JP6614540B1 - Water purification method - Google Patents

Water purification method Download PDF

Info

Publication number
JP6614540B1
JP6614540B1 JP2018238219A JP2018238219A JP6614540B1 JP 6614540 B1 JP6614540 B1 JP 6614540B1 JP 2018238219 A JP2018238219 A JP 2018238219A JP 2018238219 A JP2018238219 A JP 2018238219A JP 6614540 B1 JP6614540 B1 JP 6614540B1
Authority
JP
Japan
Prior art keywords
water
flocculant
ultraviolet irradiation
tank
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018238219A
Other languages
Japanese (ja)
Other versions
JP2020099846A (en
Inventor
弘禧 町井
弘禧 町井
靖 村上
靖 村上
稲森 悠平
悠平 稲森
稲森隆平
隆平 稲森
翔 類家
翔 類家
理恵 鈴木
理恵 鈴木
Original Assignee
ルーテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルーテック株式会社 filed Critical ルーテック株式会社
Priority to JP2018238219A priority Critical patent/JP6614540B1/en
Application granted granted Critical
Publication of JP6614540B1 publication Critical patent/JP6614540B1/en
Publication of JP2020099846A publication Critical patent/JP2020099846A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Physical Water Treatments (AREA)

Abstract

【課題】凝集剤の添加と共に紫外線照射することにより、アオコを殺藻して除去し、かつ、水中の窒素、リン、クロロフィルaの濃度を下げてアオコの発生を効果的に抑制する水質浄化装置及び水質浄化方法を提供する。【解決手段】水質浄化装置は、アオコ(藍藻類等)を含んだ藍藻類含有水を取水する取水手段と、藍藻類含有水に凝集剤を混合して攪拌する凝集剤混合手段と、藍藻類含有水を対流させながら紫外線を照射する紫外線照射手段と、を有する。凝集剤混合手段と、紫外線照射手段をまとめて1つの手段として構成してもよい。また、凝集剤は、硫酸アルミニウム、ポリ塩化アルミニウム、硫酸第一鉄、硫酸第二鉄、塩化第二鉄、ポリ塩化鉄、高分子凝集剤から選択される少なくとも1以上の凝集剤とすることができ、紫外線の波長は200〜280nmとすることができる。【選択図】図1Water purification apparatus that effectively kills and removes sea cucumber by irradiating ultraviolet rays together with the addition of a flocculant and effectively reduces the occurrence of sea bream by reducing the concentration of nitrogen, phosphorus and chlorophyll a in water And a water purification method. A water purification device includes water intake means for taking cyanobacteria-containing water containing blue sea cucumbers (cyanobacteria etc.), flocculant mixing means for mixing and stirring flocculant in cyanobacteria-containing water, and cyanobacteria. Ultraviolet irradiation means for irradiating ultraviolet rays while convection of the contained water. The flocculant mixing unit and the ultraviolet irradiation unit may be combined into one unit. The flocculant may be at least one flocculant selected from aluminum sulfate, polyaluminum chloride, ferrous sulfate, ferric sulfate, ferric chloride, polyiron chloride, and polymer flocculants. The wavelength of ultraviolet rays can be 200 to 280 nm. [Selection] Figure 1

Description

本発明は、浄化対象の水域(湖沼等)における藍藻類を除去する水質浄化装置及び水質浄化方法に関する。   The present invention relates to a water purification device and a water purification method for removing cyanobacteria in water areas (lakes and marshes) to be purified.

湖沼等において窒素やリンなどの栄養物質が多く流入すると、その栄養物質を使って藍藻類(以下、アオコと記す)が大量に増殖する。窒素やリンなどの栄養物質が過剰になりアオコが異常増殖する現象である富栄養化になる原因として、河川を通じて生活系・産業系等の点源および農作地帯などからの面源に由来する汚水、土砂の流入、湖沼の周辺で行われる人工的な活動、魚類等の腐敗分解、底泥からの溶出などが挙げられる。アオコが多量に増殖すると、水中の溶存酸素が不足し、魚類や藻類が死滅して水環境が悪化する。更に、悪臭の発生、硫化水素などのガスの発生、水の汚濁という自然環境や養殖環境の悪化、景観の悪化が問題となっている。そのため、アオコの発生による湖沼等の水質悪化の防止は、緊急の課題となっている。   When a large amount of nutrients such as nitrogen and phosphorus flow into lakes, etc., cyanobacteria (hereinafter referred to as blue-green algae) grow in large quantities using the nutrients. As a cause of eutrophication, which is a phenomenon where excess nutrients such as nitrogen and phosphorus cause abnormal growth of blue sea bream, sewage derived from point sources such as living and industrial systems and surface sources from farming areas through rivers , Inflow of earth and sand, artificial activities around the lake, decay of fish, etc., elution from the bottom mud. If the aquatic proliferates in large quantities, the dissolved oxygen in the water will be deficient, fish and algae will die, and the water environment will deteriorate. Furthermore, the generation of bad odors, the generation of gas such as hydrogen sulfide, the deterioration of the natural environment and aquaculture environment such as water pollution, and the deterioration of the landscape are problems. Therefore, prevention of water quality deterioration of lakes and marshes due to the occurrence of blue sea urchin is an urgent issue.

従来、アオコを増殖抑制する技術、或いは除去する技術として、汲み上げ濾過方法(湖沼水を汲み上げ、アオコを漉し取って水を戻し、アオコを脱水して処分する方法)、水車や水中ポンプなどで水流を攪拌させる方法、硫酸銅などの殺藻剤を使用する方法、紫外線をアオコに照射して殺藻する紫外線照射法、深層曝気法など様々な技術が開発されている。   Conventionally, as a technology to suppress or remove the water larvae, the pumping method (pumping the lake water, scooping the water squirts, returning the water and dewatering the water spills), water flow with a water wheel or a submersible pump, etc. Various techniques have been developed, such as a method of stirring a mixture, a method of using an algicide such as copper sulfate, an ultraviolet irradiation method of irradiating aquatic plants with ultraviolet rays to kill algae, and a deep layer aeration method.

例えば特許文献1には、水域中のアオコの除去及びその異常発生を抑制する方法として、アオコが発生した水域の水をマグネシウムイオン供給剤と接触させる処理法と生物学的処理法と紫外線照射法を組み合わせる方法が開示されている。本発明によると、アオコと、アオコの栄養源である水中の有機態リン、無機態リンの水中からの迅速な同時除去が可能となり、その結果、アオコの除去および異常発生を抑制できるとされている。また、特許文献2には、浄化対象の水域における水中懸濁物質を、凝集剤を使用して凝集沈殿させ、凝集剤混合液を旋回流として送出して水質を浄化させる方法が開示されている。本発明によると、水中懸濁物質を有効に沈殿除去することができ、水域の透明度向上や、悪臭防止ができるとされている。   For example, Patent Document 1 discloses a treatment method, a biological treatment method, and an ultraviolet ray irradiation method in which water in a water area where a blue water is generated is brought into contact with a magnesium ion supply agent as a method for suppressing the removal of the blue water in the water area and its occurrence of abnormality. A method of combining is disclosed. According to the present invention, it is possible to quickly remove aquatic and organic phosphorus in the water, which is a nutrient source for the aquatic, and inorganic phosphorus from the water at the same time. Yes. Patent Document 2 discloses a method of purifying water quality by coagulating and precipitating suspended matter in water in a water area to be purified using a flocculant and sending the flocculant mixture as a swirling flow. . According to the present invention, suspended substances in water can be effectively removed by precipitation, and the transparency of water areas can be improved and malodors can be prevented.

特開平8−257591号公報Japanese Patent Laid-Open No. 8-257591 特開2016−78021号公報Japanese Patent Laid-Open No. 2006-78021

特許文献1に開示されているアオコの浄化方法では、アオコ含有水にマグネシウムイオン供給剤を添加して紫外線を照射するが、マグネシウムイオン供給剤と接触させる処理法と生物学的処理法と紫外線照射法の3種類の方法を組み合わせて利用するため、処理装置が複雑化し、製作やメンテナンスに手間がかかる。そのため、よりシンプルな構成で低コストかつ即効性のある実用的な方法が求められる。   In the method for purifying the sea bream disclosed in Patent Document 1, a magnesium ion supplier is added to the sea cucumber-containing water and irradiated with ultraviolet rays. Since the three kinds of methods are used in combination, the processing apparatus becomes complicated, and production and maintenance are troublesome. Therefore, there is a demand for a practical method that has a simpler configuration and that is low in cost and effective immediately.

特許文献2の浄化方法は、凝集剤を使用してアオコを凝集沈殿させる方法であるが、アオコを除去するためには、アオコの発生を抑制するために湖沼等の富栄養化を防止する対策、特に窒素、リン、クロロフィルaなどの原因物質の濃度を低下させる根本的な対策が必要となる。そのため、アオコ除去と同時に、湖沼等の富栄養化を防止する方法が望まれる。   Although the purification method of patent document 2 is a method of coagulating and precipitating the sea cucumber using a flocculant, in order to remove the sea bream, measures to prevent eutrophication of lakes and the like in order to suppress the occurrence of the sea bream In particular, fundamental measures to reduce the concentration of causative substances such as nitrogen, phosphorus and chlorophyll a are required. Therefore, a method for preventing eutrophication of lakes and marshes is desired at the same time as removal of sea cucumbers.

本発明は、上記課題に鑑み、凝集剤の添加と共に紫外線照射することにより、アオコを殺藻して除去し、かつ、水中の窒素、リン、クロロフィルaの濃度を下げてアオコの発生を効果的に抑制する水質浄化装置及び水質浄化方法を提供することを目的とする。   In view of the above-mentioned problems, the present invention effectively removes algae by algae by irradiating with ultraviolet rays together with the addition of a flocculant, and reduces the concentration of nitrogen, phosphorus, and chlorophyll a in water, thereby effectively generating aerials. An object of the present invention is to provide a water purification device and a water purification method that suppresses the above.

上記の目的を達成するため、請求項1に記載の発明は、光触媒を使用せずに、アオコを除去して水質を浄化させる水質浄化方法であって、クロロフィルaの濃度が1500(μg/l)以下のアオコ含有水を取水する工程と、アオコ含有水に凝集剤を混合し、送風ブロア及びディフューザーで攪拌する工程と、アオコ含有水を対流させながら波長が253.7nmの紫外線を照射する工程と、を含み、前記攪拌する工程と、前記紫外線を照射する工程を同時に行うことを特徴とする水質浄化方法である。
請求項2に記載の発明は、請求項1に記載の水質浄化方法であって、前記凝集剤が、硫酸アルミニウム、ポリ塩化アルミニウム、硫酸第一鉄、硫酸第二鉄、塩化第二鉄、ポリ塩化鉄、高分子凝集剤から選択される少なくとも1以上の凝集剤であることを特徴とする。
In order to achieve the above-mentioned object, the invention according to claim 1 is a water purification method for purifying water quality by removing water mushrooms without using a photocatalyst, wherein the concentration of chlorophyll a is 1500 (μg / l ) The following step of taking water containing auko, a step of mixing a flocculant with the water containing ako, stirring with a blower blower and a diffuser, and a step of irradiating ultraviolet rays having a wavelength of 253.7 nm while convectioning the water containing aoko And the step of stirring and the step of irradiating with ultraviolet rays are performed simultaneously .
Invention of Claim 2 is the water purification method of Claim 1, Comprising: The said flocculant is aluminum sulfate, polyaluminum chloride, ferrous sulfate, ferric sulfate, ferric chloride, poly It is at least one flocculant selected from iron chloride and a polymer flocculant.

