JP6610269B2 - Conductor on electrolytic cell made of composite material of different metals and manufacturing method thereof - Google Patents

Conductor on electrolytic cell made of composite material of different metals and manufacturing method thereof Download PDF

Info

Publication number
JP6610269B2
JP6610269B2 JP2016002203A JP2016002203A JP6610269B2 JP 6610269 B2 JP6610269 B2 JP 6610269B2 JP 2016002203 A JP2016002203 A JP 2016002203A JP 2016002203 A JP2016002203 A JP 2016002203A JP 6610269 B2 JP6610269 B2 JP 6610269B2
Authority
JP
Japan
Prior art keywords
electrolytic cell
metal
conductor
electrolytic
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016002203A
Other languages
Japanese (ja)
Other versions
JP2017122268A (en
Inventor
範幸 長瀬
典久 土岐
達也 秋山
光治 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016002203A priority Critical patent/JP6610269B2/en
Publication of JP2017122268A publication Critical patent/JP2017122268A/en
Application granted granted Critical
Publication of JP6610269B2 publication Critical patent/JP6610269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、銅やニッケル等の非鉄金属の電解精錬で使用される電解槽上導電体に関する。   The present invention relates to a conductor on an electrolytic cell used in electrolytic refining of non-ferrous metals such as copper and nickel.

銅やニッケル等の非鉄金属の精錬方法として、非鉄電解精錬法が広く知られている。非鉄電解精錬法は、電解液に浸漬させたアノード(陽極板)とカソード(陰極板)との間に通電して電解液に溶解している銅(Cu)やニッケル(Ni)などの製錬対象金属(以降、目的金属と称する)をカソード表面上に電着させ、これにより高純度の目的金属を得るものである。非鉄電解精錬法は、電解液中の目的金属をアノードから供給する電解精製法と、電解液に目的金属を別途溶解させる電解採取法とに分類することができ、前者はアノードに精製前の目的金属からなる目的金属アノードを用い、後者はアノードに不溶性電極からなる不溶性アノードを用いる。   A nonferrous electrolytic refining method is widely known as a refining method for nonferrous metals such as copper and nickel. The non-ferrous electrolytic refining method is used to smelt copper (Cu), nickel (Ni), etc. dissolved in the electrolyte by energizing between the anode (anode plate) immersed in the electrolyte and the cathode (cathode plate). A target metal (hereinafter referred to as a target metal) is electrodeposited on the cathode surface, whereby a high-purity target metal is obtained. The non-ferrous electrolytic refining method can be classified into an electrolytic purification method in which the target metal in the electrolyte is supplied from the anode, and an electrolytic collection method in which the target metal is separately dissolved in the electrolytic solution. A target metal anode made of metal is used, and the latter uses an insoluble anode made of an insoluble electrode for the anode.

また、電着を終えた目的金属をカソードから剥ぎ取るパーマネントカソード法と、電着したカソードのまま製品とする種板電解法とがあり、前者は電着前のカソードにチタンやステンレス等のいわゆる母板を使用し、後者はパーマネントカソード法などで剥ぎ取った目的金属を矩形板状に加工したいわゆる種板を使用する。カソードに種板を使用する場合は、別の種板を裁断して得た吊手(リボンとも称する)を種板としてのカソードの上部にループ状に取り付け、電解槽の対向する両側壁上部に架け渡されたカソードビームに該吊手を通して吊り下げることで該矩形板状部分の下側大部分を電解槽内の電解液に浸漬させる。一方、カソードに母板を使用する場合やアノードの場合は、矩形板状の上側の両隅部にそれぞれ水平方向に支持部(耳部とも称する)が突出した形状であり、その支持部を電解槽の対向する両側壁上部で支持することで該矩形板状部分の下側大部分を電解槽内の電解液に浸漬させる。   In addition, there are a permanent cathode method in which the target metal after electrodeposition is peeled off from the cathode and a seed plate electrolysis method in which the electrodeposited cathode is used as a product. The former is a so-called titanium or stainless steel on the cathode before electrodeposition. A mother plate is used, and the latter uses a so-called seed plate obtained by processing a target metal stripped by a permanent cathode method into a rectangular plate shape. When using a seed plate for the cathode, a handle (also referred to as a ribbon) obtained by cutting another seed plate is attached to the upper part of the cathode as the seed plate in a loop shape, and is attached to the upper part of the opposite side walls of the electrolytic cell. The lower most part of the rectangular plate portion is immersed in the electrolytic solution in the electrolytic cell by suspending the suspended cathode beam through the suspension hand. On the other hand, in the case of using a base plate for the cathode or the anode, a support portion (also referred to as an ear portion) protrudes in the horizontal direction at both corners on the upper side of the rectangular plate shape, and the support portion is electrolyzed. The lower most part of the rectangular plate-like part is immersed in the electrolytic solution in the electrolytic cell by supporting the upper part of the opposite side walls of the tank.

ところで、一度に数多くのアノード及びカソードに通電して効率よく電解精錬を行うため、一列に並べた複数の電解槽の各々に上記したような複数の不溶性アノード又は目的金属アノードと、複数の母板又は種板とを交互に且つ互いに平行となるように配置して同時に通電することが行われている。例えば、銅精錬では、一列に並べた複数の電解槽の各々に、並列接続された30枚のアノードと、並列接続された29枚のカソードとを交互に且つ互いに平行に浸漬させ、更に隣接する2つの電解槽間においてこれら複数のアノードと複数のカソードとを直列に接続している。   By the way, in order to efficiently perform electrolytic refining by energizing a large number of anodes and cathodes at a time, a plurality of insoluble anodes or target metal anodes as described above are provided in each of a plurality of electrolytic cells arranged in a row, and a plurality of mother plates. Alternatively, the seed plates are alternately arranged so as to be parallel to each other and energized at the same time. For example, in copper refining, 30 anodes connected in parallel and 29 cathodes connected in parallel are alternately immersed in parallel with each other in each of a plurality of electrolytic cells arranged in a row, and further adjacent to each other. The plurality of anodes and the plurality of cathodes are connected in series between the two electrolytic cells.

上記した複数のカソード及び複数のアノードの電気的接続を実現するため、ブスバーとも称される電解槽上導電体が用いられている。電解槽上導電体は、一般に電解槽を構成する壁部のうち互いに隣接する電解槽の間に位置する隔壁若しくは仕切り板の上端面に載置されており、電解槽に沿ってその一端部から他端部にまで延在するように長尺の導電性部材で形成される。これにより、例えば特許文献1に示すように、その一方の側部に当該一方の側部側に位置する電解槽内に装入されている複数の第1電極板の支持部(例えばカソードのカソードビーム)を電気的に接続させると共に、もう一方の側部に当該もう一方の側部側に位置する電解槽内に装入されている、該複数の第1電極板とは反対極の複数の第2電極板の支持部(例えばアノードの支持部)を電気的に接続させることができる。   In order to realize the electrical connection between the plurality of cathodes and the plurality of anodes described above, a conductor on the electrolytic cell, also referred to as a bus bar, is used. The electric conductor on the electrolytic cell is generally placed on the upper end surface of the partition wall or partition plate located between the adjacent electrolytic cells in the wall portion constituting the electrolytic cell, and from one end portion along the electrolytic cell. It is formed of a long conductive member so as to extend to the other end. As a result, for example, as shown in Patent Document 1, a plurality of first electrode plate support portions (for example, cathodes of cathodes) inserted into an electrolytic cell located on one side of the one side. A plurality of electrodes opposite to the plurality of first electrode plates, which are electrically connected to the other side portion and are inserted into an electrolytic cell located on the other side portion. The support part of the second electrode plate (for example, the support part of the anode) can be electrically connected.

