Ti’≧Ti),γ2=(Ti/Ti’)^2(Ti’<Ti)
Ti:建築物のi層の1次固有周期(sec)、Ti’:建築物のi層のねじれ周期(sec)
Next, in the seismic performance evaluation method according to claim 3 , the measured height correction value α is expressed by (Equation 3), the weight correction value β is expressed by (Equation 4), and the shape correction value γ is It is represented by (Formula 5).
(Equation 3)
α = Ho / Hi
Ho: Average value of building height and eave height
β = √ (Wo / Wi)
Wo: Weight of very heavy building as stipulated in “Aseismic Diagnosis and Reinforcement Method for Wooden Houses”, Japan Building Disaster Prevention Association, Wi: Weight of the building (5)
γ = max (γ1, γ2), γ1, γ2 ≧ 1.0
γ1 (For buildings, when the column direction is extremely long compared to the span direction (B / D> 3), apply for the column direction.)
γ1 = √ (B × D) / Ho
B: Length of building (m), D: Depth of building (m)
γ2 (Applicable when the building is eccentric due to the uneven distribution of rooms and bearing walls.)
γ2 = (Ti '/ Ti) ^ 2 (Ti' ≧ Ti), γ2 = (Ti / Ti ') ^ 2 (Ti'<Ti)
Ti: Primary natural period of building i layer (sec), Ti ': Twisting period of building i layer (sec)

次に、請求項記載のプログラムは、建築物の地表面からの高さHi(i=1,2,・・・n(前記建築物の層の数))のi層において、常時微動計測センサで計測した前記建築物の常時微動の水平成分のピーク周期Tiに対応するフーリエ振幅Hfiを前記常時微動の垂直成分のTiに対応するフーリエ振幅Vfiで除したHfi/Vfi比を算出するHfi/Vfi比算出処理と、前記Hfi/Vfi比に、Tiと前記地表面からの建築物の高さHo(建築物の最高高さと軒高さの平均値)の関係から木造建築物の告示式To=0.03×Hoで求められる前記建築物の固有周期Toとの比であるTi/To比を乗じたHfi/Vfi×Ti/To値を求めるHfi/Vfi×Ti/To値算出処理と、前記Hfi/Vfi×Ti/To値を、前記建築物の計測高さ補正値α、重量補正値β又は形状補正値γに応じて補正したHfi/Vfi×Ti/To×α×β×γで表される補正処理と、前記補正した値から各層の保有水平耐力Quiと必要保有水平耐力Quniとの比である耐震性能評点Qui/Quniを算定する耐震性能算定処理と、をコンピュータに実行させるためのプログラムである。 Next, the program according to claim 4 constantly measures microtremors in the i layer having a height Hi (i = 1, 2,... N (number of layers of the building)) from the ground surface of the building. Hfi / Vfi ratio is calculated by dividing the Fourier amplitude Hfi corresponding to the peak period Ti of the horizontal component of the fine movement of the building measured by the sensor by the Fourier amplitude Vfi corresponding to Ti of the vertical component of the fine movement. Notification formula To of wooden buildings based on the relationship between Ti and the building height Ho from the ground surface (average value of the highest building height and eave height) to the Vfi ratio calculation process and the Hfi / Vfi ratio = Hfi / Vfi × Ti / To value calculation processing for obtaining Hfi / Vfi × Ti / To value multiplied by Ti / To ratio, which is a ratio with the natural period To of the building obtained by 0.03 × Ho, and the Hfi / Vfi × Ti / To value is expressed as Hfi / Vfi × Ti / To × α × β × γ corrected according to the measured height correction value α, weight correction value β or shape correction value γ of the building. Correction processing and the correction This is a program for causing a computer to execute the seismic performance calculation process for calculating the seismic performance score Qui / Quni, which is the ratio of the retained horizontal strength Qui of each layer to the required horizontal strength Quni.

無騒音・無振動の小型計測器を用いるため、計測場所の制約が少ない。又、計測は建築物の各層で行うが、設置場所は建築物の剛性の中心点にできる限り近い柱梁接合部寄りとし、建築物全体の揺れを代表する測定値が得られる箇所1点を選定する。前記の適当な設置場所が得られない場合は、計測箇所数を2点以上増やして平均値を採用する。 There are few restrictions on the measurement location because it uses a small measuring instrument with no noise and no vibration. In addition, the measurement is performed at each layer of the building, but the installation location is close to the column beam joint as close as possible to the center point of the rigidity of the building, and one point where the measured value representative of the shaking of the entire building can be obtained. Select. If the appropriate installation location cannot be obtained, increase the number of measurement locations by 2 or more and adopt the average value.