本発明の水質浄化装置及び水質浄化方法によると、凝集剤の添加と共に紫外線照射することにより、アオコを殺藻して除去し、かつ、水中の窒素、リン、クロロフィルaの濃度を下げてアオコの発生を効果的に抑制することができる。   According to the water purification apparatus and the water purification method of the present invention, by irradiating ultraviolet rays together with the addition of a flocculant, the aquoia is killed and removed, and the concentration of nitrogen, phosphorus and chlorophyll a in the water is reduced. Generation | occurrence | production can be suppressed effectively.

本発明の一実施例である水質浄化装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of the water purification apparatus which is one Example of this invention. 図1に示す水質浄化装置の1つの紫外線照射タンクの平面説明図である。It is a plane explanatory view of one ultraviolet irradiation tank of the water quality purification apparatus shown in FIG. 本発明の一実施例である水質浄化方法の流れを示す説明図である。It is explanatory drawing which shows the flow of the water quality purification method which is one Example of this invention. 本発明の一実施例である船型の水質浄化装置を示す説明図であり、(A)は平面図、(B)は斜視図である。It is explanatory drawing which shows the ship-type water purification apparatus which is one Example of this invention, (A) is a top view, (B) is a perspective view. 水素イオン指数(pH)と処理水(原水を含む)との関係を示すグラフである。It is a graph which shows the relationship between a hydrogen ion index (pH) and treated water (raw water is included). 水素イオン指数(pH)と紫外線照射時間との関係を示すグラフである。It is a graph which shows the relationship between a hydrogen ion index (pH) and ultraviolet irradiation time. クロロフィルaの濃度と処理水(原水を含む)との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of chlorophyll a, and treated water (a raw water is included). クロロフィルaの濃度と紫外線照射時間との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of chlorophyll a, and ultraviolet irradiation time. 溶解性リンの濃度と処理水(原水を含む)との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of soluble phosphorus, and treated water (raw water is included). 溶解性リンの濃度と紫外線照射時間との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of soluble phosphorus, and ultraviolet irradiation time. 溶解性窒素の濃度と処理水(原水を含む)との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of soluble nitrogen, and treated water (raw water is included). 溶解性窒素の濃度と紫外線照射時間との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of soluble nitrogen, and ultraviolet irradiation time.

以下、本発明の実施例を図面に基づいて説明する。以下の図において、共通する部分には同一の符号を付しており、同一符号の部分に対して重複した説明を省略する。なお、以下の実施例では、水質浄化装置と浄化方法を湖沼の藍藻類に使用した例を説明するが、本発明の水質浄化装置と浄化方法は、湖沼の浄化処理のみならず、貯水池や濠、河川等の浄化対象水域や貯水槽内の水の浄化処理にも適用出来るものである。また、実施例では、藍藻類、特にアオコを例に挙げて説明するが、本発明はその他の藻類(緑藻類・珪藻類・渦鞭毛藻類など)にも適用することができる。   Embodiments of the present invention will be described below with reference to the drawings. In the following drawings, common parts are denoted by the same reference numerals, and duplicate descriptions for the same reference numerals are omitted. In the following embodiment, an example in which the water purification device and the purification method are used for cyanobacteria in a lake is explained. However, the water purification device and the purification method of the present invention are not limited to a purification treatment of a lake, but also a reservoir and a dredge. It can also be applied to the purification process of water in purification areas such as rivers and water in water storage tanks. In the examples, cyanobacteria, particularly blue seaweed, will be described as an example, but the present invention can also be applied to other algae (such as green algae, diatoms, and dinoflagellates).

〔水質浄化装置と水質浄化方法〕
まず、本実施例の水質浄化装置1の構成と、その方法について、図1〜図4を参照して説明する。図1は、水質浄化装置1の全体構成を示す概略図であり、図2は、図1に示す水質浄化装置の1つの紫外線照射タンクの平面説明図であり、図3は、水質浄化方法の流れを示す説明図である。図4は、船形の水質浄化装置1を示す説明図で、(A)は平面図、(B)は斜視図である。本実施例の水質浄化装置1は、湖沼の限られた水域において使用する装置であり、アオコを凝集剤で凝集させて沈殿させる機能と、紫外線照射によりアオコを殺藻する機能を備えた装置である。
[Water purification device and water purification method]
First, the structure of the water purification apparatus 1 of a present Example and its method are demonstrated with reference to FIGS. FIG. 1 is a schematic view showing the overall configuration of the water purification device 1, FIG. 2 is a plan view of one ultraviolet irradiation tank of the water purification device shown in FIG. 1, and FIG. It is explanatory drawing which shows a flow. 4A and 4B are explanatory views showing a ship-shaped water purification apparatus 1, in which FIG. 4A is a plan view and FIG. 4B is a perspective view. The water purification device 1 of the present embodiment is a device used in a limited water area of a lake, and is a device having a function of agglomerating ako with a flocculant and precipitating and a function of killing the ako by ultraviolet irradiation. is there.

図1に示すように、水質浄化装置1は、アオコを含んだ水(以下、アオコ含有水と記載)を取水する取水手段と、取水した水に凝集剤を混合し、攪拌する凝集剤混合手段20(以下、凝集剤混合タンクと記す)と、このアオコ含有水を対流させながら紫外線を照射する紫外線照射手段40(以下、紫外線照射タンクと記す)を基本構成とする。水質浄化装置1は、更に、取水した水を貯える貯水タンク10と、凝集剤を保管するタンク30(以下、凝集剤保管タンクと記す)と、凝集剤混合手段20と紫外線照射手段40を通過した後の水を回収する回収タンク50や沈殿物を保管する沈殿槽70を備えてもよい。本実施例では、それらを備えた水質浄化装置1について説明する。   As shown in FIG. 1, the water purification device 1 includes a water intake means for taking water containing a giant octopus (hereinafter referred to as “aoko-containing water”), and a flocculant mixing means for mixing and aggregating the flocculant with the taken water. 20 (hereinafter referred to as a flocculant mixing tank) and an ultraviolet irradiation means 40 (hereinafter referred to as an ultraviolet irradiation tank) that irradiates ultraviolet rays while convectioning this water-containing water are basically used. The water purification device 1 further passed through a water storage tank 10 for storing the taken water, a tank 30 for storing the flocculant (hereinafter referred to as a flocculant storage tank), a flocculant mixing means 20 and an ultraviolet irradiation means 40. You may provide the collection tank 50 which collects later water, and the sedimentation tank 70 which stores a deposit. In the present embodiment, a water purification device 1 including them will be described.

取水手段は、湖沼の水域からアオコ含有水を取水する手段であり、配管(ホース)12と、取水するためのポンプ11を備える。図3に示す本実施例の水質浄化方法は、まず、この取水手段によりアオコ含有水を取水する(ステップ1、以下S1等と記す)。配管12の基端が貯水タンク10(又は凝集剤混合タンク20)に接続され、先端が湖沼内に配置された状態でアオコ含有水をポンプ11の駆動で汲み上げる。ポンプ11は、必要な水の量を汲み上げることができれば、手動でも自動でもよい。配管12には開閉弁が設けられており、アオコ含有水を吸水する際に開き、吸水が終わった後に閉じられる。ポンプ11付近に濁度計(図示せず)を設置してもよい。濁度計を設置することにより、アオコの濃度を予測でき、その濃度に応じて吸引水量を、手動で変更(又は自動で制御)することができる。それにより、適切な濃度のアオコ含有水を必要な量だけ吸水でき、後述の紫外線照射を効率的に行うことができる。取水用の配管12の径は、アオコ含有水が滞らず、広範囲に取水できるよう少なくとも3cm程度必要である。配管12とポンプ11は、1つだけでなく、複数備える構成としてもよい。   The water intake means is means for taking water-containing water from the water area of the lake, and includes a pipe (hose) 12 and a pump 11 for taking water. In the water quality purification method of this embodiment shown in FIG. 3, first, water containing water is taken by this water intake means (step 1, hereinafter referred to as S1 etc.). The base end of the pipe 12 is connected to the water storage tank 10 (or the flocculant mixing tank 20), and the water containing the sea cucumber is pumped up by the drive of the pump 11 in a state where the tip is disposed in the lake. The pump 11 may be manual or automatic as long as the necessary amount of water can be pumped. The pipe 12 is provided with an open / close valve, which is opened when the water-containing water is absorbed, and is closed after the water absorption is finished. A turbidity meter (not shown) may be installed near the pump 11. By installing a turbidimeter, the concentration of the water can be predicted, and the amount of suction water can be manually changed (or automatically controlled) according to the concentration. As a result, the necessary amount of water-containing auko can be absorbed, and the later-described ultraviolet irradiation can be performed efficiently. The diameter of the pipe 12 for water intake is required to be at least about 3 cm so that the water containing water does not stagnate and can be taken in a wide range. The number of the pipes 12 and the pumps 11 is not limited to one, and a plurality of pipes 12 and pumps 11 may be provided.

取水した水は、貯水タンク10で貯水され、必要な分だけ凝集剤混合タンク20に供給される。貯水タンク10で貯水せず、直接、凝集剤混合タンク20に給水する構成としてもよいが、貯水タンク10を備えることで、凝集剤混合タンク20に安定して所定の水量を供給できる。貯水タンク10で貯水された水は、ポンプ14の駆動により、配管を通って凝集剤混合タンク20に所定量、供給される。配管には開閉弁15が設けられており、凝集剤混合タンク20への給水の際に開き、給水が終わった後に閉じられる。   The taken water is stored in the water storage tank 10 and supplied to the flocculant mixing tank 20 as much as necessary. Although it is good also as a structure which supplies water to the coagulant | flocculant mixing tank 20 directly without storing water with the water storage tank 10, the predetermined water amount can be stably supplied to the coagulant | flocculant mixing tank 20 by providing the water storage tank 10. FIG. A predetermined amount of water stored in the water storage tank 10 is supplied to the flocculant mixing tank 20 through the piping by driving the pump 14. The piping is provided with an on-off valve 15 that opens when water is supplied to the flocculant mixing tank 20 and is closed after the water supply is completed.

凝集剤混合タンク20では、貯水タンク10(又は取水手段11)から供給された水と、凝集剤が混合され、攪拌される(図3のS2)。凝集剤は、凝集剤保管タンク30から必要な量だけポンプ31の駆動により、配管を通って凝集剤混合タンク20に供給される。配管には開閉弁32が設けられており、凝集剤混合タンク20への供給の際に開き、供給が終わった後に閉じられる。凝集剤保管タンク30は本発明の必須の構成ではなく、直接、凝集剤混合タンク20に凝集剤を所定量、供給する構成としてもよいが、凝集剤保管タンク30を備えることで、凝集剤混合タンク20に安定して所定の量の凝集剤を供給できる。   In the flocculant mixing tank 20, the water supplied from the water storage tank 10 (or the water intake means 11) and the flocculant are mixed and stirred (S2 in FIG. 3). The flocculant is supplied from the flocculant storage tank 30 to the flocculant mixing tank 20 through a pipe by driving the pump 31 by a necessary amount. The piping is provided with an on-off valve 32, which is opened when supplying to the flocculant mixing tank 20, and is closed after the supply is completed. The flocculant storage tank 30 is not an essential component of the present invention, and may be configured to supply a predetermined amount of the flocculant directly to the flocculant mixing tank 20. A predetermined amount of the flocculant can be stably supplied to the tank 20.

