JP6605823B2 - Heat insulation member, method for producing heat insulation member - Google Patents

Heat insulation member, method for producing heat insulation member Download PDF

Info

Publication number
JP6605823B2
JP6605823B2 JP2015054528A JP2015054528A JP6605823B2 JP 6605823 B2 JP6605823 B2 JP 6605823B2 JP 2015054528 A JP2015054528 A JP 2015054528A JP 2015054528 A JP2015054528 A JP 2015054528A JP 6605823 B2 JP6605823 B2 JP 6605823B2
Authority
JP
Japan
Prior art keywords
resin foam
exterior
heat insulating
core material
heat insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015054528A
Other languages
Japanese (ja)
Other versions
JP2016173174A (en
Inventor
賢吾 田中
勇輝 岩野
啓子 近澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Original Assignee
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Automotive Systems Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2015054528A priority Critical patent/JP6605823B2/en
Publication of JP2016173174A publication Critical patent/JP2016173174A/en
Application granted granted Critical
Publication of JP6605823B2 publication Critical patent/JP6605823B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Molding Of Porous Articles (AREA)

Description

本発明は、断熱性能が優れる断熱部材等に関するものである。   The present invention relates to a heat insulating member having excellent heat insulating performance.

自動車や家電、建造物など、様々な分野で断熱部材が用いられている。例えば、内部を真空にした真空断熱部材がある。真空断熱部材は、空気などの気体を介した熱伝導を抑制することができるため、高い断熱性能を有する。   Thermal insulation members are used in various fields such as automobiles, home appliances, and buildings. For example, there is a vacuum heat insulating member whose inside is evacuated. Since a vacuum heat insulation member can suppress heat conduction via gas, such as air, it has high heat insulation performance.

このような真空断熱部材としては、例えば、外箱及び内箱とにより構成される空間に、減圧密封される芯材を具備し、芯材の減圧前後の体積変化率が50%以下であり、かつ少なくとも窒素を吸着可能な気体吸着材を空間に配設した真空断熱箱体がある(特許文献1)。   As such a vacuum heat insulating member, for example, a space constituted by an outer box and an inner box includes a core material that is sealed under reduced pressure, and the volume change rate before and after the pressure reduction of the core material is 50% or less, And there exists a vacuum heat insulation box which arrange | positioned the gas adsorbent which can adsorb | suck at least nitrogen in space (patent document 1).

特開2007−211884号公報JP 2007-211884 A

しかし、特許文献1のような構造では、箱体内部を減圧にする際、芯材と箱体との間の排気抵抗が大きくなるため、一般的な真空ポンプでの排気だけでは長時間の真空排気が必要である。また、気体吸着材を封入するため、製造コストが増大する。   However, in the structure as in Patent Document 1, when the inside of the box is decompressed, the exhaust resistance between the core and the box increases, so that a long vacuum can be obtained only by exhausting with a general vacuum pump. Exhaust is required. Further, since the gas adsorbent is enclosed, the manufacturing cost increases.

また、体積変化率が大きい場合、真空排気によって空孔が潰れると、空孔率が下がり、熱伝導率が大きくなるため、断熱部材としての性能を悪化させてしまう。   Further, when the volume change rate is large, if the holes are crushed by evacuation, the porosity is lowered and the thermal conductivity is increased, so that the performance as a heat insulating member is deteriorated.

本発明は、このような問題に鑑みてなされたもので、低コストで、断熱性能が優れる断熱部材等を提供することを目的とする。   This invention is made | formed in view of such a problem, and it aims at providing the heat insulation member etc. which are excellent in heat insulation performance at low cost.

前述した目的を達するために第1の発明は、芯材と、前記芯材を密封する外装と、を具備し、前記芯材は、多数の独立気泡を有する樹脂発泡体であり、前記独立気泡の内部が減圧されており、前記樹脂発泡体はポリエチレンテレフタレートの樹脂発泡粒子であり、前記樹脂発泡粒子同士の間に隙間が形成されており、前記独立気泡が減圧された状態で、前記樹脂発泡粒子同士の間の前記空隙を有したまま、前記隙間が減圧されていることを特徴とする断熱部材である。
In order to achieve the above-mentioned object, the first invention comprises a core material and an exterior for sealing the core material, and the core material is a resin foam having a large number of closed cells, and the closed cell The resin foam is a resin foamed particle of polyethylene terephthalate, a gap is formed between the resin foamed particles, and the closed cell is decompressed, and the resin foam is expanded. The heat insulating member is characterized in that the gap is decompressed while having the voids between particles .

前記芯材の発泡倍率が20倍以上であってもよい。   The foaming ratio of the core material may be 20 times or more.

前記外装は、前記芯材の外周にめっき、または蒸着で形成された金属膜であってもよい。   The exterior may be a metal film formed by plating or vapor deposition on the outer periphery of the core material.

前記外装は、外側部材と内側部材からなり、前記外側部材と前記内側部材の一部を重ねあわせて接合して、前記外側部材と前記内側部材とで形成された空間内に、前記芯材が配置されてもよい。   The exterior includes an outer member and an inner member, and a part of the outer member and the inner member are overlapped and joined, and the core material is formed in a space formed by the outer member and the inner member. It may be arranged.

前記外装は、外側部材、内側部材および蓋部材からなり、前記蓋部材の一部を、前記外側部材と前記内側部材とに重ねあわせて接合して、前記外側部材と前記内側部材と前記蓋部材とで形成された空間内に、前記芯材が配置されてもよい。   The exterior includes an outer member, an inner member, and a lid member, and a part of the lid member is overlapped and joined to the outer member and the inner member, and the outer member, the inner member, and the lid member are joined. The core material may be disposed in a space formed by

第1の発明によれば、独立気泡を有する樹脂発泡体を用いるため、芯材がつぶれにくく、さらに、独立気泡内部が減圧されているため、気体吸着材を用いなくとも断熱効率が高い。   According to the first invention, since the resin foam having closed cells is used, the core material is not easily crushed. Further, since the inside of the closed cells is decompressed, the heat insulation efficiency is high without using a gas adsorbent.

