JP6613805B2 - Mold cooling structure - Google Patents

Mold cooling structure Download PDF

Info

Publication number
JP6613805B2
JP6613805B2 JP2015209027A JP2015209027A JP6613805B2 JP 6613805 B2 JP6613805 B2 JP 6613805B2 JP 2015209027 A JP2015209027 A JP 2015209027A JP 2015209027 A JP2015209027 A JP 2015209027A JP 6613805 B2 JP6613805 B2 JP 6613805B2
Authority
JP
Japan
Prior art keywords
inner cylinder
opening
cooling
entrance
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015209027A
Other languages
Japanese (ja)
Other versions
JP2017080752A (en
Inventor
健至 勝間
健― 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015209027A priority Critical patent/JP6613805B2/en
Publication of JP2017080752A publication Critical patent/JP2017080752A/en
Application granted granted Critical
Publication of JP6613805B2 publication Critical patent/JP6613805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は成形型の冷却構造に関するものである。   The present invention relates to a cooling structure for a mold.

成形型には一般に、当該成形型の冷却を目的として冷却水等の冷却媒体が流入する冷却孔が設けられている。   In general, the mold is provided with cooling holes into which a cooling medium such as cooling water flows for the purpose of cooling the mold.

この成形型の繰り返し使用により、繰り返しの激しい温度振幅が成形型に作用し、この繰り返しの温度振幅によって成形型には熱疲労が生じ、亀裂の発生に至り得る。   By repeated use of this mold, repeated intense temperature amplitude acts on the mold, and this repeated temperature amplitude may cause thermal fatigue in the mold and lead to cracking.

成形型の冷却孔に亀裂が生じることでここが水漏れの起点となり、成形型に水漏れ不具合が生じることによって成形品の生産性が阻害される。   Since cracks are generated in the cooling holes of the mold, this is a starting point for water leakage, and a water leakage problem occurs in the mold, thereby hindering the productivity of the molded product.

このような問題を解消するべく、冷却孔に内筒体(もしくはインブッシュ)が取り付けられている。この内筒体の一例として、その両端の一方端に冷却媒体の出入り開口を有し、この出入り開口以外は開口を具備しない試験管形状を呈している形態を挙げることができる。   In order to solve such a problem, an inner cylinder (or in-bush) is attached to the cooling hole. As an example of the inner cylindrical body, there can be mentioned a form in which a cooling medium exit / entrance opening is provided at one end of both ends, and a test tube shape having no opening other than the entrance / exit opening is provided.

冷却孔に内筒体が取り付けられていることで、成形型の冷却孔に亀裂が生じた場合でも、内筒体にて水漏れを遮断することができ、水漏れを防止することが可能になる。   Since the inner cylinder is attached to the cooling hole, even if a crack occurs in the cooling hole of the mold, the inner cylinder can block water leakage and prevent water leakage. Become.

ところで、冷却孔への内筒体の取り付けは、圧着にておこなわれることが多い。具体的には、冷却孔に内筒体を挿入し、内筒体の内側から圧力を付与することにより、内筒体を外側(冷却孔の内面側)に塑性変形させ、塑性変形した内筒体の外面と冷却孔の内面を密着させるものである。   By the way, the inner cylinder is often attached to the cooling hole by pressure bonding. Specifically, by inserting the inner cylinder into the cooling hole and applying pressure from the inside of the inner cylinder, the inner cylinder is plastically deformed outward (inner side of the cooling hole), and the plastic cylinder is deformed plastically. The outer surface of the body and the inner surface of the cooling hole are brought into close contact with each other.

このように圧着にて冷却孔に内筒体を取り付けるに当たり、冷却孔の内面と内筒体の外面の間に空気溜りが生じる、圧着不良が生じることが往々にしてある。   Thus, when attaching an inner cylinder body to a cooling hole by crimping | compression-bonding, the air pocket arises between the inner surface of a cooling hole, and the outer surface of an inner cylinder body, and the crimping | compression-bonding defect often arises.

このように冷却孔の内面と内筒体の外面の間に圧着不良箇所が存在すると、成形型から冷却媒体への放熱性(熱伝導性)が阻害されることになる。   As described above, if there is a press-bonding defective portion between the inner surface of the cooling hole and the outer surface of the inner cylinder, the heat dissipation (thermal conductivity) from the mold to the cooling medium is hindered.