なお、凝集剤保管タンク30は1個ではなく、凝集剤の種類によって複数個あってもよい。凝集剤には、硫酸アルミニウム、ポリ塩化アルミニウム、硫酸第一鉄、硫酸第二鉄、塩化第二鉄、ポリ塩化鉄、高分子凝集剤から選択される少なくとも1以上の凝集剤が使用される。本実施例では、特に硫酸アルミニウムとポリ塩化アルミニウムを使用する。このような凝集剤を使用することで、アオコを凝集させて沈殿させることができる。また、後述する実験結果で説明するように、水中の窒素、リン、クロロフィルaの濃度を下げることができる。   Note that the number of flocculant storage tanks 30 is not limited to one, and a plurality of flocculant storage tanks 30 may be provided depending on the type of flocculant. As the flocculant, at least one flocculant selected from aluminum sulfate, polyaluminum chloride, ferrous sulfate, ferric sulfate, ferric chloride, polyiron chloride, and a polymer flocculant is used. In this embodiment, in particular, aluminum sulfate and polyaluminum chloride are used. By using such a flocculant, it is possible to agglomerate and precipitate the sea cucumber. Further, as will be described in the experimental results described later, the concentration of nitrogen, phosphorus and chlorophyll a in water can be lowered.

凝集剤の効果を発揮させるためには、貯水タンク10から供給された水に凝集剤を添加後、急速攪拌・緩速攪拌が必要となる。急速攪拌は凝集剤との反応、緩速攪拌はフロック(凝集体)形成促進に必要な操作である。そのため、凝集剤混合タンク20には、凝集剤を効果的に混合し、攪拌するために、空気を強力に供給する送風ブロア(遠心式送風機)21や水流を効率よく拡散させるディフューザー22を取り付けることができる。凝集剤を混合し、攪拌する手段はこれらに限定されず、他の手段、例えば対流板や振動装置を使用してもよい。なお、上記緩速攪拌の機能は本方式では特段の緩速攪拌を設けなくても放流後に緩やかな攪拌が自然に起こり沈殿機能を達成させることも可能である。   In order to exert the effect of the flocculant, it is necessary to perform rapid stirring / slow stirring after adding the flocculant to the water supplied from the water storage tank 10. Rapid stirring is an operation necessary for the reaction with the flocculant, and slow stirring is an operation necessary for promoting floc (aggregate) formation. Therefore, in order to effectively mix and agitate the flocculant, the flocculant mixing tank 20 is provided with a blower (centrifugal blower) 21 that supplies air strongly and a diffuser 22 that efficiently diffuses the water flow. Can do. The means for mixing and stirring the flocculant is not limited to these, and other means such as a convection plate or a vibration device may be used. In this method, the slow agitation function can naturally achieve a sedimentation function by gently agitating after discharge without providing special slow agitation.

凝集剤混合タンク20で混合され、撹拌されたアオコ含有水は、凝集剤混合タンク20でから必要な量だけポンプ23の駆動により、配管を通って紫外線照射タンク40に供給される。配管には開閉弁24が設けられており、紫外線照射タンク40への供給の際に開き、供給が終わった後に閉じられる。紫外線照射タンク40は1つでもよいが、複数個あってもよい。本実施例では図1に示すように3個の紫外線照射タンク40を使用する。3個の紫外線照射タンク40のそれぞれが配管で繋がれており、ポンプ41と開閉弁42により、各紫外線照射タンク40で処理された水を所定量だけ供給する。   The necessary amount of the water-containing water mixed and stirred in the flocculant mixing tank 20 is supplied from the flocculant mixing tank 20 to the ultraviolet irradiation tank 40 through a pipe by driving the pump 23. The piping is provided with an on-off valve 24, which is opened when supplying to the ultraviolet irradiation tank 40 and closed after the supply is completed. Although there may be one ultraviolet irradiation tank 40, there may be a plurality of ultraviolet irradiation tanks. In this embodiment, three ultraviolet irradiation tanks 40 are used as shown in FIG. Each of the three ultraviolet irradiation tanks 40 is connected by piping, and a predetermined amount of water treated in each ultraviolet irradiation tank 40 is supplied by a pump 41 and an on-off valve 42.

紫外線照射タンク40は、紫外線ランプ43以外の光が入らないよう、遮光性を有する素材で遮光された密閉タンクであることが好ましい。紫外線照射タンク40は、アオコ含有水を対流させる複数の対流板44と、複数の紫外線ランプ43から構成される。また、紫外線照射タンク40の入口の配管には、更に磁気処理器45(マグネットリング)を備えてもよい。磁気処理器45は、配管の外周に、配管を挟んで対面する磁石相互の極性が異なるように配置された永久磁石で構成される。永久磁石は1対(N極とS極)でもよいが、複数個あることが好ましい。このように構成することで、配管を通る水に金属粉末が混合している場合でも有効に除去できる。   The ultraviolet irradiation tank 40 is preferably a sealed tank that is shielded by a material having a light shielding property so that light other than the ultraviolet lamp 43 does not enter. The ultraviolet irradiation tank 40 includes a plurality of convection plates 44 that convect the water-containing water and a plurality of ultraviolet lamps 43. Further, the piping at the entrance of the ultraviolet irradiation tank 40 may further include a magnetic processor 45 (magnet ring). The magnetic processor 45 is composed of permanent magnets arranged on the outer periphery of the pipe so that the polarities of the magnets facing each other across the pipe are different. One pair of permanent magnets (N pole and S pole) may be used, but a plurality of permanent magnets are preferable. By comprising in this way, even when the metal powder is mixing with the water which passes along piping, it can remove effectively.

紫外線ランプ43は、アオコ含有水中に直接入れるのではなく、紫外線が透過する石英ガラス管(図示せず)を紫外線照射タンク40内に入れ、紫外線ランプ43をその中に入れて紫外線を照射する構成とすることが好ましい。通常のガラスの場合には、可視光線や近赤外線は透過し、紫外線は吸収されるが、石英ガラスの場合には、紫外線が透過するため、本実施例では石英ガラス管を使用する。それにより、紫外線ランプ43の光をアオコ含有水に照射することができ、かつ紫外線ランプ43がアオコ含有水で汚れるのを防ぎ、耐久性を高めることができる。   The ultraviolet lamp 43 is not directly put into the water containing the sea urchin, but a quartz glass tube (not shown) that transmits ultraviolet rays is placed in the ultraviolet irradiation tank 40, and the ultraviolet lamp 43 is placed therein to irradiate the ultraviolet rays. It is preferable that In the case of normal glass, visible light and near infrared light are transmitted and ultraviolet light is absorbed, but in the case of quartz glass, ultraviolet light is transmitted, and therefore, in this embodiment, a quartz glass tube is used. Thereby, the light of the ultraviolet lamp 43 can be irradiated to the water containing water, and the ultraviolet lamp 43 can be prevented from being stained with the water containing water, and durability can be improved.

紫外線照射タンク40の形状や大きさは、特に限定されないが、内部のアオコ含有水が紫外線ランプ43の光に充分に当たるような形状及び大きさで構成されることが好ましい。1個の紫外線照射タンク40の寸法は、例えば、円筒状で直径が400〜500mm、その直径部分の長手方向の長さが1000〜2000mmで構成することができる。また、紫外線ランプ43は、波長が200〜280nmの強い殺菌作用があり、細胞破壊をもたらす紫外線(UV−C)を照射できるランプを使用する。特に藻類などの細胞のDNAの吸収波長と一致する270nm程度の波長の紫外線で照射することが好ましい。本実施例では、253.7nm(203W)の波長で照射する。   Although the shape and size of the ultraviolet irradiation tank 40 are not particularly limited, it is preferable that the ultraviolet irradiation tank 40 is configured to have a shape and size so that the water contained in the water can be sufficiently applied to the light of the ultraviolet lamp 43. The dimension of the single ultraviolet irradiation tank 40 can be, for example, a cylindrical shape with a diameter of 400 to 500 mm, and a length in the longitudinal direction of the diameter portion of 1000 to 2000 mm. The ultraviolet lamp 43 uses a lamp that has a strong bactericidal action with a wavelength of 200 to 280 nm and can irradiate ultraviolet rays (UV-C) that cause cell destruction. In particular, it is preferable to irradiate with an ultraviolet ray having a wavelength of about 270 nm, which matches the absorption wavelength of DNA of cells such as algae. In this embodiment, irradiation is performed at a wavelength of 253.7 nm (203 W).

紫外線ランプ43の光をアオコ含有水にできるだけ当たるようにするため、複数本(例えば2本〜7本)の紫外線ランプ43を1個の紫外線照射タンク40に設置してもよいし、表面積が広いU字型の紫外線ランプ43を複数本使用してもよい。本実施例では3本の紫外線ランプ43を設置している。また図1、図2に示すように紫外線照射タンク40の内部に、アオコ含有水が対流するよう複数の対流板44を備える。対流板44は、例えば1枚の平板を捩じることで構成される。この複数の対流板44は、図1では模式的に紫外線ランプ43の側面方向に、縦に配置されているように記載しているが、実際には、図2の紫外線照射タンク40の平面説明図に示すように、アオコ含有水が流れる方向の側面に対流板44が配置されている。図2中、矢印はアオコ含有水が対流44板で対流する向きを表している。アオコ含有水がポンプ23で供給されたあと、紫外線照射タンク40の短手方向に流れるが、対流板44の凹凸部に当たることで、左右、上下に流動し(対流し)、繰り返し紫外線ランプ43の紫外線に当たるようになる。このようにして、紫外線照射タンク40内でアオコ含有水を対流させながら紫外線を一定時間、照射する(図3のS3)。それにより、アオコ含有水を紫外線ランプ43の紫外線に充分に当てることができ、アオコを殺藻することができる。   A plurality of (for example, 2 to 7) ultraviolet lamps 43 may be installed in one ultraviolet irradiation tank 40 in order to make the light from the ultraviolet lamps 43 as much as possible strike the water containing the auko. A plurality of U-shaped ultraviolet lamps 43 may be used. In this embodiment, three ultraviolet lamps 43 are installed. As shown in FIGS. 1 and 2, a plurality of convection plates 44 are provided inside the ultraviolet irradiation tank 40 so that the water-containing water can be convected. The convection plate 44 is configured by twisting one flat plate, for example. In FIG. 1, the plurality of convection plates 44 are schematically illustrated as being arranged vertically in the side surface direction of the ultraviolet lamp 43, but in actuality, a plan view of the ultraviolet irradiation tank 40 in FIG. 2. As shown in the figure, a convection plate 44 is arranged on the side surface in the direction in which the water-containing water flows. In FIG. 2, the arrow represents the direction in which the water containing water is convected by the convection 44 plate. After the water containing water is supplied by the pump 23, it flows in the short direction of the ultraviolet irradiation tank 40, but when it hits the concavo-convex portion of the convection plate 44, it flows left and right and up and down (convection), and repeatedly the ultraviolet lamp 43 Be exposed to ultraviolet rays. In this manner, ultraviolet rays are irradiated for a certain period of time while convectioning water-containing water in the ultraviolet irradiation tank 40 (S3 in FIG. 3). Thereby, the water-containing water can be sufficiently applied to the ultraviolet light of the ultraviolet lamp 43, and the water-killed algae can be killed.

最初(1番目)の紫外線照射タンク40で紫外線が照射(例えば1分間)されたアオコ含有水は、ポンプ41の駆動で汲み上げられ、次の紫外線照射タンク40に供給される。このポンプ41の駆動により、2番目の紫外線照射タンク40においてもアオコ含有水を、勢いよく対流させ、紫外線を照射することができる(例えば1分間)。さらに、3番目の紫外線照射タンク40内で紫外線を照射し(例えば1分間)、繰り返しアオコ含有水を紫外線ランプ43の紫外線に充分に当てることで、アオコを殺藻することができる。3番目の紫外線照射タンク40で紫外線処理されたアオコ含有水は、配管のポンプ41と開閉弁42により、回収タンク50に供給又は放流される(図3のS4)。   The water-containing water that has been irradiated with ultraviolet rays (for example, for 1 minute) in the first (first) ultraviolet irradiation tank 40 is pumped up by driving the pump 41 and supplied to the next ultraviolet irradiation tank 40. By driving the pump 41, the water containing water can be convected vigorously in the second ultraviolet irradiation tank 40 and irradiated with ultraviolet rays (for example, for 1 minute). Furthermore, algae can be killed by irradiating ultraviolet rays in the third ultraviolet irradiation tank 40 (for example, for 1 minute) and repeatedly applying the water-containing water to the ultraviolet rays of the ultraviolet lamp 43 repeatedly. The water-containing water treated with ultraviolet rays in the third ultraviolet irradiation tank 40 is supplied or discharged to the recovery tank 50 by a pump 41 and an on-off valve 42 (S4 in FIG. 3).