図1は、本発明の実施形態に係る計測システム構成の一例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of a measurement system configuration according to an embodiment of the present invention. 図2は、本発明の実施形態に係る運用場面の一例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of an operation scene according to the embodiment of the present invention. 図3は、常時微動計測による耐震性能評点算定フローチャートの一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of a flow chart for calculating the seismic performance score by microtremor measurement. 図4は、計測及び重量補正を行わない常時微動計測値から推定した耐震性能評点と、(一財)日本建築防災協会の「木造住宅の耐震診断と補強方法」に定める精密診断法1(保有耐力診断法)による耐震性能評点とを比較した結果を示す説明図(その1)である。この図示した関係式を建築物の耐震性能評点推定式の根拠にしている。Fig. 4 shows the seismic performance score estimated from microtremor measurement values without measurement and weight correction, and the precise diagnosis method 1 (owned by the Japan Building Disaster Prevention Association) It is explanatory drawing (the 1) which shows the result compared with the seismic performance score by a proof stress method. This illustrated relational expression is used as the basis for the building seismic performance rating estimation formula. 図5は、図4の関係式に対象建物の計測高さ補正、重量補正を行った常時微動計測値による耐震性能評点と、前記の精密診断法1(保有耐力診断法)による耐震性能評点とを比較した結果の一例を示す説明図(その2)である。5 shows the seismic performance score based on the microtremor measurement value obtained by performing the measurement height correction and weight correction of the target building in the relational expression of FIG. 4, and the seismic performance score based on the above-mentioned precise diagnosis method 1 (owned strength diagnosis method) It is explanatory drawing (the 2) which shows an example of the result of having compared. 図6は、図5と同様の補正を行った常時微動計測値による耐震性能評点と(一財)日本建築防災協会の「木造住宅の耐震診断と補強方法」に定める精密診断法2(限界耐力計算)による耐震性能評点とを比較した結果の一例を示す説明図(その3)である。Fig. 6 shows the seismic performance score based on the microtremor measurement values corrected in the same way as in Fig. 5 and the precise diagnosis method 2 (marginal proof stress) stipulated in "Aseismic Diagnosis and Reinforcement Method for Wooden Houses" of the Japan Building Disaster Prevention Association It is explanatory drawing (the 3) which shows an example of the result compared with the earthquake-resistant performance score by calculation. 図7は、図5と同様の補正を行った常時微動計測値による耐震性能評点と精密診断法2(限界耐力計算)による耐震性能評点とを比較した結果の一例を示す説明図(その4)である。FIG. 7 is an explanatory diagram showing an example of a result of comparing the seismic performance score by the microtremor measurement value corrected in the same manner as in FIG. 5 and the seismic performance score by the precision diagnosis method 2 (limit strength calculation) (part 4). It is. 図8は、図5と同様の補正を行った常時微動計測値による耐震性能評点と精密診断法2(限界耐力計算)による耐震性能評点とを比較した結果の一例を示す説明図(その5)である。FIG. 8 is an explanatory diagram showing an example of a result of comparing the seismic performance score based on the microtremor measurement value corrected in the same manner as FIG. 5 and the seismic performance score based on the precision diagnosis method 2 (limit strength calculation) (part 5). It is. 図9は、図5と同様の補正を行った常時微動計測値による耐震性能評点と精密診断法2(限界耐力計算)による耐震性能評点とを比較した結果の一例を示す説明図(その6)である。FIG. 9 is an explanatory diagram showing an example of a result of comparing the seismic performance score based on the microtremor measurement value corrected in the same manner as in FIG. 5 and the seismic performance score based on the precision diagnosis method 2 (limit strength calculation) (No. 6). It is. 図10は、図5と同様の補正を行った常時微動計測値による耐震性能評点と前記の精密診断法1(保有耐力診断法)による耐震性能評点とを比較した結果の一例を示す説明図(その7)である。FIG. 10 is an explanatory diagram showing an example of a result of comparing the seismic performance score based on the microtremor measurement value subjected to the same correction as that in FIG. Part 7).

以下に、本実施形態について説明する。尚、以下に説明する実施例は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。又、実施例で説明される構成の全てが、本発明において必須のものであるとは限らない。尚、課題を解決するための手段における記載と重複する内容及び当業者であれば当然に知り得る公知技術に関する内容はできるだけ省略する。 Hereinafter, the present embodiment will be described. The embodiments described below do not unduly limit the contents of the present invention described in the claims. In addition, all the configurations described in the embodiments are not necessarily essential in the present invention. In addition, the content which overlaps with the description in the means for solving a subject, and the content regarding the well-known technique which a person skilled in the art can understand naturally are omitted as much as possible.

