JP6582863B2 - 過給機付き内燃機関の吸気システム - Google Patents

過給機付き内燃機関の吸気システム Download PDF

Info

Publication number
JP6582863B2
JP6582863B2 JP2015206255A JP2015206255A JP6582863B2 JP 6582863 B2 JP6582863 B2 JP 6582863B2 JP 2015206255 A JP2015206255 A JP 2015206255A JP 2015206255 A JP2015206255 A JP 2015206255A JP 6582863 B2 JP6582863 B2 JP 6582863B2
Authority
JP
Japan
Prior art keywords
negative pressure
control valve
pressure control
intake
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015206255A
Other languages
English (en)
Other versions
JP2017078350A (ja
Inventor
一矢 松島
一矢 松島
陽一 小山田
陽一 小山田
大吾 宇佐
大吾 宇佐
啓之 川合
啓之 川合
耕平 堀田
耕平 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2015206255A priority Critical patent/JP6582863B2/ja
Priority to EP16194373.3A priority patent/EP3159527B1/en
Priority to US15/298,711 priority patent/US10385810B2/en
Publication of JP2017078350A publication Critical patent/JP2017078350A/ja
Application granted granted Critical
Publication of JP6582863B2 publication Critical patent/JP6582863B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/02Crankcase ventilating or breathing by means of additional source of positive or negative pressure
    • F01M13/021Crankcase ventilating or breathing by means of additional source of positive or negative pressure of negative pressure
    • F01M13/022Crankcase ventilating or breathing by means of additional source of positive or negative pressure of negative pressure using engine inlet suction
    • F01M13/023Control valves in suction conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/06Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding lubricant vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/19Means for improving the mixing of air and recirculated exhaust gases, e.g. venturis or multiple openings to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10229Fluid connections to the air intake system; their arrangement of pipes, valves or the like the intake system acting as a vacuum or overpressure source for auxiliary devices, e.g. brake systems; Vacuum chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/02Crankcase ventilating or breathing by means of additional source of positive or negative pressure
    • F01M13/021Crankcase ventilating or breathing by means of additional source of positive or negative pressure of negative pressure
    • F01M2013/027Crankcase ventilating or breathing by means of additional source of positive or negative pressure of negative pressure with a turbo charger or compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/022Throttle control function parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