なお、本実施例では3個の紫外線照射タンク40を使用するが、必ずしも3個の紫外線照射タンク40を通過させる必要はない。例えばアオコの濃度が低い場合には、1番目の紫外線照射タンク40のみで紫外線処理するだけで充分な場合もあり、その場合には、1番目の紫外線照射タンク40で紫外線処理されたアオコ含有水は、配管のポンプ41と開閉弁42により、回収タンク50に供給又は放流される。また、アオコの濃度によっては、1番目と2番目の紫外線照射タンク40のみで紫外線処理する場合も考えられる。   In this embodiment, three ultraviolet irradiation tanks 40 are used, but it is not always necessary to pass the three ultraviolet irradiation tanks 40. For example, in the case where the concentration of the blue sea cucumber is low, it may be sufficient to perform the ultraviolet treatment only with the first ultraviolet irradiation tank 40. In this case, the water containing blue sea urchin treated with the first ultraviolet irradiation tank 40 is sufficient. Is supplied to or discharged from the recovery tank 50 by a piping pump 41 and an on-off valve 42. In addition, depending on the concentration of the blue sea bream, it may be considered that the ultraviolet treatment is performed only by the first and second ultraviolet irradiation tanks 40.

制御装置(制御盤)60は、前述の紫外線ランプ43やポンプ41、開閉弁42などを制御する。特に紫外線の照射時間や波長の変更、電源のオン、オフを自動で行うように制御することができる。例えば、紫外線照射タンク40内にアオコ含有水が入り、密閉された後に紫外線ランプ43の電源がオンになり、紫外線照射タンク40から排出した後に、電源がオフになるように自動制御してもよい。また、紫外線照射タンク40のポンプ41、開閉弁42を制御してアオコ含有水が所定量だけ紫外線照射タンク40に供給、排出できるように制御する構成としてもよい。さらに、制御装置60が、紫外線ランプ43だけでなく、前述の取水手段付近に設置した濁度計を用いて、アオコの濃度に応じて吸引水量を自動制御する構成としてもよい(図示せず)。また、貯水タンク10、凝集剤混合タンク20、凝集剤保管タンク30のポンプや開閉弁の自動制御、凝集剤保管タンク30の混合や攪拌を促す送風ブロア21等を自動制御する構成としてもよい(図示せず)。   The control device (control panel) 60 controls the ultraviolet lamp 43, the pump 41, the open / close valve 42, and the like. In particular, it can be controlled to automatically change the irradiation time and wavelength of the ultraviolet rays and turn the power on and off. For example, the water may be automatically controlled so that the water contained in the ultraviolet irradiation tank 40 is filled and sealed, and the ultraviolet lamp 43 is turned on, and after being discharged from the ultraviolet irradiation tank 40, the power is turned off. . Moreover, it is good also as a structure which controls the pump 41 and the on-off valve 42 of the ultraviolet irradiation tank 40, and can control so that a predetermined amount of water-containing water may be supplied to the ultraviolet irradiation tank 40 and discharged | emitted. Furthermore, it is good also as a structure which the control apparatus 60 controls automatically the suction | attraction water quantity according to the density | concentration of a sea bream using not only the ultraviolet lamp 43 but the turbidimeter installed in the vicinity of the above-mentioned water intake means (not shown). . Moreover, it is good also as a structure which carries out automatic control of the air blower 21 etc. which promote the mixing and stirring of the water storage tank 10, the flocculant mixing tank 20, the pump and opening / closing valve of the flocculant storage tank 30, and the flocculant storage tank 30 ( Not shown).

なお、本実施例では凝集剤混合タンク20の後に紫外線照射タンク40を設置しているが、紫外線照射タンク40の後に凝集剤混合タンク20を設置する構成としてもよい。その場合には、アオコ含有水に凝集剤を混合、撹拌する工程(S2)の前に紫外線を照射する工程(S3)が行なわれる。また、本実施例では凝集剤混合タンク20と紫外線照射タンク40を別々に構成した例を説明しているが、凝集剤混合タンク20と、紫外線照射タンク40をまとめて1つのタンクとしてもよい。その場合には、紫外線照射タンク40に直接、凝集剤を供給することで、凝集剤を混合、撹拌する工程(S2)と、紫外線を照射する工程(S3)を同時に行うことができる。ここで「同時」の意味は完全に「同時」であることを意味するのではなく、凝集剤を混合、撹拌する工程が数秒程度早い場合、あるいは遅い場合も含む意味である(以下の「同時」も同じ意味で使用する)。前述のように紫外線照射タンク40には対流板44が備わっているため、紫外線照射と共に乱流が生じ、凝集剤の混合が充分に行われるが、更に送風ブロア21等をつけて攪拌を促す構成としてもよい。凝集剤混合タンク20と、紫外線照射タンク40をまとめて1つのタンクとすることで、アオコを凝集させて沈殿させると共にアオコを殺藻でき、効率よく、藍藻類を含んだ水を浄化処理できる。   In this embodiment, the ultraviolet irradiation tank 40 is installed after the coagulant mixing tank 20, but the coagulant mixing tank 20 may be installed after the ultraviolet irradiation tank 40. In that case, the process (S3) of irradiating with ultraviolet rays is performed before the process (S2) of mixing and stirring the flocculant with the water-containing water. Moreover, although the present Example demonstrates the example which comprised the flocculant mixing tank 20 and the ultraviolet irradiation tank 40 separately, it is good also considering the flocculant mixing tank 20 and the ultraviolet irradiation tank 40 as one tank. In that case, by supplying the flocculant directly to the ultraviolet irradiation tank 40, the step of mixing and stirring the flocculant (S2) and the step of irradiating the ultraviolet ray (S3) can be performed simultaneously. Here, the meaning of “simultaneous” does not mean that it is completely “simultaneous” but includes the case where the step of mixing and stirring the flocculant is as early as several seconds or when it is slow (see “simultaneous” below). Is also used interchangeably). As described above, since the ultraviolet irradiation tank 40 is provided with the convection plate 44, a turbulent flow is generated when the ultraviolet irradiation is performed, and the flocculant is sufficiently mixed. It is good. By combining the flocculant mixing tank 20 and the ultraviolet irradiation tank 40 into a single tank, the watermelon can be coagulated and settled, and the watermelon can be killed, and water containing cyanobacteria can be efficiently purified.

回収タンク50は、紫外線照射タンク40で処理された処理水を一時的に保管する。回収タンク50は、本発明の必須の構成ではなく、回収タンク50を備えずに、紫外線照射後の処理水を直接放流することもできる。回収タンク50を備える場合には、回収タンク50は、紫外線照射タンク40で処理された処理水を絶えず保管するため、1つではなく、複数個あることが好ましい。回収タンク50中の処理水は、殺藻されたアオコが沈殿する沈殿層、透明水(浄化水)となる上澄み層に分離される。より純度の高い浄化水を得るために、回収タンク50にはフィルター(図示せず)が備えられることが好ましい。フィルターは、本発明の必須の構成ではなく、回収タンク50にフィルターを備えない構成としてもよい。フィルターを備える場合には、フィルターでろ過されて得られた浄化水はポンプ51で汲み上げられ、開閉弁52が開けられ、放流用の配管を通って、湖沼に放流される。また、フィルターに残った沈殿物は、開閉弁71を介して配管を通って沈殿槽70に移されて回収される。沈殿槽70は、回収タンク50内に備えられる構成としてもよい。なお、回収タンク50にフィルターを備えない場合には、上澄みの浄化水がポンプ51で汲み上げられて湖沼に放流され、残った沈殿物もそのまま放流、又は沈殿槽70に移して回収することができる。   The collection tank 50 temporarily stores the treated water treated in the ultraviolet irradiation tank 40. The collection tank 50 is not an essential component of the present invention, and the treated water after ultraviolet irradiation can be directly discharged without providing the collection tank 50. In the case where the recovery tank 50 is provided, it is preferable that there are a plurality of recovery tanks 50 instead of one because the treated water treated in the ultraviolet irradiation tank 40 is constantly stored. The treated water in the collection tank 50 is separated into a sediment layer in which the algae killed algae precipitate and a supernatant layer that becomes transparent water (purified water). In order to obtain purified water with higher purity, the recovery tank 50 is preferably provided with a filter (not shown). The filter is not an essential configuration of the present invention, and the recovery tank 50 may not have a filter. In the case of providing a filter, the purified water obtained by filtering through the filter is pumped up by the pump 51, the on-off valve 52 is opened, and discharged into the lake through the discharge pipe. Moreover, the deposit remaining on the filter is transferred to the sedimentation tank 70 through the piping via the on-off valve 71 and collected. The sedimentation tank 70 may be provided in the collection tank 50. If the recovery tank 50 is not equipped with a filter, the supernatant purified water is pumped up by the pump 51 and discharged into the lake, and the remaining sediment can be discharged as it is or transferred to the precipitation tank 70 and recovered. .

以上説明した様に、水質浄化装置が構成され、水質浄化方法の一連の工程が完了する(図3)。この一連の工程を繰り返し行うことで、湖沼の浄化対象水域の水質を浄化することができる。なお、本実施例は一例であり、本発明はこの構成や方法に限定されるものではない。例えば、本実施例では各タンク10〜50のそれぞれが、配管に備わった開閉弁とポンプを使用して所定量を次のタンクに供給していたが、ポンプを使用せず開閉弁のみを備えて、それぞれのタンクに段差を設けて、その高低差(水の重力)により所定量を供給する構成としてもよい。   As described above, the water purification apparatus is configured, and a series of steps of the water purification method is completed (FIG. 3). By repeating this series of steps, the water quality of the purification target water area of the lake can be purified. In addition, a present Example is an example and this invention is not limited to this structure and method. For example, in this embodiment, each of the tanks 10 to 50 supplies a predetermined amount to the next tank using an on-off valve and a pump provided in the pipe, but includes only the on-off valve without using the pump. Then, a step may be provided in each tank, and a predetermined amount may be supplied by the height difference (gravity of water).

なお、前述の水質浄化装置は、地上や水上に設置することができるが、水上に設置する場合には、例えば船形に構成することができる。図4は、船形の水質浄化装置を示す説明図であり、(A)は平面図、(B)は斜視図である。湖沼の浄化対象水域が広範囲に亘る場合には、大型の船を使用することも考えられるが、本実施例では操作性のよい小型の船を使用する。   In addition, although the above-mentioned water purification apparatus can be installed on the ground or on the water, when installed on the water, it can be configured in a ship shape, for example. FIG. 4 is an explanatory view showing a ship-shaped water purification apparatus, in which (A) is a plan view and (B) is a perspective view. When the purification target water area of the lake is wide, it may be possible to use a large ship, but in this embodiment, a small ship with good operability is used.

