JP6593544B2 - 機器温調装置 - Google Patents

機器温調装置 Download PDF

Info

Publication number
JP6593544B2
JP6593544B2 JP2018538298A JP2018538298A JP6593544B2 JP 6593544 B2 JP6593544 B2 JP 6593544B2 JP 2018538298 A JP2018538298 A JP 2018538298A JP 2018538298 A JP2018538298 A JP 2018538298A JP 6593544 B2 JP6593544 B2 JP 6593544B2
Authority
JP
Japan
Prior art keywords
condenser
medium
liquid phase
phase passage
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018538298A
Other languages
English (en)
Other versions
JPWO2018047535A1 (ja
Inventor
毅 義則
隆 山中
吉毅 加藤
雅之 竹内
功嗣 三浦
康光 大見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Publication of JPWO2018047535A1 publication Critical patent/JPWO2018047535A1/ja
Application granted granted Critical
Publication of JP6593544B2 publication Critical patent/JP6593544B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6564Gases with forced flow, e.g. by blowers using compressed gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Inverter Devices (AREA)

Description

関連出願への相互参照
本出願は、2016年9月9日に出願された日本特許出願番号2016−176790号に基づくもので、ここにその記載内容が参照により組み入れられる。
本開示は、対象機器の温度を調整する機器温調装置に関するものである。
近年、電気自動車またはハイブリッド自動車などの電動車両に搭載される蓄電装置などの電気機器の温度を調整するための機器温調装置としてサーモサイフォンを使用した技術が検討されている。
特許文献1に記載の機器温調装置は、蓄電装置としての電池の側面に設けられた蒸発器と、その蒸発器の上方に設けられた凝縮器とが2本の配管により環状に接続され、その中に作動流体としての冷媒が封入されたものである。この機器温調装置は、電池が発熱すると、蒸発器内の液相冷媒が沸騰し、そのときの蒸発潜熱により電池が冷却される。蒸発器で生成された気相冷媒は、2本の配管のうち一方の配管で構成された気相通路を流れ、凝縮器に流入する。凝縮器は、その気相冷媒を凝縮器の外部にある媒体との熱交換により凝縮させる。凝縮器で生成された液相冷媒は、重力により、2本の配管のうち他方の配管で構成された液相通路を流れ、蒸発器に流入する。このような冷媒の自然循環により、対象機器である電池の冷却が行われる。
なお、本明細書において、機器温調装置とは、サーモサイフォン方式により対象機器の温度を調整する装置全般を含むものである。すなわち、機器温調装置とは、対象機器の冷却のみを行う装置、加熱のみを行う装置、および、対象機器の冷却と加熱の両方を行う装置のいずれも含むものである。
特開2015−041418号公報
上述した特許文献1に記載の機器温調装置は、1個の凝縮器しか備えていない。そのため、電池の発熱量が大きくなると、凝縮器から蒸発器に対し、電池の冷却に必要な液相冷媒が十分に供給されないことが考えられる。また、機器温調装置が複数の凝縮器を備えるものとした場合、一方の凝縮器で液相となった冷媒が他方の凝縮器で再加熱されることの無いよう、複数の凝縮器を配置する環境の温度、および、複数の凝縮器を配置する位置などを適切に設定することが好ましい。すなわち、サーモサイフォン式の機器温調装置は、液相冷媒の自重を駆動力として冷媒を循環させているので、対象機器の冷却能力を向上するためには、凝縮器から蒸発器へ液相の作動流体を効率よく供給することが重要となる。
本開示は、蒸発器に液相の作動流体を効率よく供給すると共に、作動流体の再加熱を防ぐことの可能な機器温調装置を提供することを目的とする。
本開示の1つの観点によれば、機器温調装置は、対象機器の温度を調整するものであり、蒸発器、第1凝縮器、第2凝縮器、気相通路、第1液相通路および第2液相通路を備える。蒸発器は、対象機器から吸熱して蒸発する作動流体の蒸発潜熱により対象機器を冷却する。第1凝縮器は、蒸発器よりも重力方向上側に設けられ、蒸発器で蒸発した作動流体を、外部にある第1媒体との熱交換により凝縮させる第1熱交換通路を有する。第2凝縮器は、蒸発器よりも重力方向上側に設けられ、蒸発器で蒸発した作動流体を、外部にある第2媒体との熱交換により凝縮させる第2熱交換通路を有する。気相通路は、蒸発器で蒸発した作動流体を第1凝縮器と第2凝縮器に流す。第1液相通路は、第1凝縮器から延び、第1凝縮器で凝縮した作動流体を前記蒸発器に向けて流す。第2液相通路は、第2凝縮器から延び、第2凝縮器で凝縮した作動流体を前記蒸発器に向けて流す。そして、第1熱交換通路の外部にある第1媒体と、第2熱交換通路の外部にある第2媒体とは、温度を個別に設定可能なものである。
これによれば、第1凝縮器と第2凝縮器とが気相通路と液相通路により並列に接続され、第1凝縮器と第2凝縮器のうち作動流体を凝縮させる能力が高いほうの凝縮器は、その能力が低いほうの凝縮器よりも作動流体の流れの圧力損失が小さいものとなる。そのため、第1凝縮器と第2凝縮器のうち作動流体を凝縮させる能力が高いほうの凝縮器は、その能力が低いほうの凝縮器による作動流体の流れの制約を受けることなく作動流体の流量を増加させ、より多くの液相の作動流体を生成することが可能である。したがって、この機器温調装置は、作動流体を凝縮させる能力が高いほうの凝縮器から蒸発器に対し、液相の作動流体を効率よく供給することができる。
また、第1凝縮器と第2凝縮器とが並列に接続されるので、一方の凝縮器で生成された液相の作動流体は他方の凝縮器を経由することなく蒸発器に流れる。そのため、第1凝縮器と第2凝縮器のうち作動流体を凝縮させる能力が高いほうの凝縮器で生成された液相冷媒が、その能力が低いほうの凝縮器で再加熱されることが防がれる。したがって、この機器温調装置は、第1凝縮器および第2凝縮器で作動流体を冷却するエネルギを効率よく使用すると共に、第1凝縮器および第2凝縮器から蒸発器に供給する液相の作動流体の流量を増やすことができる。
第1実施形態にかかる機器温調装置の構成図である。 第1実施形態にかかる機器温調装置の部分拡大図である。 第2実施形態にかかる機器温調装置の部分拡大図である。 第3実施形態にかかる機器温調装置の構成図である。 第1参考例にかかる機器温調装置の構成図である。 第4実施形態にかかる機器温調装置の構成図である。 第2参考例にかかる機器温調装置の構成図である。 第5実施形態にかかる機器温調装置の部分拡大図である。 第6実施形態にかかる機器温調装置の部分拡大図である。 第7実施形態にかかる機器温調装置の部分拡大図である。 第8実施形態にかかる機器温調装置の部分拡大図である。 第9実施形態にかかる機器温調装置の部分拡大図である。 第10実施形態にかかる機器温調装置の部分拡大図である。
以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。なお、図面において、同一の構成が複数個所に記載されている場合、その一部にのみ符号を付すものとする。
(第1実施形態)
第1実施形態について図面を参照しつつ説明する。本実施形態の機器温調装置は、電気自動車またはハイブリッド自動車などの電動車両に搭載される蓄電装置または電子回路などの電気機器を冷却し、それらの対象機器の温度を調整するものである。なお、各図面において、上下を示す矢印は、機器温調装置が車両に搭載され、その車両が水平面に停車しているとしたときの重力方向上下を示すものである。
まず、本実施形態の機器温調装置1が温度調整する対象機器について説明する。
図1に示すように、本実施形態の機器温調装置1が温度調整する対象機器は、組電池2(以下、「電池」という)である。なお、対象機器としては、電池2と図示していない電力変換装置などから構成される電池パックとしてもよい。
電池2は、電気自動車、およびハイブリッド自動車など、走行用電動モータによって走行可能な車両の電源として用いられる。電池2は、直方体形状の複数の電池セル21を積層配置した積層体で構成されている。電池2を構成する複数の電池セル21は、電気的に直列に接続されている。電池セル21は、例えば、リチウムイオン電池または鉛蓄電池などの充放電可能な二次電池で構成されている。なお、電池セル21は、直方体形状に限らず、円筒形状等の他の形状を有していてもよい。また、電池2は、電気的に並列に接続された電池セル21を含んで構成されていてもよい。
電池2は、車両が備える図示していない電力変換装置およびモータジェネレータに接続されている。電力変換装置は、例えば、電池2から供給された直流電流を交流電流に変換し、変換した交流電流を走行用電動モータ等の各種電気負荷に対して放電する装置である。また、モータジェネレータは、車両の回生制動時に、車両の走行エネルギを電気エネルギに逆変換し、逆変換した電気エネルギを回生電力としてインバータ等を介して電池2に供給する装置である。
電池2は、車両の走行中に電力供給等を行うときに自己発熱し、電池2が過度に高温になることがある。電池2が過度に高温になると、電池セル21の劣化が促進されることから、自己発熱が少なくなるように出力、および入力に制限を設ける必要がある。そのため、電池セル21の出力、入力を確保するためには、所定の温度以下に維持するための冷却手段が必要となる。
また、電池2を含む蓄電装置は、車両の床下やトランクルームの下側に配置されることが多い。そのため、車両の走行中に限らず、夏季における駐車中等にも電池2の温度が徐々に上昇し、電池2が過度に高温になることがある。電池2が高温環境下で放置されると、電池2の劣化が進行し、その寿命が大幅に低下するので、車両の駐車中等にも電池2の温度を所定の温度以下に維持することが望まれている。