図1に本発明の実施形態に係る計測システム構成の一例を示す。常時微動計測には、常時微動測定用AD変換器内蔵型地表用受信器(2秒計)を使用した。ノート型パーソナルコンピュータと組み合わせて、常時微動の測定が可能である。尚、ノート型パーソナルコンピュータに限らず、スマートフォン、タブレット型端末、デスクトップ型パーソナルコンピュータ等、本発明の処理を実行させることができるものであれば、その形態を問わない。又、常時微動計測器に本発明の処理を実行する機能をもたせることも考えられる。更には、ネットワークを介して、サーバにおいて本発明の処理を実行させるようにしてもよい。 FIG. 1 shows an example of a measurement system configuration according to an embodiment of the present invention. For microtremor measurement, a ground surface receiver (2-second meter) with a built-in AD converter for microtremor measurement was used. In combination with a notebook personal computer, it is possible to always measure fine movement. Note that the present invention is not limited to a notebook personal computer, and any form may be used as long as it can execute the processing of the present invention, such as a smartphone, a tablet terminal, or a desktop personal computer. It is also conceivable that the microtremor measuring instrument is provided with a function for executing the processing of the present invention. Furthermore, the processing of the present invention may be executed in a server via a network.

図2に本発明の実施形態に係る運用場面の一例を示す。本発明は、常時微動計測センサ1台を任意の層の計測場所に設置するだけで実施できるので、場所の制約が殆どない。常時微動計測センサとノート型パーソナルコンピュータをケーブルで接続して実施したが、将来的には、これらを一体化したり、ネットワークを介してサーバで処理したりすることも可能である。 FIG. 2 shows an example of an operation scene according to the embodiment of the present invention. Since the present invention can be implemented simply by installing one microtremor measurement sensor at a measurement location of an arbitrary layer, there are almost no restrictions on the location. Although the microtremor measurement sensor and the notebook personal computer are connected by a cable, they can be integrated or processed by a server via a network in the future.

建築物の常時微動計測は、常時微動計(固有周期2secの速度計)で固有周期Tiを計測する。微動の測定は、1か所について1回の測定間隔を100秒とし、3回実施した。サンプリング周波数は100 Hz、観測成分は水平動2成分、上下動1成分の3成分である。各100秒間の観測記録のフーリエスペクトル(平滑化:バンド幅0.4 HzのParzen Window)を計算し、水平動2成分をスペクトル合成したものを水平動フーリエスペクトルとし、水平動フーリエスペクトルを上下動フーリエスペクトルで除したものをHfi/Vfiスペクトルとして表示した。 The microtremor measurement of a building measures the natural period Ti with a microtremor meter (a speedometer with a natural period of 2 seconds). The measurement of microtremor was performed 3 times, with a measurement interval of 100 seconds per location. Sampling frequency is 100 Hz, observation components are 3 components, 2 horizontal motion components and 1 vertical motion component. Calculates the Fourier spectrum of each observation record for 100 seconds (smoothing: Parzen Window with a bandwidth of 0.4 Hz). The horizontal motion Fourier spectrum is obtained by combining the two horizontal motion spectra. The horizontal motion Fourier spectrum is the vertical motion Fourier spectrum. What was divided by is displayed as an Hfi / Vfi spectrum.

具体的な実施手順は以下の通りである。
まず、対象箇所において、常時微動測定用動コイル型速度計を適切な微動記録が得られるように設置する。設置箇所は、建築物の各層毎に1点以上とする。1点について1回の測定間隔を100秒以上とし、3回以上実施する。
The specific implementation procedure is as follows.
First, a moving coil type speedometer for fine movement measurement is installed at a target location so that appropriate fine movement recording can be obtained. There shall be at least one installation location for each layer of the building. Make one measurement interval for each point 100 seconds or more, and carry out 3 times or more.

次に、計測におけるサンプリング周波数は100Hz、観測成分は水平動2成分、上下動1成分の3成分とし、各100秒以上間の観測記録のフーリエスペクトル(平滑化:バンド幅0.4HzのParzen Window)を計算し、水平動2成分をスペクトル合成したものを水平動フーリエスペクトルとし、水平動フーリエスペクトルを上下動フーリエスペクトルで除したものをHfi/Vfiスペクトルとして表示する。 Next, the sampling frequency in the measurement is 100Hz, the observation component is 3 components of 2 horizontal motion components and 1 vertical motion component, and the Fourier spectrum of observation records for more than 100 seconds each (smoothing: Parzen Window with a bandwidth of 0.4Hz) , And the horizontal motion Fourier spectrum is obtained by combining the two horizontal motion spectrums, and the horizontal motion Fourier spectrum divided by the vertical motion Fourier spectrum is displayed as the Hfi / Vfi spectrum.