図4(A)の平面図に示すように、船形の水質浄化装置1は、小型船100に、前述の取水手段、貯水タンク10、凝集剤混合タンク20、凝集剤保管タンク30、紫外線照射タンク40、回収タンク50(沈殿槽70)、制御装置60、駆動装置等が載置されて構成される。船形の水質浄化装置1の取水手段として配管(ホース)12と、ポンプ11が使用される。図4(A)に示すように、配管12の先端が湖沼水面に浮かずに、湖沼内のアオコを好適に回収できるように、配管12の先端を湖沼内に固定する固定具(浮き又は重り)111を取り付けてもよい。取水手段により、アオコ含有水がポンプ11の駆動で汲み上げられて、貯水タンク10に供給される。前述のように、ポンプ11付近に濁度計を設置して、アオコの濃度に応じて吸引水量を自動制御する構成としてもよい(図示せず)。貯水タンク10に供給された水は、凝集剤混合タンク20、紫外線照射タンク40、回収タンク50(沈殿槽70)で処理される。   As shown in the plan view of FIG. 4 (A), the ship-shaped water purification apparatus 1 includes a small ship 100, the above-described water intake means, water storage tank 10, flocculant mixing tank 20, flocculant storage tank 30, ultraviolet irradiation tank. 40, a collection tank 50 (sedimentation tank 70), a control device 60, a driving device, and the like are mounted. A pipe (hose) 12 and a pump 11 are used as water intake means of the ship-shaped water purification device 1. As shown in FIG. 4 (A), a fixture (float or weight) that fixes the tip of the pipe 12 in the lake so that the tip of the pipe 12 does not float on the surface of the lake and can suitably recover the sea otters in the lake. ) 111 may be attached. The water containing means is pumped up by the pump 11 and supplied to the water storage tank 10 by the water intake means. As described above, a turbidity meter may be installed in the vicinity of the pump 11 to automatically control the amount of sucked water according to the concentration of the watermelon (not shown). The water supplied to the water storage tank 10 is processed in the flocculant mixing tank 20, the ultraviolet irradiation tank 40, and the recovery tank 50 (precipitation tank 70).

図4(B)の斜視図に示すように、小型船100に帆101を付けて風により推進力を得る構成としてもよい。帆101は必須の構成ではなく、エンジンのみで運行する構成としてもよいが、帆船とすることで自然の力を利用でき、また、アオコ回収船のように見えないことで、湖沼の景観に溶け込むことができる。   As shown in the perspective view of FIG. 4B, a sail 101 may be attached to the small boat 100 to obtain a propulsive force by wind. The sail 101 is not an essential configuration, and may be configured to operate only by an engine. However, the sail 101 can be used as a sailing ship, and can be used as a sailing boat. be able to.

船形の水質浄化装置1は、アオコが繁殖した水域に容易に移動できるため、地上に設置した水質浄化装置1と比較して、アオコ含有水の取水を容易に行うことができる。また、小型船100を運行することで、凝集剤混合タンク20や紫外線照射タンク40が揺動するため、より効率よくアオコ含有水が撹拌され、紫外線を充分に当てることができる。   Since the ship-shaped water purification apparatus 1 can be easily moved to the water area where the blue sea bream has propagated, the water-containing water can be easily taken as compared with the water purification apparatus 1 installed on the ground. Moreover, since the flocculant mixing tank 20 and the ultraviolet irradiation tank 40 are swung by operating the small boat 100, the water-containing water is more efficiently stirred and the ultraviolet rays can be sufficiently applied.

更に、制御装置60にGPSが組み込まれ、湖沼の地図を読み込み、その地図に基づいて自動運転を制御する構成としてもよい。自動運転のためには、地図情報を記憶し、周辺状況の把握するためのカメラ、センサー等を備える必要がある。また、制御装置60には、把握した情報を元にして、小型船100の駆動装置を制御できるプログラム(ソフトウエア)が必要である。船形の水質浄化装置1が自動運転できる場合には、作業する人の労力を低減でき、広範囲に亘り湖沼のアオコ含有水を、取水して浄化処理することができる。   Furthermore, it is good also as a structure by which GPS is integrated in the control apparatus 60, the map of a lake is read, and an automatic driving | operation is controlled based on the map. For automatic driving, it is necessary to store a map information and to have a camera, a sensor, etc. for grasping the surrounding situation. The control device 60 requires a program (software) that can control the driving device of the small boat 100 based on the grasped information. When the ship-shaped water purification apparatus 1 can be automatically operated, the labor of the worker can be reduced, and the water-containing water in the lake can be taken and purified over a wide area.

〔実験内容と結果〕
次に、本発明の方法の効果を検証した実験について説明する。アオコ含有水に紫外線を照射すると共に、凝集剤を添加した実験内容とその結果を、以下の表1と図5〜図12を参照しながら説明する。表1は、浄化対象の水域として、富栄養化湖沼の代表といえる千波湖(茨城県水戸市にある那珂川水系の湖)で採取したアオコ含有水(表1と図5〜12で原水と記載)と、アオコ含有水に紫外線(253.7nm、203W、UVと記載)を1〜3分照射したもの、紫外線と同時に凝集剤として硫酸アルミニウム(表1と図5〜12でバンドと記載)とポリ塩化アルミニウム(表1と図5〜12でPACと記載)を2モル比又は2.5モル比で添加したもの、紫外線を照射しないでポリ塩化アルミニウム(PAC)のみ添加させたものの実験結果である。その結果の水素イオン指数(pH)と、クロロフィルa(Chl−a)の濃度(μg/l)、水中の溶解性リン(溶存態P)(mg/l)と溶解性窒素(溶存態N)の濃度(mg/l)を表す。図5〜図12は、表1の結果を分析し易くするために、まとめたものである。
[Experiment contents and results]
Next, an experiment for verifying the effect of the method of the present invention will be described. The contents and results of the experiment in which flocculant was added while irradiating the water containing blue seawater with ultraviolet rays will be described with reference to the following Table 1 and FIGS. Table 1 shows the water contained in sea urchin collected in Senba Lake (a lake in the Nakagawa river system in Mito City, Ibaraki Prefecture), which is a representative eutrophication lake, as the water area to be purified (referred to as raw water in Table 1 and FIGS. 5 to 12). ), And aquatic water containing ultraviolet rays (described as 253.7 nm, 203 W, UV) for 1 to 3 minutes, aluminum sulfate as a flocculant simultaneously with ultraviolet rays (described as a band in Table 1 and FIGS. 5 to 12), Experimental results of polyaluminum chloride (referred to as PAC in Table 1 and FIGS. 5 to 12) added at a 2 molar ratio or 2.5 molar ratio, and polyaluminum chloride (PAC) added without irradiating ultraviolet rays. is there. Resulting hydrogen ion index (pH), concentration of chlorophyll a (Chl-a) (μg / l), soluble phosphorus in water (dissolved P) (mg / l) and soluble nitrogen (dissolved N) Concentration (mg / l). 5 to 12 are summarized in order to facilitate the analysis of the results in Table 1.

なお、本実験における上記の凝集剤添加量は、試験対象であるアオコ含有水が5(mg/l)のリンを含むと仮定し、各モル比に相当する凝集剤の量を算出した。例えば、アオコ含有水が100mlであった場合、含まれるリンの質量は0.5(mg/l)である。本実験のモル比は正確なモル比ではなく、近似的なモル比である。例えば、モル比2でアルミニウム系凝集剤を添加する場合は以下の様な計算になる。   Note that the amount of the flocculant added in the present experiment was calculated assuming that the water to be tested containing water was 5 (mg / l) phosphorus, and the amount of flocculant corresponding to each molar ratio was calculated. For example, when the water content is 100 ml, the mass of phosphorus contained is 0.5 (mg / l). The molar ratio in this experiment is not an exact molar ratio but an approximate molar ratio. For example, when an aluminum-based flocculant is added at a molar ratio of 2, the calculation is as follows.

上記の計算式でAlの原子量26.98g/mol、Pの原子量30.97g/molを使用した。モル比が1の場合は上記値が半分になる。また、アオコ含有水が500mlであれば添加量は5倍になる。添加溶液は市販のポリ塩化アルミニウム(PAC)溶液を100倍に希釈したものを用いた(電子天秤でポリ塩化アルミニウム溶液の質量を計り取り、1/100濃度になるようメスシリンダーを用いて超純水で希釈)。市販のポリ塩化アルミニウム溶液は比重が20℃で1.2程度であり、酸化アルミニウムの含有率が10%程度のものが多い。比重が完全に確定していないため、今回使用したポリ塩化アルミニウム溶液20kgの凡その体積を18Lとして計算した。計算の結果からアオコ含有水100mlに対して上記希釈液を1.5ml添加した場合がモル比1に相当することがわかる。なお、その際の希釈液添加による全体容量の微増は無視した。他の凝集剤の添加量に関しても同様に計算した。   In the above formula, the atomic weight of Al was 26.98 g / mol and the atomic weight of P was 30.97 g / mol. When the molar ratio is 1, the above value is halved. In addition, if the water content is 500 ml, the amount added will be 5 times. The addition solution used was a commercially available polyaluminum chloride (PAC) solution diluted 100 times (weighed the mass of the polyaluminum chloride solution with an electronic balance and used a graduated cylinder to obtain a 1/100 concentration. Diluted with water). Most commercially available polyaluminum chloride solutions have a specific gravity of about 1.2 at 20 ° C. and a content of aluminum oxide of about 10%. Since the specific gravity was not completely determined, the approximate volume of 20 kg of the polyaluminum chloride solution used this time was calculated as 18 L. From the calculation results, it can be seen that 1.5 ml of the diluted solution is added to 100 ml of water-containing water corresponding to a molar ratio of 1. Note that the slight increase in the total volume due to the addition of the diluent was ignored. The same calculation was performed for the amount of other flocculant added.

表1に示すように、アオコ含有水(番号10)は、pHが10.56、クロロフィルa(Chl−a)の濃度は1500(μg/l)、溶解性リンの濃度は0.023(mg/l)、溶解性窒素は0.85(mg/l)であり、アオコ含有水の色は全体的に緑色に濁っている。番号1〜3の処理水は、アオコ含有水を乱流させながら、紫外線をそれぞれ1分、2分、3分照射したものである。また、番号4〜6、番号7〜9の処理水は、アオコ含有水に紫外線を1〜3分照射すると共に、それぞれ硫酸アルミニウム(バンド)とポリ塩化アルミニウム(PAC)を2.5モル比で添加して、急速攪拌(必要であれば緩速撹拌)させたものである。   As shown in Table 1, the water-containing water (No. 10) has a pH of 10.56, a concentration of chlorophyll a (Chl-a) of 1500 (μg / l), and a concentration of soluble phosphorus of 0.023 mg / L), the soluble nitrogen is 0.85 (mg / l), and the color of the water-containing water is cloudy overall. The treated waters of Nos. 1 to 3 were irradiated with ultraviolet rays for 1 minute, 2 minutes, and 3 minutes, respectively, while turbulent water-containing water. In addition, the treated waters of Nos. 4 to 6 and Nos. 7 to 9 irradiate the water-containing water with ultraviolet rays for 1 to 3 minutes, respectively, and aluminum sulfate (band) and polyaluminum chloride (PAC) in a 2.5 molar ratio, respectively. It was added and rapidly stirred (slow stirring if necessary).

番号11の処理水は、アオコ含有水に紫外線を照射しないで、塩化アルミニウム(PAC)を2モル比で添加して、急速攪拌(必要であれば緩速撹拌)させたものである。また、番号12、13の処理水は、アオコ含有水に紫外線をそれぞれ1、3分照射すると共に、ポリ塩化アルミニウム(PAC)を2モル比で添加して、急速攪拌(必要であれば緩速撹拌)させたものである。   The treated water of No. 11 was prepared by adding aluminum chloride (PAC) in a 2 molar ratio without irradiating the water containing a coconut with ultraviolet rays and rapidly stirring (slowly stirring if necessary). The treated waters Nos. 12 and 13 were irradiated with ultraviolet rays for 1 to 3 minutes, respectively, and added with polyaluminum chloride (PAC) at a molar ratio of 2 and agitated rapidly (slowly if necessary). Stirring).