さらに、電池2は、各電池セル21を電気的に直列接続した構造を含んでいるので、各電池セル21のうち、最も劣化が進行した電池セル21に応じて電池全体の入出力特性が決まる。そのため、各電池セル21の温度にばらつきがあると、各電池セル21の劣化の進行度合いが偏ったものとなり、電池全体の入出力特性が低下してしまう。そのため、電池2を長期間、所望の性能を発揮させるためには、各電池セル21の温度ばらつきを低減させる均温化が重要となる。
一般に、電池2を冷却する冷却手段として、送風機による空冷式の冷却手段、冷却水による冷却手段、または、蒸気圧縮式の冷凍サイクルを利用した冷却手段が採用されている。
しかし、送風機による空冷式の冷却手段は、車室内または車室外の空気を電池2に送風するだけなので、電池2を充分に冷却するだけの冷却能力が得られないことがある。また、空冷式および冷却水による冷却手段は、空気または冷却水の流れの上流側の電池セル21の冷却温度と、下流側の電池セル21の冷却温度とにばらつきが生じることがある。
また、冷凍サイクルの冷熱を利用した冷却手段は、電池2の冷却能力が高いものの、車両の駐車中に、電力消費量の多いコンプレッサ等を駆動させることが必要となる。このことは、電力消費量の増大および騒音の増大などを招くことになる。
そこで、本実施形態の機器温調装置1では、作動流体としての冷媒をコンプレッサにより強制循環させるのではなく、冷媒の自然循環によって電池2の温度を調整するサーモサイフォン方式を採用している。
次に、機器温調装置1の構成について説明する。
図1に示すように、機器温調装置1は、蒸発器3、第1凝縮器41、第2凝縮器42、気相通路5および液相通路6などを備え、それらの構成部材が互いに接続されることにより、ループ型のサーモサイフォンを構成している。機器温調装置1は、その内部を真空排気した状態で、所定量の冷媒が封入されている。冷媒として、例えばR134a、R1234yf、二酸化炭素または水など、種々のものを採用することが可能である。なお、図1の一点鎖線S1、S2に示すように、冷媒の量は、電池2の冷却開始前の状態で、液相冷媒の液上面が、気相通路5の途中と液相通路6の途中にあることが好ましい。なお、図1の破線の矢印の方向に冷媒が循環すると、それに応じて液相冷媒の液上面は変位する。
蒸発器3は、密閉されたケースであり、扁平状に形成され、電池2の下面に対向する位置に設けられている。蒸発器3は、例えばアルミニウムまたは銅などの熱伝導率に優れた材料により形成されることが好ましい。なお、蒸発器3は、複数の電池セル21と熱伝達可能に設けられていればよく、例えば電池2の側面または上面に対向する位置に設けられてもよい。また、蒸発器3の形状および大きさは、車両に搭載される空間に合わせて任意に設定可能である。
蒸発器3は、内側に流体室30を有している。電池2の冷却開始前の状態で、流体室30には、液相冷媒が充満していることが好ましい。なお、実際には、液相冷媒と気相冷媒とを含んでいてもよい。電池2が蓄電または放電などにより自己発熱すると、電池2から蒸発器3に伝熱し、流体室30の液相冷媒がその熱を吸収して蒸発する。その際、流体室30の全体で液相冷媒の蒸発が生じ、その蒸発潜熱により、複数の電池セル21がほぼ均一に冷却される。したがって、蒸発器3は、複数の電池セル21同士の温度ばらつきを低減して複数の電池セル21を均温化し、且つ、冷却することが可能である。
上述したように、電池2は、高温になると十分な機能を得られず、また、劣化や破損を招くことがある。そして、電池2は、最も劣化した電池セル21の特性に合わせて電池全体の入出力特性が決まるものである。そこで、この蒸発器3は、蒸発潜熱を利用した冷却により、複数の電池セル21を均温化し、且つ、冷却することで、電池2に長期間、所望の性能を発揮させることが可能である。
蒸発器3には、気相通路5と液相通路6とが接続されている。蒸発器3と液相通路6とが接続する箇所を第1開口部31と称し、蒸発器3と気相通路5とが接続する箇所を第2開口部32と称することとする。蒸発器3において、第1開口部31と第2開口部32とは、離れていることが好ましい。これにより、サーモサイフォンを冷媒が循環する際、蒸発器3には、第1開口部31から第2開口部32に向かう冷媒の流れが形成される。なお、図1では、第1開口部31と第2開口部32はいずれも蒸発器3の側面に設けられているが、第1開口部31と第2開口部32の位置は側面に限らず、上面または下面であってもよい。
凝縮器4は、第1凝縮器41および第2凝縮器42を含んで構成されている。第1凝縮器41は、内部の流路を流れる冷媒を、第1凝縮器41の外部にある図示していない媒体との熱交換により、凝縮させる機能を有するものである。以下の説明において、第1凝縮器41の外部にある媒体を第1媒体と称することとする。第2凝縮器42も、内部の流路を流れる冷媒を、第2凝縮器42の外部にある図示していない媒体との熱交換により、凝縮させる機能を有するものである。以下の説明において、第2凝縮器42の外部にある媒体を第2媒体と称することとする。第1媒体と第2媒体とは、温度を個別に設定可能なものである。なお、第1から第3実施形態および第1参考例において、第1媒体と第2媒体とは、同種の媒体であってもよく、または、異種の媒体であってもよい。
第1凝縮器41と第2凝縮器42とはいずれも、蒸発器3よりも重力方向上側に設けられている。第1凝縮器41と第2凝縮器42とは、気相通路5と液相通路6により、並列に接続されている。
気相通路5は、蒸発器3から延びる蒸発器側気相通路50、第1凝縮器41から延びる第1気相通路51、および、第2凝縮器42から延びる第2気相通路52などを含んで構成されている。蒸発器側気相通路50のうち蒸発器3とは反対側の端部と、第1気相通路51のうち第1凝縮器41とは反対側の端部と、第2気相通路52のうち第2凝縮器42とは反対側の端部とは、分岐部53によって接続されている。
詳細には、蒸発器側気相通路50は、一端が蒸発器3の第2開口部32に接続され、他端が分岐部53に接続されている。第1気相通路51は、一端が分岐部53に接続され、他端が第1凝縮器41の第1入口部415に接続されている。第2気相通路52は、一端が分岐部53に接続され、他端が第2凝縮器42の第2入口部425に接続されている。これにより、気相通路5は、蒸発器3で蒸発した気相冷媒を第1凝縮器41と第2凝縮器42に流すことが可能である。なお、気相通路5は、主に気相冷媒が流れるものであるが、気液二相状態の冷媒、または液相冷媒が流れることもある。
液相通路6は、第1凝縮器41から延びる第1液相通路61、第2凝縮器42から延びる第2液相通路62、および、蒸発器3から延びる第3液相通路63などを含んで構成されている。第1液相通路61のうち第1凝縮器41とは反対側の端部と、第2液相通路62のうち第2凝縮器42とは反対側の端部と、第3液相通路63のうち蒸発器3とは反対側の端部とは、集合部64によって接続されている。
詳細には、第1液相通路61は、一端が第1凝縮器41の第1出口部416に接続され、他端が集合部64に接続されている。第1液相通路61は、第1凝縮器41で凝縮した液相冷媒を蒸発器3に向けて流す。第2液相通路62は、一端が第2凝縮器42の第2出口部426に接続され、他端が集合部64に接続されている。第2液相通路62は、第2凝縮器42で凝縮した液相冷媒を蒸発器3に向けて流す。集合部64では、第1液相通路61を流れる液相冷媒と第2液相通路62を流れる液相冷媒とが集合する。第3液相通路63は、一端が集合部64に接続され、他端が蒸発器3の第1開口部31に接続されている。第3液相通路63には、第1液相通路61および第2液相通路62を流れて集合部64で集合した液相冷媒が蒸発器3に流れる。これにより、液相通路6は、第1凝縮器41と第2凝縮器42で凝縮した液相冷媒を重力により蒸発器3に流すことが可能である。なお、液相通路6は、主に液相冷媒が流れるものであるが、気液二相状態の冷媒、または気相冷媒が流れることもある。
続いて、第1凝縮器41と第2凝縮器42について詳細に説明する。
図2に示すように、第1凝縮器41は、第1上タンク411、複数の第1熱交換チューブ412および第1下タンク413などを有している。第1凝縮器41は、例えばアルミニウムまたは銅などの熱伝導率に優れた材料により形成されることが好ましい。第1凝縮器41の形状および大きさは、車両に搭載される空間に合わせて任意に設定可能である。
第1熱交換チューブ412は、第1媒体との熱交換により気相冷媒を凝縮させる第1熱交換通路に相当するものである。第1熱交換チューブ412の外側には、複数のフィン414が設けられている。複数の第1熱交換チューブ412は、重力方向に沿うように延びている。これにより、複数の第1熱交換チューブ412の内側を、液相冷媒が重力方向に沿って流れる。
第1気相通路51から第1入口部415を通り、第1上タンク411に供給される気相冷媒は、第1上タンク411から複数の第1熱交換チューブ412に流入する。この気相冷媒は、複数の第1熱交換チューブ412を流れる際に、第1凝縮器41の外部にある第1媒体との熱交換により凝縮する。複数の第1熱交換チューブ412で生成された液相冷媒は、自重により、第1下タンク413に流入する。その液相冷媒は、第1下タンク413に設けられた第1出口部416から、第1液相通路61、集合部64および第3液相通路63を経由し、蒸発器3に流れる。
第2凝縮器42も、第2上タンク421、複数の第2熱交換チューブ422および第2下タンク423などを有している。第2凝縮器42も、例えばアルミニウムまたは銅などの熱伝導率に優れた材料により形成されることが好ましい。第2凝縮器42の形状および大きさは、車両に搭載される空間に合わせて任意に設定可能である。
第2熱交換チューブ422は、第2媒体との熱交換により気相冷媒を凝縮させる第2熱交換通路に相当するものである。第2熱交換チューブ422の外側には、複数のフィン424が設けられている。複数の第2熱交換チューブ422は、重力方向に沿うように延びている。これにより、複数の第2熱交換チューブ422の内側を、液相冷媒が重力方向に沿って流れる。
第2気相通路52から第2入口部425を通り、第2上タンク421に供給される気相冷媒は、第2上タンク421から複数の第2熱交換チューブ422に流入する。この気相冷媒は、複数の第2熱交換チューブ422を流れる際に、第2凝縮器42の外部にある第2媒体との熱交換により凝縮する。複数の第2熱交換チューブ422で生成された液相冷媒は、自重により、第2下タンク423に流入する。その液相冷媒は、第2下タンク423に設けられた第2出口部426から、第2液相通路62、集合部64および第3液相通路63を経由し、蒸発器3に流れる。