かかる構成により、多数のカソード及び多数のアノードに対して一度に効率よく通電を行うことが可能になる。この通電により複数のカソードの表面上に所定の厚さまで目的金属を電着させた後、電解槽内の電解液からカソードを引き上げて電着した目的金属を回収し、再度電着前のカソードを電解槽に浸漬させて通電することが繰り返される。例えば電気ニッケルを種板電解法で作製する場合は、電解液に浸漬されたアノードと種板のカソードとの間に通電して電解精錬を行った後、電着されたカソードを電解液から引き上げ、カソードビームを抜き取って吊手の付いたまま製品として出荷し、新たな種板のカソードをカソードビームに吊り下げて電解液内に浸漬させ、電解液を介して該カソードとアノードとの間で通電する工程が繰り返される。   With such a configuration, it is possible to efficiently energize a large number of cathodes and a large number of anodes at a time. After electrification, the target metal is electrodeposited on the surface of a plurality of cathodes to a predetermined thickness, and then the cathode is pulled up from the electrolyte in the electrolytic cell to recover the electrodeposited target metal, and the cathode before electrodeposition is again mounted. It is repeated that electricity is immersed in an electrolytic cell. For example, in the case of producing electrolytic nickel by the seed plate electrolysis method, after conducting electrolytic refining by energizing between the anode immersed in the electrolyte and the cathode of the seed plate, the electrodeposited cathode is pulled up from the electrolyte. The cathode beam is extracted and shipped as a product with a hanging hand, and the cathode of a new seed plate is suspended in the cathode beam and immersed in the electrolyte solution, and the cathode and anode are interposed between the cathode and anode via the electrolyte solution. The process of energizing is repeated.

なお、電解槽内からカソードを引き上げる際は、少なくともその電解槽を迂回してそれ以外の電解槽での通電を継続するのが望ましいため、特許文献2に示すような、離れた2つの電解槽上導電体を短絡用の導体(以下、短絡器とも称する)を用いて電気的に接続する方法が用いられている。   When pulling up the cathode from the electrolytic cell, it is desirable that at least the electrolytic cell is bypassed and energization is continued in the other electrolytic cells, so that two separate electrolytic cells as shown in Patent Document 2 are used. A method of electrically connecting the upper conductor using a short-circuiting conductor (hereinafter also referred to as a short-circuit) is used.

ところで、上記したような電解槽上導電体によって行われる電気的接続では、電解槽上導電体とアノードやカソードとの電気的接続部の接続状態が電解精錬の効率に大きく影響する。また、電解槽上導電体自体の電気抵抗も同様に電解精錬の効率に影響する。しかしながら、電解槽では上記したように電解液に対してカソードの引き上げと装入とが繰り返されるので、電解槽の隔壁上端面には電解液が飛び散りやすく、そのため、上記した電解槽上導電体の電気的接続部に電気抵抗の大きな酸化物、硫酸塩、塩化物などの皮膜が形成されて電解精錬の効率が低下することがあった。   By the way, in the electrical connection performed by the above-described electrolyzer on the electrolyzer, the connection state of the electrical connection part between the electrolyzer on the electrolyzer and the anode or the cathode greatly affects the efficiency of electrolytic refining. Similarly, the electrical resistance of the conductor on the electrolytic cell itself affects the efficiency of electrolytic refining. However, in the electrolytic cell, as described above, the cathode is repeatedly lifted and charged with respect to the electrolytic solution, so that the electrolytic solution is likely to be scattered on the upper end surface of the partition wall of the electrolytic cell. In some cases, a film of oxide, sulfate, chloride, or the like having a large electric resistance is formed at the electrical connection portion, and the efficiency of electrolytic refining may be reduced.

更に、上記皮膜の形成される位置や皮膜の厚みは様々であり、皮膜が形成された電気的接続部では電流が減少するのに対して、皮膜が形成されていない電気的接続部では電流が増加し、カソードとアノードとの間に流れる電流にばらつきが生ずることがあった。その結果、局部的な電流集中が起こって電着物が樹枝状の形態になり、短絡が発生して電流効率が著しく低下することがあった。また、電気的接続部で電流が増加することによって、電解槽上導電体が過熱されて変形することがあった。電解槽上導電体が変形すると、その交換作業が必要になって生産効率が低下することになる。このような皮膜形成に起因する問題を防ぐため、特許文献3には電解槽上導電体に電解液等の液体を流す方法が提案されている。   Furthermore, the position where the film is formed and the thickness of the film vary, and the current decreases in the electrical connection part where the film is formed, whereas the current flows in the electrical connection part where the film is not formed. As a result, the current flowing between the cathode and the anode may vary. As a result, local current concentration occurs, and the electrodeposits have a dendritic form, causing a short circuit and significantly reducing current efficiency. Moreover, when the current increases at the electrical connection portion, the conductor on the electrolytic cell may be overheated and deformed. If the conductor on the electrolytic cell is deformed, the replacement work is required and the production efficiency is lowered. In order to prevent such problems due to the formation of a film, Patent Document 3 proposes a method of flowing a liquid such as an electrolytic solution through a conductor on an electrolytic cell.

特許第3925983号Japanese Patent No. 3925983 特開2000−104193号公報JP 2000-104193 A 実開昭60−000369号公報Japanese Utility Model Publication No. 60-000369

上記した特許文献3の方法によれば、電解槽上導電体上の皮膜の大きな成長は抑制できるものの、電解液等の液体が電解槽上導電体の表面全体に広がるので、かえって全体的な電気抵抗が増大するおそれがある。また、電気的接続部は一般に電解槽の最も高い位置にあるので、液体を電気的接続部に提供してその部分を適度に湿潤させるのは容易ではなかった。   According to the method of Patent Document 3 described above, although the large growth of the film on the electrolyzer on the electrolytic cell can be suppressed, the liquid such as the electrolyte spreads over the entire surface of the electrolyzer on the electrolyzer. Resistance may increase. Also, since the electrical connection is generally at the highest position of the electrolytic cell, it was not easy to provide liquid to the electrical connection to wet the part appropriately.

そこで、酸性溶液を用いた洗浄や研磨により電気的接続部に形成した皮膜を除去することが行われている。しかし、これら除去法は、長期間に亘って効果を持続させるのは困難であるため、例えばカソードを電解液から引き上げる毎に洗浄や研磨を行う必要があった。このような頻繁な洗浄や研磨は生産性の低下につながるうえ、電解槽上導電体の減肉が進みやすくなって電解槽上導電体自体の電気抵抗が増加することがあった。本発明は上記した従来の問題に鑑みてなされたものであり、銅やニッケルの電解精錬において使用する、電気抵抗を長期間に亘って小さく維持でき且つ安価な構造の電解槽上導電体を提供することを目的とする。   Therefore, removal of the film formed on the electrical connection portion by washing or polishing using an acidic solution is performed. However, since these removal methods are difficult to maintain the effect for a long period of time, it is necessary to perform cleaning and polishing each time the cathode is lifted from the electrolytic solution, for example. Such frequent cleaning and polishing leads to a decrease in productivity, and the thinning of the conductor on the electrolytic cell tends to proceed, and the electrical resistance of the conductor on the electrolytic cell itself may increase. The present invention has been made in view of the above-described conventional problems, and provides a conductor on an electrolytic cell that can be used for electrolytic refining of copper and nickel and can maintain an electrical resistance small for a long period of time and has an inexpensive structure. The purpose is to do.

本発明者らは、電解槽上導電体において電解液などによる腐食の低減と電気抵抗の低減を企図してアノードやカソードと電気的接続する部分及び短絡器を載せる部分を銅製にすると共に、価格の低減を企図してそれ以外の本体部分をアルミニウム製とすることを試みた。   The inventors of the present invention intended to reduce the corrosion caused by the electrolytic solution and the electric resistance in the conductor on the electrolytic cell, and to make the part electrically connected to the anode and the cathode and the part on which the short-circuiting device is placed made of copper. Attempts were made to make the other body part aluminum.

しかし、銅とアルミニウムは相互溶融性が悪く、また電解槽上導電体は大型で熱容量が大きいため銅とアルミニウムを溶接で良好に接合するのが困難であった。そこで、銅とアルミニウムを直接溶接するのではなく、銅とアルミニウムが予め強固に接合された複合材を用意し、この複合材に対して銅又はアルミニウムからなる部材を同種の金属面同士を対向させて溶接することにより良好に作製できることを見出し、本発明を完成するに至った。   However, since copper and aluminum have poor mutual meltability, and the conductor on the electrolytic cell is large and has a large heat capacity, it is difficult to bond copper and aluminum well by welding. Therefore, instead of directly welding copper and aluminum, prepare a composite material in which copper and aluminum are firmly bonded together in advance, and make the metal surface of the same type face each other with a member made of copper or aluminum. As a result, the present invention was completed by finding that it can be satisfactorily produced by welding.

すなわち、本発明に係る電解槽上導電体は、縦横方向にマトリックス状に並べられた電解精錬用の複数の電解槽の各々において交互に且つ互いに平行に配置されたアノード群及びカソード群に通電を行う電解槽上導電体であって、各電解槽の対向する両壁部のうちの一方の上端面において端から端まで延在する第1の金属からなる長尺の基部と、接続端子として該基部の上面に設けられた、該第1の金属とは異なる第2の金属からなる板状の電気的接続部とから構成され、該電気的接続部は該第1又は該第2の金属からなる板状介在部を介して該基部に結合されており、該介在部が異種金属と結合する界面は全面に亘って接合されており、同種金属と結合する界面は少なくとも周縁部が溶接されており、前記第1の金属がアルミニウム又はその合金であり、前記第2の金属が銅又はその合金であることを特徴としている。 That is, the electrolyzer on the electrolytic cell according to the present invention energizes anode groups and cathode groups arranged alternately and in parallel in each of a plurality of electrolytic cells for electrolytic refining arranged in a matrix in the vertical and horizontal directions. An electrolyzer on the electrolytic cell to be used, which is a long base portion made of a first metal extending from one end to the other at the upper end surface of one of the opposing wall portions of each electrolytic cell, and A plate-like electrical connection portion made of a second metal different from the first metal, provided on the upper surface of the base portion, and the electrical connection portion is made of the first or the second metal Is bonded to the base via a plate-shaped intervening portion, and the interface where the intervening portion is bonded to a dissimilar metal is bonded over the entire surface, and at least the peripheral edge is welded to the interface connecting to the same metal. The first metal is aluminum or An alloy is characterized in that the second metal is copper or an alloy thereof.

また、本発明に係る電解槽上導電体の製造方法は、縦横方向にマトリックス状に並べられた電解精錬用の複数の電解槽の各々において交互に且つ互いに平行に配置されたアノード群及びカソード群に通電を行う電解槽上導電体の製造方法であって、各電解槽の対向する両壁部のうちの一方の上端面においてその端から端まで延在する第1の金属からなる基部としての長尺部材と、該第1の金属とは異なる第2の金属からなる接続端子としての板状部材と、これら長尺部材及び板状部材の間に介在させる介在部材とを用意し、該介在部材が第1の金属の場合はその一方の面を該長尺部材の上面に圧接させてからその他方の面を該板状部材に当接させた状態でその当接面の少なくとも外周部を溶接で接合し、該介在部材が第2の金属の場合はその一方の面を該板状部材の下面に圧接させてからその他方の面を該長尺部材の上面に当接させた状態でその当接面の少なくとも外周部を溶接で接合し、前記第1の金属がアルミニウム又はその合金であり、前記第2の金属が銅又はその合金であることを特徴としている。 In addition, the method for producing a conductor on an electrolytic cell according to the present invention includes an anode group and a cathode group arranged alternately and in parallel with each other in a plurality of electrolytic cells for electrolytic refining arranged in a matrix in the vertical and horizontal directions. A method of manufacturing a conductor on an electrolytic cell that energizes the first and second electrodes as a base made of a first metal extending from one end to the other at the upper end surface of one of the opposing wall portions of each electrolytic cell. A long member, a plate member as a connection terminal made of a second metal different from the first metal, and an interposition member interposed between the long member and the plate member are prepared, When the member is the first metal, at least the outer peripheral portion of the abutting surface is brought into contact with the plate-like member with one surface pressed against the upper surface of the long member. If the intervening member is a second metal The square surfaces joined by welding at least the outer peripheral portion from the is pressed against the lower surface of the abutment surface of the other surface being in contact with the upper surface of the long scale member of the plate-like member, said first The metal is aluminum or an alloy thereof, and the second metal is copper or an alloy thereof .

本発明によれば、電解液等による腐食や外部からの機械的な力に対して耐久性があり、アノード群やカソード群等への電気的接続部での電気抵抗を小さく維持でき、簡易に修理することが可能な電解槽上導電体を安価に提供することができる。   According to the present invention, it is durable against corrosion caused by an electrolyte or the like and mechanical force from the outside, the electrical resistance at the electrical connection part to the anode group, the cathode group, etc. can be kept small, and easily A conductor on the electrolytic cell that can be repaired can be provided at low cost.

本発明の電解槽上導電体が好適に用いられる複数の電解槽からなる銅電解精錬設備の模式的な平面図である。It is a typical top view of the copper electrolytic refining equipment which consists of a plurality of electrolytic cells in which the electric conductor on electrolytic cell of the present invention is used suitably. 本発明の電解槽上導電体の一具体例を示す3面図であり、溶接箇所は点線で、圧接箇所は1点鎖線で示されている。It is a 3rd page figure which shows one specific example of the conductor on an electrolytic vessel of this invention, the welding location is shown with the dotted line, and the press-contact location is shown with the dashed-dotted line. 図2の電解槽上導電体の短絡用接続部に短絡器が接続されている様子を示す斜視図である。It is a perspective view which shows a mode that the short circuit is connected to the connection part for a short circuit of the conductor on an electrolytic vessel of FIG. 実施例1の電解槽上導電体を構成する各部材を示す斜視図である。FIG. 3 is a perspective view showing each member constituting the electrolyzer on the electrolytic cell of Example 1. 図2の電解槽上導電体を構成する介在部を有する基部の3面図及びその他の部材の斜視図であり、3面図では圧接箇所は1点鎖線で示されている。It is the 3rd page figure of the base which has the interposition part which comprises the conductor on an electrolytic cell of FIG. 2, and a perspective view of other members, In the 3rd page figure, the press-contact location is shown with the dashed-dotted line. 実施例2の電解槽上導電体を構成する基部の斜視図である。It is a perspective view of the base which comprises the electrolyzer on-electrolyzer of Example 2. FIG. 図6の基部を用いて作製した電解槽上導電体の3面図であり、溶接箇所は点線で、圧接箇所は1点鎖線で示されている。It is a 3rd page figure of the conductor on an electrolytic cell produced using the base of FIG. 6, and the welding location is shown by the dotted line and the press-contact location is shown by the dashed-dotted line.

以下、本発明の電解槽上導電体の一具体例について図面を参照しながら詳しく説明する。先ず、本発明の電解槽上導電体が好適に用いられる銅電解精錬設備について説明する。   Hereinafter, a specific example of the electrolyzer according to the present invention will be described in detail with reference to the drawings. First, the copper electrolytic refining equipment in which the electrolyzer according to the present invention is suitably used will be described.

銅電解精錬設備では効率のよい電解精錬のため、例えば複数の電解槽をマトリックス状に並べてそれらの各々において交互に且つ互いに平行に配置されたアノード群及びカソード群に通電することが行われている。例えば図1に示す電解槽の配置例では、紙面横方向に並べられた6個の電解槽V〜Vからなる電解槽の列が紙面縦方向に4列配置された6×4のマトリックス状の構成になっており、各電解槽の横方向の両壁部に電解槽上導電体が配置されている。これら電解槽上導電体のうち、隣接する2つの電解槽の間に位置する壁部の上端面に設けられている電解槽上導電体には、右側から一方の電解槽のアノード群Aが電気的に接続すると共に、左側からもう一方の電解槽のカソード群Cが電気的に接続している。 For efficient electrolytic refining in a copper electrolytic refining facility, for example, a plurality of electrolytic cells are arranged in a matrix and in each of them, an anode group and a cathode group that are alternately arranged in parallel with each other are energized. . For example, in the arrangement example of the electrolytic cell shown in FIG. 1, a 6 × 4 matrix in which four columns of electrolytic cells composed of six electrolytic cells V 1 to V 6 arranged in the horizontal direction on the paper are arranged in the vertical direction on the paper. The electrolyzer on the electrolytic cell is disposed on both lateral wall portions of each electrolytic cell. Among these electrolyzers on the electrolytic cell, the electrolyzer on electrolyzer provided on the upper end surface of the wall located between two adjacent electrolyzers is electrically connected to the anode group A of one electrolytic cell from the right side. The cathode group C of the other electrolytic cell is electrically connected from the left side.

また、横方向の末端に位置する電解槽(以下、末端電解槽とも称する)V及びVは、横方向では片側の電解槽V又はVにのみ隣接するので、これら電解槽VやVに隣接しない側の壁部(非隣接壁部と称する)上の電解槽上導電体にはアノード群A又はカソード群Cのみが接続している。更に、それら非隣接壁部上の電解槽上導電体のうち、紙面左下及び左上の隅部の電解槽に設けられた電解槽上導電体2は電源Eに接続しており、それら以外は縦方向に隣接する2つずつが一体化して大型の電解槽上導電体3を形成している。これにより、複数の電解槽内のアノード群A及びカソード群Cは、矢印で示す方向に通電可能となるように全体として直列回路を構成している。なお、縦方向とは、アノードやカソードが並ぶ方向であり、アノード又はカソードの表面の法線方向である。 In addition, since the electrolytic cells (hereinafter also referred to as terminal electrolytic cells) V 1 and V 6 located at the lateral ends are adjacent to only one electrolytic cell V 2 or V 5 in the lateral direction, these electrolytic cells V 2. In addition, only the anode group A or the cathode group C is connected to the electric conductor on the electrolytic cell on the wall portion not adjacent to V 5 (referred to as a non-adjacent wall portion). Furthermore, among the electrolyzers on the non-adjacent walls, the electrolyzer 2 provided in the electrolyzers at the lower left and upper left corners of the page is connected to the power source E, and the others are vertically Two adjacent in the direction are integrated to form a large electrolytic cell conductor 3. As a result, the anode group A and the cathode group C in the plurality of electrolytic cells constitute a series circuit as a whole so as to be energized in the direction indicated by the arrow. The longitudinal direction is a direction in which the anode and the cathode are arranged, and is a normal direction of the surface of the anode or the cathode.

次に上記の大型の電解槽上導電体3の一具体例について図2を参照しながら詳細に説明する。この図2に示す電解槽上導電体3は、前述したように図1の紙面縦方向に隣接する2つの末端電解槽に沿ってこれらの非隣接壁部の上端面で一直線状に延在しており、略四角柱状体を横にした形状の第1の金属からなる基部31と、該基部31の上面部において2つの末端電解槽にそれぞれ対応する位置に設けられた、該第1の金属とは異なる第2の金属からなる2枚の長尺板状の通電用接続部32とから構成され、これら2枚の通電用接続部32は、各々該基部31との間に板状の介在部33が介在している。該基部31の長手方向両端部には、更に2枚の該第2の金属からなる矩形板状の短絡用接続部34がそれぞれ矩形板状の第2介在部35を介して該基部31の上面に設けられている。   Next, a specific example of the large electrolytic cell conductor 3 will be described in detail with reference to FIG. The electrolyzer 3 on the electrolytic cell shown in FIG. 2 extends in a straight line at the upper end surfaces of these non-adjacent walls along the two terminal electrolytic cells adjacent to each other in the vertical direction in FIG. And a base 31 made of a first metal having a substantially square columnar shape and a first metal provided at a position corresponding to each of two terminal electrolytic cells on the upper surface of the base 31. And two long plate-like energizing connection portions 32 made of a second metal different from the above, and these two energizing connection portions 32 are each provided in the form of a plate between the base portion 31. The part 33 is interposed. Two rectangular plate-like short-circuit connection portions 34 made of the second metal are further provided at both ends in the longitudinal direction of the base portion 31 via the rectangular plate-like second interposition portions 35. Is provided.

これら2枚の通電用接続部32には、一方にアノード群Aが電気的に接続され、他方にカソード群Cが電気的に接続される。また、短絡用接続部34には、必要に応じて図3に示すような短絡器Sが電気的に接続され、これにより他の大型の電解槽上導電体と短絡できるようになっている。なお、短絡用接続部34と短絡器Sとの接触面積は、これら2枚の通電用接続部32のうち短絡器Sに近い方がアノード群A又はカソード群Cと接触する面積よりも大きいことが望ましい。   The anode group A is electrically connected to one of the two energization connection portions 32, and the cathode group C is electrically connected to the other. In addition, a short circuit S as shown in FIG. 3 is electrically connected to the short-circuit connection portion 34 as necessary, so that it can be short-circuited to another large electrolyzer on the electrolytic cell. In addition, the contact area between the short-circuit connection portion 34 and the short-circuit device S is larger in the area closer to the short-circuit device S than the contact surface with the anode group A or the cathode group C among the two energization connection portions 32. Is desirable.

かかる接触面積を確保できれば、カソード群Cから電解槽上導電体に流れる電流のほとんどを、短絡器を介して他の電解槽上導電体へ送り出したり、他の電解槽上導電体から短絡器を介して受け入れる電流によって代替したりすることが可能になる。例えば、図1に示す上から3列目の末端電解槽Vと4列目の末端電解槽Vの非隣接壁部上の電解槽上導電体の間の点線の位置に短絡器Sを設置することで、2列目の末端電解槽Vのカソード群Cから電解槽上導電体3に流れる電流を3列目及び4列目の電解槽に流すことなく4列目の末端電解槽Vの非隣接壁部上の電解槽上導電体2に送り出すことができる。 If such a contact area can be secured, most of the current flowing from the cathode group C to the conductor on the electrolytic cell is sent to another conductor on the electrolytic cell via the short circuit, or the short circuit from the conductor on the other electrolytic cell is sent. It becomes possible to substitute by the electric current received through. For example, the short-circuit unit S in a position indicated by a dotted line between the third column of the terminal electrolytic cell V 1 and the fourth column terminal non neighboring walls on the electrolytic cell on the conductor of the electrolytic cell V 1 from the top of FIG. 1 By installing, the terminal electrolytic cell in the fourth row without flowing the current flowing from the cathode group C of the terminal electrolytic cell V 1 in the second row to the electrolyzer 3 on the electrolytic cell through the electrolytic cells in the third and fourth rows. It can be sent to the electrolyzer 2 on the non-adjacent wall of V 1 .

上記した通電用接続部32の各々は、一部が基部31の長手方向に延在する側部から水平方向にはみ出た構造になっている。そして、非隣接壁部の上端面に基部31だけが収まる大きさの段差部又は溝部を設けることで、上記のはみ出た部分の下面をほぼ全面に亘って該非隣接壁部の上端面に当接させることができる。これにより、アノード群Aやカソード群Cの荷重が通電用接続部32のみを介して隔壁の上端面にかかるので、これら通電用接続部32にねじれなどの不均一な力が加わるのを抑えることができる。なお、上記のはみ出した部分のみを壁部上端面に載置し、基部31は壁部の側方で別途支持するようにしてもよい。この場合は、基部31の大きさを壁部の巾等に制限されることなく自由に定めることができる。   Each of the energizing connection portions 32 has a structure in which a part protrudes in the horizontal direction from a side portion extending in the longitudinal direction of the base portion 31. Then, by providing a stepped portion or groove portion having a size that only the base portion 31 can be accommodated in the upper end surface of the non-adjacent wall portion, the lower surface of the protruding portion substantially contacts the upper end surface of the non-adjacent wall portion. Can be made. Thereby, since the load of the anode group A and the cathode group C is applied to the upper end surface of the partition wall only through the energizing connection portion 32, it is possible to suppress the non-uniform force such as twisting from being applied to the energizing connection portion 32. Can do. Note that only the protruding portion may be placed on the upper end surface of the wall, and the base 31 may be separately supported on the side of the wall. In this case, the size of the base 31 can be freely determined without being limited by the width of the wall.

基部31の材質である第1の金属は純アルミニウム、アルミニウム合金などからなり、通電用接続部32及び短絡用接続部34の材質である第2の金属は、第1の金属とは異種金属の純銅、リン青銅、銅合金などからなる。このようにアノード群Aやカソード群Cとの接続端子の役割を担う通電用接続部32及び短絡器との接続端子の役割を担う短絡用接続部34を銅材で形成することにより、これら接続部の電気抵抗を小さく維持することができる。またこれら銅材からなる接続部はアルミニウム製の基部を介して互いに電気的に接続されるので、電解槽上導電体全体として軽量で且つ高剛性にできる。   The first metal that is the material of the base portion 31 is made of pure aluminum, an aluminum alloy, or the like, and the second metal that is the material of the connection portion 32 for energization and the short-circuit connection portion 34 is a different metal from the first metal. It consists of pure copper, phosphor bronze, copper alloy, etc. Thus, by forming the connection part 32 for energization which plays the role of the connection terminal with the anode group A and the cathode group C, and the connection part 34 for short circuit which plays the role of the connection terminal with the short circuit with copper material, these connections are formed. The electrical resistance of the part can be kept small. Moreover, since the connection part which consists of these copper materials is mutually electrically connected via the base part made from aluminum, it can be made lightweight and highly rigid as a whole conductor on an electrolytic cell.

これにより、通電用接続部32の上面にクレーンによって多数のアノード群Aやカソード群Cを乗せたり該上面からこれらを取り上げたりする操作の繰り返しや、短絡用接続部34に短絡器Sをクランプ等で固定したり取り外したりする操作の繰り返しを行っても、ねじれや反りなどの生じにくい機械的な耐久性に優れた電解槽上導電体にすることができる。また、電解槽上導電体のうちアノード群Aやカソード群Cに最も近い側となる電解槽に対向する縁部は比較的酸化されにくい銅製の通電用接続部32が覆うことになるので、電解液が飛散しても腐食しにくい化学的耐久性に優れた電解槽上導電体にすることができる。   Accordingly, repeated operation of placing a large number of anode groups A and cathode groups C on the upper surface of the energizing connection portion 32 with a crane or picking them up from the upper surface, clamping the short circuit S to the short-circuit connection portion 34, etc. Even if the operation of fixing and removing with the above is repeated, it is possible to obtain a conductor on an electrolytic cell excellent in mechanical durability that is unlikely to be twisted or warped. Moreover, since the edge part which opposes the electrolytic cell nearest to the anode group A and the cathode group C among the conductors on the electrolytic cell is covered with the connection part 32 made of copper, which is relatively less oxidized, It is possible to provide an on-electrolyzer conductor excellent in chemical durability that is resistant to corrosion even when the liquid scatters.

ところで、前述したように銅とアルミニウムとは相互溶融性が悪いので、電解槽上導電体3のように熱容量が大きいと、銅材からなる通電用接続部32や短絡用接続部34をアルミニウム材からなる基部31に溶接するのは難しい。そこで、上記の通電用接続部32や短絡用接続部34となる銅又はその合金の板材の下面にこれとほぼ同等の平面形状を有するアルミニウム又はその合金の板材を全面に亘って圧接させて板状の異種金属複合材を作製し、この異種金属複合材のアルミニウム側の面を上記の基部31となるアルミニウム母材に対して溶接することで電解槽上導電体3を簡易に作製することができる。   By the way, as described above, since copper and aluminum have poor mutual meltability, when the heat capacity is large like the conductor 3 on the electrolytic cell, the current-carrying connection portion 32 and the short-circuit connection portion 34 made of a copper material are made of an aluminum material. It is difficult to weld to the base 31 made of Therefore, a plate made of aluminum or an alloy thereof having a plane shape substantially equivalent to the lower surface of the copper or alloy plate used as the energizing connection part 32 or the short-circuiting connection part 34 is pressed over the entire surface. It is possible to easily produce the electric conductor 3 on the electrolytic cell by welding a dissimilar metal composite material and welding the aluminum side surface of the dissimilar metal composite material to the aluminum base material serving as the base 31. it can.

あるいは、上記の基部31となるアルミニウム又はその合金からなる四角柱状体を用意し、これを横にしてその上面の一部に上記した通電用接続部32や短絡用接続部34とほぼ同等の平面形状を有する銅又はその合金の板材を圧接させて異種金属複合材からなる基部を作製し、この異種金属複合材の銅側の面に上記の通電用接続部32や短絡用接続部34となる銅製の板状部材を溶接することで電解槽上導電体3を作製してもよい。   Alternatively, a square columnar body made of aluminum or an alloy thereof serving as the base portion 31 is prepared, and a plane substantially equal to the above-described energizing connection portion 32 or the short-circuit connection portion 34 is formed on a part of the upper surface thereof. A base made of a dissimilar metal composite material is produced by press-contacting a copper plate having a shape or an alloy thereof, and the above-described current-carrying connection portion 32 or short-circuit connection portion 34 is formed on the copper-side surface of the dissimilar metal composite material. The electrolytic cell upper conductor 3 may be fabricated by welding a copper plate-like member.

上記のいずれの作製方法においても、溶接はアルミニウム同士又は銅同士の界面で行われるため、一般的な溶接法である例えばガスバーナとロウ材によるロウ接やアーク溶接、TIG溶接などの融接が使用できる。このような同種の金属同士の溶接であれば、銅とアルミニウムの溶接よりも溶接作業が容易であり、時間的、作業空間的、熱的な制約から解放され、また、修理も容易になる。更に同種の金属同士が溶接により強固に結合されるので、機械的衝撃が加わったり高温環境にさらされたりする条件や、大電流が流れる運転条件であっても溶接部が剥離しにくく、耐久性に優れている。   In any of the above production methods, since welding is performed at the interface between aluminum or copper, a general welding method such as brazing with a gas burner and a brazing material, arc welding, TIG welding or the like is used. it can. Such welding of metals of the same type is easier to weld than copper and aluminum, and is freed from time, work space, and thermal constraints, and is easy to repair. Furthermore, the same kind of metals are firmly bonded together by welding, so the welded part is difficult to peel off even under conditions where mechanical shock is applied or exposed to high-temperature environments, or operating conditions where a large current flows. Is excellent.

なお、上記の同種金属の溶接部分は、アルミニウム面同士の溶接であれば溶融後に凝固することで近傍のアルミニウム材と連続性をもつ一体化した1つの部材となり、銅面同士の溶接であれば溶融後凝固することで近傍の銅材と連続性をもつ一体化した1つの部材となる。このように溶接部分はその近傍とほぼ同種類の材質となるが、作業時間の短縮、熱エネルギーの節約、接合の確実性のために溶接の際に融剤を使用して該溶接部分の融点を下げる場合がある。   In addition, if the welding part of said same kind of metal is welding between aluminum surfaces, it will become one integrated member which has continuity with the nearby aluminum material by solidifying after melting, and if welding between copper surfaces By solidifying after melting, it becomes one integrated member having continuity with the nearby copper material. In this way, the welded part is made of almost the same type of material as its vicinity, but the melting point of the welded part is reduced by using a flux during welding in order to shorten the working time, save thermal energy, and ensure the joining. May be lowered.

このように融剤を使用して溶接すると、溶接後の溶接部分は該溶接部分を挟んだ両側に比べて低融点になる。この低融点の溶接は溶接痕となって例えば層状に残存するが、この層状部分は電気的導通に問題ない程度に中空部が存在していてもよい。また、溶接では対向する同種金属同士の界面を全面に亘って溶接せずに、例えば中央部は当接状態のまま維持してその周囲のみを溶接してもよい。   When welding is performed using a flux as described above, the welded portion after welding has a lower melting point than both sides sandwiching the welded portion. Although this low melting point welding becomes a welding mark and remains in a layered state, for example, this layered part may have a hollow portion to the extent that there is no problem in electrical conduction. Further, in welding, the interface between the same type of opposing metals may not be welded over the entire surface. For example, the center portion may be maintained in a contact state and only the periphery thereof may be welded.

一方、銅とアルミニウムからなる異種金属複合材は、圧延接着法によるクラッド接合材か、爆着法による爆発圧着材を用いて作製するのが好ましい。これらの製法で得た異種金属複合材は、一般的な溶接よりも強固な異種金属間結合が得られるという利点がある。よって、このような異種金属複合材を用いて製作した電解槽上導電体は、上記した機械的衝撃や大電流や高温環境の条件下においても、銅とアルミニウムの接合部分が剥離しにくく、耐久性に優れる。   On the other hand, the dissimilar metal composite material composed of copper and aluminum is preferably produced using a clad bonding material by a rolling adhesion method or an explosive pressure bonding material by an explosion method. The dissimilar metal composite material obtained by these manufacturing methods has an advantage that a bond between dissimilar metals stronger than general welding can be obtained. Therefore, a conductor on an electrolytic cell manufactured using such a dissimilar metal composite material is resistant to peeling at the joint between copper and aluminum even under the above-described mechanical shock, large current and high temperature environment conditions. Excellent in properties.

なお、電解槽上導電体を使用しているうちに異種金属接合材が腐食や磨耗により減肉することがある。この減肉した異種金属接合材を交換する際は、上記したロウ接の場合は低融点層を加熱して融解させることにより、電解槽上導電体を傷めることなく、古い異種金属接合材を容易に取り外すことができる。   In addition, the dissimilar metal joining material may be thinned due to corrosion or wear while using the conductor on the electrolytic cell. When replacing the thinned dissimilar metal bonding material, in the case of brazing, the low melting point layer is heated and melted so that the old dissimilar metal bonding material can be easily removed without damaging the conductor on the electrolytic cell. Can be removed.

(実施例1)
図2に示すような電解槽上導電体を作製して銅電解精錬設備に用い性能を調べた。具体的には、先ずアルミニウム製の四角柱状体を用意し、これを横転させた時の上面に全面に亘って銅製の板状部材を爆着により接合した。このようにして、図4(a)に示すような異種金属接合体10を2個作製した。また、図4(b)に示すような、上記異種金属接合体10の長手方向に垂直な矩形断面形状と同じ矩形断面形状を有する2個のアルミニウム製の第1直方体ブロック11と、同様に異種金属接合体10と同じ矩形断面形状を有し且つ第1直方体ブロック11よりも長さの短い1個のアルミニウム製の第2直方体ブロック12とを作製した。
Example 1
A conductor on the electrolytic cell as shown in FIG. 2 was prepared and used for a copper electrolytic refining facility, and the performance was examined. Specifically, first, an aluminum square columnar body was prepared, and a copper plate-like member was bonded to the entire upper surface when the roll was rolled over by explosion bonding. In this way, two dissimilar metal joined bodies 10 as shown in FIG. Also, as shown in FIG. 4 (b), two aluminum first rectangular parallelepiped blocks 11 having the same rectangular cross-sectional shape as the rectangular cross-sectional shape perpendicular to the longitudinal direction of the dissimilar metal joined body 10 are similarly dissimilar. One aluminum second rectangular parallelepiped block 12 having the same rectangular cross-sectional shape as the metal joined body 10 and shorter in length than the first rectangular parallelepiped block 11 was produced.

そして、これら2個の異種金属接合体10で第2直方体ブロック12を挟み、更にその外側に2個の第1直方体ブロック11で挟むように並べてそれらの対向面同士を溶接して一体化させた。これにより、図5(a)に示すような上部に銅からなる板状の介在部33が嵌め込まれたアルミニウム製の基部31を作製した。更に、図5(b)に示すような2枚の銅製の板状の通電用接続部32を用意すると共に、爆着により図5(c)に示すような銅製の短絡用接続部34とアルミニウム製の第2介在部35からなる2枚の板状の異種金属接合材を作製した。   Then, the second rectangular parallelepiped block 12 is sandwiched between the two dissimilar metal joined bodies 10 and arranged so as to be sandwiched between the two first rectangular parallelepiped blocks 11 on the outside, and the opposing surfaces are welded and integrated. . Thereby, the base 31 made of aluminum in which the plate-like interposition part 33 made of copper was fitted into the upper part as shown in FIG. Further, two copper plate-like connection portions 32 for energization as shown in FIG. 5B are prepared, and the copper short-circuit connection portion 34 and aluminum as shown in FIG. Two plate-like dissimilar metal joining materials made of the second interposition part 35 made of the metal were produced.

そして、介在部33が嵌め込まれたアルミニウム製の基部31に対して、通電用接続部32及び板状の異種金属接合材をそれぞれ銅同士及びアルミニウム同士を対向させて周縁部を全周に亘って溶接し、図2に示すような電解槽上導電体3を作製した。なお、上記の溶接においては、アルミニウム同士の溶接にはAl−Siロウを使用し、銅同士の溶接にはリン銅ロウを使用した。   And with respect to the base 31 made from aluminum in which the interposition part 33 was inserted, the connection part 32 for electricity supply and a plate-shaped dissimilar-metal joining material are made copper and aluminum each facing each other, and a peripheral part is covered over a perimeter. It welded and the conductor 3 on an electrolytic cell as shown in FIG. 2 was produced. In the above welding, Al—Si brazing was used for welding aluminum, and phosphor copper brazing was used for welding copper.

このようにして作製した電解槽上導電体3を、マトリックス状の複数の銅電解槽のうち、隣接する2つの末端電解槽の側壁上端面に載置し、その2つの通電用接続部32にそれぞれアノード群及びカソード群の支持部を載せて通電を開始した。アノード群を10回、カソード群を20回交換する間、数時間ずつ停電したほかは、数ヶ月にわたり通電を継続した。その結果、溶接部や銅とアルミニウムの接合部に剥離や割れがみられなかった。また、電解槽への通電時と短絡時の導電体の温度を測定したところ、どちらも100℃未満であった。このことから、導電体は機械的衝撃や大電流や高温環境に対して耐久性があることが分かった。   The electrolyzer on the electrolytic cell 3 produced in this way is placed on the upper end surface of the side wall of two adjacent terminal electrolytic cells among the plurality of matrix-shaped copper electrolytic cells, and is connected to the two energizing connection portions 32. Energization was started by placing the support portions of the anode group and the cathode group, respectively. While the anode group was replaced 10 times and the cathode group 20 times, the power supply was continued for several months except that the power was cut off for several hours. As a result, no peeling or cracking was observed in the welded part or the joint between copper and aluminum. Moreover, when the temperature of the conductor at the time of electricity supply to an electrolytic cell and at the time of a short circuit was measured, both were less than 100 degreeC. From this, it was found that the conductor is durable against mechanical shock, large current and high temperature environment.

(実施例2)
図5(a)に示す上部に銅製の板状介在部を備えた基部に代えて図6に示すアルミニウムからなる四角柱状体131を用意し、これを横にした時の上面に銅製の板状の通電用接続部32を銀ロウを用いて直接溶接した以外は上記実施例1と同様にして図7に示すように2つの通電用接続部32と第2介在部35を介して結合された2つの短絡用接続部34とを上面に備えた電解槽上導電体103を製造した。この電解槽上導電体103を、実施例1と同様に2つの末端電解槽の側壁上端面に載置して通電を開始した。
(Example 2)
A square columnar body 131 made of aluminum shown in FIG. 6 is prepared in place of the base provided with a copper plate-like interposition portion at the upper portion shown in FIG. 5A, and a copper plate-like shape is formed on the upper surface when this is laid down. 7 except that the current-carrying connection part 32 was directly welded using silver solder, and was connected to the two current-carrying connection parts 32 via the second interposition part 35 as shown in FIG. The electrolytic cell upper conductor 103 having two short-circuit connection portions 34 on the upper surface was manufactured. This electrolytic cell upper conductor 103 was placed on the upper end surfaces of the side walls of the two terminal electrolytic cells in the same manner as in Example 1, and energization was started.

その結果、実施例1と同様に数か月にわたり通電を継続しても、溶接部や銅とアルミニウムの接合部に全体が外れるようなトラブルは生じなかった。また、電解槽へ通電時と短絡時の温度を測定したところ、どちらも120℃未満であった。   As a result, even if energization was continued for several months in the same manner as in Example 1, there was no trouble that the entire welded part or the joined part of copper and aluminum was detached. Moreover, when the temperature at the time of electricity supply to a electrolytic cell and the time of a short circuit were measured, both were less than 120 degreeC.

(比較例)
通電用接続部及び短絡用接続部用として爆着板のかわりに銅板を用い、この銅板とアルミニウム製の基部とを当接させ、この当接面の周囲を全周に亘って銀ロウを用いて溶接し、更にアルミニウム溶接によって全周に亘って肉盛りした以外は実施例1と同様にして電解槽上導電体を製造した。なお、溶接の際は銅とアルミニウムの熱膨張に注意を払いながら時間をかけて溶接した。このようにして得た電解槽上導電体に対して実施例1と同様にして通電を開始した。
(Comparative example)
A copper plate is used in place of the explosive plate for the energizing connection and the short-circuiting connection. The copper plate and the aluminum base are brought into contact with each other, and silver solder is used around the entire contact surface. A conductor on the electrolytic cell was produced in the same manner as in Example 1 except that the entire circumference was welded by aluminum welding. In the welding, it took time to pay attention to the thermal expansion of copper and aluminum. Energization was started in the same manner as in Example 1 for the electrolyzer on the electrolytic cell thus obtained.

その結果、通電開始から数か月後に銅とアルミニウムの溶接部にクラックが生じた。また、通電時と短絡時の温度を測定したところ、どちらも120℃を超えていた。更に、通電開始から1年後、短絡時において銅材部に赤熱がみられた。銅とアルミニウムの溶接部に熔損が生じており、短絡を中止して点検したところ、銅板の脱落が確認された。   As a result, cracks occurred in the welded portion of copper and aluminum several months after the start of energization. Moreover, when the temperature at the time of electricity supply and a short circuit was measured, both exceeded 120 degreeC. Furthermore, one year after the start of energization, red heat was seen in the copper part at the time of short circuit. The welds of copper and aluminum were melted, and when the short circuit was stopped and inspected, it was confirmed that the copper plate was dropped.

〜V 電解槽
A アノード群
C カソード群
E 電源
S 短絡器
1、2、3、103 電解槽上導電体
31、131 基部
32 通電用接続部
33 介在部
34 短絡用接続部
35 第2介在部


V 1 ~V 6 electrolyzer A anode group C cathode Group E source S short circuit 1,2,3,103 electrolyzer on conductors 31, 131 base 32 energizing connecting portion 33 interposed section 34 shorting connector 35 second Intervening part


Claims (8)

縦横方向にマトリックス状に並べられた電解精錬用の複数の電解槽の各々において交互に且つ互いに平行に配置されたアノード群及びカソード群に通電を行う電解槽上導電体であって、
各電解槽の対向する両壁部のうちの一方の上端面において端から端まで延在する第1の金属からなる長尺の基部と、接続端子として該基部の上面に設けられた、該第1の金属とは異なる第2の金属からなる板状の電気的接続部とから構成され、
該電気的接続部は該第1又は該第2の金属からなる板状介在部を介して該基部に結合されており、該介在部が異種金属と結合する界面は全面に亘って接合されており、同種金属と結合する界面は少なくとも周縁部が溶接されており、前記第1の金属がアルミニウム又はその合金であり、前記第2の金属が銅又はその合金であることを特徴とする電解槽上導電体。
A conductor on the electrolytic cell for energizing anode groups and cathode groups arranged alternately and in parallel in each of a plurality of electrolytic cells for electrolytic refining arranged in a matrix in the vertical and horizontal directions,
A long base portion made of a first metal extending from one end to the other at the upper end surface of one of the opposing wall portions of each electrolytic cell, and the first portion provided on the upper surface of the base portion as a connection terminal, A plate-like electrical connecting portion made of a second metal different from the first metal,
The electrical connection portion is bonded to the base portion via a plate-shaped intervening portion made of the first or second metal, and an interface where the intervening portion is bonded to a dissimilar metal is joined over the entire surface. The electrolytic cell is characterized in that at least a peripheral portion of the interface bonded to the same metal is welded , the first metal is aluminum or an alloy thereof, and the second metal is copper or an alloy thereof. Upper conductor.
前記電気的接続部が、前記アノード群又は前記カソード群の支持部に当接して電気的接続を行うべく前記基部の長手方向に延在する側部に沿って設けられた通電用接続部か、若しくは他の電解槽上導電体に短絡器を介して電気的に接続すべく前記基部の長手方向の両端部に設けられた短絡用接続部か、又はこれら両方であることを特徴とする、請求項1に記載の電解槽上導電体。   The electrical connection part is a connection part for energization provided along a side part extending in the longitudinal direction of the base part to contact the support part of the anode group or the cathode group to perform electrical connection, Or a short-circuit connecting portion provided at both ends in the longitudinal direction of the base to electrically connect to another conductor on the electrolytic cell via a short circuit, or both, Item 2. The electrolytic cell upper conductor according to Item 1. 前記壁部のうち片側にのみ電解槽が存在する非隣接壁部の上端面に設けられている電解槽上導電体の前記基部は、その片側の側部にのみ前記アノード群又は前記カソード群の支持部に当接して電気的接続を行う電気的接続部が設けられており、前記マトリックス状に並べられた複数の電解槽のうち電源に接続される両隅部の電解槽を除いて縦方向に隣接する2つの電解槽の両電解槽上導電体同士は、前記基部が一体化していることを特徴とする、請求項1又は2に記載の電解槽上導電体。   The base of the electrolyzer on the electrolytic cell provided on the upper end surface of the non-adjacent wall where the electrolytic cell exists only on one side of the wall is the side of the anode group or the cathode group only on the one side. An electrical connection part is provided that contacts the support part to make an electrical connection, and the vertical direction except for the electrolytic cells at both corners connected to the power source among the plurality of electrolytic cells arranged in a matrix The electrolyzer according to claim 1 or 2, wherein the bases of the electrolyzers on both electrolyzers adjacent to each other are integrated with each other. 前記壁部のうち幅方向の両側に電解槽が存在する壁部の上端面に設けられている電解槽上導電体の前記基部は、その両側部に前記アノード群及び前記カソード群の支持部にそれぞれ当接して電気的接続を行う電気的接続部が設けられていることを特徴とする、請求項1又は2に記載の電解槽上導電体。   The base part of the electrolyzer on the electrolytic cell provided on the upper end surface of the wall part where the electrolytic cell exists on both sides in the width direction of the wall part is provided on the both sides of the support part for the anode group and the cathode group. The electrical conductor on an electrolytic cell according to claim 1, wherein an electrical connection part that makes electrical contact with each other is provided. 前記通電用接続部は前記基部の側部から水平方向にはみ出しており、そのはみ出た部分の下面は前記壁部の上端面に当接していることを特徴とする、請求項のいずれか1項に記載の電解槽上導電体。 The energizing connection portion is protruded horizontally from a side of the base, the lower surface of the protruding portion is characterized in that in contact with the upper end surface of the wall portion, one of the claims 2-4 The electrolytic cell top conductor according to claim 1. 前記通電用接続部のアノード群の支持部との当接面積及びカソード群の支持部との当接面積のうちの短絡器に近い方よりも、前記短絡用接続部における前記短絡器との当接面積が大きいことを特徴とする、請求項2〜のいずれか1項に記載の電解槽上導電体。 The contact between the current-carrying connection portion and the short-circuit connection portion is shorter than the contact area between the contact portion with the anode group support portion and the cathode group support portion. The conductor on an electrolytic cell according to any one of claims 2 to 5 , wherein the contact area is large. 縦横方向にマトリックス状に並べられた電解精錬用の複数の電解槽の各々において交互に且つ互いに平行に配置されたアノード群及びカソード群に通電を行う電解槽上導電体の製造方法であって、
各電解槽の対向する両壁部のうちの一方の上端面においてその端から端まで延在する第1の金属からなる基部としての長尺部材と、該第1の金属とは異なる第2の金属からなる接続端子としての板状部材と、これら長尺部材及び板状部材の間に介在させる介在部材とを用意し、該介在部材が第2の金属の場合はその一方の面を該長尺部材の上面に圧接させてからその他方の面を該板状部材に当接させた状態でその当接面の少なくとも外周部を溶接で接合し、該介在部材が第1の金属の場合はその一方の面を該板状部材の下面に圧接させてからその他方の面を該長尺部材の上面に当接させた状態でその当接面の少なくとも外周部を溶接で接合し、前記第1の金属がアルミニウム又はその合金であり、前記第2の金属が銅又はその合金であることを特徴とする電解槽上導電体の製造方法。
A method for producing a conductor on an electrolytic cell that energizes an anode group and a cathode group that are alternately and parallelly arranged in each of a plurality of electrolytic cells for electrolytic refining arranged in a matrix in the vertical and horizontal directions,
A long member as a base made of a first metal that extends from one end to the other at the upper end surface of one of the opposing wall portions of each electrolytic cell, and a second member different from the first metal A plate-like member as a connection terminal made of metal and an interposition member interposed between the long member and the plate-like member are prepared, and when the interposition member is a second metal, one surface thereof is In the case where at least the outer peripheral portion of the contact surface is joined by welding in a state where the other surface is in contact with the plate-like member after being brought into pressure contact with the upper surface of the scale member, and the interposition member is a first metal With one surface pressed against the lower surface of the plate-like member and with the other surface in contact with the upper surface of the elongated member, at least the outer peripheral portion of the contact surface is joined by welding, it first metal is aluminum or an alloy thereof, said second metal is copper or an alloy thereof Method of manufacturing an electrolytic bath on the conductor, characterized.
前記圧接が、クラッド接合材を得るための圧延接着法又は爆発圧着材を得るための爆着法であることを特徴とする、請求項に記載の電解槽上導電体の製造方法。 The method for producing a conductor on an electrolytic cell according to claim 7 , wherein the pressure welding is a rolling adhesion method for obtaining a clad bonding material or an explosion bonding method for obtaining an explosive pressure bonding material.
JP2016002203A 2016-01-08 2016-01-08 Conductor on electrolytic cell made of composite material of different metals and manufacturing method thereof Active JP6610269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016002203A JP6610269B2 (en) 2016-01-08 2016-01-08 Conductor on electrolytic cell made of composite material of different metals and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016002203A JP6610269B2 (en) 2016-01-08 2016-01-08 Conductor on electrolytic cell made of composite material of different metals and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017122268A JP2017122268A (en) 2017-07-13
JP6610269B2 true JP6610269B2 (en) 2019-11-27

Family

ID=59306528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016002203A Active JP6610269B2 (en) 2016-01-08 2016-01-08 Conductor on electrolytic cell made of composite material of different metals and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6610269B2 (en)

Also Published As

Publication number Publication date
JP2017122268A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
US5492609A (en) Cathode for electrolytic refining of copper
CN100424231C (en) Hanger bar
WO2017163162A1 (en) Flexible electrical connector for electrolytic cell
CN202430299U (en) Combined anode steel talon welded by steel plate
KR101040571B1 (en) Busbar and method for manufacturing the same
CN102618903A (en) Anode special for oxidation of deep hole aluminum piece hard anode and oxidation method of deep hole aluminum piece hard anode
JP6610269B2 (en) Conductor on electrolytic cell made of composite material of different metals and manufacturing method thereof
CN201890938U (en) Novel casting cathode plate with conductive contact
KR101819219B1 (en) Anode structure for electrolytic refining, manufacturing method and Electrowinning Equipment using the same
CN201416038Y (en) Novel anode conducting device for aluminum electrolyzing cell
JP2007100144A (en) Method for electrolytically refining zinc, and supporting holder used in electrolytically refining zinc
CN208362488U (en) A kind of electrolysis method prepares the universal cathode plate of high pure metal material
WO2019245386A1 (en) Anode hanger, and method of production thereof
JPH01152288A (en) Electrolytic cell and production thereof
JP2011032564A (en) Mother sheet for starting sheet in copper electrolysis, and method for production of starting sheet in copper electrorefining
CN204265867U (en) A kind of high-strength electrolytic zinc anode plate
US20010025785A1 (en) Cathode arrangement
JP2615863B2 (en) Cathode plate for electrolysis
KR100951436B1 (en) Copper electrolytic refining for negative plate
JP6183315B2 (en) Conductor on electrolytic cell for non-ferrous electrolytic refining
CN219315112U (en) Titanium-based composite lead dioxide reticular electrode plate
CA3095917A1 (en) Multilayer transition joint for aluminum smelter and method of making
CN201538823U (en) Suspension type titanium negative plate of titanium copper bar
CN211814672U (en) Energy-saving electrolytic electrodeposition conductive connecting device
JP2016089202A (en) Short-circuit unit for electrolytic tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191014

R150 Certificate of patent or registration of utility model

Ref document number: 6610269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150