最後に、表示されたHfi/Vfiスペクトルから、Hfi/Vfiの最大値及びこの時点の固有周期Tiを確定して、Hfi/Vfi×Ti/Toを算定する。この数値に、計測高さ、重量又は形状による補正値α、β又はγを乗じて、近似式(数1)又は(数2)を使用して耐震性能評点Qui/Quni値を算定する。これら一連の作業は、表計算ソフトウェア用データによりに行う。 Finally, from the displayed Hfi / Vfi spectrum, the maximum value of Hfi / Vfi and the natural period Ti at this time are determined, and Hfi / Vfi × Ti / To is calculated. The numerical value is multiplied by a correction value α, β, or γ based on the measured height, weight, or shape, and an earthquake resistance performance score Qui / Quni value is calculated using an approximate expression (Equation 1) or (Equation 2). These series of operations are performed using spreadsheet software data.

図3は、常時微動計測による耐震性能評点算定フローチャートの一例を示す説明図である。 FIG. 3 is an explanatory diagram showing an example of a flow chart for calculating the seismic performance score by microtremor measurement.

図4は、良好な地盤に建つ平屋の住宅、寺院及び2階建住宅の合計11棟について、計測及び重量補正を行わない常時微動計測値から推定した評点と、対象建物の保有水平耐力に基づく耐震性能評点とを比較した結果を示す説明図である。ここで図示した関係式を建築物の耐震性能評点推定式の根拠にしている。 Figure 4 is based on scores estimated from microtremor measurements without measurement and weight correction for a total of 11 single-story houses, temples and two-story houses on good ground, and the horizontal strength of the target building It is explanatory drawing which shows the result of having compared with the earthquake-resistant performance score. The relational expression shown here is the basis of the seismic performance rating estimation formula for buildings.