第1実施形態の機器温調装置1は、上述した構成を備えることにより、次の作用効果を奏する。
(1)第1実施形態では、第1凝縮器41と第2凝縮器42とが気相通路5と液相通路6により並列に接続されている。これにより、第1凝縮器41と第2凝縮器42のうち冷媒を凝縮させる能力が高いほうの凝縮器は、その能力が低いほうの凝縮器よりも冷媒の流れの圧力損失が小さいものとなる。そのため、第1凝縮器41と第2凝縮器42のうち冷媒を凝縮させる能力が高いほうの凝縮器は、その能力が低いほうの凝縮器による冷媒の流れの制約を受けることなく冷媒の流量を増加させ、より多くの液相冷媒を生成することが可能である。したがって、この機器温調装置1は、冷媒を凝縮させる能力が高いほうの凝縮器から蒸発器3に対し、液相冷媒を効率よく供給することができる。
また、第1実施形態では、第1凝縮器41と第2凝縮器42とが並列に接続されるので、一方の凝縮器で生成された液相冷媒は他方の凝縮器を経由することなく蒸発器3に供給される。そのため、第1凝縮器41と第2凝縮器42のうち冷媒を凝縮させる能力が高いほうの凝縮器で生成された液相冷媒が、その能力が低いほうの凝縮器で再加熱されることが防がれる。したがって、この機器温調装置1は、第1凝縮器41および第2凝縮器42で冷媒を冷却するエネルギを効率よく使用すると共に、第1凝縮器41および第2凝縮器42から蒸発器3に供給する液相冷媒の流量を増やすことができる。
(2)第1実施形態では、第1凝縮器41の外部にある第1媒体と、第2凝縮器42の外部にある第2媒体とは、温度を個別に設定可能なものである。
これによれば、第1媒体と第2媒体は、一方の媒体の温度と他方の媒体の温度とが影響し合うことの無い、熱的に独立したものといえる。そのため、例えば電池2の発熱量が大きいとき、第1媒体と第2媒体のうち温度の低い方の媒体を使用して液相冷媒の生成量を増やし、電池2を十分に冷却することが可能である。一方、電池2の発熱量が小さいとき、第1媒体と第2媒体のうち温度の高い方の媒体を使用して電池2を適切な温度に冷却することが可能である。したがって、この機器温調装置1は、電池2の発熱量に応じた温度調節をすることができる。
(3)第1実施形態では、第1凝縮器41が有する複数の第1熱交換チューブ412と第2凝縮器42が有する複数の第2熱交換チューブ422は、重力方向に沿うように延びている。
これによれば、第1熱交換チューブ412および第2熱交換チューブ422は、液相冷媒を自重により重力方向下側へ円滑に流すことが可能である。したがって、この機器温調装置1は、冷媒を円滑に循環させ、電池2の冷却能力を向上することができる。
(第2実施形態)
第2実施形態について説明する。第2実施形態は、第1実施形態に対して第2凝縮器42の配置を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図3に示すように、第2実施形態では、第2凝縮器42が有する複数の第2熱交換チューブ422は、重力方向に対し交差する方向に延びている。なお、第2凝縮器42が有する第2上タンク421と第2下タンク423は、重力方向に沿って延びている。
一方、第1凝縮器41が有する複数の第1熱交換チューブ412は、重力方向に沿うように延びている。これにより、複数の第1熱交換チューブ412の内側を、液相冷媒が重力方向に沿って流れる力が大きくなる。
第2実施形態では、第1凝縮器41の複数の第1熱交換チューブ412で生成された液相冷媒は、その自重により重力方向に沿って流れる力が大きくなり、第1下タンク413から第1液相通路61、集合部64および第3液相通路63を経由して蒸発器3に円滑に流れる。一方、第2凝縮器42では、第1凝縮器41よりも液相冷媒の流れる力は弱いものの、複数の第2熱交換チューブ422で生成された液相冷媒が、第2上タンク421から第2下タンク423に流れた後、第2液相通路62、集合部64および第3液相通路63を経由して蒸発器3に円滑に流れる。これにより、蒸発器3側から液相冷媒または気泡の逆流が抑制される。したがって、この機器温調装置1は、電池2の冷却能力を向上することができる。
(第3実施形態)
第3実施形態について説明する。第3実施形態は、第1実施形態に対して2個の凝縮器の配置と液相通路6の構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図4に示すように、第3実施形態では、第2凝縮器42が有する第2出口部426は、第1凝縮器41が有する第1出口部416よりも重力方向上側に配置されている。すなわち、第2液相通路62が第2凝縮器42の第2出口部426に接続する位置は、第1液相通路61が第1凝縮器41の第1出口部416に接続する位置より重力方向において高い位置にある。ここで、第1、第2液相通路61、62のうちで対応する凝縮器41、42に接続する位置が高いほうの液相通路の長さをLaとする。第3液相通路63の長さをLbとする。また、第1、第2液相通路61、62のうちで対応する凝縮器41、42に接続する位置が高いほうの液相通路の容積をVaとする。第3液相通路63の容積をVbとする。なお、第1〜第3液相通路61、62、63の内径は、ほぼ同一である。第3実施形態では、第2凝縮器42に接続する位置が高い第2液相通路62の長さがLaに相当し、その第2液相通路62の容積がVaに相当する。
このとき、第2液相通路62の長さLaと、第3液相通路63の長さLbとの関係は、La<Lbである。また、第2液相通路62の容積Vaと、第3液相通路63の容積Vbとの関係は、Va<Vbである。
第3実施形態では、第2液相通路62と第3液相通路63とがLa<Lbの関係を有することで、第2液相通路62を流れる液相冷媒は、集合部64の付近で第1液相通路61に逆流することが抑制され、第3液相通路63に円滑に流れる。また、第3実施形態では、第2液相通路62と第3液相通路63とがVa<Vbの関係を有することによっても、第2液相通路62を流れる液相冷媒は、集合部64の付近で第1液相通路61に逆流することが抑制され、第3液相通路63に円滑に流れる。すなわち、第2液相通路62を流れる液相冷媒の自重により流れる力の分散が抑制される。したがって、機器温調装置1は、蒸発器3に供給する液相冷媒の流量を増やし、機器温調装置1に液相冷媒を円滑に循環させることができる。
なお、第3実施形態では、第2凝縮器42が有する第2出口部426を、第1凝縮器41が有する第1出口部416よりも重力方向上側に配置した。これに対し、図示はしていないが、第1凝縮器41が有する第1出口部416を、第2凝縮器42が有する第2出口部426よりも重力方向上側に配置した場合、第1液相通路61の長さがLaに相当し、第1液相通路61の容積がVaに相当するものとなる。この場合、第1液相通路61と第3液相通路63とは、上記と同様に、La<Lb、Va<Lbの関係を有する。この場合、第1液相通路61を流れる液相冷媒は、集合部64の付近で第2液相通路62に逆流することが抑制され、第3液相通路63に円滑に流れる。すなわち、第1液相通路61を流れる液相冷媒の自重により流れる力の分散が抑制される。したがって、機器温調装置1は、蒸発器3に供給する液相冷媒の流量を増やし、機器温調装置1に液相冷媒を円滑に循環させることができる。
(第1参考例)
第1参考例について説明する。第1参考例は、第3実施形態に対して第1〜第3液相通路61、62、63の構成を変更したものである。
図5に示すように、第1参考例でも、上述した第3実施形態と同様に、第2凝縮器42が有する第2出口部426は、第1凝縮器41が有する第1出口部416よりも重力方向上側に配置されている。すなわち、第2液相通路62が第2凝縮器42の第2出口部426に接続する位置は、第1液相通路61が第1凝縮器41の第1出口部416に接続する位置より重力方向において高い位置にある。第1参考例でも、第1、第2液相通路61、62のうちで対応する凝縮器41、42に接続する位置が高いほうの液相通路の長さをLaとする。第3液相通路63の長さをLbとする。また、第1、第2液相通路61、62のうちで対応する凝縮器41、42に接続する位置が高いほうの液相通路の容積をVaとする。第3液相通路63の容積をVbとする。なお、第1〜第3液相通路61、62、63の内径は、ほぼ同一である。第1参考例でも、第2凝縮器42に接続する位置が高い第2液相通路62の長さがLaに相当し、その第2液相通路62の容積がVaに相当する。
しかし、第1参考例では、第2液相通路62の長さLaと、第3液相通路63の長さLbとの関係は、La>Lbである。また、第2液相通路62の容積Vaと、第3液相通路63の容積Vbとの関係は、Va>Vbである。このように、第2液相通路62と第3液相通路63とがLa>LbまたはVa>Vbの関係を有する場合、第2液相通路62を流れる液相冷媒が、第3液相通路63に入りきらなくなると、破線の矢印F1に示すように、第1液相通路61側へ逆流することが考えられる。第1液相通路61側へ逆流した液相冷媒は、流れの向きが第1凝縮器41側に向いているので、蒸発器3へ液相冷媒を押す力にはならない。したがって、この機器温調装置1は、第2液相通路62を流れる液相冷媒の自重により流れる力が分散するので、蒸発器3に供給する液相冷媒の流量が減少することが懸念される。
なお、第1参考例においても、第1実施形態と同様に、第1凝縮器41と第2凝縮器42とは、気相通路5と液相通路6により並列に接続されている。これにより、第1参考例も、第1実施形態と同一の作用効果を奏することが可能である。
(第4実施形態)
第4実施形態について説明する。第4実施形態は、第1実施形態に対して2個の凝縮器41、42の配置と、その2個の凝縮器41、42それぞれの外部にある媒体の構成を変更したものである。
図6に示すように、第4実施形態では、第1凝縮器41が有する第1出口部416は、第2凝縮器42が有する第2出口部426よりも重力方向上側に配置されている。すなわち、第1液相通路61が第1凝縮器41の第1出口部416に接続する位置は、第2液相通路62が第2凝縮器42の第2出口部426に接続する位置より重力方向において高い位置にある。
図6では、第1凝縮器41の外部にある第1媒体を矢印M1で示し、第2凝縮器42の外部にある第2媒体を矢印M2で示している。第1媒体と第2媒体とは、温度を個別に設定可能なものである。すなわち、第1媒体と第2媒体は、一方の媒体の温度と他方の媒体の温度とが影響し合うことの無い、熱的に独立したものである。