本発明は、過給機付き内燃機関の吸気システムに関する。
従来、過給機付き内燃機関の吸気システムなどが知られている(たとえば、特許文献1参照)。
上記特許文献1には、ターボチャージャ(過給機)付きの内燃機関における換気システム(過給機付き内燃機関の吸気システム)が開示されている。この内燃機関における換気システムでは、絞り弁(負圧制御弁)とコンプレッサ(吸気側過給機)とエアクーラとスロットルバルブと吸気マニホールドとがこの順に配置された吸気通路が内燃機関本体に接続されている。また、内燃機関本体に排気マニホールドと排気タービンと排気処理装置(触媒装置)とがこの順に配置された排気通路が接続されている。そして、クランクケースから引き出されたブローバイガス通路と、排気通路から引き出されたEGRガス通路とが合流して1本の外部ガス通路となった状態で、外部ガス通路が絞り弁とコンプレッサとの間に接続されている。また、絞り弁の上流とクランクケースとは、新気導入通路により連通されている。これにより、内燃機関の運転中、絞り弁により吸気が絞られることによって外部ガス通路の接続部分に発生する負圧を利用してブローバイガス(燃焼ガスを含む未燃焼混合気)およびEGRガス(排気ガス)の混合ガスが吸気通路に導入されるとともに、新気導入通路を介して新気がクランクケースに供給されるように構成されている。
米国特許出願公開第2014/0318514号明細書
しかしながら、上記特許文献1に記載された内燃機関における換気システムでは、ブローバイガス通路とEGRガス通路とが合流して1本の外部ガス通路となった状態で吸気通路における絞り弁とコンプレッサとの間に接続されるため、EGRガスに含まれる水分や粒子状物質とブローバイガスに含まれるオイル成分とが混合してデポジット(堆積物)が生成しやすくなる。そして、デポジット(堆積物)が1本の外部ガス通路の内壁に堆積されることにより外部ガス通路が閉塞する可能性が高まる。このため、内燃機関本体の換気性能を十分に得ることができないという問題点がある。
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、内燃機関本体の換気性能を十分に得ることが可能な過給機付き内燃機関の吸気システムを提供することである。
上記目的を達成するために、この発明の一の局面における過給機付き内燃機関の吸気システムは、吸気通路における吸気側過給機よりも上流側に配置された負圧制御弁と、吸気側過給機の上流でかつ負圧制御弁の下流の吸気通路の部分に、ブローバイガスからなる単一の外部ガスを導入する第1外部ガス導入通路と、負圧制御弁の上流から内燃機関本体に新気を導入する新気導入通路と、吸気通路における吸気側過給機よりも下流側に配置されたスロットルバルブと、を備え、スロットルバルブが最も閉じ側に回動された際の吸気通路の開口面積は、負圧制御弁が最も閉じ側に回動された際の吸気通路の開口面積よりも小さく、低負荷状態から高負荷状態に移行する際に、スロットルバルブよりも先に負圧制御弁の開度が増加されるとともに、高負荷状態から低負荷状態に移行する際に、スロットルバルブよりも後に負圧制御弁の開度が減少されるように構成されている。
この発明の一の局面による過給機付き内燃機関の吸気システムでは、上記のように、吸気側過給機の上流でかつ負圧制御弁の下流の吸気通路の部分に、ブローバイガスからなる単一の外部ガスを導入する第1外部ガス導入通路を設ける。これにより、第1外部ガス導入通路を介して他の外部ガス(EGRガスなど)との混合などがないブローバイガスのみを負圧制御弁による負圧を利用して吸気通路に導入(還流)させることができるので、第1外部ガス導入通路の内壁には複数の外部ガスが混合した際に発生するデポジット(堆積物)が生じない。したがって、第1外部ガス導入通路を閉塞させることなくブローバイガスを導入することができるので、内燃機関本体の換気性能を十分に得ることができる。また、内燃機関が低負荷状態から高負荷状態に移行する車両の加速時などにおける吸気量増加時に、負圧制御弁の開度がスロットルバルブの開度増加に先行して増加されるので、負圧制御弁の開度が先行して増加されない場合に吸気量の増加とともに負圧制御弁前後での圧力差(差圧)が顕著に増加するのを抑制することができる。これにより、負圧制御弁前後での差圧増加に起因してブローバイガスの導入量が無用に増加するのを抑制することができる。また、内燃機関が高負荷状態から低負荷状態に移行する車両の減速時などには、スロットルバルブの開度減少とともに吸気量が減少して負圧制御弁前後での圧力差が減少する状況下で、スロットルバルブの開度減少から遅延して負圧制御弁の開度が減少されるので、より少ない吸気量のもとで負圧制御弁の開度が遅延なく減少された場合に負圧制御弁前後での差圧が顕著に増加するのを抑制することができる。これにより、負圧制御弁前後での差圧の増加を緩慢にすることができる。したがって、この場合にも、ブローバイガスの導入量が無用に増加するのを抑制することができる。
また、上記一の局面による過給機付き内燃機関の吸気システムでは、吸気側過給機の上流でかつ負圧制御弁の下流の吸気通路の部分にブローバイガスからなる単一の外部ガスを導入する第1外部ガス導入通路と、負圧制御弁の上流から内燃機関本体に新気を導入する新気導入通路とを設ける。これにより、第1外部ガス導入通路を介して内燃機関本体からのブローバイガスを吸気通路に導入(還流)させるのと同時に、新気導入通路を介して負圧制御弁の上流側の新気を内燃機関本体に供給することができる。これによっても、内燃機関本体における新気とブローバイガスとの置換を確実に行うことができるので、内燃機関本体に対する換気性能をより十分に発揮することができる。
上記一の局面による過給機付き内燃機関の吸気システムにおいて、好ましくは、第1外部ガス導入通路とは別個に設けられ、吸気側過給機の上流でかつ負圧制御弁の下流の吸気通路の部分に、ブローバイガスとは異なる他の外部ガスを導入する第2外部ガス導入通路をさらに備える。
このように構成すれば、ブローバイガス以外の他の外部ガスをブローバイガスとは別個に第2外部ガス導入通路を介して吸気通路に導入(還流)させることができるので、第2外部ガス導入通路の内壁にもブローバイガスとの混合に起因したデポジットが生じるのを抑制することができる。これにより、ブローバイガスのみならず他の外部ガスも効果的に利用して過給機付き内燃機関を運転することができるので、過給機付き内燃機関の品質を高く維持することができる。
上記一の局面による過給機付き内燃機関の吸気システムにおいて、好ましくは、負圧制御弁は、全ての運転領域において、吸気側過給機の上流でかつ負圧制御弁の下流の吸気通路の部分に負圧を発生させるように開度が減少されるように構成されている。
このように構成すれば、過給機付き内燃機関の回転数(エンジン回転数)がアイドリング回転域を含む低回転域から高回転域でかつ過給機付き内燃機関の負荷(エンジン負荷)が無負荷または低負荷から高負荷に至る幅広い領域において内燃機関本体の換気を確実に行うことができる。この際、負圧制御弁の絞り動作によって第1外部ガス導入通路内に内燃機関本体から吸気通路に向かってブローバイガスの流れを常時形成することができるので、ブローバイガスが発生する内燃機関本体内が正圧化するのを効果的に防止することができる。これにより、内燃機関本体(クランクケース)から外部へのエンジンオイル漏れも容易に防止することができる。
上記一の局面による過給機付き内燃機関の吸気システムにおいて、好ましくは、負圧制御弁は、高負荷状態でかつ中回転数域から高回転数域の運転領域を除いて、吸気側過給機の上流でかつ負圧制御弁の下流の吸気通路の部分に負圧を発生させるように開度が減少されるように構成されている。
このように構成すれば、高負荷状態でかつ中回転数域から高回転数域の運転領域以外の常用領域では内燃機関本体の換気を行う一方、高負荷状態でかつ中回転数域から高回転数域の運転領域では、内燃機関本体の換気を一時的に中断するとともに新気のシリンダへの吸気量を瞬発的に増加させて(過給して)、過給機付き内燃機関の出力確保を優先させることができる。これにより、常用領域での換気性能を得つつ高いレベルの最高出力を発揮することが可能な過給機付き内燃機関を得ることができる。
上記一の局面による過給機付き内燃機関の吸気システムにおいて、好ましくは、ブローバイガスからなる単一の外部ガスは、第1外部ガス導入通路を介して負圧制御弁の下流に生成される負圧領域およびその近傍から吸気通路に導入されるように構成されている。
このように構成すれば、負圧制御弁による開度減少動作(絞り動作)によって生じる負圧(吸引力)が最も大きい負圧制御弁の下流に生成される負圧領域およびその近傍からブローバイガスを吸気通路に確実に引き込むことができる。したがって、内燃機関本体の換気性能を高く維持することができる。
上記一の局面による過給機付き内燃機関の吸気システムにおいて、好ましくは、スロットルバルブが最も閉じ側に回動された際の吸気通路の開口面積は、負圧制御弁が最も閉じ側に回動された際の吸気通路の開口面積よりも小さく、内燃機関本体の運転が停止される直前に、スロットルバルブの開度が増加されるとともに負圧制御弁の開度が減少されるように構成されている。