図5から図10は、本発明を用いて常時微動計測値による耐震性能評点と保有水平耐力又は限界耐力計算による耐震性能評点とを比較した結果の一例を示す説明図である。
図5は、伝統的構法の平屋建て木造住宅の改修前と改修後の耐震性能を本発明による方法で耐震性能評点を算定したものである。常時微動計測による耐震性能判定指標であるHfi/Vfi値(桁行方向,張間方向)は、改修前の(17,25)が改修後の(10,15)と減少しており、Ti/To値は、壁量を増やさず耐力のみ向上させたため、改修前後の数値はほぼ変わらず、良好な地盤で、土葺き瓦屋根、外内壁土塗壁の住宅であることから、補正値α=β=γ=1.0として耐震性能評点を算定している。
図6は、第1種地盤に建つ改修前後の2階建の伝統的構法による古民家について、本発明による方法で耐震性能評点を算定したものである。常時微動計測による耐震性能判定指標で対象建物の揺れやすさを表すHfi/Vfi値(桁行方向,張間方向)は、改修前の2階(74,33),1階(47,21)が改修後の2階(17,12), 1階(4,4)と大幅に減少している。また、劣化の程度を表すTi/To値は、壁量を増やさず耐力のみ向上させたため、改修前後の数値はほぼ変わらず、第1種の硬質な地盤で、土葺き瓦屋根、外内壁土塗壁の古民家であることから、計測高さ補正以外は補正値β=γ=1.0として耐震性能評点を算定している。
図7は、第3種地盤に建つ改修前後の2階建の伝統的構法による古民家について、本発明による方法で耐震性能評点を算定したものである。常時微動計測による耐震性能判定指標で対象建物の揺れやすさを表すHfi/Vfi値(桁行方向,張間方向)は、改修前の2階12,10),1階(12,15)が改修後の2階(5,3), 1階(5,2)と大幅に減少している。また、劣化の程度を表すTi/To値は、壁量は変わらず耐力を向上させた桁行方向はやや減少しているが、壁量、耐力ともに向上させた張間方向は、第3種という揺れやすい地盤のため、改修前後の数値はほぼ変わらず、補正係数は土葺き瓦屋根、外内壁土塗壁の古民家であることから、計測高さ補正以外は補正値β=γ=1.0として耐震性能評点を算定している。
図8は、第2種地盤に建つ在来軸組工法による2階建の新築の木造住宅について、本発明による方法で耐震性能評点を算定したものである。常時微動計測による耐震性能判定指標で対象建物の揺れやすさを表すHfi/Vfi値(桁行方向,張間方向)は、2階(17,19),1階(17,21)で、通し柱のない1階の吹抜け大空間のため、1階の揺れやすさを表すHfi/Vfi値が大きくなっている。また、劣化の程度を表すTi/To値は、新築であることから、Ti/To≒1.0となっている。補正係数は瓦屋根、外内壁土塗壁であることから、計測高さ補正以外は補正値β=γ=1.0として耐震性能評点を算定している。
図9は、第1種地盤に建つ改修前後の伝統的構法による寺院について、本発明による方法で耐震性能評点を算定したものである。常時微動計測による耐震性能判定指標で対象建物の揺れやすさを表すHfi/Vfi値(桁行方向,張間方向)は、改修前のHfi/Vfi=(130,58)が改修後はHfi/Vfi=(14,23)と大幅に減少している。また、劣化の程度を表すTi/To値(桁行方向,張間方向)は、劣化部材をすべて交換したため、改修前のTi/To=(2.2,2.3)が、改修後はTi/To=(1.2,1.3)に大幅に低減している。第1種の硬質な地盤で、土葺き瓦屋根、外内壁土塗壁の古民家であることから、計測高さ補正以外は補正値β=γ=1.0として耐震性能評点を算定している。
図10は、第3種地盤に建つ改修前後の2階建の在来軸組工法による木造校舎について、本発明による方法で耐震性能評点を算定したものである。常時微動計測による耐震性能判定指標で対象建物の揺れやすさを表すHfi/Vfi値(桁行方向,張間方向)は、改修前の2階(9,10),1階(9,13)が改修後の2階(3,4), 1階(2,2)と大幅に減少している。また、劣化の程度を表すTi/To値(桁行方向,張間方向)は、劣化部材をすべて交換したため、改修前の2階(1.8,2.7)、1階(1.6,2.7)が、改修後は2階(1.0,1.0)、1階(1.0,1.0)となり、劣化が解消されている。壁量は変えず耐力を向上させた桁行方向はやや減少しているが、壁量、耐力ともに向上させた張間方向は、第3種という揺れやすい地盤のため、改修前後の数値はほぼ変わらず、補正係数は洋瓦屋根、外壁下見板、内壁木ずり漆喰塗り、床板張りの木造校舎であることから、計測高さ補正以外は補正値β≒1.5、γは高さに対して長大な桁行方向γ≒3.8、比較的長さの短い張間方向はγ≒1.5として耐震性能評点を算定している。
FIG. 5 to FIG. 10 are explanatory diagrams showing an example of a result of comparing the seismic performance score based on the microtremor measurement value and the seismic performance score based on the retained horizontal strength or the limit strength calculation using the present invention.
FIG. 5 shows the seismic performance score calculated by the method according to the present invention for the seismic performance before and after renovation of a one-story wooden house with a traditional construction method. Hfi / Vfi value (girder direction, span direction), which is the seismic performance evaluation index by microtremor measurement, decreased from (17,25) before renovation to (10,15) after renovation, and Ti / To Since the value was improved only in yield strength without increasing the amount of walls, the numerical value before and after the renovation remained almost unchanged, and the ground level was good. Seismic performance score is calculated as = γ = 1.0.
FIG. 6 shows the seismic performance score calculated by the method according to the present invention for an old private house with a two-story traditional construction method before and after renovation on the first type ground. The Hfi / Vfi values (girder direction, span direction) that represent the ease of shaking of the target building with the seismic performance evaluation index by microtremor measurement are the 2nd floor (74,33) and 1st floor (47,21) before renovation. After the renovation, the number of floors (17,12) and the first floor (4,4) have decreased significantly. In addition, the Ti / To value, which indicates the degree of deterioration, has improved only the proof stress without increasing the amount of walls, so the numerical value before and after the renovation remains almost unchanged. Since it is an old private house with plaster walls, the earthquake resistance performance score is calculated with the correction value β = γ = 1.0 except for the measurement height correction.