ここで、特許文献1においても、油圧ユニットに接続された油圧ホースから加えられる油圧によって内筒体の内面を加圧して膨張塑性変形させることにより、金型の冷却穴の内壁に内筒体が密着された金型冷却構造が開示されている。   Here, also in Patent Document 1, the inner cylinder body is formed on the inner wall of the cooling hole of the mold by pressurizing the inner surface of the inner cylinder body by the hydraulic pressure applied from the hydraulic hose connected to the hydraulic unit to cause the expansion plastic deformation. An intimate mold cooling structure is disclosed.

特開平11−156520号公報JP-A-11-156520

たとえば上記する試験管形状の内筒体を取り上げるに、内筒体の底、すなわち、冷却媒体の出入り開口と反対側の端部から当該出入り開口に向かって徐々に内筒体を塑性変形させ、圧着させることにより、冷却孔の内面と内筒体の外面の間に空気溜りが生じることが解消できる。   For example, to take up the test tube-shaped inner cylinder described above, the inner cylinder is gradually plastically deformed from the bottom of the inner cylinder, that is, from the end opposite to the entrance / exit of the cooling medium toward the entrance / exit, By pressure bonding, it is possible to eliminate the occurrence of air accumulation between the inner surface of the cooling hole and the outer surface of the inner cylinder.

しかしながら、圧着工程において、このように圧着順序を制御することは極めて困難である。   However, in the crimping process, it is extremely difficult to control the crimping order in this way.

また、特許文献1に開示の金型冷却構造によれば、冷却穴に冷却水を直接供給して冷却する場合と同等の冷却効果を簡易な金型冷却構造にて奏することができるとしている。しかしながら、この金型冷却構造では圧着順序を制御していないことから順不同に密着され、結果として、上記する課題、すなわち、冷却穴に内筒体を圧着する際に空気溜り等の圧着不良が生じることを解消することはできない。   Further, according to the mold cooling structure disclosed in Patent Document 1, the cooling effect equivalent to the case of cooling by directly supplying cooling water to the cooling hole can be achieved with a simple mold cooling structure. However, in this mold cooling structure, since the order of pressure bonding is not controlled, they are in close contact with each other, and as a result, the above-mentioned problem, that is, a pressure bonding failure such as an air pocket occurs when the inner cylinder is pressure-bonded to the cooling hole. It cannot be solved.

本発明は上記する問題に鑑みてなされたものであり、成形型の備える冷却孔に内筒体が取り付けられてなる成形型の冷却構造において、冷却孔と内筒体の双方の密着面に空気溜りのない成形型の冷却構造を提供することができるものである。   The present invention has been made in view of the above-described problems, and in a cooling structure of a molding die in which an inner cylinder is attached to a cooling hole provided in the molding die, air is adhering to both contact surfaces of the cooling hole and the inner cylinder. It is possible to provide a cooling structure for a mold without accumulation.

前記目的を達成すべく、本発明による成形型の冷却構造は、成形型が備える冷却孔と、前記冷却孔に隙間なく取り付けられ、両端の一方端に冷却媒体の出入り開口を有し、該出入り開口以外は開口を具備しない内筒体と、から構成され、前記内筒体は、他の部位に比して最も塑性変形し易い最変形部を有し、該最変形部から前記出入り開口に向かって塑性変形性能が漸次低くなっているものである。   In order to achieve the above object, the mold cooling structure according to the present invention is provided with a cooling hole provided in the mold and the cooling hole without a gap, and has a cooling medium entrance opening at both ends. An inner cylinder that does not have an opening other than the opening, and the inner cylinder has a most deformable portion that is most easily plastically deformed as compared with other portions, and the most deformed portion extends to the entrance / exit opening. In contrast, the plastic deformation performance gradually decreases.

本発明による成形型の冷却構造は、内筒体に塑性変形性能の分布を持たせ、最も塑性変形し易い最変形部を備えていること、および、最変形部から冷却媒体の出入り開口に向かって塑性変形性能が漸次低くなっていることに特徴を有するものである。   The cooling structure of the mold according to the present invention has a distribution of plastic deformation performance in the inner cylindrical body, has the most deformable part that is most easily plastically deformed, and extends from the most deformed part to the entrance / exit of the cooling medium. Therefore, the plastic deformation performance is gradually lowered.

ここで、「塑性変形性能」とは、文字通り、塑性変形のし易さや塑性変形のし難さに関する性能であり、最変形部は他の部位に比して最初に塑性変形し、変形姿勢を保持する部位となる。   Here, “plastic deformation performance” is literally the performance related to the ease of plastic deformation and the difficulty of plastic deformation, and the most deformed part is first plastically deformed compared to other parts, and the deformation posture is changed. It becomes a part to hold.

また、「冷却孔に隙間なく取り付けられ」とは、冷却孔に対し、内筒体が圧着等で取り付けられていることを意味している。さらに、「出入り開口以外は開口を具備しない内筒体」とは、内筒体が底を有していることを意味しており、たとえば試験管形状の内筒体を挙げることができる。   Further, “attached to the cooling hole without a gap” means that the inner cylinder is attached to the cooling hole by pressure bonding or the like. Further, “an inner cylinder having no opening other than the entrance / exit opening” means that the inner cylinder has a bottom, and examples thereof include a test tube-shaped inner cylinder.

内筒体をその内側から圧力を付与して成形型の冷却孔の内面に圧着するに当たり、最も塑性変形し易い最変形部が他の部位に比して最初に塑性変形して冷却孔の内面に密着する。   When pressure is applied from the inside to the inner surface of the cooling hole of the mold, the most deformed part that is most likely to be plastically deformed is first plastically deformed compared to the other parts and the inner surface of the cooling hole Close contact with.

そして、この最変形部から出入り開口に向かって塑性変形性能が漸次低くなっていること、すなわち、最変形部から出入り開口に向かって順に塑性変形し難くなっていることから、最初に冷却孔の内面に密着した最変形部の近傍から順に出入り開口に向かって塑性変形が進行することになる。   Since the plastic deformation performance gradually decreases from the most deformed portion to the entrance / exit opening, that is, it becomes difficult to plastically deform in order from the most deformed portion to the entrance / exit opening. Plastic deformation progresses in order from the vicinity of the most deformed portion in close contact with the inner surface toward the entrance / exit.

このように内筒体の塑性変形が最変形部から出入り開口に向かって順に進行することで、内筒体の外面と冷却孔の内面の間に空気溜りが生じることなく、常に空気が出入り開口に押し出されながら冷却孔の内面への内筒体の圧着がおこなわれる。   In this way, the plastic deformation of the inner cylinder progresses in order from the most deformed portion toward the entrance / exit opening, so that air always remains between the outer surface of the inner cylinder and the inner surface of the cooling hole, so that air always enters and exits the opening. The inner cylinder is pressure-bonded to the inner surface of the cooling hole while being extruded.

その結果、内筒体と冷却孔の間に圧着不良である空気溜りの存在しない冷却構造が形成でき、放熱性能に優れた成形型に資することとなる。   As a result, it is possible to form a cooling structure that does not have an air pocket that is poorly bonded between the inner cylinder and the cooling hole, which contributes to a mold having excellent heat dissipation performance.

ここで、「最変形部」および「最変形部から出入り開口に向かって塑性変形性能が漸次低くなっている」実施の形態として、以下二つの形態を挙げることができる。   Here, the following two modes can be cited as embodiments of “the most deformed portion” and “the plastic deformation performance gradually decreases from the most deformed portion toward the entrance / exit”.

その一つの形態は、前記内筒体において、前記最変形部は他の部位に比して最も肉厚の薄い部位であり、該最変形部から前記出入り開口に向かって肉厚が漸次厚くなっている形態である。   One form thereof is that in the inner cylinder, the most deformed portion is the thinnest portion compared to other portions, and the thickness gradually increases from the most deformed portion toward the access opening. It is a form.

内筒体の全体は同一素材から形成され、肉厚の厚みを変化させることで塑性変形性能を変化させる技術思想に立脚した形態である。   The entire inner cylinder is formed from the same material and is based on the technical idea of changing the plastic deformation performance by changing the thickness of the wall thickness.

一方、他の形態は、前記内筒体において、前記最変形部は他の部位に比して最も塑性変形性能の高い素材から形成され、該最変形部から前記出入り開口に向かって塑性変形性能が漸次低くなる複数種の素材から形成されている形態である。   On the other hand, in another form, in the inner cylinder, the most deformed portion is formed of a material having the highest plastic deformation performance as compared with other portions, and the plastic deformation performance from the most deformed portion toward the entrance / exit opening. Is formed from a plurality of types of materials that gradually become lower.