このように構成すれば、スロットルバルブの開度を増加させる一方で負圧制御弁の開度を減少させるので、吸気通路の全圧損を変化させずに内燃機関本体の運転が停止される直前のアイドル回転状態での吸気量を安定させることができる。その上で、負圧制御弁の開度を減少させて負圧制御弁前後での圧力差を瞬間的に増加させることができる。これにより、内燃機関本体の運転が停止される直前に、ブローバイガスの流速を瞬間的に増加させることができるので、ブローバイガスに含まれるオイルミストを分離するオイルセパレータが、オイル分離後の液状オイルや他の異物に起因して詰まるのを回避することができる。
なお、本出願では、上記一の局面による過給機付き内燃機関の吸気システムにおいて、以下のような構成も考えられる。
(付記項1)
すなわち、上記一の局面による過給機付き内燃機関の吸気システムにおいて、新気導入通路は、負圧制御弁の上流でかつエアクリーナの下流の吸気通路の部分と、内燃機関本体とを連通している。
(付記項2)
また、上記ブローバイガスが負圧領域およびその近傍から吸気通路に導入される過給機付き内燃機関の吸気システムにおいて、第1外部ガス導入通路は、吸気通路の壁面を貫通して負圧領域まで延びてブローバイガスからなる単一の外部ガスを吸気に混合させる外部ガス導入部を含む。
本発明の第1実施形態による過給機付きエンジンの構成を模式的に示した図である。 本発明の第1実施形態による負圧制御弁の構成を模式的に示した上面図である。 本発明の第1実施形態による負圧制御弁の動作態様を説明するための図である。 本発明の第1実施形態による負圧制御弁の動作態様を説明するための図である。 本発明の第1実施形態による負圧制御弁の動作態様を説明するための図である。 本発明の第1実施形態による負圧制御弁の動作態様を説明するための図である。 本発明の第2実施形態による負圧制御弁の構成を模式的に示した上面図である。 本発明の第2実施形態による負圧制御弁の構成を模式的に示した断面図である。
以下、本発明の実施形態を図面に基づいて説明する。
[第1実施形態]
まず、図1〜図6を参照して、本発明の第1実施形態によるエンジン100の構成について説明する。
(過給機付きエンジンの概略構成)
本発明の第1実施形態による車両(自動車)用のエンジン100(過給機付き内燃機関の一例)は、図1に示すように、エンジン本体10(内燃機関本体)を備える。エンジン本体10は、複数の気筒(シリンダ1a)が形成されたシリンダブロック1と、シリンダブロック1の上部に締結されるシリンダヘッド2と、シリンダブロック1の下部に締結されるクランクケース3と、シリンダヘッド2に被せられたヘッドカバー2aとを含む。また、エンジン本体10には、吸気通路30と排気通路40とが接続されている。シリンダブロック1内でピストン4が往復動することにより、吸引・圧縮・膨張(燃焼)・排気の1サイクルが連続的に繰り返されてクランク軸5が回転されるように構成されている。
シリンダヘッド2には、カムシャフトの回転により周期的に開閉される吸気バルブ6および排気バルブ7と、点火プラグ8とが組み込まれている。シリンダヘッド2は、燃焼室9と、燃焼室9に吸入空気を送り込む吸気ポート11と、排気ガスが排出される排気ポート12とを有する。また、シリンダヘッド2の内部には、シリンダヘッド2とヘッドカバー2aとの間の空間とクランクケース3とを連通する新気連通路13が設けられている。
また、ガソリン機関からなるエンジン100は、排気タービン駆動式の過給機(ターボチャージャ)20を備える。すなわち、過給機20は、タービンシャフト23に接続されたタービンホイール21とコンプレッサホイール22(吸気側過給機)とがハウジング20a内に回転可能に収容されている。また、過給機20は、タービンホイール21が排気マニホールド41の下流に接続されるとともに、コンプレッサホイール22がインタクーラ33の上流の吸気通路30に接続されている。過給機20においては、排気ガス流によりタービンホイール21が回転されてコンプレッサホイール22が回転される。これにより、コンプレッサホイール22に吸い込まれた吸気が圧縮空気となってシリンダ1aに供給される。エンジン100では、同一排気量の無過給エンジンに比べてシリンダ1aに多量の空気が供給されて充填効率が高められる分、エンジン出力が増加される。
また、エンジン100は、吸気通路30を含む吸気システム50を備える。吸気システム50は、ピストン4とシリンダ1aとの隙間を通って燃焼室9からクランクケース3内に吹き漏れるブローバイガス(単一の外部ガスの一例)を吸気通路30に戻す役割と、吸気通路30から分流された新気をエンジン本体10に供給してクランクケース3内を換気する役割と、燃焼室9から外部に排気された排気ガスの一部のEGRガス(ブローバイガスとは異なる他の外部ガスの一例)をシリンダ1aに導入(再循環)する役割とを有する。
(吸気通路および排気通路の構成)
吸気通路30では、空気取入口30aから吸気ポート11に向かって、エアクリーナ31と負圧制御弁32と過給機20におけるコンプレッサホイール22とインタクーラ33とスロットル弁34(スロットバルブの一例)と吸気マニホールド35とが、この順に接続されている。また、スロットル弁34が最も閉じ側に回動された際の吸気通路30の開口面積は、負圧制御弁32が最も閉じ側に回動された際の吸気通路30の開口面積よりも小さくなるように構成されている。ここで、大気圧となるエアクリーナ31の上流の空気取入口30aを位置A、エアクリーナ31の下流かつ負圧制御弁32の上流の部分を位置B、負圧制御弁32の下流かつコンプレッサホイール22の上流の部分を位置Cとする。
エアクリーナ31は、吸気中の塵や埃を除去し吸気騒音を低減する役割を有する。負圧制御弁32は、弁体92が回動されて吸気通路断面を絞ることにより、負圧制御弁32の上流(位置B)と下流(位置C)との間に圧力差を発生させる役割を有する。この場合、位置Cは位置Bよりも圧力が低くなる。インタクーラ33は、コンプレッサホイール22により圧縮された吸入空気を冷却する役割を有する。スロットル弁34は、吸入空気量を制御する役割を有する。吸気マニホールド35は、サージタンクとその下流で枝分かれする吸気管群(図示せず)を含み、吸気管群の下流側が吸気ポート11に接続されている。
排気通路40では、排気ポート12からマフラー(図示せず)に向かって、燃焼室9から排出される排気ガスを集合させる排気マニホールド41と過給機20におけるタービンホイール21と触媒装置(触媒コンバータ)42とが、この順に接続されている。
そして、第1実施形態では、図1に示すように、吸気通路30を含む吸気システム50は、互いに別個に設けられたブローバイガス通路51(第1外部ガス導入通路の一例)と、新気導入通路61と、EGRガス通路71(第2外部ガス導入通路の一例)とを備える。
(吸気システムの詳細な構成)
ブローバイガス通路51は、コンプレッサホイール22の上流でかつ負圧制御弁32の下流の吸気通路30の位置Cとエンジン本体10におけるクランクケース3とを連通しており、位置Cにおいて吸気通路30にクランクケース3からのブローバイガスを導入する役割を有する。なお、エンジン本体10には、ブローバイガス中のオイルミストを分離するオイルセパレータ52が接続されている。オイルセパレータ52においては、未燃焼混合気とオイルミストとが互いに分離され、分離された液状オイルはクランクケース3に戻される。また、オイルセパレータ52の出口部には、矢印U方向に流れるオイル分離後のブローバイガスの逆流を防止するための逆止弁53が設けられている。
新気導入通路61は、負圧制御弁32の上流でかつエアクリーナ31の下流の吸気通路30の位置Bと、エンジン本体10におけるヘッドカバー2aとを連通しており、位置Bからヘッドカバー2aに新気を分岐導入する役割を有する。なお、新気導入通路61には、矢印V方向に流れる新気の逆流を防止するための逆止弁63が設けられている。
EGRガス通路71は、ブローバイガス通路51とは別個に設けられており、タービンホイール21の下流でかつ触媒装置42の上流の排気通路40の位置Dと、コンプレッサホイール22の上流でかつ負圧制御弁32の下流の吸気通路30の位置Cとを連通する。これにより、EGRガス通路71は、矢印W方向に流れるEGRガスを位置Cから吸気通路30に導入する役割を有する。EGRガス通路71は、排気ガスを冷却するEGRクーラ72と、冷却後の排気ガスの導入量(EGR率)を調整するEGR制御弁73とを含む。
したがって、エンジン100では、負圧制御弁32の下流の位置Cにおいて、ブローバイガスとEGRガスとがそれぞれ吸気通路30に導入される。また、吸気システム50を備えることにより、エンジン100の運転状態に応じて負圧制御弁32の開度調整が行われてエンジン本体10(クランクケース3)の換気が行われるように構成されている。
たとえば、エンジン100の回転数および負荷が相対的に小さく(低く)過給機20が機能を発揮しない場合には、負圧制御弁32が所定開度だけ閉じられる。すなわち、エンジン100がアイドリング状態や低(中)回転および低(中)負荷で運転される際に負圧制御弁32の絞り動作によって、負圧制御弁32の上流(位置B)と下流側(位置C)との間に差圧が生じる。すなわち、位置Cは位置Bよりも圧力が低くなり、位置Cに発生する負圧の吸引力によって、ブローバイガス通路51を介してクランクケース3からのブローバイガスが吸気通路30に導入される。そして、クランクケース3の内圧が大気圧(正圧)よりも若干低い負圧状態に保たれるので、大気圧に近いエアクリーナ31通過後の新気が、位置Bから新気導入通路61を介してヘッドカバー2a内に供給されて新気連通路13を介してクランクケース3に導入される。なお、過給機20の回転数が小さい状態でもクランクケース3内の負圧によって、新気はヘッドカバー2aに供給される。
また、エンジン100の回転数および負荷が相対的に大きく(高く)過給機20が機能を発揮する過給時(スロットル弁34は全開状態)にも、負圧制御弁32が所定開度だけ閉じられる。すなわち負圧制御弁32から見た位置Cは位置Bよりも圧力が低くなり、位置Cに発生する負圧によって、ブローバイガス通路51を介してエンジン本体10(クランクケース3)からのブローバイガスが吸気通路30に導入される。そして、大気圧に近いエアクリーナ31通過後の新気が、位置Bから新気導入通路61を介して負圧に保たれたクランクケース3に導入される。このように、エンジン100における全ての運転領域において、コンプレッサホイール22の上流でかつ負圧制御弁32の下流の吸気通路30の部分(位置C)に負圧を発生させる(開度を減少させる)ように構成されている。
また、吸気システム50の制御的な構成としては、図2に示すように、エンジン100の制御を統括するECU(制御部)80に対して、負圧制御弁32の開度を検出する開度センサ81と、ブローバイガス流量を検出する流量センサ82と、EGRガス流量を検出する流量センサ83と、負圧制御弁32を駆動するモータ93と、EGR制御弁73(図1参照)とが電気的に接続されている。
ECU80には、アクセル開度センサからの開度情報、エンジン100の回転数情報、排気通路40に設けられたO2センサ(酸素センサ)からの情報および燃料噴射量の情報が入力される。ECU80は、これらの情報に基づいて所定の判断を行い、モータ93を駆動してエンジン100の運転中における負圧制御弁32の開度およびEGR制御弁73の開度を調整する制御を行うように構成されている。なお、EGRガスの導入については、EGR制御弁73の開度制御によって決定される。すなわち、負圧制御弁32の絞り動作によって位置Cに負圧が発生していても、エンジン100の運転状態に基づきEGR制御弁73が全閉となった場合には、EGRガスは吸気通路30に導入されない。
また、負圧制御弁32は、バルブボディ91と、バルブボディ91内に収容された回動軸92aを有するバタフライ型の弁体92と、上述のモータ93および開度センサ81とを備える。なお、負圧制御弁32が所定開度だけ閉じられた場合、負圧制御弁32の下流には負圧(吸引力)が最も大きくなる負圧領域Q(ハッチング領域)が生成される。
ここで、第1実施形態では、バルブボディ91には、ブローバイガスが導入される開口51aと、EGRガスが導入される開口71aとが設けられている。開口51aおよび71aは、負圧領域Qに対応したバルブボディ91の内壁に配置されている。開口51aは、バルブボディ91の天井側の内壁91a(図1参照)に位置するとともに、開口71aは、バルブボディ91の底部側の内壁91b(図1参照)に位置する。これにより、位置Cから導入されるブローバイガスは、負圧制御弁32の下流に生成される負圧領域Qから吸気通路30に導入され、EGRガスも、負圧制御弁32の下流に生成される負圧領域Qから吸気通路30に導入されるように構成されている。
(エンジンの運転状態における負圧制御弁の動作内容)
次に、図3を参照して、停止状態のエンジン100(図1参照)が始動されて車両が所定距離だけ走行し、その後、停止される一連の運転モードにおける負圧制御弁32(図1参照)の動作制御の内容を説明する。
まず、機関停止状態(時間t0から時間t1までの期間)では、ECU80(図2参照)の指令に基づき負圧制御弁32は全開状態に保持されている。そして、乗員の操作によりイグニッションオン状態(時間t1)になるのに伴って、ECU80の指令に基づき負圧制御弁32は全閉状態に切り替えられる。その後、時間t2におけるエンジン始動とともに負圧制御弁32は開度制御状態に移行される。すなわち、車両の走行に伴う機関回転数(吸入空気量)の変動に追従するように負圧制御弁32の開度が制御(増減)される。また、これにより、負圧制御弁32の上流と下流との間に圧力差(差圧)が発生するので、位置Cにおけるブローバイガス(およびEGRガス)の吸気通路30(図1参照)への導入とともにクランクケース3(図1参照)内の換気が行われる。
ここで、時間t2から時間t3まで車両が加速したとする。この場合、図4における左側の4つのグラフに示されるように、時間t21でのアクセル開度の増加開始に基づいて時間t23でスロットル弁34(図1参照)の開度が増加される。したがって、エンジン100が低負荷状態から高負荷状態に移行される。この際、第1実施形態では、スロットル弁34よりも早い時間t22のタイミングで負圧制御弁32の開度が増加される。これにより、車両の加速時における吸気量の増加時に、負圧制御弁32の開度がスロットル弁34に先行して増加される。その後、時間t24で加速を中止した場合、時間t26でスロットル弁34の開度増加も停止されるが、この時間t26よりも早い時間t25のタイミングで負圧制御弁32の開度増加が停止されるように開度制御される。
次に、車両が減速したとする。この場合、図4における右側の4つのグラフに示されるように、時間t31でのアクセル開度の減少開始に基づいて時間t32でスロットル弁34の開度が減少される。したがって、エンジン100が高負荷状態から低負荷状態に移行される。この際、第1実施形態では、スロットル弁34よりも遅い時間t33のタイミングで負圧制御弁32の開度が減少される。これにより、車両の減速時における吸気量の減少時に、負圧制御弁32の開度がスロットル弁34よりも遅延して減少される。また、時間t34で減速を中止した場合、時間t35でスロットル弁34の開度減少も停止されるが、この時間t35よりも遅い時間t36のタイミングで負圧制御弁32の開度減少が停止されるように開度制御される。
また、車両走行中、信号待ちなどで車両が一時的に停車された場合、ECU80の指令に基づきアイドル回転数のエンジン100は一時的に停止される。このアイドリングストップ状態では、図5における左側の4つのグラフに示されるように、時間t3にてエンジン100が停止される直前の時間t29のタイミングでスロットル弁34の開度が増加され、かつ、負圧制御弁32の開度が減少される。また、車両が所定距離だけ走行した後、減速して停止したとする。そして、エンジン100がアイドル回転数になった状態で乗員の操作によってイグニッションオフ状態にされた場合、図5における右側の4つのグラフに示されるように、時間t5にてエンジン100が停止される直前の時間t49のタイミングでスロットル弁34の開度が増加され、かつ、負圧制御弁32の開度が減少される。すなわち、アイドリングストップにおけるエンジン100の停止時およびイグニッションオフにおけるエンジン100の停止時には、吸気通路30(位置C)に導入されるブローバイガスの流量(流速)が、瞬間的に増加されるように構成されている。
なお、アイドル回転数での吸気通路30の状態S1(図4参照)、および、上記説明したエンジン100が実際に停止される直前での吸気通路30の状態S2(図4参照)における吸気通路30の内圧の分布状態について、図6を参照して説明する。
図6に示すように、状態S1においては、アイドル回転数に維持されるので、スロットル弁34の開度が主に減少される一方、負圧制御弁32の開度はそれ程減少されない。したがって、スロットル弁34前後での圧力差(差圧)が相対的に大きく、負圧制御弁32前後での圧力差(差圧)が相対的に小さい状態にある。なお、エアクリーナ31の下流から吸気マニホールド35の入口までの圧力損失は、全圧損Pとして得られる。そして、エンジン100がアイドリングストップ状態(または完全に停止される状態)に切り替わる直前の状態S2(図4における時間t29または時間t39のタイミング)においては、スロットル弁34の開度が増加されかつ負圧制御弁32の開度が減少される。したがって、瞬間的ではあるが、スロットル弁34前後での圧力差が相対的に小さく、負圧制御弁32前後での圧力差が相対的に大きい状態になる。ただし、全圧損Pは、状態S2と状態S1の場合とで同じ値が維持される。状態S2では、全圧損Pを維持しつつ、負圧制御弁32の開度が瞬間的に減少されるので位置C(図1参照)での圧力差(吸引力)が増加し、ブローバイガスの導入量が瞬間的に増加される。第1実施形態によるエンジン100に搭載される吸気システム50は、上記のように構成されている。
(第1実施形態の効果)
第1実施形態では、以下のような効果を得ることができる。
第1実施形態では、上記のように、コンプレッサホイール22の上流でかつ負圧制御弁32の下流の吸気通路30の位置Cに、単一のブローバイガスを導入するブローバイガス通路51を設ける。これにより、ブローバイガス通路51を介してEGRガスなどとの混合がないブローバイガスのみを負圧制御弁32による負圧を利用して吸気通路30に導入(還流)させることができるので、ブローバイガス通路51の内壁には複数の外部ガスが混合した際に発生するデポジット(堆積物)が生じない。したがって、ブローバイガス通路51を閉塞させることなくブローバイガスを導入することができるので、エンジン本体10の換気性能を十分に得ることができる。
また、第1実施形態では、コンプレッサホイール22の上流でかつ負圧制御弁32の下流の吸気通路30の位置Cに単一のブローバイガスを導入するブローバイガス通路51と、負圧制御弁32の上流の位置Bからヘッドカバー2aに新気を導入する新気導入通路61とを設ける。これにより、ブローバイガス通路51を介してエンジン本体10からのブローバイガスを吸気通路30に導入(還流)させるのと同時に、新気導入通路61を介して負圧制御弁32の上流側の新気をクランクケース3に供給することができる。これによっても、エンジン本体10内の新気とブローバイガスとの置換を確実に行うことができるので、エンジン本体10に対する換気性能を十分に発揮することができる。
また、第1実施形態では、コンプレッサホイール22の上流でかつ負圧制御弁32の下流の吸気通路30の位置CにEGRガスを導入するEGRガス通路71を、ブローバイガス通路51と別個に設ける。これにより、EGRガスを単独でEGRガス通路71を介して吸気通路30に導入(還流)させることができるので、EGRガス通路71の内壁にもブローバイガスとの混合に起因したデポジットが生じるのを抑制することができる。これにより、ブローバイガスのみならずEGRガスも効果的に利用してエンジン100を運転することができるので、エンジン100の品質を高く維持することができる。
また、第1実施形態では、エンジン100における全ての運転領域において、コンプレッサホイール22の上流でかつ負圧制御弁32の下流の吸気通路30の位置Cに負圧を発生させる(開度を減少させる)ように負圧制御弁32を構成する。これにより、エンジン100の回転数がアイドリング回転域を含む低回転域から高回転域でかつエンジン100の負荷が無負荷または低負荷から高負荷に至る幅広い領域においてクランクケース3内の換気を確実に行うことができる。この際、負圧制御弁32の絞り動作によってブローバイガス通路51内にクランクケースから吸気通路30の位置Cに向かってブローバイガスの流れを常時形成することができるので、ブローバイガスが発生するクランクケース3内が正圧化するのを効果的に防止することができる。これにより、クランクケース3から外部へのエンジンオイル漏れも容易に防止することができる。
また、第1実施形態では、ブローバイガス通路51を介して負圧制御弁32の下流に生成される負圧領域Qからブローバイガスを吸気通路30に導入する。これにより、負圧制御弁32による開度減少動作によって生じる負圧が最も大きい負圧制御弁32の下流に生成される負圧領域Qからブローバイガスを吸気通路30に確実に引き込むことができる。したがって、エンジン本体10の換気性能を高く維持することができる。
また、第1実施形態では、スロットル弁34が最も閉じ側となった際の吸気通路30の開口面積が、負圧制御弁32が最も閉じ側となった際の吸気通路30の開口面積よりも小さい構成において、エンジン100が低負荷状態から高負荷状態に移行する際に、スロットル弁34よりも先に負圧制御弁32の開度を増加させるとともに、高負荷状態から低負荷状態に移行する際に、スロットル弁34よりも後に負圧制御弁32の開度を減少させるように構成する。これにより、車両の加速時における吸気量の増加時に、負圧制御弁32の開度がスロットル弁34の開度増加に先行して増加されるので、負圧制御弁32の開度が先行して増加されない場合に吸気量の増加とともに負圧制御弁32前後での差圧が顕著に増加するのを抑制することができる。これにより、負圧制御弁32前後での差圧増加に起因してブローバイガスの導入量が増加するのを抑制することができる。また、車両の減速時には、スロットル弁34の開度減少とともに吸気量が減少して負圧制御弁32前後での差圧が減少する状況下で、スロットル弁34の開度減少から遅延して負圧制御弁32の開度が減少されるので、より少ない吸気量のもとで負圧制御弁32の開度が遅延なく減少された場合に負圧制御弁32前後での差圧が顕著に増加するのを抑制することができる。これにより、負圧制御弁32前後での差圧の増加を緩慢にすることができ、この場合にも、ブローバイガスの導入量が無用に増加するのを抑制することができる。
また、第1実施形態では、エンジン100が停止される直前に、スロットル弁34の開度を増加させ、かつ、負圧制御弁32の開度を減少させるように構成する。これにより、スロットル弁34の開度を増加させる一方で負圧制御弁32の開度を減少させるので、吸気通路30の全圧損を変化させずにエンジン100の運転が停止される直前のアイドル回転状態での吸気量を安定させることができる。その上で、負圧制御弁32の開度を減少させて負圧制御弁32前後での圧力差を瞬間的に増加させることができる。これにより、エンジン100の運転が停止される直前に、ブローバイガスの流速を瞬間的に増加させることができるので、ブローバイガスに含まれるオイルミストを分離するオイルセパレータ52が、オイル分離後の液状オイルや他の異物に起因して詰まるのを回避することができる。
また、第1実施形態では、負圧制御弁32の上流でかつエアクリーナ31の下流の吸気通路30の位置Aとヘッドカバー2aとを連通するように新気導入通路61を構成する。これにより、塵や埃などが除去されかつ大気圧(正圧)に近い状態の新気を確実にエンジン本体10(クランクケース3)に導入することができる。
[第2実施形態]
次に、図1、図7および図8を参照して、第2実施形態について説明する。この第2実施形態では、上記第1実施形態と異なる構造を有する負圧制御弁232を用いて吸気システム250を構成する例について説明する。
本発明の第2実施形態におけるエンジン200(過給機付き内燃機関)に適用される吸気システム250では、負圧制御弁232が用いられる。負圧制御弁232は、図7に示すように、ブローバイガスが導入される導入部251aと、EGRガスが導入される導入部271aとを備える。導入部251aは、バルブボディ91の一方側(X1側)の内壁91cをX軸方向に貫通するとともに回動軸92aに沿って平行に延びて負圧領域Qの中心寄りの位置に達している。同様に、導入部271aは、バルブボディ91の他方側(X2側)の内壁91dをX軸方向に貫通するとともに回動軸92aと平行に延びて負圧領域Qの中心寄りの位置に達している。また、導入部251aには、負圧領域Q内で下流に向かって開口する円形状の2つの開口251bが形成されるとともに、導入部271aには、負圧領域Q内で下流に向かって開口する円形状の2つの開口271bが形成されている。
また、図8に示すように、導入部251aおよび271aは、X軸方向に互いに対向した状態でその軸中心が同じ高さ位置H2に設けられている。なお、負圧制御弁232の弁体92が全閉時の状態を実線で示すとともに、全開時の状態を破線で示している。そして、弁体92は、全開に制御された場合においても、軸中心(高さ位置H1)から吸気流れ方向に延長した線分150(一点鎖線で示す)に対して所定の角度αを有して開度制御されるように構成されている。すなわち、全開状態でも角度αが設けられる分、弁体92の下流に負圧領域Qが生成されるとともに、この負圧領域Q中に導入部251aおよび271aが配置されるように負圧制御弁232は構成されている。
なお、弁体92の下面(背面)92cにおける吸気下流方向の先端部分が導入部251aおよび271aの外側面に当接した状態で、弁体92に吸気流れ方向から若干上向きの角度αが設けられるように、回動軸92aの高さ位置H1に対する導入部251a(271a)の高さ位置H2までの距離L(Z軸方向)が決定されている。したがって、導入部251aおよび271aは、弁体92が全開となった場合のストッパの役割も兼ねている。これにより、位置Cから導入されるブローバイガスは、負圧制御弁232の下流に生成される負圧領域Qから吸気通路30に導入される。同様に、EGRガスも、負圧制御弁232の下流に生成される負圧領域Qから吸気通路30に導入される。
また、第2実施形態では、吸気システム250における負圧制御弁232の制御内容としては、エンジン200が高負荷状態でかつ中回転数域から高回転数域の運転領域を除いて、コンプレッサホイール22の上流でかつ負圧制御弁232の下流の吸気通路30の部分(位置C)に負圧を発生させるように負圧制御弁232の開度が減少されるように構成されている。この点が第1実施形態と異なる。
これにより、第2実施形態では、高負荷状態でかつ中回転数域から高回転数域の運転領域以外の常用領域ではエンジン本体10(クランクケース3)の換気を行う一方、高負荷状態でかつ中回転数域から高回転数域の運転領域では、エンジン本体10の換気を一時的に中断するとともに新気のシリンダ1a(図1参照)への吸気量を瞬発的に増加させて(過給して)エンジン200の出力確保を優先させるように構成されている。なお、第2実施形態におけるその他の構成は、上記第1実施形態と同様である。
(第2実施形態の効果)
第2実施形態では、上記のように、エンジン200における高負荷状態でかつ中回転数域から高回転数域の運転領域を除いて、コンプレッサホイール22の上流でかつ負圧制御弁232の下流の吸気通路30の位置Cに負圧を発生させるように負圧制御弁232を構成する。これにより、高負荷状態でかつ中回転数域から高回転数域の運転領域以外の常用領域ではエンジン本体10の換気を行う一方、高負荷状態でかつ中回転数域から高回転数域の運転領域では、エンジン本体10の換気を一時的に中断するとともに新気のシリンダ1aへの吸気量を瞬発的に増加させて(過給して)、エンジン200の出力確保を優先させることができる。したがって、常用領域での換気性能を得つつ高いレベルの最高出力を発揮することが可能なエンジン200を得ることができる。
また、第2実施形態では、ブローバイガスが導入される導入部251aをバルブボディ91の内壁91cを貫通して回動軸92aに平行に延ばして負圧領域Q内に配置するとともに、EGRガスが導入される導入部271aを、バルブボディ91の内壁91dを貫通して回動軸92aに平行に延ばして負圧領域Q内に配置するように負圧制御弁232を構成する。これにより、負圧制御弁232による開度減少動作によって生じる負圧(吸引力)が最も大きい負圧制御弁232の下流に生成される負圧領域QからブローバイガスおよびEGRガスを吸気通路30に確実に引き込むことができる。なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
[変形例]
今回開示された実施形態は、全ての点で例示であり制限的なものではないと考えられるべきである。本発明の範囲は上記実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内での全ての変更(変形例)が含まれる。
たとえば、上記第1および第2実施形態では、排気タービン駆動式の過給機20を備えたエンジン100の吸気システム50に対して本発明を適用したが、本発明はこれに限られない。すなわち、クランク軸5の駆動力により駆動される過給機(スーパーチャージャ)を備えたエンジンの吸気システムに対して本発明を適用してもよい。
また、上記第1および第2実施形態では、吸気システム50(250)にEGRガス通路71を設けたが、本発明はこれに限られない。すなわち、ブローバイガスのみを負圧制御弁32の下流かつコンプレッサホイール22の上流の位置Cから吸気通路30に導入するように過給機付きエンジンの吸気システムを構成してもよい。
また、上記第1実施形態では、負圧制御弁32の下流のバルブボディ91の内壁にブローバイガスおよびEGRガスの開口51aおよび71aを設け、上記第2実施形態では、負圧制御弁232の下流のバルブボディ91の内壁から負圧領域Qに延びる導入部251aおよび271aを設けたが、本発明はこれに限られない。たとえば、弁体92を回動させる回動軸92a内に中空の流路(ブローバイガス通路51および/またはEGRガス通路71)を設けるとともに回動軸92aに負圧領域Qに開口する開口を形成してもよい。
また、上記第1実施形態では開口51aおよび71aを負圧領域Qに対応したバルブボディ91の内壁に設けるとともに、上記第2実施形態では導入部251aおよび271aを負圧領域Q中に設けたが、本発明はこれに限られない。ブローバイガスおよびEGRガスの導入口(導入部)を負圧領域Qの近傍に設けるとともに、負圧領域Qの吸引力を利用して吸気通路30に導入するように構成してもよい。
また、上記第2実施形態では、導入部251aおよび271aを別々に設けたが、本発明はこれに限られない。たとえば、回動軸92aに沿ってその下流の負圧領域Qを貫通する1本の導入管を設けるとともに、この導入管の中央部分を仕切ってX1側に導入部251aを形成するとともにX2側に導入部271aを形成してもよい。
また、上記第2実施形態では、開口251b(271b)を円形状を有するように導入部251a(271a)に形成したが、本発明はこれに限られない。外部ガスを導入する開口をノズル状に形成してもよいし、スリット状(細い長孔状)に形成してもよい。また、開口251b(271b)を2個ずつ設けたが、本発明はこれに限られない。開口の個数は、1個ずつでもよいし、3個ずつ設けてもよい。また、導入部251aと導入部271aとで異なる個数の開口を設けてもよい。
また、上記第1および第2実施形態では、ガソリン機関からなるエンジン100(200)を備えた車両(自動車)に搭載される吸気システム50(250)に本発明を適用したが、本発明はこれに限られない。すなわち、ガソリンエンジン以外にも、過給機付きのディーゼルエンジンおよびガスエンジンなどに対して本発明を適用することが可能である。
10 エンジン本体(内燃機関本体)
20 過給機
22 コンプレッサホイール(吸気側過給機)
30 吸気通路
32、232 負圧制御弁
34 スロットル弁(スロットルバルブ)
50、250 吸気システム(過給機付き内燃機関の吸気システム)
51 ブローバイガス通路(第1外部ガス導入通路)
51a、71a、251b、271b 開口
61 新気導入通路
71 EGRガス通路(第2外部ガス導入通路)
100、200 エンジン(過給機付き内燃機関)
A 位置(負圧制御弁の上流でかつエアクリーナの下流の吸気通路の部分)
B 位置(負圧制御弁の上流)
C 位置(吸気側過給機の上流でかつ負圧制御弁の下流の吸気通路の部分)
P 負圧領域

Claims (6)

  1. 吸気通路における吸気側過給機よりも上流側に配置された負圧制御弁と、
    前記吸気側過給機の上流でかつ前記負圧制御弁の下流の前記吸気通路の部分に、ブローバイガスからなる単一の外部ガスを導入する第1外部ガス導入通路と、
    前記負圧制御弁の上流から内燃機関本体に新気を導入する新気導入通路と、
    前記吸気通路における前記吸気側過給機よりも下流側に配置されたスロットルバルブと、を備え
    前記スロットルバルブが最も閉じ側に回動された際の前記吸気通路の開口面積は、前記負圧制御弁が最も閉じ側に回動された際の前記吸気通路の開口面積よりも小さく、
    低負荷状態から高負荷状態に移行する際に、前記スロットルバルブよりも先に前記負圧制御弁の開度が増加されるとともに、高負荷状態から低負荷状態に移行する際に、前記スロットルバルブよりも後に前記負圧制御弁の開度が減少されるように構成されている、過給機付き内燃機関の吸気システム。
  2. 前記第1外部ガス導入通路とは別個に設けられ、前記吸気側過給機の上流でかつ前記負圧制御弁の下流の前記吸気通路の部分に、前記ブローバイガスとは異なる他の外部ガスを導入する第2外部ガス導入通路をさらに備える、請求項1に記載の過給機付き内燃機関の吸気システム。
  3. 前記負圧制御弁は、全ての運転領域において、前記吸気側過給機の上流でかつ前記負圧制御弁の下流の前記吸気通路の部分に負圧を発生させるように開度が減少されるように構成されている、請求項1または2に記載の過給機付き内燃機関の吸気システム。
  4. 前記負圧制御弁は、高負荷状態でかつ中回転数域から高回転数域の運転領域を除いて、前記吸気側過給機の上流でかつ前記負圧制御弁の下流の前記吸気通路の部分に負圧を発生させるように開度が減少されるように構成されている、請求項1または2に記載の過給機付き内燃機関の吸気システム。
  5. 前記ブローバイガスからなる単一の外部ガスは、前記第1外部ガス導入通路を介して前記負圧制御弁の下流に生成される負圧領域およびその近傍から前記吸気通路に導入されるように構成されている、請求項1〜4のいずれか1項に記載の過給機付き内燃機関の吸気システム。
  6. 記スロットルバルブが最も閉じ側に回動された際の前記吸気通路の開口面積は、前記負圧制御弁が最も閉じ側に回動された際の前記吸気通路の開口面積よりも小さく、
    前記内燃機関本体の運転が停止される直前に、前記スロットルバルブの開度が増加されるとともに前記負圧制御弁の開度が減少されるように構成されている、請求項1〜のいずれか1項に記載の過給機付き内燃機関の吸気システム。
JP2015206255A 2015-10-20 2015-10-20 過給機付き内燃機関の吸気システム Active JP6582863B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015206255A JP6582863B2 (ja) 2015-10-20 2015-10-20 過給機付き内燃機関の吸気システム
EP16194373.3A EP3159527B1 (en) 2015-10-20 2016-10-18 Intake system for internal combustion engine with supercharger
US15/298,711 US10385810B2 (en) 2015-10-20 2016-10-20 Intake system of internal combustion engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015206255A JP6582863B2 (ja) 2015-10-20 2015-10-20 過給機付き内燃機関の吸気システム

Publications (2)

Publication Number Publication Date
JP2017078350A JP2017078350A (ja) 2017-04-27
JP6582863B2 true JP6582863B2 (ja) 2019-10-02

Family

ID=57211284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015206255A Active JP6582863B2 (ja) 2015-10-20 2015-10-20 過給機付き内燃機関の吸気システム

Country Status (3)

Country Link
US (1) US10385810B2 (ja)
EP (1) EP3159527B1 (ja)
JP (1) JP6582863B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10570829B2 (en) * 2017-08-11 2020-02-25 Ford Global Technologies, Llc Methods and system for a common aspirator valve
JP7010040B2 (ja) * 2018-02-09 2022-01-26 トヨタ自動車株式会社 エンジン制御装置
JP7172234B2 (ja) * 2018-07-24 2022-11-16 マツダ株式会社 エンジンの吸気装置
JP7176301B2 (ja) * 2018-08-29 2022-11-22 株式会社デンソー 内燃機関システム
FR3102209B1 (fr) * 2019-10-22 2022-04-22 Renault Sas PROCEDE DE contrôle d’UN circuit D’ADMISSION de moteur SURALIMENTE a combustion interne
DE102019132079A1 (de) * 2019-11-27 2021-05-27 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Entlüftung des Kurbelgehäuses eines Verbrennungsmotors
JP7188403B2 (ja) * 2020-01-31 2022-12-13 株式会社デンソー Egr弁装置
JP7193017B2 (ja) * 2020-06-02 2022-12-20 日産自動車株式会社 内燃機関のブローバイガス処理装置のリーク診断方法およびリーク診断装置
CN111997710A (zh) * 2020-08-15 2020-11-27 昆明云内动力股份有限公司 一种发动机曲轴箱通风***和方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136615U (ja) 1988-03-10 1989-09-19
JPH1113553A (ja) * 1997-06-26 1999-01-19 Nippon Soken Inc 排出ガス再循環装置
JP2001304050A (ja) * 2000-04-19 2001-10-31 Aisan Ind Co Ltd 吸気通路用ガス導入装置
JP4225313B2 (ja) * 2005-12-09 2009-02-18 トヨタ自動車株式会社 内燃機関の排気浄化システム
DE102006058072A1 (de) * 2006-12-07 2008-06-19 Mahle International Gmbh Kurbelgehäuseentlüftung
JP4281804B2 (ja) * 2007-01-25 2009-06-17 トヨタ自動車株式会社 内燃機関の排気浄化システム
US20090090337A1 (en) * 2007-10-05 2009-04-09 Aisan Kogyo Kabushiki Kaisha Engine blow-by gas returning apparatus
US8181633B2 (en) * 2008-12-17 2012-05-22 Aisin Seiki Kabushiki Kaisha Intake manifold
JP5822445B2 (ja) * 2010-08-06 2015-11-24 ダイハツ工業株式会社 ブローバイガス還流装置
JP2012047093A (ja) * 2010-08-26 2012-03-08 Daihatsu Motor Co Ltd 内燃機関
JP2012097683A (ja) 2010-11-04 2012-05-24 Daihatsu Motor Co Ltd 内燃機関
JP2013120213A (ja) * 2011-12-06 2013-06-17 Ricoh Co Ltd 画像形成方法および画像形成装置
JP2013164053A (ja) * 2012-02-13 2013-08-22 Toyota Motor Corp 内燃機関の制御装置
JP2014015876A (ja) * 2012-07-06 2014-01-30 Toyota Motor Corp 過給機付き内燃機関の制御装置
US9382825B2 (en) 2013-04-25 2016-07-05 Ford Global Technologies, Llc System and method for gas purge control
JP6051136B2 (ja) * 2013-09-26 2016-12-27 株式会社クボタ エンジン
US9328702B2 (en) * 2013-10-24 2016-05-03 Ford Global Technologies, Llc Multiple tap aspirator
US9771841B2 (en) * 2014-10-28 2017-09-26 Ford Global Technologies, Llc Crankcase ventilation for turbocharged engine
JP6544045B2 (ja) * 2015-05-28 2019-07-17 アイシン精機株式会社 過給機付き内燃機関の換気装置
JP6299677B2 (ja) * 2015-06-09 2018-03-28 トヨタ自動車株式会社 内燃機関の換気システム
DE102015213982A1 (de) * 2015-07-24 2017-01-26 Bayerische Motoren Werke Aktiengesellschaft Brennkraftmaschine und Verfahren zur Erkennung einer Leckage von einem Kurbelgehäuse- und/oder einem Tank-Entlüftungssystem

Also Published As

Publication number Publication date
EP3159527A1 (en) 2017-04-26
EP3159527B1 (en) 2018-09-05
JP2017078350A (ja) 2017-04-27
US10385810B2 (en) 2019-08-20
US20170107955A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6582863B2 (ja) 過給機付き内燃機関の吸気システム
JP5527486B2 (ja) 内燃機関の換気制御装置
US8453446B2 (en) Exhaust gas control system for internal combustion engine and method for controlling the same
JP5812102B2 (ja) 過給機付き内燃機関
JP5964285B2 (ja) 内燃機関
JPS62228622A (ja) エンジンの吸気装置
JP2018040252A (ja) 過給機付内燃機関のブローバイガス処理装置
JP2013164053A (ja) 内燃機関の制御装置
US11378041B2 (en) Air intake device for engine
JP5508632B2 (ja) 排気ターボ過給機付き内燃機関におけるブローバイガスの処理装置
CN101363374B (zh) 发动机控制***
JP2007247612A (ja) 内燃機関の制御装置
KR20190031589A (ko) 내연 기관의 제어 방법 및 제어 장치
JP6544045B2 (ja) 過給機付き内燃機関の換気装置
US11236706B2 (en) Evaporated fuel treatment device for engine
JPH04292516A (ja) 内燃機関のブローバイガス処理装置
JP2003519747A (ja) 二サイクル内燃機関
JP5983285B2 (ja) ターボ過給機付エンジン
JPH02146210A (ja) ブローバイガス還元装置
JPH0791324A (ja) エンジンの吸気装置
JP5974805B2 (ja) ターボ過給機付多気筒エンジン
JPH0330616Y2 (ja)
GB2514406A (en) Cam cover for a cylinder head of an internal combustion engine
JPS60101220A (ja) 過給機付内燃機関
JPS62247118A (ja) エンジンの吸気装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R151 Written notification of patent or utility model registration

Ref document number: 6582863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151