FIG. 7 shows the seismic performance score calculated by the method according to the present invention for an old private house with a two-story traditional construction method before and after renovation on the third type ground. The Hfi / Vfi values (girder direction, span direction) that represent the ease of shaking of the target building with the seismic performance evaluation index by microtremor measurement are repaired on the 2nd floor before renovation (12,10) and 1st floor (12,15). The second floor (5,3) and the first floor (5,2) have decreased significantly. In addition, the Ti / To value indicating the degree of deterioration is slightly reduced in the direction of the beam that improved the proof stress without changing the wall amount, but the tension direction in which both the wall amount and proof stress were improved is the third type. Because the ground is easy to swing, the numerical values before and after the renovation are almost unchanged, and the correction factor is an old private house with earthen tiled roof and outer and inner wall earthen walls, so the correction value β = γ = 1.0 except for the measurement height correction Seismic performance score is calculated.
FIG. 8 shows the seismic performance score calculated by the method of the present invention for a two-story newly built wooden house built on the second type ground by the conventional frame construction method. Hfi / Vfi values (girder direction, span direction) representing the ease of shaking of the target building with the seismic performance evaluation index by microtremor measurement are on the 2nd floor (17,19), 1st floor (17,21) Because of the large atrium space on the first floor, the Hfi / Vfi value representing the ease of shaking on the first floor is large. In addition, the Ti / To value indicating the degree of deterioration is Ti / To≈1.0 because it is a new construction. Since the correction factors are tiled roof and outer and inner wall earthen walls, the seismic performance score is calculated with the correction value β = γ = 1.0 except for the measurement height correction.
FIG. 9 shows the seismic performance score calculated by the method according to the present invention for temples with traditional construction methods before and after repair on the first type ground. Hfi / Vfi value (girder direction, span direction) that represents the ease of shaking of the target building by seismic performance evaluation index by microtremor measurement is Hfi / Vfi = (130,58) before renovation and Hfi / Vfi after renovation = (14,23) In addition, the Ti / To value (digit direction, span direction) representing the degree of deterioration was replaced with Ti / To = (2.2, 2.3) before renovation, and Ti / To = ( 1.2, 1.3). Since it is an old private house with a first type of hard ground, a tiled tile roof, and an outer and inner wall, the seismic performance score is calculated with a correction value β = γ = 1.0 except for the measurement height correction.
FIG. 10 shows the seismic performance score calculated by the method according to the present invention for a 2-story wooden school building on the third class ground before and after the renovation. The Hfi / Vfi values (girder direction, span direction) that represent the ease of shaking of the target building with the seismic performance evaluation index by microtremor measurement are the 2nd floor (9,10) and 1st floor (9,13) before renovation. The number of floors after renovation has decreased significantly to the second floor (3,4) and the first floor (2,2). In addition, the Ti / To values (digit direction, span direction) indicating the degree of deterioration were replaced on the 2nd floor (1.8, 2.7) and 1st floor (1.6, 2.7) before refurbishment because all deteriorated parts were replaced. Is on the 2nd floor (1.0, 1.0) and 1st floor (1.0, 1.0), and degradation has been eliminated. The girder direction that improved the yield strength without changing the wall amount has decreased slightly, but the span direction where both the wall amount and the yield strength were improved is a type 3 rocky ground, so the values before and after the renovation are almost the same The correction factor is Western tile roof, outer wall clapboard, wooden wall plaster plaster on the inner wall, and the wooden board building with floorboards.Besides the measurement height correction, the correction value β ≒ 1.5, γ is long relative to the height. The seismic performance score is calculated with the girder direction γ≈3.8 and the relatively short span span γ≈1.5.

1 計測者
2 ノート型パーソナルコンピュータ
3 ケーブル
4 常時微動計測センサ
1 Measurer 2 Notebook personal computer 3 Cable 4 Microtremor measurement sensor

Claims (4)

木造建築物の地表面からの高さHi(i=1,2,・・・n(前記建築物の層の数))のi層において、常時微動計測センサで計測した前記建築物の常時微動の水平成分のピーク周期Tiに対応するフーリエ振幅Hfiを前記常時微動の垂直成分のTiに対応するフーリエ振幅Vfiで除したHfi/Vfi比を算出するステップと、前記Hfi/Vfi比にTiと木造建築物の告示式で求められる前記建築物の固有周期Toとの比であるTi/To比を乗じたHfi/Vfi×Ti/To値を求めるステップと、前記Hfi/Vfi×Ti/To値を、前記建築物の計測高さ、重量又は形状に応じて補正した値を算定するステップと、前記補正した値から各層の保有水平耐力Quiと必要保有水平耐力Quniとの比である耐震性能評点Qui/Quni値を算定するステップと、を含み、前記Qui/Quni値が、前記Hfi/Vfi×Ti/To値に計測高さ補正値α、重量補正値β又は形状補正値γを乗じた値の自然対数の一次関数であることを特徴とする耐震性能評価方法。 Microtremors of the building measured by a microtremor measurement sensor in the i layer at a height Hi (i = 1, 2,... N (number of layers of the building)) from the ground surface of the wooden building Calculating the Hfi / Vfi ratio by dividing the Fourier amplitude Hfi corresponding to the peak period Ti of the horizontal component of the horizontal component by the Fourier amplitude Vfi corresponding to Ti of the vertical component of the fine movement, and the Hfi / Vfi ratio to Ti and wooden A step of obtaining an Hfi / Vfi × Ti / To value obtained by multiplying a Ti / To ratio, which is a ratio with the natural period To of the building, obtained by a notification formula of the building, and the Hfi / Vfi × Ti / To value The step of calculating the corrected value according to the measured height, weight or shape of the building, and the seismic performance score Qui which is the ratio of the retained horizontal strength Qui of each layer and the required horizontal strength Quni from the corrected value / a step of calculating the Quni value, only contains the Qui / Quni value, the Hfi / Vfi × Ti / to measure the height correction value to value alpha, weight complement Seismic performance evaluation method, which is a linear function of the natural logarithm of the multiplied value β or shape correction value γ value. 前記Qui/Quni値が、次の(数1)又は(数2)で表わされることを特徴とする請求項記載の耐震性能評価方法。
(数1)
X方向(桁行方向)
xQui/Quni=−0.309×ln(Hfi/Vfi×Ti/To ×α×β×γ)+1.8899
(数2)
Y方向(張間方向)
yQui/Quni=−0.334×ln(Hfi/Vfi×Ti/To ×α×β×γ)+2.0243
The Qui / Quni values, seismic performance evaluation method of claim 1, wherein the represented by the following equation (1) or (Equation 2).
(Equation 1)
X direction (column line direction)
xQui / Quni = −0.309 × ln (Hfi / Vfi × Ti / To × α × β × γ) +1.8899
(Equation 2)
Y direction (stretch direction)
yQui / Quni = −0.334 × ln (Hfi / Vfi × Ti / To × α × β × γ) +2.0243
前記計測高さ補正値αが(数3)で表され、前記重量補正値βが(数4)で表され、前記形状補正値γが(数5)で表わされることを特徴とする請求項に記載の耐震性能評価方法。
(数3)
α=Ho/Hi
Ho:建築物の最高高さと軒高さの平均値
(数4)
β=√(Wo/Wi)
Wo:(一財)日本建築防災協会「木造住宅の耐震診断と補強方法」に規定されている非常に重い建物の重量、Wi:前記建築物の重量
(数5)
γ=max(γ1,γ2), γ1,γ2≧1.0
γ1 (建築物で、張間方向に比べて桁行方向が極端に長い場合(B/D>3)、桁行方向について適用する。)
γ1=√(B×D)/Ho
B:建築物の長さ(m)、D:建築物の奥行(m)
γ2(建築物で、部屋、耐力壁の偏在により偏心が大きい場合に適用する。)
γ2= (Ti’/Ti)^2(Ti’≧Ti),γ2=(Ti/Ti’)^2(Ti’<Ti)
Ti:建築物のi層の1次固有周期(sec)、Ti’:建築物のi層のねじれ周期(sec)
The measured height correction value α is expressed by (Equation 3), the weight correction value β is expressed by (Equation 4), and the shape correction value γ is expressed by (Equation 5). 2. Seismic performance evaluation method according to 2.
(Equation 3)
α = Ho / Hi
Ho: Average value of building height and eave height
β = √ (Wo / Wi)
Wo: Weight of very heavy building as stipulated in “Aseismic Diagnosis and Reinforcement Method for Wooden Houses”, Japan Building Disaster Prevention Association, Wi: Weight of the building (5)
γ = max (γ1, γ2), γ1, γ2 ≧ 1.0
γ1 (For buildings, when the column direction is extremely long compared to the span direction (B / D> 3), apply for the column direction.)
γ1 = √ (B × D) / Ho
B: Length of building (m), D: Depth of building (m)
γ2 (Applicable when the building is eccentric due to the uneven distribution of rooms and bearing walls.)
γ2 = (Ti '/ Ti) ^ 2 (Ti' ≧ Ti), γ2 = (Ti / Ti ') ^ 2 (Ti'<Ti)
Ti: Primary natural period of building i layer (sec), Ti ': Twisting period of building i layer (sec)
コンピュータに請求項1からのいずれかに記載の耐震性能評価方法を実行させるためのプログラム。
The program for making a computer perform the seismic performance evaluation method in any one of Claim 1 to 3 .
JP2019099677A 2019-05-28 2019-05-28 Seismic performance evaluation method and program for wooden buildings by microtremor measurement Active JP6614561B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019099677A JP6614561B1 (en) 2019-05-28 2019-05-28 Seismic performance evaluation method and program for wooden buildings by microtremor measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019099677A JP6614561B1 (en) 2019-05-28 2019-05-28 Seismic performance evaluation method and program for wooden buildings by microtremor measurement