また、樹脂発泡体がポリエチレンテレフタレート製の樹脂発泡粒子からなれば、他の部材と比較して高温でも使用することができる。また、ポリエチレンテレフタレートは窒素の透過率が低いため、製造時において独立気泡内部へ空気が浸入することを抑制することができる。   If the resin foam is made of polyethylene terephthalate resin foam particles, it can be used even at a higher temperature than other members. In addition, since polyethylene terephthalate has a low nitrogen permeability, air can be prevented from entering the closed cells during production.

この場合、芯材の発泡倍率を20倍以上とすることで、120°程度の高温時において、例えばポリプロピレン製やポリスチレン製では達成することのできない熱伝導率(断熱性)を達成することができる。   In this case, by setting the expansion ratio of the core material to 20 times or more, at a high temperature of about 120 °, for example, heat conductivity (heat insulation) that cannot be achieved with polypropylene or polystyrene can be achieved. .

また、外装を金属膜とすることができ、特に金属膜を真空蒸着で形成することで、芯材の外部に外装を形成する際に、独立気泡内部への空気の浸入を防止することができる。   Further, the exterior can be a metal film, and in particular, by forming the metal film by vacuum deposition, it is possible to prevent air from entering the closed cells when forming the exterior outside the core material. .

なお、外装としては、外側部材と内側部材とを用いて、内部に芯材を配置してもよく、さらに蓋材を用いて、内部に芯材を配置してもよい。   In addition, as an exterior, a core material may be arrange | positioned inside using an outer member and an inner member, and also a core material may be arrange | positioned inside using a cover material.

第2の発明は、樹脂を発泡させて樹脂発泡体を成形する工程と、前記樹脂発泡体を、減圧下で加熱する工程と、前記樹脂発泡体の外周に外装を設けて、前記樹脂発泡体を密封する工程と、を具備し、前記樹脂発泡体はポリエチレンテレフタレートの樹脂発泡粒子であり、前記樹脂発泡粒子同士の間に隙間が形成されており、前記樹脂発泡体内に独立気泡が形成されており、前記樹脂発泡体を密封する工程においては、前記外装を施した後に、前記独立気泡が減圧された状態で、前記樹脂発泡粒子同士の間の前記空隙を有したまま、前記外装の内部を真空引きすることにより、前記発泡体を密封し、前記隙間と前記独立気泡の内部を減圧することを特徴とする断熱部材の製造方法である。
According to a second aspect of the present invention, there is provided a step of forming a resin foam by foaming a resin, a step of heating the resin foam under reduced pressure, and an outer periphery provided on an outer periphery of the resin foam. And the resin foam is a resin foamed particle of polyethylene terephthalate, a gap is formed between the resin foamed particles, and closed cells are formed in the resin foam. In the step of sealing the resin foam, after applying the exterior, the interior of the exterior is kept with the voids between the resin foam particles in a state where the closed cells are decompressed. By vacuuming, the foam is sealed, and the gap and the inside of the closed cells are depressurized.

前記外装は、乾式めっきで形成してもよい。   The exterior may be formed by dry plating.

前記外装は、真空蒸着で形成してもよい。   The exterior may be formed by vacuum deposition.

第2の発明によれば、樹脂発泡体を減圧下で加熱することで、独立気泡内部を減圧することができる。   According to 2nd invention, the inside of a closed cell can be pressure-reduced by heating a resin foam under pressure reduction.

また、外装をめっきや真空蒸着による金属膜で形成することで、構造が簡易である。   Moreover, the structure is simple by forming the exterior with a metal film by plating or vacuum deposition.

本発明によれば、低コストで、断熱性能が優れる断熱部材等を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat insulation member etc. which are low cost and excellent in heat insulation performance can be provided.

(a)は断熱部材1を示す断面図、(b)は樹脂発泡体7の概念図、(c)は独立気泡9を示す概念図。(A) is sectional drawing which shows the heat insulation member 1, (b) is a conceptual diagram of the resin foam 7, (c) is a conceptual diagram which shows the closed cell 9. FIG. (a)は、成形型11に樹脂粒子13を入れた状態を示す概念図、(b)は樹脂粒子を発泡させた状態を示す概念図、(c)は、加熱炉内に樹脂発泡体7を配置した状態を示す概念図、(d)は樹脂発泡体7を外装3で覆う状態示す概念図。(A) is the conceptual diagram which shows the state which put the resin particle 13 in the shaping | molding die 11, (b) is the conceptual diagram which shows the state which made the resin particle foam, (c) is the resin foam 7 in a heating furnace. The conceptual diagram which shows the state which has arrange | positioned, (d) is a conceptual diagram which shows the state which covers the resin foam 7 with the exterior | packing 3. FIG. 材質による発泡倍率と10%圧縮応力の関係を示す図。The figure which shows the relationship between the expansion ratio by a material, and 10% compressive stress. (a)は常温における、材質による発泡倍率と熱伝導率の関係を示す図、(b)は120℃における、材質による発泡倍率と熱伝導率の関係を示す図。(A) is a figure which shows the relationship between the foaming magnification by a material and thermal conductivity in normal temperature, (b) is a figure which shows the relationship between the foaming magnification by a material and thermal conductivity in 120 degreeC. 断熱部材1aを示す断面図。Sectional drawing which shows the heat insulation member 1a. 断熱部材1bを示す断面図。Sectional drawing which shows the heat insulation member 1b. 断熱部材1cを示す断面図。Sectional drawing which shows the heat insulation member 1c.