まず、各処理水を観察し、緑色に濁っているアオコ含有水(番号10)と比較した外観について述べる。番号1〜3の処理水(紫外線照射のみ)は、紫外線を照射する時間が長い程、アオコの緑色が脱色されて(殺藻されて)白濁し、アオコ(緑色)の一部のみ浮上していた。特に番号3の紫外線照射3分では、全体的に白濁した様子が確認でき、紫外線照射の効果が明確になった。しかし、紫外線のみではアオコの脱色分解は行なわれるが、沈殿しない場合があり、水面に浮上する結果が見られた。アオコ濃度の低い場合はアオコの脱色分解は行われ、かつ浮上の問題は軽減されるため、凝集剤添加が不要な場合もある。   First, each treated water is observed, and the external appearance compared with the water-containing auko containing water (number 10) is described. The treated waters of Nos. 1 to 3 (only UV irradiation), the longer the time of UV irradiation, the more the green color of the blue water is decolored (algaeced) and becomes cloudy, and only a part of the blue water (green) is floating. It was. In particular, in 3 minutes of UV irradiation of No. 3, it was confirmed that the whole was clouded, and the effect of UV irradiation became clear. However, decolorization and decomposition of blue sea urchins were carried out only with ultraviolet rays, but precipitation sometimes did not occur, and the result of floating on the water surface was observed. In the case where the concentration of the blue sea urchin is low, the decolorization and decomposition of the blue sea bream is performed, and the floating problem is alleviated.

番号4〜6の処理水(紫外線照射と硫酸アルミニウム)は、いずれも脱色分解が確認され、照射する時間が長い程、アオコの緑色が脱色された。また、沈殿性はいずれも極めて高いことが確認された。よって、紫外線照射と硫酸アルミニウム(バンド)添加で、アオコは浮上することなく、効果的に沈殿する結果となった。   The treated waters of Nos. 4 to 6 (ultraviolet irradiation and aluminum sulfate) were all confirmed to be decolorized and decomposed. Moreover, it was confirmed that all of the precipitation properties are extremely high. Therefore, with the ultraviolet irradiation and the addition of aluminum sulfate (band), the sea cucumber was effectively precipitated without floating.

番号7〜9と12、13の処理水(紫外線照射とポリ塩化アルミニウム)は、番号4〜6の処理水と同様に、いずれも脱色分解が確認され、沈殿性も極めて高いことが確認された。よって、紫外線照射とポリ塩化アルミニウム(PAC)添加で、アオコは浮上することなく、効果的に沈殿する結果となった。番号11の処理水(ポリ塩化アルミニウムのみ)においても脱色分解が確認され、沈殿することが確認された。しかし、紫外線を照射していないため、アオコが殺藻されておらず、時間経過後、浮上することも考えられる。   The treated waters of Nos. 7 to 9, 12, and 13 (ultraviolet irradiation and polyaluminum chloride) were confirmed to be decolorized and decomposed and to be extremely high in precipitation, similarly to the treated waters of Nos. 4 to 6. . Therefore, with the ultraviolet irradiation and the addition of polyaluminum chloride (PAC), the blue sea urchin was effectively precipitated without rising. In the treated water of No. 11 (only polyaluminum chloride), decolorization and decomposition were confirmed and precipitation was confirmed. However, since the ultraviolet rays are not irradiated, the algae is not killed, and it is possible that it will surface after a lapse of time.

次に、各処理水の水素イオン指数(pH)、クロロフィルaの濃度、溶解性リンの濃度、溶解性窒素濃度について説明する。図5は、水素イオン指数(pH)と処理水(原水を含む)との関係を示すグラフであり、図6は、水素イオン指数(pH)と紫外線照射時間との関係を示すグラフである。水素イオン指数(pH)は、アオコ含有水の処理後すぐと、処理から7日経過後に測定しているため、その両方のデータを表示している。図5では、7日後のデータを矢印で表している。一般に生態系を構成する生物群の生息に適したpH範囲は5.8〜8.5であり、この範囲を外れると栄養塩は植物に摂取されにくくなり、生物の生産性は低下し、湖沼全体の生産も低下するとされている。   Next, the hydrogen ion index (pH) of each treated water, the concentration of chlorophyll a, the concentration of soluble phosphorus, and the concentration of soluble nitrogen will be described. FIG. 5 is a graph showing the relationship between the hydrogen ion index (pH) and treated water (including raw water), and FIG. 6 is a graph showing the relationship between the hydrogen ion index (pH) and the ultraviolet irradiation time. Since the hydrogen ion index (pH) is measured immediately after treatment of water-containing water, and 7 days after the treatment, both data are displayed. In FIG. 5, the data after 7 days are indicated by arrows. In general, the pH range suitable for the habitat of the organisms that make up the ecosystem is 5.8 to 8.5, and if it is outside this range, the nutrients become difficult to be ingested by plants, and the productivity of the organisms decreases. Overall production is also expected to decline.

表1と図5により、本処理後のpHは、処理後に中性(6〜8)付近へ変化することから、生態系に影響は無いことがわかる。また、図6より、紫外線照射後、1分で硫酸アルミニウム(バンド)と、ポリ塩化アルミニウム(PAC)を高いモル比(モル比2と2.5)で添加した処理水のpHは大幅に下がり、ポリ塩化アルミニウム(PAC)を添加した処理水は中性化されることがわかった。硫酸アルミニウム(バンド)は、ポリ塩化アルミニウム(PAC)と比較してpHの低下が大きく、それは7日経過しても中性化されなかった。しかしながら、硫酸アルミニウム(バンド)の処理水のpHは、自然水の希釈により中性化すると考えられるため、放流しても問題ないと考えられる。また、凝集剤非添加の処理水も、7日ほど経過すれば中性化することが分かった。   It can be seen from Table 1 and FIG. 5 that the pH after this treatment changes to near neutral (6-8) after the treatment, so that the ecosystem is not affected. In addition, as shown in FIG. 6, the pH of treated water in which aluminum sulfate (band) and polyaluminum chloride (PAC) were added at a high molar ratio (molar ratios 2 and 2.5) in 1 minute after UV irradiation was significantly reduced. It was found that the treated water to which polyaluminum chloride (PAC) was added was neutralized. Aluminum sulfate (band) had a greater pH drop compared to polyaluminum chloride (PAC), which was not neutralized after 7 days. However, since the pH of the treated water of aluminum sulfate (band) is considered to be neutralized by dilution with natural water, there is no problem even if it is discharged. It was also found that the treated water without the flocculant neutralized after about 7 days.

図7は、クロロフィルaの濃度と処理水(原水を含む)との関係を示すグラフであり、図8は、クロロフィルaの濃度と紫外線照射時間との関係を示すグラフである。クロロフィルaの濃度も、pHと同様に、アオコ含有水の処理後すぐの場合と、処理から7日経過後に測定しているため、その両方のデータを表示している。図7では、7日後のデータを矢印で表している。なお、紫外線照射と凝集剤の処理によりアオコが沈殿した後の上澄み液では、クロロフィルaの濃度が検出限界以下になるため、クロロフィルaの濃度は、処理後のアオコ含有水をよくかき混ぜて測定している。また、図8(B)の7日後のクロロフィルaの濃度と紫外線照射時間との関係を示すグラフは、均等目盛のグラフでは縦軸の値(クロロフィルaの濃度)が重なって、様子がわかりづらいことから、縦軸を対数目盛で表示している。   FIG. 7 is a graph showing the relationship between the concentration of chlorophyll a and treated water (including raw water), and FIG. 8 is a graph showing the relationship between the concentration of chlorophyll a and the ultraviolet irradiation time. Similarly to pH, the concentration of chlorophyll a is measured immediately after treatment of water-containing water and after 7 days from treatment, so both data are displayed. In FIG. 7, the data after 7 days are indicated by arrows. Note that the concentration of chlorophyll a is below the detection limit in the supernatant after the water is precipitated by ultraviolet irradiation and flocculant treatment. Therefore, the concentration of chlorophyll a is measured by thoroughly mixing water after treatment. ing. In addition, the graph showing the relationship between the concentration of chlorophyll a after 7 days and the ultraviolet irradiation time in FIG. 8B is difficult to understand because the values on the vertical axis (concentration of chlorophyll a) overlap in the uniform scale graph. For this reason, the vertical axis is displayed on a logarithmic scale.

表1と図7、8に示すように、原水のクロロフィルaの濃度は、1500(μg/l)と高いが、紫外線照射、約1分後にクロロフィルaの濃度が顕著に低下している。これは、紫外線照射によってアオコ細胞が破壊されたことを示している。図8に示すように、紫外線照射の時間が2分、3分と多くなるほど、クロロフィルaの濃度が低下していることがわかる。また、紫外線照射と共に硫酸アルミニウム(バンド)を添加した処理水の方がよりクロロフィルaの濃度が低下していることがわかる。硫酸アルミニウム(バンド)とポリ塩化アルミニウム(PAC)のクロロフィルaの濃度を比較すると、硫酸アルミニウム(バンド)の方がクロロフィルaの濃度が低かった。よって、クロロフィルaの除去は、硫酸アルミニウム(バンド)の方が効果的であることがわかる。   As shown in Table 1 and FIGS. 7 and 8, the concentration of chlorophyll a in the raw water is as high as 1500 (μg / l), but the concentration of chlorophyll a is significantly reduced after about 1 minute of ultraviolet irradiation. This indicates that the aoko cells were destroyed by ultraviolet irradiation. As shown in FIG. 8, it can be seen that the concentration of chlorophyll a decreases as the time of ultraviolet irradiation increases to 2 minutes and 3 minutes. Moreover, it turns out that the density | concentration of the chlorophyll a is falling more in the direction of the treated water which added aluminum sulfate (band) with ultraviolet irradiation. When comparing the concentration of chlorophyll a between aluminum sulfate (band) and polyaluminum chloride (PAC), the concentration of chlorophyll a was lower in aluminum sulfate (band). Therefore, it can be seen that aluminum sulfate (band) is more effective in removing chlorophyll a.

また、7日後には、原水のクロロフィルaの濃度は1900(μg/l)と増加していたが、紫外線照射の処理水のクロロフィルaの濃度は低下し、硫酸アルミニウム(バンド)を添加した処理水のクロロフィルaの濃度は更に低下していた。よって、紫外線照射と硫酸アルミニウム(バンド)を添加することにより、クロロフィルaは確実に分解された。また、ポリ塩化アルミニウム(PAC)のクロロフィルaの濃度も7日後にはより低下しており、クロロフィルaを95%近く除去できた。以上の結果から一旦アオコ細胞が紫外線により破壊されると7日経過後に、クロロフィルaの濃度が大幅に減少することがわかった。なお、経日変化の評価から紫外線照射1分でもアオコ細胞が破壊ダメージを受け2〜3日後には死滅化が起こることが確認されている。   In addition, after 7 days, the concentration of chlorophyll a in the raw water increased to 1900 (μg / l), but the concentration of chlorophyll a in the ultraviolet-irradiated treated water decreased, and treatment with aluminum sulfate (band) was added. The concentration of chlorophyll a in the water was further reduced. Therefore, chlorophyll a was reliably decomposed by adding ultraviolet irradiation and aluminum sulfate (band). Further, the concentration of chlorophyll a in polyaluminum chloride (PAC) was further lowered after 7 days, and chlorophyll a could be removed by nearly 95%. From the above results, it was found that the concentration of chlorophyll a significantly decreased after 7 days when the aquo cells were destroyed by ultraviolet rays. In addition, it has been confirmed from the evaluation of changes over time that the ako cells are damaged even after 1 minute of ultraviolet irradiation, and are killed after 2 to 3 days.

図9は、溶解性リンの濃度と処理水(原水を含む)との関係を示すグラフであり、図10は溶解性リンの濃度と紫外線照射時間との関係を示すグラフである。図10は、図8(B)のグラフと同様に、均等目盛のグラフでは縦軸の値(溶解性リンの濃度)が重なって様子がわかりづらいことから、縦軸を対数目盛で表示している。表1と図9に示すように、紫外線の照射により、溶解性リンの濃度は増えていた。これは、紫外線照射によりアオコ群体細胞が破壊され、溶解性リンの濃度が増えたと思われる。しかし、硫酸アルミニウム(バンド)やポリ塩化アルミニウム(PAC)を添加することで溶解性リンの濃度は極端に著しく下がった。図10より、硫酸アルミニウム(バンド)添加では、溶解性リンの濃度は、紫外線照射の時間が長くなるほど、わずかに増加した。ポリ塩化アルミニウム(PAC)においても、溶解性リンの濃度は、紫外線照射の時間が長くなるほど、わずかに増加した。硫酸アルミニウム(バンド)とポリ塩化アルミニウム(PAC)の溶解性リンの濃度を比較すると、ポリ塩化アルミニウム(PAC)の方が低かった。よって、溶解性リンの除去は、ポリ塩化アルミニウム(PAC)が効果的であることがわかる。   FIG. 9 is a graph showing the relationship between the concentration of soluble phosphorus and treated water (including raw water), and FIG. 10 is a graph showing the relationship between the concentration of soluble phosphorus and the ultraviolet irradiation time. FIG. 10 is similar to the graph of FIG. 8 (B). In the uniform scale graph, the value on the vertical axis (the concentration of soluble phosphorus) is difficult to understand, so the vertical axis is displayed in a logarithmic scale. Yes. As shown in Table 1 and FIG. 9, the concentration of soluble phosphorus was increased by irradiation with ultraviolet rays. This seems to have been caused by the destruction of blue-green soy cells by ultraviolet irradiation, and the concentration of soluble phosphorus increased. However, by adding aluminum sulfate (band) or polyaluminum chloride (PAC), the concentration of soluble phosphorus was extremely lowered. From FIG. 10, when aluminum sulfate (band) was added, the concentration of soluble phosphorus slightly increased as the time of ultraviolet irradiation increased. Also in polyaluminum chloride (PAC), the concentration of soluble phosphorus slightly increased as the duration of UV irradiation increased. When comparing the concentration of soluble phosphorus in aluminum sulfate (band) and polyaluminum chloride (PAC), polyaluminum chloride (PAC) was lower. Therefore, it can be seen that polyaluminum chloride (PAC) is effective in removing soluble phosphorus.

図11は、表1の溶解性窒素の濃度と処理水(原水を含む)との関係を示すグラフであり、図12は、溶解性窒素の濃度と紫外線照射時間との関係を示すグラフである。表1と図11に示すように、紫外線の照射により、溶解性窒素の濃度は増えていた。これは、紫外線照射により、アオコ群体細胞が破壊され、溶解性窒素の濃度が増えたと思われる。しかし、硫酸アルミニウム(バンド)やポリ塩化アルミニウム(PAC)を添加することで溶解性窒素の濃度が下がった。図12より、硫酸アルミニウム(バンド)添加では、溶解性窒素の濃度は、紫外線照射時間によってほとんど変化が見られなかったが、ポリ塩化アルミニウム(PAC)においては、紫外線照射の時間が長くなるほど、わずかに増加した。硫酸アルミニウム(バンド)とポリ塩化アルミニウム(PAC)の溶解性窒素の濃度を比較すると、ポリ塩化アルミニウム(PAC)の方が低かった。よって、溶解性窒素の除去も、ポリ塩化アルミニウム(PAC)が効果的であることがわかる。   FIG. 11 is a graph showing the relationship between the concentration of soluble nitrogen in Table 1 and treated water (including raw water), and FIG. 12 is a graph showing the relationship between the concentration of soluble nitrogen and the ultraviolet irradiation time. . As shown in Table 1 and FIG. 11, the concentration of soluble nitrogen was increased by irradiation with ultraviolet rays. This seems to have caused the concentration of soluble nitrogen to increase due to the destruction of blue-green soma cells by ultraviolet irradiation. However, the concentration of soluble nitrogen decreased by adding aluminum sulfate (band) or polyaluminum chloride (PAC). From FIG. 12, when aluminum sulfate (band) was added, the concentration of soluble nitrogen hardly changed depending on the ultraviolet irradiation time. However, in polyaluminum chloride (PAC), the longer the ultraviolet irradiation time, the smaller the concentration. Increased to. Comparing the concentration of soluble nitrogen in aluminum sulfate (band) and polyaluminum chloride (PAC), polyaluminum chloride (PAC) was lower. Therefore, it can be seen that polyaluminum chloride (PAC) is also effective in removing soluble nitrogen.

また、番号11の処理水は、アオコ含有水に紫外線を照射しないで、ポリ塩化アルミニウム(PAC)を2モル比で添加したものであるが、表1に示すように、原水と比較して、溶存態リンは減少し、pH適正基準内に維持された。従って、紫外線を照射しなくても、このようなリン除去効果は得られることがわかった(番号13の処理水との比較)。しかしながら、クロロフィルaの濃度は7日後にもあまり減少しておらず、紫外線を照射しないと、即効的な効果が得られないことがわかった。よって、アオコの沈殿を確実にするためにも、藻類細胞へのダメージを与えて死滅させる即効的な効果を得るためにも、紫外線照射と凝集剤の添加を共に行う浄化処理が好ましい。紫外線照射のみ又は凝集剤のみではなく、その両方を共に行う浄化処理が好ましい。   In addition, the treated water of No. 11 is obtained by adding 2 mol ratio of polyaluminum chloride (PAC) without irradiating the water-containing water with ultraviolet rays, but as shown in Table 1, compared with the raw water, Dissolved phosphorus was reduced and maintained within pH proper standards. Therefore, it was found that such phosphorus removal effect can be obtained without irradiating with ultraviolet rays (comparison with treated water of No. 13). However, the concentration of chlorophyll a did not decrease so much after 7 days, and it was found that an immediate effect could not be obtained unless ultraviolet rays were irradiated. Therefore, a purification treatment in which both ultraviolet irradiation and addition of an aggregating agent are performed is preferable in order to ensure the precipitation of the sea bream and to obtain an immediate effect of damaging and killing the algal cells. A purification treatment in which not only ultraviolet irradiation alone or only the flocculant but both are preferred.

以上の結果から、クロロフィルaの分解(すなわちアオコの分解)は、紫外線照射のみでも効果はあるが、処理水の白濁化および分解アオコが水面に浮上する問題点があることがわかった。また、硫酸アルミニウム(バンド)はポリ塩化アルミニウム(PAC)と比較して高いクロロフィルaの分解効果を有していたが、pHの低下が大きく、それは時間が経過しても中性化されなかった。しかしながら、適正なモル比で硫酸アルミニウム(バンド)を添加すれば、pHの低下を抑えて処理可能な場合もあり得る。一方、ポリ塩化アルミニウム(PAC)の処理水は中性化されることがわかった。更に、紫外線照射によって溶出する溶解性リンや溶解性窒素の凝集効果は、硫酸アルミニウム(バンド)よりもポリ塩化アルミニウム(PAC)の方が効果的であることがわかる。従って、環境負荷の観点からポリ塩化アルミニウム(PAC)の使用が推奨される。なお、自然環境における環境容量の程度においてはpHが凝集剤添加においても影響ない場合もあることから凝集剤のモル比を高めた対応も可能であるといえる。   From the above results, it was found that the decomposition of chlorophyll a (that is, the decomposition of blue sea cucumber) is effective only by ultraviolet irradiation, but there is a problem that the treated water becomes clouded and the blue sea water rises on the water surface. In addition, aluminum sulfate (band) had higher decomposition effect of chlorophyll a compared to polyaluminum chloride (PAC), but the pH was greatly lowered and it was not neutralized over time. . However, if aluminum sulfate (band) is added at an appropriate molar ratio, there may be a case where treatment is possible while suppressing a decrease in pH. On the other hand, it was found that the treated water of polyaluminum chloride (PAC) was neutralized. Further, it can be seen that polyaluminum chloride (PAC) is more effective than aluminum sulfate (band) for the aggregation effect of soluble phosphorus and soluble nitrogen eluted by ultraviolet irradiation. Therefore, the use of polyaluminum chloride (PAC) is recommended from the viewpoint of environmental burden. In addition, since the pH may not affect the addition of the flocculant in the extent of the environmental capacity in the natural environment, it can be said that it is possible to cope with an increase in the molar ratio of the flocculant.

また、本実験では、紫外線照射と凝集剤添加で処理後、7日〜10日経過するまで経時的変化を記録、解析したが、一旦細胞が破壊された後、2〜3日経過するとクロロフィルaの分解効果が顕著になり、本実験の浄化処理が効果的であることが検証できた。   Moreover, in this experiment, after treatment with ultraviolet irradiation and addition of a flocculant, the change over time was recorded and analyzed until 7 to 10 days passed. However, after 2-3 days after the cells were destroyed, chlorophyll a As a result, the purification effect of this experiment was verified to be effective.

本実験では、紫外線照射を凝集剤添加と同時に行うことで、処理に必要な凝集剤の急速撹拌等の操作を紫外線照射タンク内での撹拌により代用することができる。それにより、アオコを凝集させて沈殿させると共にアオコを殺藻でき、効率よく、藍藻類を含んだ水を浄化処理できる。前述のように凝集剤添加と紫外線照射を別のタンクで行うこともでき、その場合でも上記の実験結果と同様の結果が得られると推測される。   In this experiment, by performing ultraviolet irradiation simultaneously with the addition of the flocculant, operations such as rapid stirring of the flocculant necessary for the treatment can be substituted by stirring in the ultraviolet irradiation tank. As a result, it is possible to agglomerate and precipitate the watermelon, to kill the watermelon, and to efficiently purify the water containing cyanobacteria. As described above, the addition of the flocculant and the ultraviolet irradiation can be performed in different tanks, and even in this case, it is presumed that the same result as the above experimental result can be obtained.

実験で使用した千波湖のアオコ含有水のアオコの濃度(クロロフィルaの濃度)は極めて高く、試験時は1500(μg/l)、7日経過後は1900(μg/l)であったが、霞ケ浦のアオコ含有水の平均的なクロロフィルaの濃度は、50〜100(μg/l)であることから、実験のアオコ含有水は、アオコが水面に風等によって集積した場所から採取したものといえる。従って、本実験の方法は湖岸等の集積アオコに対してもポリ塩化アルミニウム(PAC)と紫外線照射で極めて大きな効果が得られると確証される。原液アオコのクロロフィルa濃度が50〜100(μg/l)の場合は、紫外線照射とポリ塩化アルミニウム(PAC)の添加で、クロロフィルa濃度が10(μg/l)以下になることが示唆される。なお、紫外線照射と凝集剤の処理によりアオコが沈殿した後の上澄み液では、クロロフィルaの濃度が検出限界以下になることは既に示した通りである。また、凝集剤添加濃度はモル比2〜2.5の範囲で使用することが推奨されるが、上記のようなアオコ濃度の低いアオコ含有水ではモル比1以下でも使用することも可能である。   The concentration of water-containing water (Chlorophyll a concentration) in Lake Samba used in the experiment was extremely high, 1500 (μg / l) at the time of the test, and 1900 (μg / l) after 7 days. Since the average concentration of chlorophyll a in water is 50-100 (μg / l), it can be said that the water in the experiment was collected from the place where the water was accumulated on the water surface by wind or the like. . Therefore, it can be confirmed that the method of this experiment can be very effective with polyaluminum chloride (PAC) and ultraviolet irradiation even for accumulated sea cucumbers such as lake shores. When the concentration of chlorophyll a in the stock solution Aoko is 50 to 100 (μg / l), it is suggested that the concentration of chlorophyll a is 10 (μg / l) or less by adding ultraviolet irradiation and polyaluminum chloride (PAC). . Note that, as already shown, the concentration of chlorophyll a is below the detection limit in the supernatant liquid after the aquatic sediment is precipitated by the ultraviolet irradiation and the coagulant treatment. In addition, it is recommended to use the flocculant addition concentration in the range of a molar ratio of 2 to 2.5. However, it is also possible to use even a molar ratio of 1 or less in the above-described water-containing water having a low concentration. .