Publications (2)

Publication Number Publication Date
JP6614561B1 true JP6614561B1 (en) 2019-12-04
JP2020193874A JP2020193874A (en) 2020-12-03

Family

ID=68763402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019099677A Active JP6614561B1 (en) 2019-05-28 2019-05-28 Seismic performance evaluation method and program for wooden buildings by microtremor measurement

Country Status (1)

Country Link
JP (1) JP6614561B1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3285787B2 (en) * 1997-03-13 2002-05-27 財団法人鉄道総合技術研究所 Countermeasure effect judgment method and countermeasure effect judgment device
JP2002348949A (en) * 2001-05-22 2002-12-04 Kenichi Saito Dynamic seismic resistance assessment system for building
JP2003042892A (en) * 2001-08-01 2003-02-13 Naganori Sato Method of evaluating dynamic earthquake resistance of building
JP2003256404A (en) * 2002-02-26 2003-09-12 Hokkaido Univ Earthquake-proof diagnostic method of timber building
JP6074264B2 (en) * 2012-12-28 2017-02-01 大和ハウス工業株式会社 Method, apparatus and program for creating fragility curves for existing wooden houses
JP6474543B2 (en) * 2012-12-28 2019-02-27 大和ハウス工業株式会社 Calculation method, equipment, and program for simple earthquake-resistant diagnostic scores for existing wooden houses
JP5809174B2 (en) * 2013-01-09 2015-11-10 株式会社Nttファシリティーズ Building safety verification system, building safety verification method and program

Also Published As

Publication number Publication date
JP2020193874A (en) 2020-12-03

Similar Documents

Publication Publication Date Title
Diaferio et al. Operational modal analysis of a historic tower in Bari
Luchin et al. Sonic tomography for masonry walls characterization
Boscato et al. Optimized procedures and strategies for the dynamic monitoring of historical structures
JP5502843B2 (en) Estimation method of earthquake damage of reinforced concrete buildings
Júlio et al. Structural assessment of the tower of the University of Coimbra by modal identification
Aloisio et al. Vibration issues in timber structures: A state-of-the-art review
JP6474543B2 (en) Calculation method, equipment, and program for simple earthquake-resistant diagnostic scores for existing wooden houses
JP2004069598A (en) Defect predicting system and program of structure
Kaplan et al. A period-height relationship for newly constructed mid-rise reinforced concrete buildings in Turkey
Hafeez et al. Establishing the fundamental period of light-frame wood buildings on the basis of ambient vibration tests
Scaini et al. Near‐real‐time damage estimation for buildings based on strong‐motion recordings: An application to target areas in northeastern Italy
JP6614561B1 (en) Seismic performance evaluation method and program for wooden buildings by microtremor measurement
JP3857680B2 (en) Dynamic seismic performance of building and seismic performance evaluation method after seismic reinforcement
JP6074264B2 (en) Method, apparatus and program for creating fragility curves for existing wooden houses
López et al. Diagnosis and assessment of a historic timber structure in La Casa del Corregidor, using non-destructive techniques
KR20200069552A (en) Integrated safety evaluation system for temporary earth retaining structure and adjacent structure
US6757620B1 (en) Method for examining structures having high natural vibration frequency using alternating manual vibration-exciting method
Caselles et al. Detection of damage using temporal variation in natural frequencies and principal component analysis
Hadianfard et al. Case study on the effects of retrofitting on changing structural dynamic characteristics by microtremor measurements and finite element analysis
Kokalanov et al. High frequency calibration of a finite element model of an irregular building via ambient vibration measurements
Reynolds et al. Experimental dynamic analysis of the Kingston Communications Stadium
JP6746348B2 (en) Method and device for identifying building stiffness of a building
JP6596626B2 (en) Estimated columnar drawing creation method and program by microtremor measurement
Cavaleri et al. Vibration tests and structural identification of the Bell Tower of Palermo Cathedral
Tischer et al. Ambient vibration measurements of dynamic properties of school buildings in Montreal, Quebec

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190620

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190620

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191028

R150 Certificate of patent or registration of utility model

Ref document number: 6614561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250