この形態は、内筒体を塑性変形性能の異なる複数種の素材から形成したものである。たとえば塑性変形性能が高い順に、アルミニウム、銅、ニッケル、鉄、とした場合に、最変形部をアルミニウムから形成し、最変形部に隣接するエリアを3つのエリアに分割し、銅から形成されるエリア部材、ニッケルから形成されるエリア部材、および鉄から形成されるエリア部材とし、塑性変形性能の最も低い鉄から形成されるエリア部材を冷却媒体の出入り開口のあるエリア部材に設定するといった形態を挙げることができる。なお、異種素材の各エリア部材はそれぞれ別体で製作され、隣接エリア部材同士は接着剤等で接着して一体化を図り、内筒体を製作することができる。   In this embodiment, the inner cylinder is formed from a plurality of types of materials having different plastic deformation performance. For example, when aluminum, copper, nickel, and iron are used in descending order of plastic deformation performance, the most deformed portion is formed from aluminum, and the area adjacent to the most deformed portion is divided into three areas and formed from copper. An area member, an area member formed of nickel, and an area member formed of iron, and an area member formed of iron having the lowest plastic deformation performance is set as an area member having an opening and exit of a cooling medium. Can be mentioned. In addition, each area member of a different material can be manufactured separately, and adjacent area members can be bonded together with an adhesive or the like to be integrated to manufacture an inner cylinder.

また、上記するように、内筒体の肉厚が部位ごとに変化している形態、形成素材が部位ごとに変化している形態のいずれの形態であっても、内筒体はその両端の一方端に出入り開口を有し、他方端、すなわち、冷却孔の最奥に対応する部位に最変形部を有しているのが好ましい。   In addition, as described above, the inner cylinder is formed at both ends of the inner cylinder, regardless of the form in which the thickness of the inner cylinder changes for each part or the form in which the forming material changes for each part. It is preferable that one end has an entrance / exit opening and the other end, that is, the most deformed portion at a portion corresponding to the innermost part of the cooling hole.

たとえば既述する試験管形状の内筒体を取り上げるに、冷却孔の最奥に位置する内筒体の部位にある最変形部から、冷却媒体の出入り開口に位置する部位に向かって内筒体が塑性変形しながら冷却孔の内面に圧着することで、内筒体の最変形部から(三次元的に)環状に圧着されることとなる。このように内筒体の最変形部から環状に徐々に圧着を進行させることで、空気溜りがより一層生じない態様にて冷却孔の内面に内筒体を圧着することができる。   For example, in order to take up the test tube-shaped inner cylinder described above, the inner cylinder moves from the most deformed portion at the inner cylinder located at the innermost part of the cooling hole toward the part located at the opening and exit of the cooling medium. By being crimped to the inner surface of the cooling hole while being plastically deformed, it is crimped annularly (three-dimensionally) from the most deformed portion of the inner cylinder. In this manner, the inner cylinder can be pressure-bonded to the inner surface of the cooling hole in such a manner that the air pool is not further generated by gradually advancing the pressure bonding in an annular manner from the most deformed portion of the inner cylinder.

以上の説明から理解できるように、本発明の成形型の冷却構造によれば、冷却構造を構成する内筒体に塑性変形性能の分布を持たせ、最も塑性変形し易い最変形部を備えていること、および、最変形部から冷却媒体の出入り開口に向かって塑性変形性能が漸次低くなっていることにより、圧着順序を制御することが可能となり、冷却孔の内面と内筒体の外面の圧着面に空気溜りのない成形型の冷却構造を提供することができる。   As can be understood from the above description, according to the cooling structure of the molding die of the present invention, the inner cylindrical body constituting the cooling structure has a distribution of plastic deformation performance and includes the most deformable portion that is most easily plastically deformed. And the plastic deformation performance gradually decreases from the most deformed portion toward the entrance / exit of the cooling medium, so that the crimping order can be controlled, and the inner surface of the cooling hole and the outer surface of the inner cylindrical body can be controlled. It is possible to provide a cooling structure for a mold that does not retain air on the crimping surface.

本発明の成形型の冷却構造の実施の形態1を示した縦断面図である。It is the longitudinal cross-sectional view which showed Embodiment 1 of the cooling structure of the shaping | molding die of this invention. 本発明の成形型の冷却構造の実施の形態2を示した縦断面図である。It is the longitudinal cross-sectional view which showed Embodiment 2 of the cooling structure of the shaping | molding die of this invention. 本発明の成形型の冷却構造の実施の形態3を示した縦断面図である。It is the longitudinal cross-sectional view which showed Embodiment 3 of the cooling structure of the shaping | molding die of this invention.

以下、図面を参照して本発明の成形型の冷却構造の実施の形態1〜3を説明する。   Embodiments 1 to 3 of the cooling structure for a mold according to the present invention will be described below with reference to the drawings.

(成形型の冷却構造の実施の形態1)
図1は本発明の成形型の冷却構造の実施の形態1を示した縦断面図である。図示する成形型の冷却構造10は、成形型1に設けられた冷却孔2と、この冷却孔2に気密に取り付けられた金属製の内筒体3とから構成される。
(Embodiment 1 of Cooling Structure of Mold)
FIG. 1 is a longitudinal sectional view showing Embodiment 1 of a cooling structure for a mold according to the present invention. The illustrated mold cooling structure 10 includes a cooling hole 2 provided in the mold 1 and a metal inner cylinder 3 attached to the cooling hole 2 in an airtight manner.

図示する冷却孔2はその三次元形状が試験管形状を呈しており、縦断面的に見ると図1で示すような形状となる。   The three-dimensional shape of the cooling hole 2 shown in the figure has a test tube shape, and when viewed in a longitudinal section, the shape is as shown in FIG.

この冷却孔2に対して気密に取り付けられる内筒体3は、その両端の一方端において、不図示の冷却水等の冷却媒体が出入りする出入り開口3aを有しており、出入り開口3a以外は開口を有していない。   The inner cylinder 3 attached to the cooling hole 2 in an airtight manner has an entrance / exit opening 3a through which a cooling medium such as cooling water (not shown) enters and exits at one end of both ends, except for the entrance / exit opening 3a. Does not have an opening.

また、内筒体3は、図示する縦断面において、冷却孔2の最奥に位置する他方端における肉厚が最も薄く(厚みt1)、したがって他の部位に比して最も塑性変形し易い最変形部3cを有している。   Further, the inner cylinder 3 has the thinnest wall thickness at the other end located at the innermost end of the cooling hole 2 (thickness t1) in the longitudinal section shown in the figure, and is therefore the most easily plastically deformed as compared with other parts. It has the deformation | transformation part 3c.

そして、最変形部3cを起点として、ここから出入り開口3aに向かって肉厚が徐々に厚くなっている(最変形部3cの隣接領域の厚みはt2、ここから出入り開口3aに進んだ任意位置の厚みはt3、出入り開口3aに対応する位置の厚みはt4で、t1<t2<t3<t4)。   Then, starting from the most deformed portion 3c, the wall thickness gradually increases from here toward the entrance / exit opening 3a (the thickness of the adjacent region of the most deformed portion 3c is t2, an arbitrary position proceeding from here to the entrance / exit opening 3a) Is t3, and the thickness corresponding to the entrance / exit opening 3a is t4, t1 <t2 <t3 <t4).

したがって、最も塑性変形し易い最変形部3cから順に、出入り開口3aに向かって塑性変形性能は徐々に低下する。   Accordingly, the plastic deformation performance gradually decreases toward the entrance / exit opening 3a in order from the most deformable portion 3c that is most easily plastically deformed.

そのため、冷却孔2に内筒体3を挿入し、冷却孔2の内面に内筒体3の外面3bを圧着するに際し、冷却孔2の内面と内筒体3の外面3bの間に空気溜りを生じさせることなく、双方の圧着を実現することができる。   Therefore, when the inner cylinder 3 is inserted into the cooling hole 2 and the outer surface 3 b of the inner cylinder 3 is pressure-bonded to the inner surface of the cooling hole 2, an air pool is formed between the inner surface of the cooling hole 2 and the outer surface 3 b of the inner cylinder 3. Both of the pressure bondings can be realized without causing the above.

具体的には、図示するように内筒体3の内部から圧力Pを付与して内筒体3を塑性変形させ、圧着させるに当たり、肉厚が最も薄く、したがって最も塑性変形し易い最変形部3cが他の部位に先行して冷却孔2側に塑性変形し、冷却孔2の内面に圧着される。   Specifically, as shown in the figure, when the inner cylinder 3 is plastically deformed by applying pressure P from the inside of the inner cylinder 3, and when the inner cylinder 3 is pressure-bonded, the thinnest thickness, and therefore the most deformable portion that is most easily plastically deformed. 3c is plastically deformed to the cooling hole 2 side prior to other parts, and is crimped to the inner surface of the cooling hole 2.

次に、最変形部3cの近傍で肉厚が最変形部3cの次に薄い部位が外側に塑性変形し、冷却孔2の内面に圧着される。   Next, in the vicinity of the most deformed portion 3 c, the portion having the thinnest thickness after the most deformed portion 3 c is plastically deformed to the outside and is crimped to the inner surface of the cooling hole 2.

そして、これが出入り開口3aに向かって漸次おこなわれることにより(X1方向)、冷却孔2に対して内筒体3は最変形部3cから出入り開口3aに向かって漸次圧着されることになる。   When this is gradually performed toward the entrance / exit opening 3a (X1 direction), the inner cylinder 3 is gradually pressed against the cooling hole 2 from the most deformed portion 3c toward the entrance / exit opening 3a.

このように、内筒体3の内部に所定の圧力Pを付与した際に冷却孔2に対する内筒体3の圧着順序を制御することができ、このような圧着順序の制御により、冷却孔2の内面と内筒体3の外面3bの間に空気溜りのない冷却構造を形成することができる。   As described above, when the predetermined pressure P is applied to the inside of the inner cylinder body 3, the pressure-bonding order of the inner cylinder body 3 with respect to the cooling holes 2 can be controlled. A cooling structure without air accumulation can be formed between the inner surface of the inner cylinder 3 and the outer surface 3 b of the inner cylinder 3.

(成形型の冷却構造の実施の形態2)
図2は本発明の成形型の冷却構造の実施の形態2を示した縦断面図である。図示する成形型の冷却構造10Aを構成する内筒体3Aは、左側の途中位置に厚みt1の最変形部3cを備え、ここを起点として、左側にて出入り開口3aに向かって厚みが漸次厚くなり(厚みt2、t3)、一方、右側では最変形部3cから最奥位置を通過し、右側にて出入り開口3aに向かって厚みが漸次厚くなっている(出入り開口3aに対応する位置の厚みはt4)。
(Embodiment 2 of Cooling Structure of Mold)
FIG. 2 is a longitudinal sectional view showing a second embodiment of the cooling structure for the mold of the present invention. An inner cylinder 3A constituting the cooling structure 10A for the forming mold shown in the figure includes a most deformed portion 3c having a thickness t1 at an intermediate position on the left side, and starting from this, the thickness gradually increases toward the entrance / exit opening 3a. (Thickness t2, t3), on the right side, the most deformed portion 3c passes through the deepest position, and on the right side, the thickness gradually increases toward the entrance / exit opening 3a (the thickness corresponding to the entrance / exit opening 3a). Is t4).

このように、内筒体3Aにおいて、その左右の一方の途中位置に最変形部3cがある形態であっても、内筒体3Aの内部から圧力Pを付与して内筒体3Aを塑性変形させた際に、最変形部3cが最初に塑性変形して冷却孔2に圧着し、ここを起点として左右それぞれ出入り開口3aに向かって漸次圧着していく(X2方向、X3方向)。   Thus, in the inner cylinder 3A, even if the most deformed portion 3c is in the middle of one of the left and right sides, the inner cylinder 3A is plastically deformed by applying the pressure P from the inside of the inner cylinder 3A. At this time, the most deformed portion 3c is first plastically deformed and crimped to the cooling hole 2 and gradually crimps toward the left and right opening / closing openings 3a from this point (X2 direction, X3 direction).

したがって、実施の形態1の成形型の冷却構造10と同様、内筒体3Aの内部に所定の圧力Pを付与した際に冷却孔2に対する内筒体3Aの圧着順序を制御することができ、このような圧着順序の制御により、冷却孔2の内面と内筒体3Aの外面3bの間に空気溜りのない冷却構造を形成することができる。   Therefore, similarly to the cooling structure 10 of the molding die of the first embodiment, when the predetermined pressure P is applied to the inside of the inner cylinder 3A, the pressure-bonding order of the inner cylinder 3A with respect to the cooling hole 2 can be controlled. By controlling the crimping order as described above, it is possible to form a cooling structure without air accumulation between the inner surface of the cooling hole 2 and the outer surface 3b of the inner cylinder 3A.

(成形型の冷却構造の実施の形態3)
図3は本発明の成形型の冷却構造の実施の形態3を示した縦断面図である。図示する成形型の冷却構造10Bを構成する内筒体3Bは、塑性変形性能の異なる複数種の素材から形成された複数のエリア部材同士が接着されて形成されたものである。
(Third Embodiment of Cooling Structure of Mold)
FIG. 3 is a longitudinal sectional view showing Embodiment 3 of the cooling structure for the mold according to the present invention. The inner cylinder 3B constituting the cooling structure 10B of the illustrated mold is formed by bonding a plurality of area members formed from a plurality of types of materials having different plastic deformation performance.

より具体的には、冷却孔2の最奥に位置するエリア部材3cが最変形部3cであり、他のエリア部材に比して最も塑性変形性能の高い金属から形成されている。   More specifically, the area member 3c located in the innermost part of the cooling hole 2 is the most deformed portion 3c, and is formed of a metal having the highest plastic deformation performance as compared with other area members.

そして、最変形部3cを起点として出入り開口3aに向かって順に、塑性変形性能が順次低い金属部材から形成されたエリア部材3d、3e、3fがあり、それらが相互に接着されている。   Then, there are area members 3d, 3e, and 3f formed of metal members having sequentially low plastic deformation performance in order from the most deformed portion 3c toward the entrance / exit opening 3a, which are bonded to each other.

たとえば塑性変形性能が高い順に、アルミニウム、銅、ニッケル、鉄、とした場合に、エリア部材3cをアルミニウムから形成し、エリア部材3d、3e、3fをそれぞれ銅、ニッケル、鉄から形成することができる。   For example, when aluminum, copper, nickel, and iron are used in descending order of plastic deformation performance, the area member 3c can be formed from aluminum, and the area members 3d, 3e, and 3f can be formed from copper, nickel, and iron, respectively. .

実施の形態1の成形型の冷却構造10と同様、内筒体3Bの内部に所定の圧力Pを付与した際に、最変形部3cから出入り開口3aに向かって漸次圧着がおこなわれ、冷却孔2に対する内筒体3Bの圧着順序が制御されることから、このような圧着順序の制御により、冷却孔2の内面と内筒体3Bの外面3bの間に空気溜りのない冷却構造を形成することができる。   Similar to the cooling structure 10 of the molding die of the first embodiment, when a predetermined pressure P is applied to the inside of the inner cylindrical body 3B, the pressure bonding is gradually performed from the most deformed portion 3c toward the entrance / exit opening 3a, and the cooling hole Since the crimping order of the inner cylinder 3B with respect to 2 is controlled, such a crimping order control forms a cooling structure without air accumulation between the inner surface of the cooling hole 2 and the outer surface 3b of the inner cylinder 3B. be able to.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1…成形型、2…冷却孔(の内面)、3,3A,3B…内筒体、3a…(冷却媒体の)出入り開口、3b…外面、3c…最変形部(最変形エリア)、3c、3d、3e,3f…エリア部材、10,10A,10B…成形型の冷却構造   DESCRIPTION OF SYMBOLS 1 ... Mold, 2 ... Cooling hole (inner surface), 3, 3A, 3B ... Inner cylindrical body, 3a ... Opening / exiting of (cooling medium), 3b ... Outer surface, 3c ... Most deformed part (most deformed area), 3c 3d, 3e, 3f ... area member, 10, 10A, 10B ... cooling structure of the mold

Claims (3)

成形型が備える冷却孔と、前記冷却孔に隙間なく取り付けられ、両端の一方端に冷却媒体の出入り開口を有し、該出入り開口以外は開口を具備しない内筒体と、から構成され、
前記内筒体は、他の部位に比して最も塑性変形し易い最変形部を有し、該最変形部から前記内筒体の前記出入り開口とは反対側の端である最奥位置を通過し又は通過せずに前記出入り開口に向かって塑性変形性能が漸次低くなっている成形型の冷却構造であって、
前記内筒体において、前記最変形部は他の部位に比して最も肉厚の薄い部位である成形型の冷却構造。
A cooling hole provided in the mold, and an inner cylinder that is attached to the cooling hole without a gap, has an opening / closing opening for a cooling medium at one end of both ends, and has no opening other than the opening / closing opening;
The inner cylinder has a most deformed portion that is most easily plastically deformed as compared to other parts, and has a deepest position that is an end on the opposite side of the inner cylinder from the entrance / exit opening. A cooling structure of the mold in which the plastic deformation performance is gradually lowered toward the entrance / exit opening without passing or passing ,
In the inner cylinder, the cooling structure of the molding die , wherein the most deformed portion is a thinnest portion compared to other portions .
前記内筒体は前記出入り開口を有し、該出入り開口とは反対側の端に前記最変形部を有している請求項1に記載の成形型の冷却構造。The mold inner cooling structure according to claim 1, wherein the inner cylinder has the entrance / exit opening, and has the most deformed portion at an end opposite to the entrance / exit opening. 成形型が備える冷却孔と、前記冷却孔に隙間なく取り付けられ、両端の一方端に冷却媒体の出入り開口を有し、該出入り開口以外は開口を具備しない内筒体と、から構成され、
前記内筒体は、前記出入り開口とは反対側の端に、他の部位に比して最も塑性変形し易い最変形部を有し、該最変形部から前記出入り開口に向かって塑性変形性能が漸次低くなっている成形型の冷却構造であって、
前記内筒体において、前記最変形部は他の部位に比して最も塑性変形性能の高い素材から形成され、該最変形部から前記出入り開口に向かって、塑性変形性能が漸次低くなる複数種の素材から形成されている形型の冷却構造。
A cooling hole provided in the mold, and an inner cylinder that is attached to the cooling hole without a gap, has an opening / closing opening for a cooling medium at one end of both ends, and has no opening other than the opening / closing opening;
The inner cylinder has a most deformable portion that is most easily plastically deformed as compared to other parts at an end opposite to the entrance / exit opening, and the plastic deformation performance from the most deformed portion toward the entrance / exit opening. Is a cooling structure of the mold that gradually becomes lower,
In the inner cylinder, the most deformed portion is formed of a material having the highest plastic deformation performance as compared with other parts, and the plastic deformation performance gradually decreases from the most deformed portion toward the entrance / exit opening. forming the shape type of cooling structure is the formation from the material.
JP2015209027A 2015-10-23 2015-10-23 Mold cooling structure Active JP6613805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015209027A JP6613805B2 (en) 2015-10-23 2015-10-23 Mold cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015209027A JP6613805B2 (en) 2015-10-23 2015-10-23 Mold cooling structure

Publications (2)

Publication Number Publication Date
JP2017080752A JP2017080752A (en) 2017-05-18
JP6613805B2 true JP6613805B2 (en) 2019-12-04

Family

ID=58710278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015209027A Active JP6613805B2 (en) 2015-10-23 2015-10-23 Mold cooling structure

Country Status (1)

Country Link
JP (1) JP6613805B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11156520A (en) * 1997-11-28 1999-06-15 Nissan Motor Co Ltd Die cooling structure
JP4650067B2 (en) * 2005-04-06 2011-03-16 日産自動車株式会社 Manufacturing method of mold cooling structure

Also Published As

Publication number Publication date
JP2017080752A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
KR102085716B1 (en) Heat exchanger and method for manufacturing the same
KR102365943B1 (en) Clad steel pipe manufacturing method
JP6137153B2 (en) Method for forming pin-shaped fins
CN101295685B (en) Heat pipe and manufacturing method thereof
WO2015114888A1 (en) Method for manufacturing heat exchanger and diameter expanding jig
US20080035313A1 (en) Heat-Conducting Base and Isothermal Plate having the same
US20150114604A1 (en) Heat pipe with ultra-thin capillary structure
US20160288232A1 (en) Shell and tube heat exchanger
JP6613805B2 (en) Mold cooling structure
JP2009074651A5 (en)
KR20120038621A (en) Manufacturing method of pipe using heat exchanger
KR100865983B1 (en) Method for manufacturing of flat plate heat pipe having heat sink and apparatus manufactured using the same
JP2009186090A (en) Heat exchanger and its manufacturing method
JP5982509B2 (en) Method for manufacturing double-pipe heat pipe and double-pipe heat pipe
TW201625372A (en) Manufacture method of radiator and radiator
US20160288240A1 (en) Welding method for shell and tube
JP2015528888A5 (en)
JP6899900B2 (en) Resin tube members, manufacturing methods for resin tube members, resin pipe fittings, and resin piping
JP6491005B2 (en) Method for manufacturing composite structure and temperature control panel
TWI539131B (en) Vacuum thermal conductor with strengthened distal ends and the method for making the same
JP2010179633A (en) Extrusion molding die
WO2016185959A1 (en) Heat exchanger and manufacturing method therefor
CN107550233A (en) A kind of aluminum pot and its newly answer bottom technique
CN208081071U (en) A kind of aluminum pot
JP2009090367A (en) Porthole extruded material made of aluminum alloy or the like

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R151 Written notification of patent or utility model registration

Ref document number: 6613805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151