なお、前述のように、本実施例のアオコ含有水は、浄化処理後に回収タンクで保管する場合と保管しない場合があり、すなわちそのまま放流してもよいこととしているが、漁業権のある水域では凝集剤添加の場合は、残った沈殿物(生成汚泥)を回収する必要がある。海洋汚染等及び海上災害の防止に関する法律施行規則によると、有害液体物質の汚染分類はX類、Y類、Z類に分類されている。X類物質は、海洋資源または人の健康に重大な危険をもたらすもの、Y類物質は、海洋資源または人の健康に危険をもたらすもの、Z類物質は、海洋資源または人の健康に軽微な危険をもたらすものである。ポリ塩化アルミニウム、水酸化マグネシウムなどは、Z類物質に分類されているため、問題とならない可能性が高いが、必要に応じて、残った沈殿物は回収することが好ましく、回収した後は廃棄する。そのため、必要に応じて、漁業権のある水域等では、紫外線照射のみの浄化方法を使用することもできる。その場合には、有害液体物質を含まないため、残った沈殿物を回収しなくてもよいが、回収した場合には、肥料等として利用することができる。   In addition, as mentioned above, the water-containing water of this embodiment may or may not be stored in the recovery tank after the purification treatment, that is, it may be discharged as it is, but in the water area with fishing rights. In the case of adding a flocculant, it is necessary to recover the remaining precipitate (generated sludge). According to the law enforcement regulations concerning the prevention of marine pollution, etc. and maritime disasters, the pollution classification of hazardous liquid substances is classified into Class X, Class Y and Class Z. Class X substances pose a serious risk to marine resources or human health, Group Y substances pose a risk to marine resources or human health, Group Z substances are minor to marine resources or human health It poses a danger. Polyaluminum chloride, magnesium hydroxide, etc. are classified as Group Z substances, so there is a high possibility that they will not be a problem. However, if necessary, it is preferable to collect the remaining precipitate and discard it after collection. To do. Therefore, if necessary, a purification method using only ultraviolet irradiation can be used in a water area with fishing rights. In that case, since no harmful liquid substance is contained, the remaining precipitate does not have to be recovered, but when recovered, it can be used as a fertilizer or the like.

以上説明したように、本発明の水質浄化装置及び水質浄化方法によると、凝集剤の添加と共に紫外線照射することにより、アオコを殺藻して除去し、かつ、水中の窒素、リン、クロロフィルaの濃度を下げてアオコの発生を効果的に抑制することができる。   As described above, according to the water purification apparatus and the water purification method of the present invention, by irradiating ultraviolet rays together with the addition of the flocculant, the sea cucumber is killed and removed, and the nitrogen, phosphorus and chlorophyll a in the water are removed. The concentration can be reduced to effectively suppress the occurrence of blue sea bream.

なお、上述した水質浄化装置及び水質浄化方法は一例であり、その装置と方法は、発明の趣旨を逸脱しない範囲で、適宜変更可能である。例えば、本実施例では、凝集剤として、硫酸アルミニウムとポリ塩化アルミニウムを使用したが、硫酸第一鉄、硫酸第二鉄、塩化第二鉄、ポリ塩化鉄、高分子凝集剤を使用することもできるし、それらを組み合わせて使用することもできる。   The water purification device and the water purification method described above are examples, and the device and method can be changed as appropriate without departing from the spirit of the invention. For example, in this embodiment, aluminum sulfate and polyaluminum chloride are used as the flocculant. However, ferrous sulfate, ferric sulfate, ferric chloride, polyiron chloride, and polymer flocculant may be used. They can be used in combination.

1…水質浄化装置、10…貯水タンク、11,14,23,31,41,51…ポンプ、12…配管(ホース)、15,24,32,42,52,71…開閉弁、20…凝集剤混合タンク、21…送風ブロア(遠心式送風機)、22…ディフューザー、30…凝集剤保管タンク、40…紫外線照射タンク、43…紫外線ランプ、44…対流板、45…磁気処理器、50…回収タンク、60…制御装置、70…沈殿槽、100…船、101…帆、111…固定具。 DESCRIPTION OF SYMBOLS 1 ... Water quality purification apparatus, 10 ... Water storage tank, 11, 14, 23, 31, 41, 51 ... Pump, 12 ... Piping (hose), 15, 24, 32, 42, 52, 71 ... Open / close valve, 20 ... Aggregation Agent mixing tank, 21 ... Blower (centrifugal blower), 22 ... Diffuser, 30 ... Flocculant storage tank, 40 ... Ultraviolet irradiation tank, 43 ... Ultraviolet lamp, 44 ... Convection plate, 45 ... Magnetic processor, 50 ... Recovery Tank, 60 ... control device, 70 ... sedimentation tank, 100 ... ship, 101 ... sail, 111 ... fixture.

Claims (2)

光触媒を使用せずに、アオコを除去して水質を浄化させる水質浄化方法であって、
クロロフィルaの濃度が1500(μg/l)以下のアオコ含有水を取水する工程と、
アオコ含有水に凝集剤を混合し、送風ブロア及びディフューザーで攪拌する工程と、
アオコ含有水を対流させながら波長が253.7nmの紫外線を照射する工程と、
を含み、
前記攪拌する工程と、前記紫外線を照射する工程を同時に行うことを特徴とする水質浄化方法。
A water purification method that purifies water quality by removing watermelon without using a photocatalyst ,
A step of taking water containing aoko having a chlorophyll a concentration of 1500 (μg / l) or less,
A step of mixing flocculant with water-containing water and stirring with a blower and a diffuser ;
Irradiating ultraviolet rays having a wavelength of 253.7 nm while convectioning water-containing water;
Including
The water purification method characterized by performing the said stirring process and the process of irradiating the said ultraviolet-ray simultaneously .
前記凝集剤が、硫酸アルミニウム、ポリ塩化アルミニウム、硫酸第一鉄、硫酸第二鉄、
塩化第二鉄、ポリ塩化鉄、高分子凝集剤から選択される少なくとも1以上の凝集剤であることを特徴とする請求項1に記載の水質浄化方法。
The flocculant is aluminum sulfate, polyaluminum chloride, ferrous sulfate, ferric sulfate,
The water purification method according to claim 1, wherein the water purification method is at least one coagulant selected from ferric chloride, polyiron chloride, and a polymer coagulant.
JP2018238219A 2018-12-20 2018-12-20 Water purification method Active JP6614540B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018238219A JP6614540B1 (en) 2018-12-20 2018-12-20 Water purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018238219A JP6614540B1 (en) 2018-12-20 2018-12-20 Water purification method

Publications (2)

Publication Number Publication Date
JP6614540B1 true JP6614540B1 (en) 2019-12-04
JP2020099846A JP2020099846A (en) 2020-07-02

Family

ID=68763409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018238219A Active JP6614540B1 (en) 2018-12-20 2018-12-20 Water purification method

Country Status (1)

Country Link
JP (1) JP6614540B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213576A (en) * 2021-04-27 2021-08-06 哈尔滨工业大学 Drum car type adsorption-photocatalytic degradation micro-plastic device applied to water area
CN113336391A (en) * 2021-04-01 2021-09-03 华南理工大学 Method for efficiently removing blue algae in aquaculture water by combining modified clay with advanced oxidation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266041A (en) * 2020-11-02 2021-01-26 江西省环境保护科学研究院 Water purification material with kaolin as matrix and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059173A (en) * 2000-08-23 2002-02-26 Nippon Steel Corp Treatment method of raw water
JP2003251343A (en) * 2002-03-01 2003-09-09 Nishihara Environment Technology Inc Flocculation/disinfection apparatus
JP2004033847A (en) * 2002-07-01 2004-02-05 Ishigaki Co Ltd Float type water cleaning equipment using floating filter medium
JP2004267855A (en) * 2003-03-06 2004-09-30 Japan Organo Co Ltd Water treatment apparatus utilizing photocatalyst
JP2006187697A (en) * 2005-01-04 2006-07-20 Hitachi Ltd Filtration cleaning apparatus
CN106477662B (en) * 2016-10-28 2018-06-01 昆明水啸科技有限公司 A kind of method and its system using micro-nano air-flotation process water pollution in situ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336391A (en) * 2021-04-01 2021-09-03 华南理工大学 Method for efficiently removing blue algae in aquaculture water by combining modified clay with advanced oxidation
CN113213576A (en) * 2021-04-27 2021-08-06 哈尔滨工业大学 Drum car type adsorption-photocatalytic degradation micro-plastic device applied to water area
CN113213576B (en) * 2021-04-27 2022-11-29 哈尔滨工业大学 Drum car type adsorption-photocatalytic degradation micro-plastic device applied to water area

Also Published As

Publication number Publication date
JP2020099846A (en) 2020-07-02

Similar Documents

Publication Publication Date Title
JP6614540B1 (en) Water purification method
CN108585283A (en) Hydroxyl radical free radical kills wawter bloom microalgae and mineralising organic pollution processing system and its method
US6875363B2 (en) Process and device for the treatment of water, particularly for ships
KR101280430B1 (en) Continuous system for removing algaes and suspended solids on water using micro bubble
US20140346125A1 (en) Desalting Salty Sludge System and Method
Butnariu Heavy metals as pollutants in the aquatic Black Sea ecosystem
CN106830430B (en) Efficient and rapid treatment process and method for low-temperature and low-turbidity water
JP2016165688A (en) Water treatment method and water treatment equipment
Chris et al. Impact of Artisanal Crude Oil Refining Effluents on Interstitial Water at a Mangrove Wetland, Asari-Toru Axis of Sombreiro River, Rivers State.
JP2007216201A (en) Natural flocculation precipitant for water purification
JP4997389B2 (en) Water purification system and water purification method
JP6588709B2 (en) Water treatment method and water treatment equipment
Ogboru et al. Determination of the concentrations of physicochemical parameters and trace metals in the New Calabar River
Nakamura Water chemical remediation for simultaneous removal of phosphate ion and blue-green algae from anthropogenically eutrophied pond
KR20160030709A (en) Movable Apparatus and Method for Removing Floating Matter
KR20150145954A (en) Wastewater purifying device and wastewater purifying system
JP3653593B2 (en) Water quality improvement methods in closed and stagnant water systems
JP4381154B2 (en) Method for recovering aggregates in water and recovery tool for aggregates in water used therefor
US20230416126A1 (en) System and method for removing microparticles and nanoparticles from water using gelatinous zooplankton mucus
Xu The application of whole oyster shells in stormwater treatment removing heavy metals
JPH08257591A (en) Removal of water-bloom and method and device for controlling abnormal generation thereof
JP6357712B1 (en) Water purification device using photocatalytic reaction
OLANREWAJU DETERMINATION OF FILTER MEDIA EFFECTIVENESS: A CASE STUDY OF MTU WATER TREATMENT PLANT
Santhi et al. Priority metal pollutants and their toxicological effects in the ecosystem
Hay Methods in culturing algae and the addition of algae to enhance the performance of gravel roughing filtration pretreatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190419

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190419

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191025

R150 Certificate of patent or registration of utility model

Ref document number: 6614540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250