以下、図面を参照しながら、本発明の実施形態について説明する。図1(a)は、断熱部材1を示す断面図である。断熱部材1は、外装3、芯材5等から構成される。外装3の内部には芯材5が配置される。また、外装3の内部は減圧されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1A is a cross-sectional view showing the heat insulating member 1. The heat insulating member 1 includes an exterior 3 and a core material 5. A core material 5 is disposed inside the exterior 3. Moreover, the inside of the exterior 3 is decompressed.

外装3は、ガスバリア性の材質であればよく、例えば金属製である。なお、外装3は、金属と樹脂とのラミネートフィルムのように可撓性を有する材質であってもよく、金属板などの剛性を有する材質であってもよい。また、詳細は後述するが、芯材5の外周面に形成された金属膜であってもよい。このように、外装3は、芯材5を密封することができれば、材質や形態は問わない。   The exterior 3 may be made of a gas barrier material, and is made of metal, for example. The exterior 3 may be a flexible material such as a laminate film of metal and resin, or may be a rigid material such as a metal plate. Moreover, although mentioned later for details, the metal film formed in the outer peripheral surface of the core material 5 may be sufficient. Thus, as long as the exterior 3 can seal the core material 5, the material and the form are not limited.

芯材5は、樹脂発泡体7で構成される。図1(b)は、図1(a)のA部拡大図であり、樹脂発泡体7の概念図である。樹脂発泡体7は、複数の樹脂発泡粒子7aが集合されて一体化された部材である。なお、樹脂発泡粒子7a同士の間には微小な隙間が形成されている。この隙間は、外装3内の減圧によって減圧された状態である。   The core material 5 is composed of a resin foam 7. FIG. 1B is an enlarged view of a part A in FIG. 1A, and is a conceptual diagram of the resin foam 7. The resin foam 7 is a member in which a plurality of resin foam particles 7a are assembled and integrated. A minute gap is formed between the resin foam particles 7a. This gap is in a state where the pressure is reduced by the pressure reduction in the exterior 3.

図1(c)は、図1(b)のB部拡大図であり、独立気泡9を示す概念図である。樹脂発泡粒子7aの内部には、多数の微小な独立気泡9が形成される。本発明では、独立気泡9の内部が減圧されている。すなわち、外装3の内部を真空引きしたのみでは、前述した樹脂発泡粒子7a同士の隙間は減圧することができても、独立気泡9の内部を短時間で減圧することはできないが、本発明では、あらかじめ樹脂発泡体7を高温減圧の雰囲気中で所定時間放置して独立気泡9内を十分に減圧した後、常温常圧に戻してから外装3を施し、内部を真空引きして全体を減圧密封することで独立気泡9の内部が減圧されるようにしている。   FIG. 1C is an enlarged view of part B of FIG. 1B and is a conceptual diagram showing closed cells 9. A large number of minute closed cells 9 are formed inside the resin foam particles 7a. In the present invention, the inside of the closed cell 9 is depressurized. That is, only by evacuating the inside of the exterior 3, the gap between the resin foam particles 7 a can be reduced, but the inside of the closed cells 9 cannot be reduced in a short time. The resin foam 7 is left in a high-temperature and reduced-pressure atmosphere for a predetermined time to sufficiently depressurize the inside of the closed cells 9, and then returned to room temperature and normal pressure. By sealing, the inside of the closed cell 9 is depressurized.

なお、樹脂発泡粒子7a(樹脂発泡体7)の材質は問わないが、例えば、ポリエチレンテレフタレートやポリカーボネートなどを適用可能である。ポリエチレンテレフタレートやポリカーボネートは、ポリプロピレンやポリスチレンなどと比較して、高温で使用することができ、かつ硬度が大きいため耐傷性に優れている   In addition, although the material of the resin foam particle 7a (resin foam 7) is not ask | required, a polyethylene terephthalate, a polycarbonate, etc. are applicable, for example. Polyethylene terephthalate and polycarbonate are superior in scratch resistance because they can be used at higher temperatures and have higher hardness than polypropylene and polystyrene.

次に、断熱部材1の製造方法について説明する。まず、図2(a)に示すように、成形型11内に、樹脂粒子13を入れる。なお、樹脂粒子13内には、あらかじめガスが浸透されている。この状態で、所定温度に加熱して、樹脂粒子13を発泡させる。加熱温度は材質にもよるが、例えばポリエチレンテレフタレートの場合には、160℃〜170℃程度に加熱する。加熱することで、樹脂粒子13が発泡し、発泡した樹脂発泡粒子7a同士の表面が互いに接合して一体化する。   Next, the manufacturing method of the heat insulation member 1 is demonstrated. First, as shown in FIG. 2A, the resin particles 13 are put in the mold 11. The resin particles 13 are preliminarily infiltrated with gas. In this state, the resin particles 13 are foamed by heating to a predetermined temperature. Although the heating temperature depends on the material, for example, in the case of polyethylene terephthalate, it is heated to about 160 ° C. to 170 ° C. By heating, the resin particles 13 are foamed, and the surfaces of the foamed resin foam particles 7a are joined and integrated.

この際、図2(b)に示すように、樹脂粒子13は、成形型11のキャビティー形状に一体化される。すなわち、本発明では、成形型11の形状によって、任意の3次元形状の樹脂発泡体7を成形することができる。   At this time, as shown in FIG. 2B, the resin particles 13 are integrated into the cavity shape of the mold 11. That is, in the present invention, the resin foam 7 having an arbitrary three-dimensional shape can be molded depending on the shape of the mold 11.

次に、得られた樹脂発泡体7を取り出し、加熱炉内に配置する。加熱炉内は減圧装置15によって減圧することができる。加熱状態で加熱炉内を減圧することで、樹脂発泡体7の内部の独立気泡内を減圧することができる。   Next, the obtained resin foam 7 is taken out and placed in a heating furnace. The inside of the heating furnace can be decompressed by the decompression device 15. The inside of the closed cell inside the resin foam 7 can be decompressed by depressurizing the inside of the heating furnace in the heated state.