ここで、第1媒体と第2媒体のうち重力方向に低い位置にある凝縮器の外部にある媒体の温度をTaとし、重力方向に高い位置にある凝縮器の外部にある媒体の温度をTbとする。第4実施形態では、第1凝縮器41よりも第2凝縮器42のほうが重力方向に低い位置にあるので、第2凝縮器42の外部にある第2媒体の温度がTaに相当し、第1凝縮器41の外部にある第1媒体の温度がTbに相当する。このとき、第2媒体の温度Taと、第1媒体の温度Tbとの関係は、Ta<Tbである。すなわち、TaはTbより低温である。
第4実施形態では、第1媒体と第2媒体のうちの温度が低いほうの第2媒体は、第2凝縮器42に対応している。これにより、第2凝縮器42で生成される液相冷媒の量が、第1凝縮器41で生成される液相冷媒の量よりも多くなる。一方、第1凝縮器41が有する第1出口部416は、第2凝縮器42が有する第2出口部426よりも重力方向に高い位置にある。そのため、仮に第2液相通路62を流れる液相冷媒が集合部64を通過して第1液相通路61へ逆流した場合でも、その液相冷媒が第1凝縮器41に浸入することが抑制される。したがって、第1凝縮器41または第2凝縮器42のうち外部にある媒体の温度が低いほうの第2凝縮器42で凝縮した液相冷媒が、媒体の温度が高いほうの第1凝縮器41に浸入して再加熱されることを抑制することができる。
なお、第4実施形態では、第1凝縮器41が有する第1出口部416を、第2凝縮器42が有する第2出口部426よりも重力方向上側に配置した。これに対し、図示していないが、第1凝縮器41が有する第1出口部416を、第2凝縮器42が有する第2出口部426よりも重力方向下側に配置した場合、第1凝縮器41の外部にある第1媒体の温度がTaに相当し、第2凝縮器42の外部にある第2媒体の温度がTbに相当する。このときも、第1媒体の温度Taと、第2媒体の温度Tbとの関係は、Ta<Tbである。
その場合、第1媒体と第2媒体のうちの温度が低いほうの第1媒体は、第1凝縮器41に対応するものとなる。これにより、第1凝縮器41で生成される液相冷媒の量が、第2凝縮器42で生成される液相冷媒の量よりも多くなる。一方、その場合では、第2凝縮器42が有する第2出口部426は、第1凝縮器41が有する第1出口部416よりも重力方向に高い位置にある。そのため、仮に第1液相通路61を流れる液相冷媒が集合部64を通過して第2液相通路62へ逆流した場合、その液相冷媒が第2凝縮器42に浸入することが抑制される。したがって、第1凝縮器41または第2凝縮器42のうち外部にある媒体の温度が低いほうの第1凝縮器41で凝縮した液相冷媒が、媒体の温度が高いほうの第2凝縮器42に浸入して再加熱されることを抑制することができる。
(第2参考例)
第2参考例について説明する。第2参考例は、第4実施形態に対して2個の凝縮器41、42の配置と、その2個の凝縮器41、42それぞれの外部にある媒体の構成を変更したものである。
図7に示すように、第2参考例では、第1凝縮器41が有する第1出口部416は、第2凝縮器42が有する第2出口部426よりも重力方向下側に配置されている。すなわち、第1液相通路61が第1凝縮器41の第1出口部416に接続する位置は、第2液相通路62が第2凝縮器42の第2出口部426に接続する位置より重力方向において低い位置にある。
図7でも、第1凝縮器41の外部にある第1媒体を矢印M1で示し、第2凝縮器42の外部にある第2媒体を矢印M2で示している。第1媒体と第2媒体とは、温度を個別に設定可能なものである。
第2参考例でも、第1媒体と第2媒体のうち重力方向に低い位置にある凝縮器の外部にある媒体の温度をTaとし、重力方向に高い位置にある凝縮器の外部にある媒体の温度をTbとする。第2参考例では、第1凝縮器41の外部にある第1媒体の温度がTaに相当し、第2凝縮器42の外部にある第2媒体の温度がTbに相当する。ただし、第2参考例では、第1媒体の温度Taと、第2媒体の温度Tbとの関係は、Ta>Tbとする。すなわち、第2参考例は、第4実施形態と異なり、TaはTbより高温である。
第2参考例では、第1媒体と第2媒体のうちの温度が低いほうの第2媒体は、第2凝縮器42に対応している。そのため、第2凝縮器42で生成される液相冷媒の量が、第1凝縮器41で生成される液相冷媒の量よりも多くなる。一方、第1凝縮器41が有する第1出口部416は、第2凝縮器42が有する第2出口部426よりも重力方向に低い位置にある。そのため、仮に第2液相通路62を流れる液相冷媒が集合部64を通過して第1液相通路61へ逆流した場合、その液相冷媒が第1凝縮器41に浸入するおそれがある。すなわち、第2凝縮器42で生成された液相冷媒は、第1凝縮器41に対し、図7の一点鎖線Rに示した位置まで浸入するおそれがある。したがって、第1凝縮器41または第2凝縮器42のうち外部にある媒体の温度が低いほうの第2凝縮器42で凝縮した液相冷媒が、媒体の温度が高いほうの第1凝縮器41に浸入して再加熱されることが懸念される。
なお、第2参考例においても、第1実施形態と同様に、第1凝縮器41と第2凝縮器42とは、気相通路5と液相通路6により並列に接続されている。これにより、第2参考例も、第1実施形態と同一の作用効果を奏することが可能である。
(第5実施形態)
第5実施形態について説明する。以下に説明する複数の実施形態は、上述した第1から第4実施形態に対し、第1凝縮器41および第2凝縮器42のそれぞれの外部にある第1媒体および第2媒体について説明するものである。なお、以下に説明する複数の実施形態で参照する各図面では、蒸発器3とその周辺の構成の図示を省略している。
図8に示すように、第5実施形態の機器温調装置1は、第1媒体供給装置100の一例として第1送風機71を備えており、第2媒体供給装置200の一例として第2送風機72を備えている。第1送風機71は、第1媒体としての空気を第1凝縮器41に供給するものである。第2送風機72も、第2媒体としての空気を第2凝縮器42に供給するものである。
第1送風機71は、少なくとも夏季において、第1媒体として車室外空気を第1凝縮器41に供給する。車室外空気は、第1凝縮器41の外部を流れ、第1凝縮器41を流れる冷媒と熱交換する。一方、第2送風機72は、少なくとも夏季において、第2媒体として車室内空気を第2凝縮器42に供給する。車室内空気は、第2凝縮器42の外部を流れ、第2凝縮器42を流れる冷媒と熱交換する。一般に、少なくとも夏季における車両走行時では、空調装置によって車室内の空気は車室外の空気よりも低温に設定されている。そのため、第2媒体としての車室内の空気は、第1媒体としての車室外の空気よりも低温である。
第5実施形態では、第1媒体の温度と第2媒体の温度とを個別に設定である。そのため、第1凝縮器41による液相冷媒の生成量と、第2凝縮器42による液相冷媒の生成量とを個別に調整し、液相冷媒の生成を促進することができる。したがって、第5実施形態では、第1凝縮器41と第2凝縮器42のうち一方の凝縮器による冷媒の凝縮能力が低いとき、他方の凝縮器による冷媒の凝縮能力を増すことで、蒸発器3に液相冷媒を供給することができる。
また、第5実施形態では、電池2の発熱量が大きいとき、機器温調装置1は、第1媒体と第2媒体のうち温度の低い方の媒体を使用して液相冷媒の生成量を増やし、電池2を十分に冷却することが可能である。一方、電池2の発熱量が小さいとき、機器温調装置1は、第1媒体と第2媒体のうち温度の高い方の媒体を使用して電池2を適切な温度に冷却することが可能である。したがって、この機器温調装置1は、電池2の発熱量に応じた温度調節をすることができる。
(第6実施形態)
第6実施形態について説明する。図9に示すように、第6実施形態の機器温調装置1は、第1媒体供給装置100の一例として、第1送風機71および第1冷熱供給器101を備えている。また、機器温調装置1は、第2媒体供給装置200の一例として、第2送風機72および第2冷熱供給器201を備えている。第1冷熱供給器101および第2冷熱供給器201は、例えば冷凍サイクルを構成する低圧側熱交換器、または、冷却水の循環サイクルを構成する熱交換器などで構成されるものである。
第1媒体供給装置100は、第1送風機71により気流を発生させ、第1冷熱供給器101を通過した空気を第1媒体として第1凝縮器41に流す。これにより、第1凝縮器41を流れる冷媒が冷却される。第1媒体供給装置100は、第1冷熱供給器101の温度調節により、第1媒体としての空気の温度を調整することが可能である。
第2媒体供給装置200は、第2送風機72により気流を発生させ、第2冷熱供給器201を通過した空気を第2媒体として第2凝縮器42に流す。これにより、第2凝縮器42を流れる冷媒が冷却される。第2媒体供給装置200も、第2冷熱供給器201の温度調節により、第2媒体としての空気の温度を調整することが可能である。
第6実施形態でも、第1媒体の温度と第2媒体の温度とを個別に設定することが可能である。そのため、第1凝縮器41と第2凝縮器42のうち一方の凝縮器による冷媒の凝縮能力が低いときでも、他方の凝縮器による冷媒の凝縮能力を増すことで、蒸発器3に液相冷媒を供給することができる。
(第7実施形態)
第7実施形態について説明する。図10に示すように、第7実施形態の機器温調装置1は、第1媒体供給装置100の一例として、第1送風機71を備えている。第1送風機71は、第1媒体としての空気を第1凝縮器41に供給するものである。その空気は、第1凝縮器41の外部を流れ、第1凝縮器41を流れる冷媒と熱交換する。
また、機器温調装置1は、第2媒体供給装置200の一例として、第2冷熱供給器201を備えている。第2冷熱供給器201は、例えば冷凍サイクルを構成する低圧側熱交換器、または、冷却水の流れる循環サイクルを構成する熱交換器などで構成されるものである。第2冷熱供給器201が冷凍サイクルを構成する低圧側熱交換器である場合、第2冷熱供給器201は第2媒体として冷凍サイクルを循環する冷媒の冷熱を第2凝縮器42に供給する。一方、第2冷熱供給器201が冷却水の循環サイクルを構成する熱交換器である場合、第2冷熱供給器201は第2媒体として冷却水の冷熱を第2凝縮器42に供給する。第2凝縮器42を流れる冷媒は、第2媒体としての冷媒または冷却水からの熱伝導により冷却される。第2冷熱供給器201は、冷凍サイクルまたは冷却水の循環サイクルの出力調整により、第2凝縮器42を流れる冷媒に供給する冷熱量を調整することが可能である。
第7実施形態では、第1媒体供給装置100は、送風機71である。第2媒体供給装置200は、冷凍サイクルを構成する低圧側熱交換器、または、冷却水の流れる循環サイクルを構成する熱交換器である。
これによれば、例えば車両の市内走行時など電池2の発熱量が小さいとき、第1媒体供給装置100としての送風機を使用することで、冷凍サイクルを駆動することに比べて、電池2の冷却に必要となる消費電力を低減することが可能である。
一方、第2媒体供給装置200は、第2媒体としての冷凍サイクルの冷媒または冷却水の温度を、第1媒体としての空気の温度よりも低い温度に設定することが可能である。例えば車両の高速走行時など電池2の発熱量が大きいとき、第2媒体供給装置200としての冷凍サイクルなどを使用することで、電池2を十分に冷却することが可能である。したがって、この機器温調装置1は、電池2の冷却に必要となる消費電力を低減すると共に、電池2の発熱量に応じた温度調節をすることができる。
また、第7実施形態では、第1媒体と第2媒体とは、異種の媒体である。これによれば、第1媒体と第2媒体を、温度の異なるものに容易に設定することが可能である。そのため、例えば車両の市内走行時など電池2の発熱量が小さいとき、第1媒体として、第2媒体よりも温度が比較的高い空気を使用して、電池2を適切な温度に冷却することが可能である。一方、例えば車両の高速走行時など電池2の発熱量が大きいとき、第2媒体として、温度の低い冷媒または冷却水を使用して、電池2を十分に冷却することが可能である。したがって、この機器温調装置1は、電池2の発熱量に応じた温度調節をすることができる。
(第8実施形態)
第8実施形態について説明する。図11に示すように、第8実施形態の機器温調装置1は、第1媒体供給装置100の一例として、冷却水の循環サイクル8を備えている。具体的に、冷却水の循環サイクル8は、ポンプ81、送風機82、空冷放熱器83および熱交換器84などが配管85によって環状に接続され、冷却水が循環する第1媒体循環回路111を構成したものである。
ポンプ81は、配管85に冷却水を循環させる。送風機82は、空冷放熱器83に対して気流を流す。これにより、空冷放熱器83の内部を流れる冷却水が冷却される。熱交換器84は、第1冷熱供給器101に相当するものである。熱交換器84を流れる冷却水は、第1凝縮器41を流れる冷媒と熱交換し、第1凝縮器41を流れる冷媒を冷却する。熱交換器84で吸熱した冷却水は、空冷放熱器83へ流れる。
また、機器温調装置1は、第2媒体供給装置200の一例として、冷凍サイクル9を備えている。具体的に、冷凍サイクル9は、圧縮機91、高圧側熱交換器92、膨張弁93および低圧側熱交換器94などが配管95によって環状に接続され、冷媒が循環する第2媒体循環回路211を構成したものである。上述した第1媒体循環回路111と第2媒体循環回路211とは別個独立したものである。
なお、冷凍サイクル9に使用する冷媒は、機器温調装置1に用いられる作動流体としての冷媒と同一のものであってもよく、また、異なるものであってもよい。
圧縮機91は、低圧側熱交換器94側から冷媒を吸引し圧縮する。圧縮機91は、図示していない車両の走行用エンジンまたは電動機等から動力が伝達されて駆動する。
圧縮機91から吐出した高圧の気相冷媒は高圧側熱交換器92に流入する。高圧側熱交換器92に流入した高圧の気相冷媒は、高圧側熱交換器92の流路を流れる際、図示されない送風機による外気との熱交換により冷却されて凝縮する。
高圧側熱交換器92で凝縮された液相冷媒は、膨張弁93を通過する際に減圧され、霧状の気液二相状態となって低圧側熱交換器94に流入する。膨張弁93はオリフィスまたはノズルのような固定絞り、或いは、適宜の可変絞り等により構成される。低圧側熱交換器94は、第2冷熱供給器201に相当するものである。低圧側熱交換器94は、内部を流れる冷媒の蒸発熱により、第2凝縮器42を流れる冷媒を冷却する。低圧側熱交換器94を通過した冷媒は、図示していないアキュムレータを経由して圧縮機91に吸引される。
第8実施形態では、第1媒体としての冷却水が循環する第1媒体循環回路111と、第2媒体としての冷媒が循環する第2媒体循環回路211とは別個独立した回路である。これによれば、第1媒体の温度と第2媒体の温度とを個別に設定であり、第1媒体の温度と第2媒体の温度とが互いに影響しあうことを防ぐことが可能である。したがって、第8実施形態では、第1凝縮器41と第2凝縮器42のうち一方の凝縮器による冷媒の凝縮能力が低いとき、他方の凝縮器による冷媒の凝縮能力を増すことで、蒸発器3に液相冷媒を供給することができる。
第8実施形態では、機器温調装置1は、第2媒体供給装置200の一例として、冷凍サイクル9を構成する低圧側熱交換器94を採用している。これによれば、機器温調装置1が車両に搭載される場合、その車両に搭載されている空調装置の冷凍サイクルの低圧側熱交換器94を媒体供給装置として使用することで、機器温調装置1の構成を簡素なものとすることができる。
また、第8実施形態では、第1媒体としての冷却水と、第2媒体としての冷凍サイクル9の冷媒とは、異種の媒体である。これによれば、第1媒体と第2媒体の温度を異なる温度に容易に設定することが可能である。したがって、この機器温調装置1は、電池2の発熱量に応じた温度調節をすることができる。
(第9実施形態)
第9実施形態について説明する。図12に示すように、第9実施形態では、機器温調装置1が備える第1媒体供給装置100と第2媒体供給装置200は、同一の冷凍サイクル9により構成されている。この冷凍サイクル9において、第1冷熱供給器101に相当する第1低圧側熱交換器941と、第2冷熱供給器201に相当する第2低圧側熱交換器942とは、並列に接続されている。
具体的に、冷凍サイクル9は、圧縮機91、高圧側熱交換器92、第1流量調整弁961、第1膨張弁931、第1低圧側熱交換器941、第2流量調整弁962、第2膨張弁932および第2低圧側熱交換器942などが配管95によって環状に接続され、冷媒が循環する循環回路を構成したものである。
圧縮機91および高圧側熱交換器92は、第8実施形態で説明したものと実質的に同一である。
高圧側熱交換器92で凝縮された液相冷媒は、分岐した配管951、952を経由し、第1低圧側熱交換器941側と第2低圧側熱交換器942側にそれぞれ分かれて流れる。第1低圧側熱交換器941側の配管951には、冷媒の流れる流量を調整するための第1流量調整弁961が設けられている。第1流量調整弁961を通過した液相冷媒は、第1膨張弁931を通過する際に減圧され、霧状の気液二相状態となって第1低圧側熱交換器941に流入する。第1低圧側熱交換器941は、第1冷熱供給器101に相当するものである。
第1低圧側熱交換器941は、機器温調装置1の第1凝縮器41を流れる冷媒と熱交換可能に設けられている。第1低圧側熱交換器941の流路を流れる低圧冷媒は、機器温調装置1の第1凝縮器41を流れる冷媒から吸熱して蒸発する。機器温調装置1の第1凝縮器41を流れる冷媒は、第1低圧側熱交換器941の流路を流れる低圧冷媒の蒸発潜熱により、冷却され、凝縮する。第1低圧側熱交換器941を通過した冷媒は、図示していないアキュムレータを経由して圧縮機91に吸引される。
一方、第2低圧側熱交換器942側の配管952にも、冷媒の流れる流量を調整するための第2流量調整弁962が設けられている。第2流量調整弁962を通過した液相冷媒は、第2膨張弁932を通過する際に減圧され、霧状の気液二相状態となって第2低圧側熱交換器942に流入する。第2低圧側熱交換器942は、第2冷熱供給器201に相当するものである。第2低圧側熱交換器942は、機器温調装置1の第2凝縮器42を流れる冷媒と熱交換可能に設けられている。第2低圧側熱交換器942の流路を流れる低圧冷媒は、機器温調装置1の第2凝縮器42を流れる冷媒から吸熱して蒸発する。機器温調装置1の第2凝縮器42を流れる冷媒は、第2低圧側熱交換器942の流路を流れる低圧冷媒の蒸発潜熱により、冷却され、凝縮する。第2低圧側熱交換器942を通過した冷媒も、図示していないアキュムレータを経由して圧縮機91に吸引される。
第9実施形態では、冷凍サイクル9が備える第1流量調整弁961および第2流量調整弁962により、第1凝縮器41を流れる冷媒に供給する冷熱量と、第2凝縮器42を流れる冷媒に供給する冷熱量とを調整することが可能である。第1流量調整弁961および第2流量調整弁962の流量調整は、オンオフ時間の調整などにより行われる。このような冷凍サイクル9の出力調整により、第1凝縮器41と第2凝縮器42のうち一方の凝縮器による冷媒の凝縮能力が低いとき、他方の凝縮器による冷媒の凝縮能力を増すことで、蒸発器3に液相冷媒を供給することができる。したがって、第9実施形態も、上述した第5〜第8実施形態と同様の作用効果を奏することができる。
また、第9実施形態では、冷凍サイクル9を構成する第1、第2低圧側熱交換器941、942をそれぞれ第1、第2冷熱供給器101、201として使用することで、第1凝縮器41と第2凝縮器42両方の冷媒凝縮能力を高めることが可能である。また、車両に搭載されている空調装置の冷凍サイクル9の第1、第2低圧側熱交換器941、942をそれぞれ第1、第2冷熱供給器101、201として使用することで、機器温調装置1の構成を簡素なものとすることができる。
(第10実施形態)
第10実施形態について説明する。図13に示すように、第10実施形態は、第7実施形態の変形例である。
第10実施形態の機器温調装置1は、第1媒体供給装置100の一例として、第1送風機71を備えている。また、機器温調装置1は、第2媒体供給装置200の一例として、冷却水の循環サイクル8と冷凍サイクル9によるいわゆる二次ループ構成を備えている。冷却水の循環サイクル8を構成する熱交換器84は、第2冷熱供給器201に相当するものである。
冷却水の循環サイクル8は、ポンプ81、熱交換器84および放熱器83などが配管85によって環状に接続されたものである。この冷却水の循環サイクル8の放熱器83は、冷凍サイクル9を構成する低圧側熱交換器94と熱交換可能に構成されている。なお、冷凍サイクル9を構成する圧縮機91、高圧側熱交換器92、膨張弁93および低圧側熱交換器94は、第8実施形態で説明したものと実質的に同一である。
第10実施形態では、第2冷熱供給器201を流れる冷却水は、冷凍サイクル9を構成する低圧側熱交換器94により冷却される。第2冷熱供給器201は、冷凍サイクル9の出力調節などにより、第2冷熱供給器201から第2凝縮器42を流れる冷媒に供給する冷熱量を調整することが可能である。第10実施形態も、第7実施形態と同様の作用効果を奏することが可能である。
(他の実施形態)
本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
例えば、上述した実施形態では、機器温調装置1は、車両の電池2を冷却するものとしたが、他の実施形態では、機器温調装置1が冷却する対象機器は、車両が備える種々の機器装置であってもよい。
例えば、上述した実施形態では、機器温調装置1は、電池2を冷却するものとしたが、他の実施形態では、機器温調装置1は電池2を加熱するものであってもよい。この場合、蒸発器3で冷媒を凝縮させ、凝縮器4で冷媒を蒸発させることとなる。
例えば、上述した実施形態では、蒸発器3を扁平状に形成されたケースで構成したが、他の実施形態では、蒸発器3は熱交換チューブを含む構成としてもよい。
例えば、上述した実施形態では、機器温調装置1は、2個の凝縮器を備えるものとしたが、他の実施形態では、機器温調装置1は、3個以上の凝縮器を備えるものとしてもよい。
例えば、上述した実施形態では、第1媒体供給装置100または第2媒体供給装置200として、冷却水の循環サイクル8、冷凍サイクル9または送風機71、72などを例示したが、これに限らない。他の実施形態では、第1媒体供給装置100または第2媒体供給装置200は、例えばペルチェ素子を備えたサーモモジュール、または、磁気で冷凍作用を生成する冷却体など、種々のものを適用してもよい。
例えば、上述した実施形態では、液相通路6は、第1液相通路61、第2液相通路62、集合部64および第3液相通路を有するものとした。これに対し、他の実施形態では、液相通路6は、少なくとも第1液相通路61および第2液相通路62を有するものとしてもよい。この場合、第1液相通路61と第2液相通路62はそれぞれ別個に蒸発器3に接続される構成となる。
(まとめ)
上述の実施形態の一部または全部で示された第1の観点によれば、機器温調装置は、対象機器の温度を調整するものであり、蒸発器、第1凝縮器、第2凝縮器、気相通路、第1液相通路、第2液相通路、連結部および第3液相通路を備える。蒸発器は、対象機器から吸熱して蒸発する作動流体の蒸発潜熱により対象機器を冷却する。第1凝縮器は、蒸発器よりも重力方向上側に設けられ、蒸発器で蒸発した作動流体を、外部にある第1媒体との熱交換により凝縮させる第1熱交換通路を有する。第2凝縮器は、蒸発器よりも重力方向上側に設けられ、蒸発器で蒸発した作動流体を、外部にある第2媒体との熱交換により凝縮させる第2熱交換通路を有する。気相通路は、蒸発器で蒸発した作動流体を第1凝縮器と第2凝縮器に流す。第1液相通路は、第1凝縮器から延び、第1凝縮器で凝縮した作動流体を蒸発器に向けて流す。第2液相通路は、第2凝縮器から延び、第2凝縮器で凝縮した作動流体を蒸発器に向けて流す。
第2の観点によれば、第1熱交換通路の外部にある第1媒体と、第2熱交換通路の外部にある第2媒体とは、温度を個別に設定可能なものである。
これによれば、第1媒体と第2媒体は、一方の媒体の温度と他方の媒体の温度とが影響し合うことの無い、熱的に独立したものといえる。そのため、例えば対象機器の発熱量が大きいとき、第1媒体と第2媒体のうち温度の低い方の媒体を使用して液相の作動流体の生成量を増やし、対象機器を十分に冷却することが可能である。一方、対象機器の発熱量が小さいとき、第1媒体と第2媒体のうち温度の高い方の媒体を使用して対象機器を適切な温度に冷却することが可能である。したがって、この機器温調装置は、対象機器の発熱量に応じた温度調節をすることができる。
第3の観点によれば、第1凝縮器は複数の第1熱交換通路を有し、第2凝縮器は複数の第2熱交換通路を有するものである。第1凝縮器が有する複数の第1熱交換通路または第2凝縮器が有する複数の第2熱交換通路のうち少なくとも一方は、重力方向に沿うように延びている。
これによれば、第1熱交換通路または第2熱交換通路のうち重力方向に沿うように延びているものは、液相の作動流体を自重により重力方向下側へ円滑に流すことが可能である。したがって、この機器温調装置は、作動流体を円滑に循環させ、対象機器の冷却能力を向上することができる。
第4の観点によれば、第1液相通路または第2液相通路のうち凝縮器に接続する位置が重力方向に高いほうの液相通路の長さをLaとし、第3液相通路の長さをLbとすると、La<Lbである。
これによれば、第1〜第3液相通路の内径がほぼ同じであるとしたとき、第1液相通路または第2液相通路のうち凝縮器に接続する位置が重力方向に高いほうの液相通路の容積より、第3液相通路の容積が大きいものとなる。そのため、その位置が重力方向に高いほうの液相通路を流れる液相の作動流体は、集合部の付近で逆流することが抑制され、第3液相通路に円滑に流れる。すなわち、第1液相通路または第2液相通路のうち凝縮器に接続する位置が重力方向に高いほうの液相通路を流れる作動流体の自重により流れる力の分散が抑制される。したがって、この機器温調装置は、第1液相通路または第2液相通路のうち凝縮器に接続する位置が重力方向に高いほうの液相通路を流れる作動流体の自重により、蒸発器に供給する作動流体の流量を増やし、機器温調装置に作動流体を円滑に循環させることができる。
第5の観点によれば、第1液相通路または第2液相通路のうち凝縮器に接続する位置が重力方向に高いほうの液相通路の容積をVaとし、第3液相通路の容積をVbとすると、Va<Vbである。
これによれば、第1液相通路または第2液相通路のうち凝縮器に接続する位置が重力方向に高いほうの液相通路を流れる作動流体の自重により流れる力の分散が抑制される。そのため、この機器温調装置は、第1液相通路または第2液相通路のうち凝縮器に接続する位置が重力方向に高いほうの液相通路を流れる作動流体の自重により、作動流体を円滑に循環させることができる。
第6の観点によれば、第1凝縮器または第2凝縮器のうち液相通路に接続する位置が重力方向に低いほうの凝縮器の外部にある媒体の温度をTaとし、第1凝縮器または第2凝縮器のうち液相通路に接続する位置が重力方向に高いほうの凝縮器の外部にある媒体の温度をTbとすると、Ta<Tbである。
これによれば、第1凝縮器または第2凝縮器のうち媒体の温度Taが低いほうの凝縮器より、媒体の温度Tbが高いほうの凝縮器が重力方向に高い位置となる。そのため、仮に集合部の付近で液相の作動流体が逆流した場合、第1凝縮器または第2凝縮器のうち媒体の温度が低いほうの凝縮器で凝縮した作動流体が、媒体の温度が高いほうの凝縮器に浸入することが抑制される。したがって、第1凝縮器または第2凝縮器のうち媒体の温度が低いほうの凝縮器で凝縮した作動流体が、媒体の温度が高いほうの凝縮器に浸入して再加熱されることを抑制することができる。
第7の観点によれば、第1熱交換通路の外部にある第1媒体と、第2熱交換通路の外部にある第2媒体とは、異種の媒体である。
これによれば、第1媒体と第2媒体を、温度の異なるものに容易に設定することが可能である。そのため、例えば対象機器の発熱量が大きいとき、第1媒体と第2媒体のうち温度の低い方の媒体を使用して液相の作動流体の生成量を増やし、対象機器を十分に冷却することが可能である。一方、対象機器の発熱量が小さいとき、第1媒体と第2媒体のうち温度の高い方の媒体を使用して対象機器を適切な温度に冷却することが可能である。したがって、この機器温調装置は、対象機器の発熱量に応じた温度調節をすることができる。
第8の観点によれば、機器温調装置は、第1媒体供給装置と第2媒体供給装置をさらに備える。第1媒体供給装置は、第1凝縮器に対し第1媒体を供給する。第2媒体供給装置は、第2凝縮器に対し第2媒体を供給する。
これによれば、第1媒体供給装置により第1媒体から第1凝縮器を流れる作動流体に供給する冷熱量を調整し、第2媒体供給装置により第2媒体から第2凝縮器を流れる作動流体に供給する冷熱量を調整することが可能である。したがって、第1凝縮器と第2凝縮器のうち一方の凝縮器による冷媒の凝縮能力が低いときでも、他方の凝縮器による冷媒の凝縮能力を増すことで、蒸発器に液相冷媒を供給することができる。
第9の観点によれば、第1媒体供給装置は、第1媒体が循環する第1媒体循環回路を有する。第2媒体供給装置は、第2媒体が循環する第2媒体循環回路を有する。ここで、第1媒体循環回路と第2媒体循環回路とは別個独立した回路である。
これによれば、第1媒体の温度と第2媒体の温度とが互いに影響しあうことを防ぐことが可能である。したがって、第1媒体供給装置により第1媒体から第1凝縮器を流れる作動流体に供給する冷熱量を適切に調整し、且つ、第2媒体供給装置により第2媒体から第2凝縮器を流れる作動流体に供給する冷熱量を適切に調整することが可能である。
第10の観点によれば、第1媒体供給装置または第2媒体供給装置の少なくとも一方は、冷凍サイクルを構成する低圧側熱交換器である。
これによれば、機器温調装置が車両に搭載される場合、その車両に搭載されている空調装置の冷凍サイクルの低圧側熱交換器を媒体供給装置として使用することで、機器温調装置の構成を簡素なものとすることができる。
第11の観点によれば、第1凝縮器と第2凝縮器のうち一方の凝縮器は、他方の凝縮器より液相通路に接続する位置が重力方向に低いものである。第1媒体供給装置と第2媒体供給装置のうち液相通路に接続する位置が重力方向に低いほうの凝縮器に対して媒体を供給する媒体供給装置は、第1媒体供給装置と第2媒体供給装置のうち液相通路に接続する位置が重力方向に高いほうの凝縮器に対して媒体を供給する媒体供給装置よりも媒体の温度を低く設定することが可能である。
これによれば、第1凝縮器または第2凝縮器のうち液相通路に接続する位置が重力方向に低いほうの凝縮器で生成される液相の作動流体の生成量は、その位置が重力方向に高いほうの凝縮器で生成される液相の作動流体の生成量よりも多くなる。そのため、仮に集合部の付近で液相の作動流体が逆流した場合、第1凝縮器または第2凝縮器のうち液相通路に接続する位置が重力方向に低いほうの凝縮器で凝縮した作動流体が、その位置が高いほうの凝縮器に浸入することが抑制される。したがって、第1凝縮器または第2凝縮器のうち熱交換通路の外部にある媒体の温度が低く設定された凝縮器で凝縮した作動流体が、媒体の温度が高く設定された凝縮器に浸入して再加熱されることを抑制することができる。
第12の観点によれば、第1媒体供給装置と第2媒体供給装置のうち液相通路に接続する位置が重力方向に低いほうの凝縮器に対して媒体を供給する媒体供給装置は、冷凍サイクルを構成する低圧側熱交換器である。一方、第1媒体供給装置と第2媒体供給装置のうち液相通路に接続する位置が重力方向に高いほうの凝縮器に対して媒体を供給する媒体供給装置は、送風機である。
これによれば、例えば対象機器の発熱量が小さいとき、第1媒体供給装置としての送風機を使用することで、冷凍サイクルを駆動することに比べて、対象機器の冷却に必要となる消費電力を低減することが可能である。
一方、第2媒体供給装置は、第2媒体である冷凍サイクルの冷媒を、第1媒体である空気よりも低い温度に設定することが可能である。例えば対象機器の発熱量が大きいとき、第2媒体供給装置である冷凍サイクルを構成する低圧側熱交換器を使用することで、対象機器を十分に冷却することが可能である。したがって、この機器温調装置は、対象機器の冷却に必要となる消費電力を低減すると共に、対象機器の発熱量に応じた温度調節をすることができる。

Claims (11)

  1. 対象機器(2)の温度を調整する機器温調装置であって、
    前記対象機器から吸熱して蒸発する作動流体の蒸発潜熱により前記対象機器を冷却する蒸発器(3)と、
    前記蒸発器よりも重力方向上側に設けられ、前記蒸発器で蒸発した作動流体を、外部にある第1媒体との熱交換により凝縮させる第1熱交換通路(412)を有する第1凝縮器(41)と、
    前記蒸発器よりも重力方向上側に設けられ、前記蒸発器で蒸発した作動流体を、外部にある第2媒体との熱交換により凝縮させる第2熱交換通路(422)を有する第2凝縮器(42)と、
    前記蒸発器で蒸発した作動流体を前記第1凝縮器と前記第2凝縮器に流す気相通路(5)と、
    前記第1凝縮器から延び、前記第1凝縮器で凝縮した作動流体を前記蒸発器に向けて流す第1液相通路(61)と、
    前記第2凝縮器から延び、前記第2凝縮器で凝縮した作動流体を前記蒸発器に向けて流す第2液相通路(62)と、を備え
    前記第1熱交換通路の外部にある前記第1媒体と、前記第2熱交換通路の外部にある前記第2媒体とは、温度を個別に設定可能なものである、機器温調装置。
  2. 前記第1凝縮器は複数の前記第1熱交換通路を有し、前記第2凝縮器は複数の前記第2熱交換通路を有するものであり、
    前記第1凝縮器が有する複数の前記第1熱交換通路または前記第2凝縮器が有する複数の前記第2熱交換通路のうち少なくとも一方は、重力方向に沿うように延びている請求項1に記載の機器温調装置。
  3. 前記機器温調装置は、前記第1液相通路を流れる作動流体と前記第2液相通路を流れる作動流体とが集合する集合部(64)と、
    一端が前記集合部に接続され、他端が前記蒸発器に接続され、前記集合部で集合した作動流体が前記蒸発器に流れる第3液相通路(63)と、をさらに備えるものであり、
    前記第1液相通路または前記第2液相通路のうち凝縮器に接続する位置が重力方向に高いほうの液相通路の長さをLaとし、前記第3液相通路の長さをLbとすると、
    La<Lbである請求項1または2に記載の機器温調装置。
  4. 前記機器温調装置は、前記第1液相通路を流れる作動流体と前記第2液相通路を流れる作動流体とが集合する集合部(64)と、
    一端が前記集合部に接続され、他端が前記蒸発器に接続され、前記集合部で集合した作動流体が前記蒸発器に流れる第3液相通路(63)と、をさらに備えるものであり、
    前記第1液相通路または前記第2液相通路のうち凝縮器に接続する位置が重力方向に高いほうの液相通路の容積をVaとし、前記第3液相通路の容積をVbとすると、
    Va<Vbである請求項1ないしのいずれか1つに記載の機器温調装置。
  5. 前記第1凝縮器または前記第2凝縮器のうち液相通路に接続する位置が重力方向に低いほうの凝縮器の外部にある媒体の温度をTaとし、
    前記第1凝縮器または前記第2凝縮器のうち液相通路に接続する位置が重力方向に高いほうの凝縮器の外部にある媒体の温度をTbとすると、
    Ta<Tbである請求項1ないしのいずれか1つに記載の機器温調装置。
  6. 前記第1熱交換通路の外部にある前記第1媒体と、前記第2熱交換通路の外部にある前記第2媒体とは、異種の媒体である請求項1ないしのいずれか1つに記載の機器温調装置。
  7. 前記第1凝縮器に対し前記第1媒体を供給する第1媒体供給装置(100)と、
    前記第2凝縮器に対し前記第2媒体を供給する第2媒体供給装置(200)と、をさらに備える請求項1または2に記載の機器温調装置。
  8. 前記第1媒体供給装置は、前記第1媒体が循環する第1媒体循環回路(111)を有し、
    前記第2媒体供給装置は、前記第2媒体が循環する第2媒体循環回路(211)を有し、
    前記第1媒体循環回路と前記第2媒体循環回路とは別個独立した回路である請求項に記載の機器温調装置。
  9. 前記第1媒体供給装置または前記第2媒体供給装置の少なくとも一方は、冷凍サイクル(9)を構成する低圧側熱交換器(94)である請求項またはに記載の機器温調装置。
  10. 前記第1凝縮器と前記第2凝縮器のうち一方の凝縮器は、他方の凝縮器より液相通路に接続する位置が重力方向に低いものであり、
    前記第1媒体供給装置と前記第2媒体供給装置のうち液相通路に接続する位置が重力方向に低いほうの凝縮器に対して媒体を供給する媒体供給装置は、前記第1媒体供給装置と前記第2媒体供給装置のうち液相通路に接続する位置が重力方向に高いほうの凝縮器に対して媒体を供給する媒体供給装置よりも媒体の温度を低く設定することが可能である請求項ないしのいずれか1つに記載の機器温調装置。
  11. 前記第1媒体供給装置と前記第2媒体供給装置のうち液相通路に接続する位置が重力方向に低いほうの凝縮器に対して媒体を供給する媒体供給装置は、冷凍サイクルを構成する低圧側熱交換器であり、
    前記第1媒体供給装置と前記第2媒体供給装置のうち液相通路に接続する位置が重力方向に高いほうの凝縮器に対して媒体を供給する媒体供給装置は、送風機(71、72)である請求項ないし1のいずれか1つに記載の機器温調装置。
JP2018538298A 2016-09-09 2017-08-02 機器温調装置 Expired - Fee Related JP6593544B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016176790 2016-09-09
JP2016176790 2016-09-09
PCT/JP2017/028059 WO2018047535A1 (ja) 2016-09-09 2017-08-02 機器温調装置

Publications (2)

Publication Number Publication Date
JPWO2018047535A1 JPWO2018047535A1 (ja) 2019-01-24
JP6593544B2 true JP6593544B2 (ja) 2019-10-23

Family

ID=61562754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018538298A Expired - Fee Related JP6593544B2 (ja) 2016-09-09 2017-08-02 機器温調装置

Country Status (5)

Country Link
US (1) US20210280925A1 (ja)
JP (1) JP6593544B2 (ja)
CN (1) CN109477696B (ja)
DE (1) DE112017004535T5 (ja)
WO (1) WO2018047535A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017004545T5 (de) 2016-09-09 2019-05-23 Denso Corporation Verfahren zur Herstellung einer Vorrichtungstemperatur-Steuervorrichtung und Verfahren zum Einfüllen vom Arbeitsfluid
DE112017004529T5 (de) 2016-09-09 2019-05-29 Denso Corporation Vorrichtungstemperaturregulator
JP6579276B2 (ja) 2016-09-09 2019-09-25 株式会社デンソー 機器温調装置
DE102018221480A1 (de) * 2018-12-12 2020-06-18 Robert Bosch Gmbh Gehäuse ausgebildet zu einer Aufnahme einer Mehrzahl an Batteriezellen
US11555640B2 (en) * 2020-03-26 2023-01-17 Baidu Usa Llc Control and switch design for multiple phase change loops
CN115413177A (zh) * 2021-05-26 2022-11-29 英业达科技有限公司 散热装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023983A (ja) * 1973-07-02 1975-03-14
TR199802448A3 (tr) * 1997-11-27 2000-02-21 Lg Electronics, Inc. Çoklu tip klima cihazi.
JP2012172940A (ja) * 2011-02-23 2012-09-10 Toyota Motor Corp 熱輸送装置、及びエンジン
CN202141292U (zh) * 2011-06-14 2012-02-08 韩建材 一种双冷凝器常温除湿干燥室
US10364043B2 (en) * 2014-07-02 2019-07-30 Embraer S.A. Passive aircraft cooling systems and methods
JP6423736B2 (ja) * 2015-02-17 2018-11-14 オーム電機株式会社 冷却装置
JP6605819B2 (ja) * 2015-03-06 2019-11-13 株式会社東芝 冷却装置
CN105910348A (zh) * 2016-06-06 2016-08-31 合肥天鹅制冷科技有限公司 低温制冷***翅片换热器

Also Published As

Publication number Publication date
DE112017004535T5 (de) 2019-05-29
WO2018047535A1 (ja) 2018-03-15
CN109477696A (zh) 2019-03-15
CN109477696B (zh) 2021-04-09
JPWO2018047535A1 (ja) 2019-01-24
US20210280925A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
JP6593544B2 (ja) 機器温調装置
WO2018047534A1 (ja) 機器温調装置
US9643469B2 (en) Vehicle thermal management system
JP6137828B2 (ja) 車両用エアコンシステム
US20120085512A1 (en) Vehicle cooling system
JP6575690B2 (ja) 機器温調装置
WO2018047533A1 (ja) 機器温調装置
CN111295555A (zh) 设备冷却装置
JP6604441B2 (ja) 機器温調装置の製造方法および作動流体の充填方法
WO2018047531A1 (ja) 機器温調装置
US20190214695A1 (en) Device temperature controller
WO2018047537A1 (ja) 機器温調装置
WO2018055926A1 (ja) 機器温調装置
JP6662462B2 (ja) 機器温調装置
WO2018047538A1 (ja) 機器温調システム
JP2019035572A (ja) 機器温調装置
JP2017047888A (ja) 車両用熱管理装置
WO2019039129A1 (ja) 機器温調装置
WO2017038593A1 (ja) 車両用熱管理装置
WO2018070182A1 (ja) 機器温調装置
JP2020159612A (ja) 熱輸送システム
JP2012140060A (ja) 冷却装置
JP2021028546A (ja) サーモサイフォン式冷却装置
JP5582808B2 (ja) 冷凍サイクルシステム
CN118274488A (zh) 热管理***以及车辆

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R151 Written notification of patent or utility model registration

Ref document number: 6593544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees