JP6579732B2 - Method for suppressing foaming of metallic aluminum in incineration ash - Google Patents

Method for suppressing foaming of metallic aluminum in incineration ash Download PDF

Info

Publication number
JP6579732B2
JP6579732B2 JP2014099996A JP2014099996A JP6579732B2 JP 6579732 B2 JP6579732 B2 JP 6579732B2 JP 2014099996 A JP2014099996 A JP 2014099996A JP 2014099996 A JP2014099996 A JP 2014099996A JP 6579732 B2 JP6579732 B2 JP 6579732B2
Authority
JP
Japan
Prior art keywords
calcium chloride
ash
incineration ash
cement
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014099996A
Other languages
Japanese (ja)
Other versions
JP2015217314A (en
Inventor
山田 一夫
一夫 山田
市川 恒樹
恒樹 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Environmental Studies
Original Assignee
National Institute for Environmental Studies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Environmental Studies filed Critical National Institute for Environmental Studies
Priority to JP2014099996A priority Critical patent/JP6579732B2/en
Publication of JP2015217314A publication Critical patent/JP2015217314A/en
Application granted granted Critical
Publication of JP6579732B2 publication Critical patent/JP6579732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、焼却灰に含まれる金属アルミニウムの発泡を抑制するために、焼却灰のpHを低減する焼却灰の処理方法に関する。
The present invention, in order to suppress foaming of the contained in the incineration ash Rukin genus aluminum, relates to a process for the treatment of incineration ash to reduce the pH of the ash.

焼却灰は、表1に示すように、一般に、両性金属である鉛や金属アルミニウムを含むほか、焼却炉の排ガス中の塩化水素を中和するために吹き込まれた消石灰やその中和生成物である塩化カルシウムを含む。そして、焼却灰の液性は、未反応のままで残存する消石灰のため、一般に水酸化カルシウムの溶解平衡から最大pH12.7程度のアルカリ性を示す。   As shown in Table 1, incineration ash generally contains amphoteric metals such as lead and metallic aluminum, as well as slaked lime and its neutralization products blown to neutralize hydrogen chloride in the exhaust gas of incinerators. Contains some calcium chloride. The liquidity of the incinerated ash is generally slaked lime that remains unreacted, and thus generally exhibits alkalinity of a maximum pH of about 12.7 from the dissolution equilibrium of calcium hydroxide.

鉛は両性金属であるから、鉛の溶解度は、非特許文献1の図1に示すように、pH12以下では低いがpH12を超えると急に高くなる。また、金属アルミニウムは、下記反応式に示すように、アルカリ性の液中では水を還元して水素ガスが発生する。
2Al+6OH+6HO → 2Al(OH)+6OH+3H
ただし、前記反応により生成する水酸化アルミニウムは難溶性であるため、弱アルカリ性では、金属アルミニウムの表面に難溶性被膜が形成されて前記反応は停止する。しかし、pH12を超える強アルカリ性では、水酸化アルミニウムが水溶性のアルミン酸に変わるため、前記反応は停止することなく水素ガスが発生し続ける。
Since lead is an amphoteric metal, the solubility of lead is low at pH 12 or lower as shown in FIG. In addition, as shown in the following reaction formula, metallic aluminum generates hydrogen gas by reducing water in an alkaline liquid.
2Al + 6OH + 6H 2 O → 2Al (OH) 3 + 6OH + 3H 2
However, since the aluminum hydroxide produced by the reaction is hardly soluble, if it is weakly alkaline, a hardly soluble film is formed on the surface of the metal aluminum and the reaction stops. However, in the case of strong alkalinity exceeding pH 12, since aluminum hydroxide is changed to water-soluble aluminate, the reaction does not stop and hydrogen gas continues to be generated.

通常、焼却灰は、防塵や減容化のため、焼却灰の質量の数%〜50%程度のセメントを用いて固型化処理した後、最終処分場内に埋め立て処分されている。
そして、前記セメントの種類や添加量により、セメント固型化物のpHは13を超える場合がある。該pHでは、図1に示すように鉛の溶解度は10−2Mを超え、また、セメントの凝結の初期段階から水素ガスが多量に発生して、焼却灰とセメントの混練物が膨張し、硬化体の組織が脆くなる。さらに、水素ガスの発生が甚だしい場合、前記混練物は1個の硬化体を形成することなく発泡したり、崩壊して大小の脆弱な塊状物になり、該塊状物からの鉛の溶出は増加することが予想される。ちなみに、水質汚濁防止法に規定する鉛の排水基準は0.3mg/L(1.4×10−6M)である。
Usually, incineration ash is solidified using cement of about several to 50% of the mass of incineration ash for dust prevention and volume reduction, and then landfilled in the final disposal site.
The pH of the cement solidified product may exceed 13 depending on the type and amount of the cement. At the pH, the solubility of lead exceeds 10 −2 M as shown in FIG. 1, and a large amount of hydrogen gas is generated from the initial stage of cement setting, and the kneaded mixture of incineration ash and cement expands, The structure of the cured body becomes brittle. Furthermore, when the generation of hydrogen gas is significant, the kneaded product foams without forming a single cured body, or collapses into large and small fragile lumps, and the elution of lead from the lumps increases. Is expected to. Incidentally, the drainage standard for lead specified in the Water Pollution Control Law is 0.3 mg / L (1.4 × 10 −6 M).

そこで、特許文献1では、焼却灰をアルカリまたは酸で処理して金属アルミニウムを除いた後に、セメントを用いて固型化する方法がいくつか提案されている。具体的には、請求項1の発明は、金属アルミニウム等が残存する焼却灰をアルカリ水溶液で処理し、金属アルミニウム等を水酸化物にした後、脱水し、セメントを加えて固型化する方法である。また、請求項2の発明は、前記焼却灰を酸で処理し、金属アルミニウム等をアルミニウム塩とした後、中和して脱水し、セメントを加えて固型化する方法である。さらに、請求項3の発明は、セメントを加えて固型化する際に、重金属イオン固定剤を加える方法である。
しかし、請求項1の発明は、焼却灰をアルカリ水溶液で処理するから、鉛の溶解度がより高くなって鉛が溶出し易くなり、その分、重金属イオン固定剤の添加量が増加してコスト高になると予想される。
また、焼却飛灰は1〜40質量%もの未反応の水酸化カルシウムを含むから、前記請求項2の発明では、本来、金属アルミニウム等を塩にする目的で添加した酸の大部分は、目的外の水酸化カルシウムとの反応に消費されるため、多量の酸の添加が必要な場合があり、実用性に乏しいと考える。
Therefore, Patent Document 1 proposes several methods of solidifying using cement after incineration ash is treated with alkali or acid to remove metallic aluminum. Specifically, the invention of claim 1 is a method in which incinerated ash in which metal aluminum or the like remains is treated with an alkaline aqueous solution to convert metal aluminum or the like into a hydroxide, and then dehydrated and solidified by adding cement. It is. The invention of claim 2 is a method in which the incinerated ash is treated with an acid to convert metal aluminum or the like into an aluminum salt, neutralized and dehydrated, and cemented to solidify. Furthermore, the invention of claim 3 is a method of adding a heavy metal ion fixing agent when solidifying by adding cement.
However, in the invention of claim 1, since the incineration ash is treated with an alkaline aqueous solution, the solubility of lead becomes higher and lead is more likely to be eluted. It is expected to become.
Moreover, since incinerated fly ash contains 1 to 40% by mass of unreacted calcium hydroxide, in the invention of claim 2, most of the acid originally added for the purpose of converting metal aluminum or the like into a salt is the purpose. Since it is consumed in the reaction with the external calcium hydroxide, it may be necessary to add a large amount of acid, which is considered impractical.

株式会社ポーラーズ研究所 ホームページ、[online]、[平成26年4月28日検索]、インターネット<URL:http://www.pollars.co.jp/hihai.html>Polars Research Institute, Inc. Homepage, [online], [Search April 28, 2014], Internet <URL: http://www.pollars.co.jp/hihai.html>

特開平09−314092号公報JP 09-314092 A

したがって、本発明は、鉛や金属アルミニウムを含む焼却灰中の鉛の溶出や金属アルミニウムの発泡を抑制するための、焼却灰の低コストかつ簡易な処理方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a low-cost and simple processing method for incineration ash for suppressing elution of lead in incineration ash containing lead and metal aluminum and foaming of metal aluminum.

そこで、本発明者らは、前記目的にかなう方法を検討したところ、i)塩化カルシウムは焼却灰のpHを低下させること、また、ii)焼却灰中に含まれる塩化カルシウムを有効に活用すれば、薬剤コストを削減できることを見い出し、本発明を完成させた。   Therefore, the present inventors have examined a method that meets the above-mentioned purpose. As a result, i) calcium chloride lowers the pH of the incinerated ash, and ii) effectively uses calcium chloride contained in the incinerated ash. The present inventors have found that the drug cost can be reduced and completed the present invention.

すなわち、本発明は以下の構成を有する焼却灰の処理方法である。
[1]塩化カルシウム(CaCl)および/または水酸化塩化カルシウム(CaClOH)と、水酸化カルシウム(Ca(OH))とを含み、さらに、金属アルミニウムを含む焼却灰と、水およびセメントとを混合した後、該混合物にさらに塩化カルシウムを添加して、該混合物中の液分のカルシウムイオン濃度が0.7M以上、かつ該液分のpHを11.1〜12にする、焼却灰中の金属アルミニウムの発泡抑制方法。
[2]前記pHが11.1〜12になった混合物から固液分離して得られた塩化カルシウムを含む液分を、前記塩化カルシウムの全部または一部としてリサイクルする、前記[1]に記載の焼却灰中の金属アルミニウムの発泡抑制方法。
That is, this invention is a processing method of the incineration ash which has the following structures.
[1] Incineration ash containing calcium chloride (CaCl 2 ) and / or calcium hydroxide chloride (CaClOH) and calcium hydroxide (Ca (OH) 2 ), and further containing metallic aluminum, water and cement after mixing, the addition of further calcium chloride to the mixture, the calcium ion concentration in the liquid fraction of the mixture is more than 0.7M, and the pH of the liquid fraction to 11.1 to 12, in incineration ash A method for suppressing foaming of metallic aluminum.
[2] The liquid component containing calcium chloride obtained by solid-liquid separation from the mixture having a pH of 11.1 to 12 is recycled as all or part of the calcium chloride. To suppress foaming of metallic aluminum in incineration ash.

本発明の焼却灰の処理方法は、焼却灰中の塩化カルシウムや、不足する場合にさらに外部から補充した塩化カルシウムが、水酸化カルシウムに優先して溶出するため、水酸化カルシウムの溶出が抑制されてpHが低下し、鉛の溶出や水素ガスの発生を簡易に低減できる。また、本発明の焼却灰の処理方法は、焼却灰中に元々含まれる塩化カルシウムを有効に活用できるため、その分、薬剤コストを削減できる。   In the incineration ash treatment method of the present invention, calcium chloride in the incineration ash or calcium chloride supplemented from the outside when it is insufficient elutes preferentially over calcium hydroxide, so that calcium hydroxide elution is suppressed. As a result, the pH is lowered, and elution of lead and generation of hydrogen gas can be easily reduced. Moreover, since the processing method of the incineration ash of this invention can utilize calcium chloride originally contained in incineration ash effectively, it can reduce a chemical | medical agent cost.

pHと鉛の溶解度の関係を示す図である。It is a figure which shows the relationship between pH and the solubility of lead. 焼却飛灰中のカルシウムイオン濃度と焼却飛灰のpHの関係を示す図である。It is a figure which shows the relationship between the calcium ion concentration in incineration fly ash, and the pH of incineration fly ash. 焼却飛灰がセメント固型化により発砲した状況を示す写真である。It is a photograph which shows the situation where incineration fly ash fired by cement solidification.

本発明は、前記のとおり、塩化カルシウムや鉛等を含む焼却灰と、水およびセメントとを混合して得た混合物中の液のpHが12を超える場合は、該混合物にさらに塩化カルシウムを混合して、該pHを12以下にする焼却灰の処理方法等である。
以下、本発明について、焼却灰、水、セメント、塩化カルシウム、および焼却灰等の混合方法に分けて詳細に説明する。
As described above, when the pH of the liquid in the mixture obtained by mixing incinerated ash containing calcium chloride, lead, etc., water and cement exceeds 12, as described above, the mixture is further mixed with calcium chloride. And a method for treating incinerated ash that reduces the pH to 12 or less.
Hereinafter, the present invention will be described in detail by dividing into incineration ash, water, cement, calcium chloride, incineration ash and the like.

1.焼却灰
本発明が対象とする焼却灰は、塩化カルシウム(CaCl)および/または水酸化塩化カルシウム(CaClOH)と、水酸化カルシウム(Ca(OH))とを含み、さらに、鉛および/または金属アルミニウムを含む焼却灰である。前記水酸化塩化カルシウムは、水酸化カルシウムと塩化カルシウムとの単なる混合物ではなく、固有のX線回折パターンを有する化合物である。また、本発明において焼却灰とは、飛灰および/または主灰をいう。
塩化カルシウムは潮解性が高く、焼却炉中では存在しても、飛灰として回収され、粉塵対策として散水される場合が多いため、実験室で測定をすると塩化カルシウムはX線回折法では検出されないことも多い。したがって、塩化カルシウムの含有量は、溶出したカルシウムイオンが塩化カルシウムからのものであると仮定して求める。
塩化カルシウムは、表1に示すように、焼却灰中に4〜24質量%程度含まれ、また水酸化カルシウムより水中への溶出速度や溶解度が高い。したがって、本発明の焼却灰の処理方法においてpHが低下するメカニズムは、焼却灰に加水することにより塩化カルシウム由来のカルシウムイオンの濃度が高くなり、カルシウムイオンの共通イオン効果により水酸化カルシウムの溶出が抑制されるものと推察される。よって、本発明では、焼却灰に元々存在する塩化カルシウムを有効に活用できるため、その分、薬剤コストを削減できる。
1. Incineration ash The incineration ash targeted by the present invention includes calcium chloride (CaCl 2 ) and / or calcium hydroxide chloride (CaClOH) and calcium hydroxide (Ca (OH) 2 ), and further contains lead and / or Incinerated ash containing metallic aluminum. The calcium hydroxide chloride is not a simple mixture of calcium hydroxide and calcium chloride, but a compound having a unique X-ray diffraction pattern. In the present invention, incineration ash refers to fly ash and / or main ash.
Calcium chloride is highly deliquescent, and even if it exists in an incinerator, it is often recovered as fly ash and sprinkled as a dust countermeasure, so calcium chloride is not detected by X-ray diffraction when measured in the laboratory. There are many things. Therefore, the content of calcium chloride is determined on the assumption that the eluted calcium ions are from calcium chloride.
As shown in Table 1, calcium chloride is contained in the incinerated ash in an amount of about 4 to 24% by mass, and has a higher elution rate and solubility in water than calcium hydroxide. Therefore, the mechanism by which the pH decreases in the method for treating incinerated ash of the present invention is that the concentration of calcium ions derived from calcium chloride is increased by adding water to the incinerated ash, and calcium hydroxide is eluted due to the common ion effect of calcium ions. Presumed to be suppressed. Therefore, in the present invention, since calcium chloride originally present in the incinerated ash can be effectively used, the drug cost can be reduced accordingly.

2.水
本発明において用いる水は、特に制限されず、水道水、雨水、スラッジ水、および下水処理水等が挙げられる。また、水の混合量は、焼却灰100質量部に対し、好ましくは5質量部以上、より好ましくは25質量部以上である。水の混合量が5質量部未満では、セメントの強度発現に必要な水が足りない場合がある。
2. Water The water used in the present invention is not particularly limited, and examples thereof include tap water, rainwater, sludge water, and sewage treated water. Moreover, the amount of water mixed is preferably 5 parts by mass or more, more preferably 25 parts by mass or more, with respect to 100 parts by mass of the incineration ash. If the amount of water mixed is less than 5 parts by mass, there may be a shortage of water necessary for developing the strength of the cement.

3.セメント
本発明において用いるセメントは、特に制限されず、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、高炉セメント、フライアッシュセメント、石炭灰含有セメント、およびエコセメントからなる群より選ばれる1種以上が挙げられる。
セメントの混合量は、焼却灰100質量部に対し、好ましくは5〜100質量部である。該混合量が該範囲にあれば、焼却灰の防塵や減容化が可能である。
3. Cement The cement used in the present invention is not particularly limited, and is selected from the group consisting of ordinary Portland cement, early-strength Portland cement, medium heat Portland cement, low heat Portland cement, blast furnace cement, fly ash cement, coal ash-containing cement, and ecocement. One or more selected may be mentioned.
The mixing amount of cement is preferably 5 to 100 parts by mass with respect to 100 parts by mass of incinerated ash. If the mixing amount is within this range, the incineration ash can be protected from dust and volume.

4.塩化カルシウム
本発明において用いる塩化カルシウムは、工業製品および試薬のいずれでもよい。また、塩化カルシウムの使用形態は、粉粒体または水溶液にして用いることができるが、混合の容易性から、好ましくは水溶液である。
さらに、前記塩化カルシウムは、pH12以下に調整した焼却飛灰の洗浄水、および本発明の焼却灰の処理方法においてpHが12以下になった前混合物から固液分離して得られた塩化カルシウムを含む液分等の塩化カルシウム含有水が挙げられる。該塩化カルシウム含有水を、外部から混合する塩化カルシウムの全部または一部代替として有効活用すれば、さらにその分、薬剤コストを削減できる。
4). Calcium chloride The calcium chloride used in the present invention may be either an industrial product or a reagent. The calcium chloride can be used in the form of a powder or an aqueous solution, but is preferably an aqueous solution from the viewpoint of easy mixing.
Furthermore, the calcium chloride is obtained by subjecting the incinerated fly ash washing water adjusted to pH 12 or lower and the calcium chloride obtained by solid-liquid separation from the pre-mixture having a pH of 12 or lower to the incinerated ash treatment method of the present invention. Calcium chloride-containing water such as the liquid content is included. If the calcium chloride-containing water is effectively used as a substitute for all or part of calcium chloride mixed from the outside, the drug cost can be further reduced.

5.焼却灰等の混合方法
焼却灰、水およびセメントの混合は、特に制限されず、i)焼却灰と水を混合した後、該混合物にセメントを混合する方法、ii)セメントと水を混合した後、該混合物に焼却灰を混合する方法、iii)セメント、水および焼却灰を一緒(同時)に混合する方法が挙げられる。いずれの方法でも、焼却灰を湿潤状態で混合するため、焼却灰中の鉛等の有害物質の飛散を防止することができる。なお、混合装置は、強制練りミキサ、混練造粒機、混練押出機等が使用できる。また、成型は、流し込み、振動締固め、転圧など混合物のレオロジー特性に応じて種々の方法を用いることができる。
また、焼却灰中に水酸化カルシウムが過剰に含まれる場合や、固型化に必要なセメントが多くなる場合等において、焼却灰に元々含まれる塩化カルシウムの量では、焼却灰のpHを12以下にできない場合は、さらに外部から塩化カルシウムを添加して混合し、pHを12以下にする。なお、混合のし易さから塩化カルシウムは水溶液の形態で混合するとよい。
5). Method of mixing incineration ash, etc. Mixing of incineration ash, water and cement is not particularly limited, i) a method of mixing incineration ash and water and then mixing cement into the mixture, ii) after mixing cement and water , A method of mixing incineration ash with the mixture, and iii) a method of mixing cement, water and incineration ash together (simultaneously). In any method, since the incineration ash is mixed in a wet state, scattering of harmful substances such as lead in the incineration ash can be prevented. In addition, a forced kneading mixer, a kneading granulator, a kneading extruder, etc. can be used for a mixing apparatus. In addition, various methods can be used for molding depending on the rheological characteristics of the mixture such as pouring, vibration compaction, and rolling pressure.
Moreover, in the case where calcium hydroxide is excessively contained in the incineration ash, or when the cement required for solidification increases, the pH of the incineration ash is 12 or less with the amount of calcium chloride originally contained in the incineration ash. If this is not possible, add calcium chloride from the outside and mix to bring the pH to 12 or less. For ease of mixing, calcium chloride may be mixed in the form of an aqueous solution.

焼却灰、水、セメント、および塩化カルシウムの混合物中の液分のカルシウムイオン濃度は、好ましくは0.5M以上である。該濃度が0.5M以上であれば、図2に示すように、前記混合物中の液のpHは12.0以下になる。なお、該濃度は、より好ましくは0.7M以上である。   The calcium ion concentration of the liquid in the mixture of incinerated ash, water, cement, and calcium chloride is preferably 0.5M or more. When the concentration is 0.5M or more, as shown in FIG. 2, the pH of the liquid in the mixture is 12.0 or less. The concentration is more preferably 0.7M or more.

表1に示す流動床炉飛灰100質量部(乾燥状態に換算して)に対し、水を95質量部(該飛灰に含まれる水分を含む)、普通ポルトランドセメントを75質量部添加して、ホバートミキサを用いて3分間混練した(1回目の混練)。1回目の混練物の液分のpHは12.2であった。また、1回目の混練の間や、型枠に充填中にも水素ガスが発生した。発泡した硬化体の例を図3に示す。
次に、該混練物中に、流動床炉飛灰100質量部(乾燥状態に換算して)に対し塩化カルシウムを10質量部添加して3分間混練した(2回目の混練)。2回目の混練物の液分のpHは11.1であった。また、2回目の混練の間、水素ガスは発生しなかった。なお、水素ガスの発生は、金属アルミニウム上に生成している酸化被膜の厚さに依存すると考えられ、飛灰に金属アルミニウム試薬を添加すると、水素ガスはより発生しやすくなり、また、時間が経過した飛灰やロットによっては水素ガスの発生時期が遅れることもあった。
また、1回目および2回目の混練物の液分中の鉛の濃度を、誘導イオンプラズマ質量分析(ICP−MS)を用いて測定した結果、1回目の液分では1×10−5M、2回目の液分では2×10−7Mであり、pHが低いほど鉛の濃度が低い。したがって、本発明の焼却灰の処理方法は、焼却灰からの鉛の溶出や水素ガスの発生を簡易に低減することができる。
For 100 parts by mass of fluidized bed furnace fly ash shown in Table 1 (converted into a dry state), 95 parts by mass of water (including water contained in the fly ash) and 75 parts by mass of ordinary Portland cement were added. The mixture was kneaded for 3 minutes using a Hobart mixer (first kneading). The pH of the liquid of the first kneaded product was 12.2. Also, hydrogen gas was generated during the first kneading and during filling of the mold. An example of the foamed cured body is shown in FIG.
Next, 10 parts by mass of calcium chloride was added to 100 parts by mass of the fly ash fly ash (converted into a dry state) into the kneaded product and kneaded for 3 minutes (second kneading). The pH of the liquid content of the second kneaded product was 11.1. Also, no hydrogen gas was generated during the second kneading. The generation of hydrogen gas is considered to depend on the thickness of the oxide film formed on the metal aluminum. When the metal aluminum reagent is added to the fly ash, the hydrogen gas is more likely to be generated and the time is increased. Depending on the fly ash and lot that passed, the generation time of hydrogen gas might be delayed.
In addition, as a result of measuring the lead concentration in the liquid components of the first and second kneaded materials using induction ion plasma mass spectrometry (ICP-MS), 1 × 10 −5 M in the first liquid component, The second liquid content is 2 × 10 −7 M, and the lower the pH, the lower the lead concentration. Therefore, the incineration ash treatment method of the present invention can easily reduce the elution of lead from the incineration ash and the generation of hydrogen gas.

Claims (2)

塩化カルシウム(CaCl)および/または水酸化塩化カルシウム(CaClOH)と、水酸化カルシウム(Ca(OH))とを含み、さらに、金属アルミニウムを含む焼却灰と、水およびセメントとを混合した後、該混合物にさらに塩化カルシウムを添加して、該混合物中の液分のカルシウムイオン濃度が0.7M以上、かつ該液分のpHを11.1〜12にする、焼却灰中の金属アルミニウムの発泡抑制方法。 After mixing incineration ash containing calcium chloride (CaCl 2 ) and / or calcium hydroxide chloride (CaClOH) and calcium hydroxide (Ca (OH) 2 ), and further containing metallic aluminum, water and cement with the addition of further calcium chloride to the mixture, the calcium ion concentration in the liquid fraction of the mixture is more than 0.7M, and the pH of the liquid fraction to 11.1 to 12, the metallic aluminum in the incinerated ash Foam suppression method. 前記pHが11.1〜12になった混合物から固液分離して得られた塩化カルシウムを含む液分を、前記塩化カルシウムの全部または一部としてリサイクルする、請求項1に記載の焼却灰中の金属アルミニウムの発泡抑制方法。
In the incinerated ash according to claim 1, wherein a liquid component containing calcium chloride obtained by solid-liquid separation from the mixture having a pH of 11.1 to 12 is recycled as all or part of the calcium chloride. Method for suppressing foaming of metallic aluminum.
JP2014099996A 2014-05-13 2014-05-13 Method for suppressing foaming of metallic aluminum in incineration ash Active JP6579732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014099996A JP6579732B2 (en) 2014-05-13 2014-05-13 Method for suppressing foaming of metallic aluminum in incineration ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014099996A JP6579732B2 (en) 2014-05-13 2014-05-13 Method for suppressing foaming of metallic aluminum in incineration ash

Publications (2)

Publication Number Publication Date
JP2015217314A JP2015217314A (en) 2015-12-07
JP6579732B2 true JP6579732B2 (en) 2019-09-25

Family

ID=54777208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014099996A Active JP6579732B2 (en) 2014-05-13 2014-05-13 Method for suppressing foaming of metallic aluminum in incineration ash

Country Status (1)

Country Link
JP (1) JP6579732B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116040672B (en) * 2023-01-28 2023-06-20 山东海化集团有限公司 Method for preparing basic calcium chloride eutectic by ammonia distillation wastewater

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837269B2 (en) * 1980-09-10 1983-08-15 工業技術院長 Molding method for inorganic materials
JPH1099816A (en) * 1996-09-30 1998-04-21 Shinsei Dentaru Lab:Kk Method for removing salt from fine-powdery waste such as fly ash
JPH10192819A (en) * 1997-01-10 1998-07-28 Daiichi Cement Kk Method for stabilizing and solidifying incineration fly ash and dust containing chlorine, alkali and harmful heavy metal and solidified product
JP3184508B2 (en) * 1999-09-17 2001-07-09 株式会社日立製作所 Radioactive waste treatment method, radioactive waste solidified material and solidified material
JP5359955B2 (en) * 2009-08-11 2013-12-04 栗田工業株式会社 How to prevent elution of heavy metals
JP6043515B2 (en) * 2012-06-13 2016-12-14 日油株式会社 Incineration ash treatment additive and incineration ash treatment method

Also Published As

Publication number Publication date
JP2015217314A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
JP5599061B2 (en) Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals
JPWO2015064522A1 (en) Insolubilizing material for specified hazardous substances and method for insolubilizing specified hazardous substances using the same
JP5315096B2 (en) Heavy metal insolubilization method and heavy metal insolubilization solidification material
JP5963177B2 (en) Method for treating solid heavy metal contaminated material and method for producing cement solidified material
JP6267922B2 (en) Hazardous substance treatment chemical
JP5092203B2 (en) Method for suppressing elution of fluorine and heavy metals from waste
JP2009072657A (en) Method for treating heavy metals in soil or soil slurry
JP6157947B2 (en) Anti-elution agent for harmful substances and elution prevention method using the same
JP4832474B2 (en) Solidification method of soft soil using waste gypsum
JP6579732B2 (en) Method for suppressing foaming of metallic aluminum in incineration ash
JP4694434B2 (en) By-product processing method
JP2000301101A (en) Treatment method of refuse incineration fly ash and acidic gas removing agent for refuse incineration exhaust gas
JP2004305833A (en) Method for stabilization treatment of waste
JP5190975B1 (en) Solidification method for combustible waste incineration ash and its solidified body
JP2001137823A (en) Stabilizing treatment method of municipal waste incineration flying ash
JP2008272591A (en) Method for treating ashes containing heavy metal
JP2016129869A (en) Insolubilization material and insolubilization slurry
JP2018132499A (en) Solidification material and solidification method of radioactive incineration ash
JP6465604B2 (en) Insolubilized slurry
JP2001038321A (en) Method for solidifying heavy metal-containing waste and solid material
JP5147146B2 (en) Waste incineration fly ash treatment method
JP3632284B2 (en) Waste treatment material
JP4400732B2 (en) Soil toxic substance elution reducing material and soil treatment method using the same
JP5280405B2 (en) Method for insolubilizing and detoxifying hexavalent chromium
JP6551905B2 (en) Material and method for treating harmful substances

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190827

R150 Certificate of patent or registration of utility model

Ref document number: 6579732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250