なお、加熱温度は、素材の軟化温度未満の温度であって、例えば60〜70℃程度とする。温度が低すぎると、独立気泡内の脱気が行えず、温度が高すぎると、樹脂発泡体7がつぶれる。なお、真空度は、例えば、約0.5Pa(または、常圧−約100kPa)程度とする。また、加熱減圧時間は24時間程度とする。   The heating temperature is a temperature lower than the softening temperature of the material and is, for example, about 60 to 70 ° C. If the temperature is too low, degassing of the closed cells cannot be performed, and if the temperature is too high, the resin foam 7 is crushed. The degree of vacuum is, for example, about 0.5 Pa (or normal pressure—about 100 kPa). The heating and decompression time is about 24 hours.

次に、図2(d)に示すように、樹脂発泡体7を常温にした後、常圧に戻し、外装3で密封する。すなわち、樹脂発泡体7を外装3内に配置し、真空に引きながら外装3を密封する。なお、真空度は、例えば、約0.5Pa(または、常圧−約100kPa)程度とする。   Next, as shown in FIG. 2 (d), the resin foam 7 is brought to room temperature, then returned to normal pressure, and sealed with the exterior 3. That is, the resin foam 7 is disposed in the exterior 3 and the exterior 3 is sealed while being evacuated. The degree of vacuum is, for example, about 0.5 Pa (or normal pressure—about 100 kPa).

ここで、樹脂発泡体7を常温常圧に戻した状態を長時間維持すると、減圧された独立気泡中に空気が浸入するため、樹脂発泡体7を常温常圧に戻した後、外装3で密封する作業はできるだけ短時間で作業を行うことが望ましい。なお、樹脂発泡体7がポリエチレンテレフタレート製であれば、窒素の透過率が極めて低いため、独立気泡中への空気の浸入を抑制することができる。以上により、断熱部材1を製造することができる。   Here, if the state in which the resin foam 7 is returned to the normal temperature and the normal pressure is maintained for a long time, air enters into the reduced closed cells, and therefore the resin foam 7 is returned to the normal temperature and the normal pressure. It is desirable to perform the sealing work in as short a time as possible. If the resin foam 7 is made of polyethylene terephthalate, the nitrogen permeability is extremely low, so that the infiltration of air into the closed cells can be suppressed. As described above, the heat insulating member 1 can be manufactured.

次に、樹脂発泡体7の発泡倍率について検討する。図3は、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)について、10%圧縮応力と発泡倍率の関係を示す図である。ここで、発泡倍率とは発泡前の樹脂発泡粒子の密度を、発泡後の樹脂発泡体の密度で除した比である。図に示すように、発泡倍率が大きくなると、10%圧縮応力が低下する。これは、発泡倍率の増加によって、気孔率が高くなり、強度が低くなるためである。ここで、10%圧縮応力とは、発泡体の体積を10%縮ませるために必要な力である。   Next, the expansion ratio of the resin foam 7 will be examined. FIG. 3 is a diagram showing the relationship between 10% compression stress and expansion ratio for polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS). Here, the expansion ratio is a ratio obtained by dividing the density of the resin foam particles before foaming by the density of the resin foam after foaming. As shown in the figure, the 10% compressive stress decreases as the expansion ratio increases. This is because the porosity increases and the strength decreases as the expansion ratio increases. Here, the 10% compression stress is a force required to reduce the volume of the foam by 10%.

PETは、他の材質と比較して同じ発泡倍率であれば強度が高い。例えば、外装3内に樹脂発泡体7を配置して、0.5kPa程度まで減圧するとすれば、常圧に対して100kPa程度低くなる。このため、10%圧縮応力が100kPa(図中C)以上の強度を有すれば、外装3内部を減圧した際に、体積変化率を10%以下とすることができる。例えば、PETの場合には、発泡倍率が60倍程度であれば、常圧に対して100kPa程度低くした場合でも、体積変化率を10%程度とすることができる。   If PET has the same expansion ratio as compared with other materials, the strength is high. For example, if the resin foam 7 is disposed in the exterior 3 and the pressure is reduced to about 0.5 kPa, the pressure is reduced to about 100 kPa with respect to the normal pressure. For this reason, if the 10% compressive stress has a strength of 100 kPa (C in the figure) or higher, the volume change rate can be reduced to 10% or less when the inside of the exterior 3 is decompressed. For example, in the case of PET, if the expansion ratio is about 60 times, the volume change rate can be about 10% even when the pressure is reduced by about 100 kPa with respect to normal pressure.

図4(a)は、常温における、発泡倍率と熱伝導率(W/mK)の関係を示す図である。熱伝導率を低くして断熱性能を向上させるためには、発泡倍率を大きくするだけではなく、真空時の圧縮率を小さく保つために、芯材の圧縮強度を大きくすることが求められる。これは、圧縮強度が小さいと、外装内を真空にしたときの負圧で芯材の気泡が潰れて空孔率が低下し、断熱性能が著しく低下するためである。   FIG. 4A is a diagram showing the relationship between the expansion ratio and the thermal conductivity (W / mK) at room temperature. In order to improve the heat insulation performance by lowering the thermal conductivity, it is required not only to increase the expansion ratio but also to increase the compressive strength of the core material in order to keep the compressibility during vacuum small. This is because if the compressive strength is low, the core material bubbles are crushed by the negative pressure when the inside of the exterior is evacuated, the porosity is lowered, and the heat insulation performance is significantly lowered.

図4(a)に示すように、常温での発泡倍率と熱伝導率の関係を見ると、PETの樹脂発泡体であれば、他の材料と比較して、特に発泡倍率50倍以上で他材料より熱伝導率を低くすることができる。   As shown in FIG. 4 (a), looking at the relationship between the expansion ratio at normal temperature and the thermal conductivity, if the resin foam of PET, compared with other materials, the expansion ratio is 50 times or more. The thermal conductivity can be made lower than that of the material.

一方、図4(b)は、120℃における、材質による発泡倍率と熱伝導率(W/mK)の関係を示す図である。例えば、車のエンジンルーム内などにおける使用を考慮すると、120℃程度の温度における断熱性能が要求される。   On the other hand, FIG.4 (b) is a figure which shows the relationship between the foaming magnification by a material, and thermal conductivity (W / mK) in 120 degreeC. For example, considering use in a car engine room or the like, heat insulation performance at a temperature of about 120 ° C. is required.

120℃においては、PETについては、常温時の強度とほとんど変わらないが、PP、PSでは、強度が常温時と比較して大きく低下する。このため、最も熱伝導率の小さくなる発泡倍率が、常温と比較して小さくなる。この結果、PETは、PPやPSにおける最も低い熱伝導率(図中D)よりも、さらに低い熱伝導率を達成することができる。なお、PETであれば、150℃でも使用することができる。   At 120 ° C., the strength of PET is almost the same as that at normal temperature, but the strength of PP and PS is greatly reduced compared to that at normal temperature. For this reason, the expansion ratio with the smallest thermal conductivity is smaller than that at room temperature. As a result, PET can achieve a lower thermal conductivity than the lowest thermal conductivity in PP and PS (D in the figure). In addition, if it is PET, it can be used also at 150 degreeC.

たとえば、図中DとPETの曲線とは、おおむね発泡倍率が20倍で交差する。したがって、発泡倍率20倍以上とすることで、120℃でPPやPSでは得ることのできない熱伝導率を得ることができる。このため、樹脂発泡体7の材質としてPETを選択した場合には、発泡倍率が20倍以上とすることが望ましい。   For example, in the figure, the curve of D and the PET generally intersect at an expansion ratio of 20 times. Therefore, by setting the expansion ratio to 20 times or more, thermal conductivity that cannot be obtained with PP or PS at 120 ° C. can be obtained. For this reason, when PET is selected as the material of the resin foam 7, it is desirable that the expansion ratio is 20 times or more.

なお、PETであっても、発泡倍率を上げていくと、強度が低下して独立気泡が潰れやすくなり、熱伝導率が上昇する。すなわち、PETの曲線は、発泡倍率が約130倍程度以上とすると、直線Dを超える。このため、PETを用いた場合には、発泡倍率は20倍から130倍の範囲(図中E)とすることで、PPやPSでは得ることのできない断熱性能を得ることができる。なお、製造性などを考慮すると、発泡倍率の上限は100倍以下であることが望ましい。   Even in the case of PET, when the expansion ratio is increased, the strength is lowered, the closed cells are easily crushed, and the thermal conductivity is increased. That is, the PET curve exceeds the straight line D when the expansion ratio is about 130 times or more. For this reason, when PET is used, it is possible to obtain heat insulation performance that cannot be obtained with PP or PS by setting the expansion ratio in the range of 20 times to 130 times (E in the figure). In consideration of manufacturability and the like, the upper limit of the expansion ratio is preferably 100 times or less.

以上説明したように、本実施の形態によれば、樹脂発泡粒子7a同士の間に空隙を有し、この空隙が外装3内の排気時に空気の流路となりうるため、外装3と芯材5との間の排気抵抗の増加を抑制することができる。このため、短時間で真空引きを行うことができ、気体の吸収剤なども不要である。   As described above, according to the present embodiment, there is a gap between the resin foam particles 7 a, and this gap can serve as an air flow path when exhausting the interior of the exterior 3. An increase in exhaust resistance between the two can be suppressed. For this reason, evacuation can be performed in a short time, and a gas absorbent or the like is unnecessary.

また、独立気泡9の内部が減圧された状態となるため、従来の樹脂発泡体を用いた場合と比較しても、断熱特性が良好である。   Moreover, since the inside of the closed cell 9 is in a depressurized state, the heat insulating properties are good even when compared with the case where a conventional resin foam is used.

また、樹脂発泡体7がPET製であれば、高温でも使用が可能である。また、PETは、窒素の透過率が極めて小さいため、製造時に独立気泡中への空気の浸入を抑制することができる。   Moreover, if the resin foam 7 is made of PET, it can be used even at high temperatures. Moreover, since PET has a very low nitrogen permeability, it is possible to suppress the intrusion of air into closed cells during production.

また、PETは、高温時においてPPやPSでは得ることのできない熱伝導率を得ることができる。特に、120℃においてはPP、PSともに強度が落ちるため、発泡倍率が20倍以上で他材料よりも優位となる。また、他の材質と比較して発泡倍率を高くして尚且つ圧縮応力も保てるため高断熱性能を発揮することができるようになる。それと同時に軽量化をも達成することができ、材料コストを低減することができる。   Moreover, PET can obtain thermal conductivity that cannot be obtained with PP or PS at high temperatures. In particular, at 120 ° C., the strength of both PP and PS decreases, so the foaming ratio is 20 times or more, which is superior to other materials. Further, since the expansion ratio can be increased and the compressive stress can be maintained as compared with other materials, high heat insulation performance can be exhibited. At the same time, weight reduction can be achieved, and the material cost can be reduced.

次に、第2の実施形態について説明する。図5は、断熱部材1aを示す断面図である。なお、以下の説明において、断熱部材1と同様の機能を奏する構成については、図1等と同一の符号を付し、重複する説明を省略する。   Next, a second embodiment will be described. FIG. 5 is a cross-sectional view showing the heat insulating member 1a. In addition, in the following description, about the structure which show | plays the function similar to the heat insulation member 1, the code | symbol same as FIG. 1 etc. is attached | subjected and the overlapping description is abbreviate | omitted.

断熱部材1aは、断熱部材1とほぼ同様の構成であるが、外装3の形態が異なる。断熱部材1aの外装3は、内側部材3aと外側部材3bとからなる。内側部材3a、外側部材3bは、金属板によって構成され、例えば絞り加工で製造される。   Although the heat insulation member 1a is the structure substantially the same as the heat insulation member 1, the form of the exterior 3 is different. The exterior 3 of the heat insulating member 1a includes an inner member 3a and an outer member 3b. The inner member 3a and the outer member 3b are made of a metal plate, and are manufactured by drawing, for example.

内側部材3aと外側部材3bは、ともに箱型の部材であり、上縁部が外側に向かって折り曲げられたフランジ部を有する。内側部材3aは外側部材3bよりもサイズが小さい。このため、内側部材3aのフランジ部の下面に外側部材3bのフランジ部を重ね合わせると、内側部材3aと外側部材3bとの間に空間が形成される。   The inner member 3a and the outer member 3b are both box-shaped members, and have a flange portion whose upper edge portion is bent outward. The inner member 3a is smaller in size than the outer member 3b. For this reason, when the flange part of the outer member 3b is superimposed on the lower surface of the flange part of the inner member 3a, a space is formed between the inner member 3a and the outer member 3b.

内側部材3aと外側部材3bとの間の空間には、予め空間形状に成形され、真空加熱処理が施された芯材5が封入される。すなわち、芯材5は、箱型の形状に成形される。   A space between the inner member 3a and the outer member 3b is filled with a core material 5 that has been previously formed into a space shape and subjected to a vacuum heat treatment. That is, the core material 5 is formed into a box shape.

なお、フランジ部同士は例えば溶接で接合される。この際、空間内を真空引きしながら溶接を行うことで、空間を真空に保持することができる。また、空間内を常圧−100kPa程度まで減圧しても、例えば、PET製の芯材5の発泡倍率を60倍程度以下とすることで、芯材5の変形率を10%以下とすることができる。   The flange portions are joined by welding, for example. At this time, it is possible to keep the space in a vacuum by performing welding while evacuating the space. Moreover, even if the pressure in the space is reduced to about normal pressure −100 kPa, for example, by setting the expansion ratio of the PET core material 5 to about 60 times or less, the deformation rate of the core material 5 is set to 10% or less. Can do.

第2の実施形態によれば、第1の実施形態と同様の効果を得ることができる。また、外装3を容器状とすることで、断熱容器を得ることができる。   According to the second embodiment, an effect similar to that of the first embodiment can be obtained. Moreover, a heat insulation container can be obtained by making the exterior 3 into a container shape.

次に、第3の実施形態について説明する。図6は、断熱部材1bを示す図である。断熱部材1bは、断熱部材1とほぼ同様の構成であるが、外装3の形態が異なる。断熱部材1bの外装3は、内側部材3aと外側部材3bと蓋部材3cとからなる。内側部材3a、外側部材3b、蓋部材3cは、金属板によって構成され、例えば絞り加工で製造される。   Next, a third embodiment will be described. FIG. 6 is a view showing the heat insulating member 1b. The heat insulating member 1b has substantially the same configuration as the heat insulating member 1, but the form of the exterior 3 is different. The exterior 3 of the heat insulating member 1b includes an inner member 3a, an outer member 3b, and a lid member 3c. The inner member 3a, the outer member 3b, and the lid member 3c are made of a metal plate, and are manufactured by drawing, for example.

内側部材3aと外側部材3bは、ともに上方が開口した箱型の部材であり、内側部材3aは外側部材3bよりもサイズが小さい。このため、内側部材3aを外側部材3bの内部に配置すると、内側部材3aは外側部材3bとの間に空間が形成される。   The inner member 3a and the outer member 3b are both box-shaped members that are open upward, and the inner member 3a is smaller in size than the outer member 3b. For this reason, when the inner member 3a is disposed inside the outer member 3b, a space is formed between the inner member 3a and the outer member 3b.

内側部材3aは外側部材3bとの間の空間には、予め空間形状に成形され、真空加熱処理が施された芯材5が封入される。すなわち、芯材5は、箱型の形状に成形される。   The space between the inner member 3a and the outer member 3b is filled with a core material 5 that has been previously formed into a space shape and subjected to a vacuum heat treatment. That is, the core material 5 is formed into a box shape.

なお、内側部材3aと外側部材3bとの間の開口部に蓋部材3cが配置されて、蓋部材3cの外縁部と外側部材3bとが接合され、蓋部材3cの内縁部と内側部材3aとが接合される。この際、空間内を真空引きしながら溶接を行うことで、空間を真空に保持することができる。   In addition, the lid member 3c is arrange | positioned in the opening part between the inner side member 3a and the outer side member 3b, the outer edge part of the lid member 3c and the outer side member 3b are joined, the inner edge part of the lid member 3c, the inner side member 3a, Are joined. At this time, it is possible to keep the space in a vacuum by performing welding while evacuating the space.

第3の実施形態によれば、第1の実施形態と同様の効果を得ることができる。このように、本発明では、外装3の形状は、限定されることはない。   According to the third embodiment, the same effect as that of the first embodiment can be obtained. Thus, in the present invention, the shape of the exterior 3 is not limited.

次に、第4の実施形態について説明する。図7(a)は、断熱部材1cを示す断面図であり、図7(b)は、図7(a)のF部拡大図である。断熱部材1cは、断熱部材1とほぼ同様の構成であるが、外装3の形態が異なる。断熱部材1cの外装3は、金属膜3dで構成される。   Next, a fourth embodiment will be described. Fig.7 (a) is sectional drawing which shows the heat insulation member 1c, FIG.7 (b) is the F section enlarged view of Fig.7 (a). The heat insulating member 1c has substantially the same configuration as the heat insulating member 1, but the form of the exterior 3 is different. The exterior 3 of the heat insulating member 1c is composed of a metal film 3d.

金属膜3dは、例えば乾式めっきや真空蒸着で形成することができる。この場合には、任意の形状(例えば箱型)に成形され、真空加熱処理を施した芯材5の外周面に、金属膜3dを形成すればよい。金属膜3dの厚みとしては、ガスバリア性能を有すればよく、アルミ箔では(7μmで酸素透過度が0.01cc/m・Day・atm(20℃)であるので)例えば10μm程度であればよい。 The metal film 3d can be formed by, for example, dry plating or vacuum deposition. In this case, the metal film 3d may be formed on the outer peripheral surface of the core material 5 that has been formed into an arbitrary shape (for example, a box shape) and subjected to vacuum heat treatment. The thickness of the metal film 3d is only required to have gas barrier performance. For an aluminum foil (for example, 7 μm and oxygen permeability is 0.01 cc / m 2 · day · atm (20 ° C.)), for example, about 10 μm. Good.

なお、金属膜3dを真空蒸着で形成すれば、真空加熱処理後の芯材5を真空容器内で金属膜3dを形成することができるため、真空加熱処理後の芯材5に空気が浸透することを抑制することができる。   If the metal film 3d is formed by vacuum deposition, the core material 5 after the vacuum heat treatment can be formed in the vacuum container, so that air penetrates into the core material 5 after the vacuum heat treatment. This can be suppressed.

第4の実施形態によれば、第1の実施形態と同様の効果を得ることができる。このように、本発明では、外装3の態様は限定されることはない。   According to the fourth embodiment, the same effect as that of the first embodiment can be obtained. Thus, in the present invention, the aspect of the exterior 3 is not limited.

以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described referring an accompanying drawing, the technical scope of this invention is not influenced by embodiment mentioned above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

1、1a、1b、1c………断熱部材
3………外装
3a………内側部材
3b………外側部材
3c………蓋部材
5………芯材
7………樹脂発泡体
7a……樹脂発泡粒子
9………独立気泡
11………成形型
13………樹脂粒子
15………減圧装置
DESCRIPTION OF SYMBOLS 1, 1a, 1b, 1c ......... Heat insulation member 3 ......... Exterior 3a ......... Inner member 3b ......... Outer member 3c ......... Cover member 5 ......... Core material 7 ......... Resin foam 7a ... ... Resin foam particles 9 ... Closed cells 11 ... Mold 13 ... Resin particles 15 ... Pressure reducing device

Claims (8)

芯材と、
前記芯材を密封する外装と、
を具備し、
前記芯材は、多数の独立気泡を有する樹脂発泡体であり、
前記独立気泡の内部が減圧されており、
前記樹脂発泡体はポリエチレンテレフタレートの樹脂発泡粒子であり、
前記樹脂発泡粒子同士の間に隙間が形成されており、
前記独立気泡が減圧された状態で、前記樹脂発泡粒子同士の間の前記空隙を有したまま、前記隙間が減圧されていることを特徴とする断熱部材。
A core material,
An exterior for sealing the core material;
Comprising
The core material is a resin foam having a large number of closed cells,
The inside of the closed cell is depressurized,
The resin foam is a resin foam particle of polyethylene terephthalate,
A gap is formed between the resin foam particles,
The heat insulating member , wherein the gap is decompressed while the voids between the resin foam particles are kept in a state where the closed cells are decompressed .
前記芯材の発泡倍率が20倍以上であることを特徴とする請求項1に記載の断熱部材。   The heat insulating member according to claim 1, wherein a foaming ratio of the core material is 20 times or more. 前記外装は、前記芯材の外周にめっき、または蒸着で形成された金属膜であることを特徴とする請求項1又は請求項2のいずれかに記載の断熱部材。   The heat insulating member according to claim 1, wherein the exterior is a metal film formed on the outer periphery of the core member by plating or vapor deposition. 前記外装は、外側部材と内側部材からなり、前記外側部材と前記内側部材の一部を重ねあわせて接合して、前記外側部材と前記内側部材とで形成された空間内に、前記芯材が配置されることを特徴とする請求項1又は請求項2のいずれかに記載の断熱部材。   The exterior includes an outer member and an inner member, and a part of the outer member and the inner member are overlapped and joined, and the core material is formed in a space formed by the outer member and the inner member. The heat insulating member according to claim 1, wherein the heat insulating member is disposed. 前記外装は、外側部材、内側部材および蓋部材からなり、前記蓋部材の一部を、前記外側部材と前記内側部材と接合して、前記外側部材と前記内側部材と前記蓋部材とで形成された空間内に、前記芯材が配置されることを特徴とする請求項1又は請求項2のいずれかに記載の断熱部材。   The exterior includes an outer member, an inner member, and a lid member, and a part of the lid member is joined to the outer member and the inner member to form the outer member, the inner member, and the lid member. The heat insulating member according to claim 1, wherein the core material is disposed in the open space. 樹脂を発泡させて樹脂発泡体を成形する工程と、
前記樹脂発泡体を、減圧下で加熱する工程と、
前記樹脂発泡体の外周に外装を設けて、前記樹脂発泡体を密封する工程と、
を具備し、
前記樹脂発泡体はポリエチレンテレフタレートの樹脂発泡粒子であり、
前記樹脂発泡粒子同士の間に隙間が形成されており、
前記樹脂発泡体内に独立気泡が形成されており、
前記樹脂発泡体を密封する工程においては、前記外装を施した後に、前記独立気泡が減圧された状態で、前記樹脂発泡粒子同士の間の前記空隙を有したまま、前記外装の内部を真空引きすることにより、前記発泡体を密封し、前記隙間と前記独立気泡の内部を減圧することを特徴とする断熱部材の製造方法。
Forming a resin foam by foaming a resin;
Heating the resin foam under reduced pressure;
Providing an exterior on the outer periphery of the resin foam and sealing the resin foam;
Comprising
The resin foam is a resin foam particle of polyethylene terephthalate,
A gap is formed between the resin foam particles,
Closed cells are formed in the resin foam,
In the step of sealing the resin foam, after applying the exterior, the interior of the exterior is evacuated while the closed cells are decompressed and the voids between the resin foam particles are left. By doing this, the said foam is sealed, The said clearance gap and the inside of the said independent bubble are pressure-reduced, The manufacturing method of the heat insulation member characterized by the above-mentioned.
前記外装は、乾式めっきで形成することを特徴とする請求項6記載の断熱部材の製造方法。   The method for manufacturing a heat insulating member according to claim 6, wherein the exterior is formed by dry plating. 前記外装は、真空蒸着で形成することを特徴とする請求項6記載の断熱部材の製造方法。
The method for manufacturing a heat insulating member according to claim 6, wherein the exterior is formed by vacuum deposition.
JP2015054528A 2015-03-18 2015-03-18 Heat insulation member, method for producing heat insulation member Expired - Fee Related JP6605823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015054528A JP6605823B2 (en) 2015-03-18 2015-03-18 Heat insulation member, method for producing heat insulation member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015054528A JP6605823B2 (en) 2015-03-18 2015-03-18 Heat insulation member, method for producing heat insulation member

Publications (2)

Publication Number Publication Date
JP2016173174A JP2016173174A (en) 2016-09-29
JP6605823B2 true JP6605823B2 (en) 2019-11-13

Family

ID=57009575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015054528A Expired - Fee Related JP6605823B2 (en) 2015-03-18 2015-03-18 Heat insulation member, method for producing heat insulation member

Country Status (1)

Country Link
JP (1) JP6605823B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371335A (en) * 1986-09-12 1988-03-31 Kanegafuchi Chem Ind Co Ltd Foamed molded body, container composed thereof and preparation of foamed molded body
JP3248759B2 (en) * 1991-07-26 2002-01-21 松下電器産業株式会社 Foamed plastic and its manufacturing method
JPH07332587A (en) * 1994-06-03 1995-12-22 Asahi Chem Ind Co Ltd Vacuum heat insulating material
JP3164977B2 (en) * 1994-08-31 2001-05-14 積水化成品工業株式会社 Pre-expanded thermoplastic resin particles having low thermal conductivity and molded article comprising the pre-expanded thermoplastic resin particles
JPH0912760A (en) * 1995-07-03 1997-01-14 Matsushita Electric Ind Co Ltd Heat-insulating foamed body and its production
JPH10305545A (en) * 1997-05-01 1998-11-17 Mitsubishi Chem Corp Manufacture of laminated panel
JP2001287291A (en) * 2000-04-10 2001-10-16 Dainippon Printing Co Ltd Heat insulation material and heat insulation member
JP5124214B2 (en) * 2007-09-06 2013-01-23 日立アプライアンス株式会社 Vacuum heat insulating material and refrigerator using the same
JP2010096291A (en) * 2008-10-17 2010-04-30 Panasonic Corp Vacuum heat insulated casing
US20100304075A1 (en) * 2009-05-28 2010-12-02 Nova Chemicals Inc. Enhanced expanded polystyrene foam insulation
JP5492112B2 (en) * 2011-02-07 2014-05-14 Towa株式会社 Electronic component resin molding method and molding apparatus

Also Published As

Publication number Publication date
JP2016173174A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
EP2462394B1 (en) Vacuum insulation member, refrigerator having vacuum insulation member, and method for fabricating vacuum insulation member
EP2462391B1 (en) Vacuum insulation member and method for fabricating an vacuum insulation member
US10253919B2 (en) Vacuum heat insulation body
US20180266620A1 (en) Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator
KR20110015323A (en) Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
US9975686B2 (en) Vacuum insulation panel and container comprising vacuum insulation panels
JP2018502261A5 (en)
JP2022033980A (en) Refrigerator door and refrigerator
KR101012664B1 (en) Method for manufacturing vacuum insulating material panel
JP2009041649A (en) Vacuum heat insulating material and its manufacturing method
JP6605823B2 (en) Heat insulation member, method for producing heat insulation member
JP2004162914A (en) Vacuum insulation material and its manufacturing method
JP2011089740A (en) Bag body and vacuum heat insulating material
JP2019168001A (en) Vacuum heat insulating material and refrigerator using vacuum heat insulating material
JP6634040B2 (en) Vacuum insulation material, method for manufacturing vacuum insulation material, and refrigerator
JP2016507704A (en) Vacuum insulation core material made of melamine resin cured foam, vacuum insulation material using the same, and method for producing the same
JP4944567B2 (en) Vacuum insulation article and method for manufacturing the same
JP2000283385A (en) Vacuum heat insulating material and manufacture thereof
JP2009063065A (en) Vacuum heat insulating material and refrigerator using the same
JP2020034115A (en) Vacuum heat insulator, and heat-insulating container and heat-insulating wall using the same
WO2016166934A1 (en) Vacuum heat insulator, and heat-insulating container and heat-insulating wall using same
CN108551761B (en) Preparation method of vacuum insulation board
JP2019094946A (en) Vacuum heat insulation material and method for manufacturing vacuum heat insulation material
JP6605824B2 (en) Heat insulation member, method for producing heat insulation member
CN110494706B (en) Vacuum heat insulation box body and refrigerator using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191017

R151 Written notification of patent or utility model registration

Ref document number: 6605823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees