JP6579206B2 - Curable composition and cured product - Google Patents

Curable composition and cured product Download PDF

Info

Publication number
JP6579206B2
JP6579206B2 JP2018041253A JP2018041253A JP6579206B2 JP 6579206 B2 JP6579206 B2 JP 6579206B2 JP 2018041253 A JP2018041253 A JP 2018041253A JP 2018041253 A JP2018041253 A JP 2018041253A JP 6579206 B2 JP6579206 B2 JP 6579206B2
Authority
JP
Japan
Prior art keywords
group
polymer
main chain
curable composition
reactive silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018041253A
Other languages
Japanese (ja)
Other versions
JP2019156883A (en
Inventor
裕介 神保
裕介 神保
佳孝 砂山
佳孝 砂山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=67994536&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6579206(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2018041253A priority Critical patent/JP6579206B2/en
Publication of JP2019156883A publication Critical patent/JP2019156883A/en
Application granted granted Critical
Publication of JP6579206B2 publication Critical patent/JP6579206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、反応性ケイ素基を有する重合体を含む硬化性組成物、及び前記組成物の硬化物に関する。   The present invention relates to a curable composition containing a polymer having a reactive silicon group, and a cured product of the composition.

反応性ケイ素基を有するオキシアルキレン重合体は、25℃で液状であり、加水分解反応により硬化して、柔軟性を有するゴム状硬化物を形成する。このような重合体を含む硬化性組成物の硬化物は、シーリング材、接着剤、コーティング剤等として広く使用されている。特にシーリング材には伸び物性、耐候性が求められる。   The oxyalkylene polymer having a reactive silicon group is liquid at 25 ° C. and is cured by a hydrolysis reaction to form a rubbery cured product having flexibility. Cured products of curable compositions containing such polymers are widely used as sealing materials, adhesives, coating agents and the like. In particular, the sealing material is required to have elongation properties and weather resistance.

特許文献1には、反応性ケイ素基を有するオキシアルキレン重合体に、反応性ケイ素基を有する(メタ)アクリル酸エステル重合体をブレンドして、硬化物の耐候性を向上させる方法が記載されている。
特許文献1の実施例には、それらをブレンドした硬化性組成物中のオキシアルキレン重合体が、1つの主鎖末端に平均して反応性ケイ素基を1.7個有すると、1つの主鎖末端に平均して反応性ケイ素基を0.8個有する場合に比べて、50%伸張時応力、100%伸張時応力、破断時強度及び破断時伸びのいずれも向上したことが示されている。
Patent Document 1 describes a method for improving the weather resistance of a cured product by blending a (meth) acrylic acid ester polymer having a reactive silicon group with an oxyalkylene polymer having a reactive silicon group. Yes.
In the example of Patent Document 1, when the oxyalkylene polymer in the curable composition blended with them has 1.7 reactive silicon groups on the average of one main chain terminal, one main chain It is shown that 50% elongation stress, 100% elongation stress, strength at break, and elongation at break are all improved compared to the case where 0.8 reactive silicon groups are averaged at the terminal. .

特許文献2には、ポリ(アクリル酸−n−ブチル)の末端に反応性ケイ素基を導入する方法で製造した、分子量分布1.12のアクリル重合体(合成例1)又は反応性ケイ素基を有するモノマーを重合する方法で製造した分子量分布2.47のアクリル重合体(比較合成例1)を、1つの主鎖末端に平均して0.5個超1.0個以下の反応性ケイ素基を有するオキシアルキレン重合体(参考合成例1)に、ブレンドした硬化性組成物が記載されている。
特許文献2の実施例には、比較合成例1のアクリル重合体に比べて、合成例1のアクリル重合体の方が、ブレンドによる50%伸張時応力(M50)の低下は小さいものの、破断時強度と破断時伸びの低下が大きいことが示されている。
Patent Document 2 discloses an acrylic polymer having a molecular weight distribution of 1.12 (Synthesis Example 1) or a reactive silicon group produced by a method in which a reactive silicon group is introduced at the end of poly (acrylic acid-n-butyl). An acrylic polymer having a molecular weight distribution of 2.47 (Comparative Synthesis Example 1) produced by a method of polymerizing monomers having an average of more than 0.5 and less than 1.0 reactive silicon group at one main chain terminal The blended curable composition is described in the oxyalkylene polymer having the above (Reference Synthesis Example 1).
In the examples of Patent Document 2, the acrylic polymer of Synthesis Example 1 has a smaller decrease in 50% elongation stress (M50) due to blending than the acrylic polymer of Comparative Synthesis Example 1, but at the time of breakage. It is shown that the strength and elongation at break are greatly reduced.

国際公開第2016/002907号International Publication No. 2016/002907 特許第4101366号公報Japanese Patent No. 4101366

近年、建築物の耐用年数の向上に伴い、シーリング材にも長期の実使用に耐え得ることが求められ、耐疲労性に優れることが望まれる。
しかし、従来の硬化性組成物は、引張強度、伸び物性及び耐疲労性のいずれにも優れる硬化物を得るという要求に対して必ずしも充分ではない。
本発明は、硬化物の引張強度及び伸び物性に優れるとともに、耐疲労性にも優れる硬化性組成物の提供を目的とする。
In recent years, with the improvement of the service life of buildings, it has been demanded that the sealing material be able to withstand long-term actual use, and it is desired to have excellent fatigue resistance.
However, the conventional curable composition is not always sufficient for the requirement of obtaining a cured product excellent in all of tensile strength, elongation property and fatigue resistance.
An object of this invention is to provide the curable composition which is excellent in the tensile strength and elongation physical property of hardened | cured material, and is excellent also in fatigue resistance.

本発明は、下記の態様を有する。
[1] 1つの主鎖末端に平均して1.0個より多くの下式1で表される反応性ケイ素基を有するオキシアルキレン重合体と、主鎖末端に下式1で表される反応性ケイ素基を有し、分子量分布が1.8以下である(メタ)アクリル酸エステル重合体を含む硬化性組成物。
−SiX3−a 式1
[式中、Rは炭素数1〜20の1価の有機基であって、加水分解性基以外の有機基を示し、Xは水酸基又は加水分解性基を示す。aは1〜3の整数である。aが1の場合、Rは互いに同一でも異なってもよい。aが2以上の場合、Xは互いに同一でも異なってもよい。]
[2] 上記オキシアルキレン重合体は、少なくとも1つの主鎖末端が下式2で表される原子団である、[1]の硬化性組成物。
The present invention has the following aspects.
[1] An average of more than 1.0 reactive silicon group represented by the following formula 1 at one main chain end and a reaction represented by the following formula 1 at the main chain end: A curable composition containing a (meth) acrylic acid ester polymer having a functional silicon group and a molecular weight distribution of 1.8 or less.
-SiX a R 3-a Formula 1
[In formula, R is a C1-C20 monovalent organic group, Comprising: Organic groups other than a hydrolysable group show, X shows a hydroxyl group or a hydrolysable group. a is an integer of 1 to 3. When a is 1, R may be mutually the same or different. When a is 2 or more, Xs may be the same or different. ]
[2] The curable composition according to [1], wherein the oxyalkylene polymer is an atomic group having at least one main chain terminal represented by the following formula 2.

Figure 0006579206
Figure 0006579206

(式中、R,Rはそれぞれ独立に2価の炭素数1〜6の結合基を示し、結合基中の炭素原子に結合している原子は、炭素原子、水素原子、酸素原子、窒素原子、又は硫黄原子である。R,Rはそれぞれ独立に水素原子、又は炭素数1〜10の炭化水素基を示す。nは1から10の整数を示す。Rはそれぞれ独立に、炭素数1〜20の1価の有機基であって、加水分解性基以外の有機基を示し、Yはそれぞれ独立に水酸基又は加水分解性基を示す。bは1〜3の整数である。Rが複数存在する場合、Rは互いに同一でも異なってもよい。Yが複数存在する場合、Yは互いに同一でも異なってもよい。)
[3] 上記オキシアルキレン重合体が、1分子中に主鎖末端を2個有し、各主鎖末端に上記式1で表される反応性ケイ素基、活性水素含有基又は不飽和基のいずれかである末端基を2個有する、[1]又は[2]の硬化性組成物。
[4] 上記式1で表される反応性ケイ素基、活性水素含有基又は不飽和基のいずれかである末端基を1つの主鎖末端に1個有し、かつ1つの主鎖末端に平均して反応性ケイ素基を0.5個超1.0個以下有するオキシアルキレン重合体をさらに含む、[1]〜[3]のいずれかの硬化性組成物。
[5] 1つの主鎖末端における末端基が不活性な1価の有機基であり、1つの主鎖末端に平均して上記式1で表される反応性ケイ素基を0個超0.5個以下有するオキシアルキレン重合体をさらに含む、[1]〜[4]のいずれかの硬化性組成物。
[6] シーリング材用途である、[1]〜[5]のいずれかの硬化性組成物。
[7] [1]〜[6]のいずれかの硬化性組成物の硬化物。
(Wherein R 1 and R 3 each independently represents a divalent linking group having 1 to 6 carbon atoms, and the atoms bonded to the carbon atoms in the linking group are carbon atoms, hydrogen atoms, oxygen atoms, A nitrogen atom or a sulfur atom, R 2 and R 4 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, n represents an integer of 1 to 10, and R 5 represents each independently. , A monovalent organic group having 1 to 20 carbon atoms, which represents an organic group other than a hydrolyzable group, Y represents a hydroxyl group or a hydrolyzable group, and b represents an integer of 1 to 3. When a plurality of R 5 are present, R 5 may be the same or different from each other, and when a plurality of Y are present, Y may be the same or different from each other.
[3] The oxyalkylene polymer has two main chain ends in one molecule, and each of the main chain ends is a reactive silicon group represented by the above formula 1, an active hydrogen-containing group or an unsaturated group. The curable composition according to [1] or [2], which has two terminal groups.
[4] It has one terminal group at one main chain terminal, which is either a reactive silicon group represented by the above formula 1, an active hydrogen-containing group or an unsaturated group, and an average at one main chain terminal The curable composition according to any one of [1] to [3], further comprising an oxyalkylene polymer having more than 0.5 reactive silicon groups and not more than 1.0 reactive silicon groups.
[5] The terminal group at one main chain terminal is an inactive monovalent organic group, and the average number of reactive silicon groups represented by the above formula 1 is more than 0 at one main chain terminal. The curable composition according to any one of [1] to [4], further comprising an oxyalkylene polymer having at most 1.
[6] The curable composition according to any one of [1] to [5], which is used as a sealing material.
[7] A cured product of the curable composition according to any one of [1] to [6].

本発明の硬化性組成物は、硬化物の引張強度、伸び物性及び耐疲労性に優れる。
本発明の硬化性組成物によれば、引張強度、伸び物性及び耐疲労性に優れるシーリング材が得られる。
本発明の硬化物は、引張強度、伸び物性及び耐疲労性に優れる。
The curable composition of the present invention is excellent in the tensile strength, elongation property and fatigue resistance of the cured product.
According to the curable composition of the present invention, a sealing material excellent in tensile strength, elongation property and fatigue resistance can be obtained.
The cured product of the present invention is excellent in tensile strength, elongation property and fatigue resistance.

本明細書における用語の定義は以下である。
「〜」で表される数値範囲は、〜の前後の数値を下限値及び上限値とする数値範囲を意味する。
重合体を構成する「単位」とは単量体の重合により直接形成された原子団を意味する。
「オキシアルキレン重合体」とは、アルキレンオキシド単量体に基づく単位から形成される重合鎖を有する重合体を意味する。
「主鎖末端」とは、主鎖を構成する末端の原子に結合している原子団を意味する。
「(メタ)アクリル酸エステル重合体」とは、(メタ)アクリル酸アルキルエステルに基づく単位から形成される重合鎖を有する重合体を意味する。
「(メタ)アクリル酸」は、アクリル酸及びメタクリル酸の一方又は両方を意味する。
The definitions of terms in this specification are as follows.
The numerical range represented by “to” means a numerical range in which the numerical values before and after are the lower limit value and the upper limit value.
The “unit” constituting the polymer means an atomic group directly formed by polymerization of the monomer.
“Oxyalkylene polymer” means a polymer having a polymer chain formed from units based on an alkylene oxide monomer.
“Main chain end” means an atomic group bonded to a terminal atom constituting the main chain.
The “(meth) acrylic acid ester polymer” means a polymer having a polymer chain formed from units based on a (meth) acrylic acid alkyl ester.
“(Meth) acrylic acid” means one or both of acrylic acid and methacrylic acid.

末端基としての「不飽和基」は、炭素−炭素不飽和結合を含む1価の基である。
「活性水素含有基」は、水酸基、カルボキシ基、アミノ基、第二級アミノ基、ヒドラジド基及びスルファニル基からなる群より選ばれる少なくとも1種の基である。
「活性水素」とは、上記活性水素含有基に基づく水素原子である。
「シリル化率」は、重合体の主鎖末端に導入された、反応性ケイ素基、活性水素含有基又は不飽和基のいずれかである末端基の数の合計に対する上記反応性ケイ素基の数の割合である。シリル化率の値はNMR分析によって測定できる。また、後述のシリル化剤により、重合体の主鎖末端に上記反応性ケイ素基を導入する際の、主鎖末端における末端基の数に対する添加した上記シリル化剤のシリル基の数の割合(モル%)でもよい。
「シリル化剤」とは、活性水素含有基又は不飽和基と反応する官能基と反応性ケイ素基とを有する化合物を意味する。
数平均分子量(以下、「Mn」と記す)及び重量平均分子量(以下、「Mw」と記す)は、ゲル浸透クロマトグラフィー(GPC)測定によって得られるポリスチレン換算分子量である。分子量分布は、MwとMnより算出した値であり、Mnに対するMwの比率である。
An “unsaturated group” as a terminal group is a monovalent group containing a carbon-carbon unsaturated bond.
The “active hydrogen-containing group” is at least one group selected from the group consisting of a hydroxyl group, a carboxy group, an amino group, a secondary amino group, a hydrazide group, and a sulfanyl group.
“Active hydrogen” is a hydrogen atom based on the active hydrogen-containing group.
“Silylation rate” is the number of reactive silicon groups relative to the total number of reactive silicon groups, active hydrogen-containing groups, or unsaturated groups introduced into the main chain terminals of the polymer. Is the ratio. The value of the silylation rate can be measured by NMR analysis. Further, the ratio of the number of silyl groups in the silylating agent added to the number of terminal groups at the main chain ends when the reactive silicon group is introduced into the main chain ends of the polymer by the silylating agent described later ( Mol%).
The “silylating agent” means a compound having a functional group that reacts with an active hydrogen-containing group or an unsaturated group and a reactive silicon group.
The number average molecular weight (hereinafter referred to as “Mn”) and the weight average molecular weight (hereinafter referred to as “Mw”) are polystyrene equivalent molecular weights obtained by gel permeation chromatography (GPC) measurement. The molecular weight distribution is a value calculated from Mw and Mn, and is a ratio of Mw to Mn.

本発明の硬化性組成物は、1つの主鎖末端に平均して1.0個より多くの下記反応性ケイ素基を有するオキシアルキレン重合体(以下、「重合体A」という。)と、主鎖末端に下記反応性ケイ素基を有し、分子量分布が1.8以下である(メタ)アクリル酸エステル重合体(以下、「重合体B」という。)を含む。
さらに、主鎖末端における末端基が、下記反応性ケイ素基、活性水素含有基又は不飽和基のいずれかであり、1つの主鎖末端に平均して下記反応性ケイ素基を0.5個超1.0個以下有するオキシアルキレン重合体(以下、「重合体C」という。)を含んでよい。
さらに、1つの主鎖末端における末端基が不活性な1価の有機基であり、1つの主鎖末端に平均して下記反応性ケイ素基を0個超0.5個以下有するオキシアルキレン重合体(以下、「重合体D」という。)を含んでよい。
硬化性組成物中に共存する重合体A、重合体B、重合体C及び重合体Dのそれぞれの反応性ケイ素基は互いに同じでもよく、異なってもよい。
The curable composition of the present invention comprises an oxyalkylene polymer (hereinafter referred to as “polymer A”) having an average of more than 1.0 reactive silicon groups at one main chain terminal and an average. A (meth) acrylic acid ester polymer (hereinafter referred to as “polymer B”) having the following reactive silicon group at the chain end and having a molecular weight distribution of 1.8 or less is included.
Furthermore, the terminal group at the end of the main chain is any one of the following reactive silicon group, active hydrogen-containing group or unsaturated group, and the average of more than 0.5 reactive silicon groups described below at one main chain terminal An oxyalkylene polymer having 1.0 or less (hereinafter referred to as “polymer C”) may be included.
Furthermore, an oxyalkylene polymer having a terminal group at one end of the main chain which is an inactive monovalent organic group, and having an average of more than 0 reactive silicon group below at most 0.5 at the end of one main chain (Hereinafter referred to as “polymer D”).
The reactive silicon groups of the polymer A, the polymer B, the polymer C, and the polymer D that coexist in the curable composition may be the same as or different from each other.

<反応性ケイ素基>
反応性ケイ素基は、下式1で表わされる。反応性ケイ素基は、ケイ素原子に結合した水酸基又は加水分解性基を有し、シロキサン結合を形成して架橋し得る。シロキサン結合を形成する反応は硬化触媒によって促進される。
−SiX3−a 式1
<Reactive silicon group>
The reactive silicon group is represented by the following formula 1. The reactive silicon group has a hydroxyl group or hydrolyzable group bonded to a silicon atom and can be crosslinked by forming a siloxane bond. The reaction to form siloxane bonds is facilitated by a curing catalyst.
-SiX a R 3-a Formula 1

式1において、Rは炭素数1〜20の1価の有機基を示す。Rは加水分解性基を含まない。
Rは、炭素数1〜20の炭化水素基及びトリオルガノシロキシ基からなる群から選ばれる少なくとも1種が好ましい。
In Formula 1, R shows a C1-C20 monovalent organic group. R does not contain a hydrolyzable group.
R is preferably at least one selected from the group consisting of a hydrocarbon group having 1 to 20 carbon atoms and a triorganosiloxy group.

Rは、アルキル基、シクロアルキル基、アリール基、α−クロロアルキル基及びトリオルガノシロキシ基からなる群から選ばれる少なくとも1種であることが好ましい。炭素数1〜4の直鎖又は分岐のアルキル基、シクロヘキシル基、フェニル基、ベンジル基、α−クロロメチル基、トリメチルシロキシ基、トリエチルシロキシ基及びトリフェニルシロキシ基からなる群から選ばれる少なくとも1種であることがより好ましい。反応性ケイ素基を有する重合体の硬化性と安定性のバランスが良い点からメチル基又はエチル基が好ましい。硬化物の硬化速度が速い点からα−クロロメチル基が好ましい。容易に入手できる点からメチル基が特に好ましい。   R is preferably at least one selected from the group consisting of an alkyl group, a cycloalkyl group, an aryl group, an α-chloroalkyl group, and a triorganosiloxy group. At least one selected from the group consisting of a linear or branched alkyl group having 1 to 4 carbon atoms, a cyclohexyl group, a phenyl group, a benzyl group, an α-chloromethyl group, a trimethylsiloxy group, a triethylsiloxy group, and a triphenylsiloxy group. It is more preferable that From the viewpoint of good balance between curability and stability of the polymer having a reactive silicon group, a methyl group or an ethyl group is preferable. The α-chloromethyl group is preferred because the cured product has a high curing rate. A methyl group is particularly preferable because it is easily available.

式1において、Xは水酸基又は加水分解性基を示す。
加水分解性基としては、水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、スルファニル基、アルケニルオキシ基が例示できる。
加水分解性が穏やかで取扱いやすい点からアルコキシ基が好ましい。アルコキシ基は、メトキシ基、エトキシ基、イソプロポキシ基が好ましく、メトキシ基又はエトキシ基がより好ましい。アルコキシ基がメトキシ基又はエトキシ基であると、シロキサン結合を速やかに形成し硬化物中に架橋構造を形成しやすく、硬化物の物性値が良好となりやすい。
In Formula 1, X represents a hydroxyl group or a hydrolyzable group.
Examples of hydrolyzable groups include hydrogen atoms, halogen atoms, alkoxy groups, acyloxy groups, ketoximate groups, amino groups, amide groups, acid amide groups, aminooxy groups, sulfanyl groups, and alkenyloxy groups.
Alkoxy groups are preferred because they are mildly hydrolyzable and easy to handle. The alkoxy group is preferably a methoxy group, an ethoxy group, or an isopropoxy group, and more preferably a methoxy group or an ethoxy group. When the alkoxy group is a methoxy group or an ethoxy group, a siloxane bond is quickly formed to easily form a crosslinked structure in the cured product, and the physical properties of the cured product are likely to be good.

式1において、aは1〜3の整数を示す。aが1の場合、Rは互いに同一でも異なってもよい。aが2以上の場合、Xは互いに同一でも異なってもよい。
aは1又は2が好ましく、aは2がより好ましい。
In Formula 1, a represents an integer of 1 to 3. When a is 1, R may be mutually the same or different. When a is 2 or more, Xs may be the same or different.
a is preferably 1 or 2, and a is more preferably 2.

式1で表される反応性ケイ素基としては、トリメトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、トリス(2−プロペニルオキシ)シリル基、トリアセトキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジメトキシエチルシリル基、ジイソプロポキシメチルシリル基、(α−クロロメチル)ジメトキシシリル基、(α−クロロメチル)ジエトキシシリル基が例示できる。活性が高く良好な硬化性が得られる点から、トリメトキシシリル基、トリエトキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基が好ましく、ジメトキシメチルシリル基及びトリメトキシシリル基がより好ましい。   Examples of the reactive silicon group represented by Formula 1 include trimethoxysilyl group, triethoxysilyl group, triisopropoxysilyl group, tris (2-propenyloxy) silyl group, triacetoxysilyl group, dimethoxymethylsilyl group, dimethoxy Examples thereof include ethoxymethylsilyl group, dimethoxyethylsilyl group, diisopropoxymethylsilyl group, (α-chloromethyl) dimethoxysilyl group, and (α-chloromethyl) diethoxysilyl group. From the viewpoint of high activity and good curability, a trimethoxysilyl group, a triethoxysilyl group, a dimethoxymethylsilyl group, and a diethoxymethylsilyl group are preferable, and a dimethoxymethylsilyl group and a trimethoxysilyl group are more preferable.

<重合体A>
本発明の硬化性組成物に含まれる重合体Aは1種でもよく、2種類以上でもよい。
重合体Aの主鎖は、1種以上のアルキレンオキシド単量体の重合により形成されたオキシアルキレン重合体からなる重合鎖である。2種以上のアルキレンオキシド単量体の重合により形成された共重合鎖である場合、それらのアルキレンオキシド単量体は、ブロック重合体を形成していてもよくランダム重合体を形成していてもよい。
オキシアルキレン重合体からなる重合鎖として、エチレンオキシド単量体からなる重合鎖、プロピレンオキシド単量体からなる重合鎖、ブチレンオキシド単量体からなる重合鎖、テトラメチレンオキシド単量体からなる重合鎖、エチレンオキシド単量体とプロピレンオキシド単量体の共重合鎖、プロピレンオキシド単量体とブチレンオキシド単量体の共重合鎖が例示できる。特にプロピレンオキシド単量体からなる重合鎖が好ましい。
<Polymer A>
The polymer A contained in the curable composition of the present invention may be one type or two or more types.
The main chain of the polymer A is a polymer chain composed of an oxyalkylene polymer formed by polymerization of one or more alkylene oxide monomers. In the case of a copolymer chain formed by polymerization of two or more kinds of alkylene oxide monomers, these alkylene oxide monomers may form a block polymer or a random polymer. Good.
As a polymer chain composed of an oxyalkylene polymer, a polymer chain composed of an ethylene oxide monomer, a polymer chain composed of a propylene oxide monomer, a polymer chain composed of a butylene oxide monomer, a polymer chain composed of a tetramethylene oxide monomer, Examples thereof include a copolymer chain of an ethylene oxide monomer and a propylene oxide monomer, and a copolymer chain of a propylene oxide monomer and a butylene oxide monomer. A polymer chain composed of a propylene oxide monomer is particularly preferable.

重合体Aは、少なくとも1つの主鎖末端が下式2で表される原子団であることが好ましい。   The polymer A is preferably an atomic group having at least one main chain terminal represented by the following formula 2.

Figure 0006579206
Figure 0006579206

式2において、R,Rはそれぞれ独立に2価の炭素数1〜6の結合基を示し、結合基中の炭素原子に結合している原子は、炭素原子、水素原子、酸素原子、窒素原子、又は硫黄原子である。
、Rとしては−CH−、−C−、−C−、−C−、−C10−、−C12−、−C(CH−、−CH−O−CH−、−CH−O−CH−O−CH、−C=C−、−C≡C−、−CO−、−CO−O−、−CO−NH−、−CH=N−、−CH=N−N=CH−が例示できる。
は−CHOCH−、−CHO−、−CH−が好ましく、―CHOCH−がより好ましい。
は、−CH−、−C−が好ましく、−CH−がより好ましい。
In Formula 2, R 1 and R 3 each independently represent a divalent linking group having 1 to 6 carbon atoms, and the atoms bonded to the carbon atom in the linking group are a carbon atom, a hydrogen atom, an oxygen atom, A nitrogen atom or a sulfur atom.
R 1 and R 3 include —CH 2 —, —C 2 H 4 —, —C 3 H 6 —, —C 4 H 8 —, —C 5 H 10 —, —C 6 H 12 —, —C ( CH 3) 2 -, - CH 2 -O-CH 2 -, - CH 2 -O-CH 2 -O-CH 2, -C = C -, - C≡C -, - CO -, - CO-O -, -CO-NH-, -CH = N-, -CH = N-N = CH-.
R 1 is -CH 2 OCH 2 -, - CH 2 O -, - CH 2 - are preferred, -CH 2 OCH 2 - is more preferable.
R 3 is preferably —CH 2 — or —C 2 H 4 —, and more preferably —CH 2 —.

式2において、R,Rはそれぞれ独立に水素原子又は炭素数1〜10の炭化水素基を示す。上記炭化水素基としては、直鎖状又は分岐状の炭素数1〜10のアルキル基が好ましい。
直鎖状のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基が例示できる。
分岐状のアルキル基としては、イソプロピル基、s−ブチル基、t−ブチル基、2−メチルブチル基、2−エチルブチル基、2−プロピルブチル基、3−メチルブチル基、3−エチルブチル基、3−プロピルブチル基、2−メチルペンチル基、2−エチルペンチル基、2−プロピルペンチル基、3−メチルペンチル基、3−エチルペンチル基、3−プロピルペンチル基、4−メチルペンチル基、4−エチルペンチル基、4−プロピルペンチル基、2−メチルヘキシル基、2−エチルヘキシル基、2−プロピルヘキシル基、3−メチルヘキシル基、3−エチルヘキシル基、3−プロピルヘキシル基、4−メチルヘキシル基、4−エチルヘキシル基、4−プロピルヘキシル基、5−メチルヘキシル基、5−エチルヘキシル基、5−プロピルヘキシル基が例示できる。
、Rは、それぞれ、水素原子、メチル基、エチル基が好ましく、水素原子又はメチル基がより好ましい。
In Formula 2, R 2 and R 4 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. The hydrocarbon group is preferably a linear or branched alkyl group having 1 to 10 carbon atoms.
Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group.
Examples of branched alkyl groups include isopropyl, s-butyl, t-butyl, 2-methylbutyl, 2-ethylbutyl, 2-propylbutyl, 3-methylbutyl, 3-ethylbutyl, and 3-propyl. Butyl group, 2-methylpentyl group, 2-ethylpentyl group, 2-propylpentyl group, 3-methylpentyl group, 3-ethylpentyl group, 3-propylpentyl group, 4-methylpentyl group, 4-ethylpentyl group 4-propylpentyl group, 2-methylhexyl group, 2-ethylhexyl group, 2-propylhexyl group, 3-methylhexyl group, 3-ethylhexyl group, 3-propylhexyl group, 4-methylhexyl group, 4-ethylhexyl Group, 4-propylhexyl group, 5-methylhexyl group, 5-ethylhexyl group, 5-propylhexyl Group can be exemplified.
R 2 and R 4 are each preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group.

式2において、nは1〜10の整数を示す。nは1〜7が好ましく、1〜5がより好ましく、1がさらに好ましい。   In Formula 2, n shows the integer of 1-10. n is preferably 1 to 7, more preferably 1 to 5, and still more preferably 1.

式2において、Rはそれぞれ独立に、炭素数1〜20の1価の有機基であって、加水分解性基以外の有機基を示し、Yはそれぞれ独立に水酸基又は加水分解性基を示す。bは1〜3の整数である。Rが複数存在する場合、Rは互いに同一でも異なってもよい。Yが複数存在する場合、Yは互いに同一でも異なってもよい。
式2のRは、式1のRと同様である。
式2のYは、式1のXと同様である。
式2のbは式1のaと同様である。
In Formula 2, each R 5 is independently a monovalent organic group having 1 to 20 carbon atoms, and represents an organic group other than a hydrolyzable group, and each Y independently represents a hydroxyl group or a hydrolyzable group. . b is an integer of 1 to 3. When a plurality of R 5 are present, R 5 may be the same as or different from each other. When two or more Y exists, Y may mutually be same or different.
R 5 in Formula 2 is the same as R in Formula 1.
Y in Formula 2 is the same as X in Formula 1.
B in Equation 2 is the same as a in Equation 1.

重合体Aは、1つの主鎖末端に平均して上記反応性ケイ素基を1.0個超4.0個以下有するものが好ましく、伸び物性の観点から、1.1〜3.0個であるものがより好ましく、1.2〜2.0個であるものがさらに好ましい。
重合体Aは、主鎖末端に、2個以上の反応性ケイ素基を含む構造を有することが好ましい。
1つの主鎖末端に含まれる2価以上の原子の合計数は、80個以下が好ましく、50個以下がより好ましく、40個以下がさらに好ましい。
1つの主鎖末端に含まれる2価以上の原子の合計数は、1個以上が好ましく、4個以上がより好ましく、10個以上がさらに好ましく、20個以上が特に好ましい。
2価以上の原子としては、炭素原子、窒素原子、酸素原子、硫黄原子及びケイ素原子から選ばれる1種以上が好ましく、炭素原子、窒素原子、酸素原子及びケイ素原子から選ばれる1種以上がより好ましく、炭素原子、酸素原子及びケイ素原子から選ばれる1種以上がより好ましい。
The polymer A preferably has an average of more than 1.0 reactive 4.0 or less of the above-mentioned reactive silicon groups at one main chain end, and from the viewpoint of elongation properties, 1.1 to 3.0 Some are more preferable, and 1.2 to 2.0 are more preferable.
The polymer A preferably has a structure containing two or more reactive silicon groups at the end of the main chain.
The total number of divalent or higher valent atoms contained in one main chain terminal is preferably 80 or less, more preferably 50 or less, and even more preferably 40 or less.
The total number of divalent or higher atoms contained in one main chain terminal is preferably 1 or more, more preferably 4 or more, further preferably 10 or more, and particularly preferably 20 or more.
The divalent or higher atom is preferably at least one selected from carbon atoms, nitrogen atoms, oxygen atoms, sulfur atoms and silicon atoms, more preferably at least one selected from carbon atoms, nitrogen atoms, oxygen atoms and silicon atoms. Preferably, 1 or more types chosen from a carbon atom, an oxygen atom, and a silicon atom are more preferable.

重合体AのMnは2,000〜100,000が好ましく、3,000〜50,000がより好ましく、4,000〜30,000がさらに好ましい。上記範囲の下限値以上であると、重合体Aの質量あたりの反応性ケイ素基の導入量が多くなりすぎず、伸び物性が優れやすい点で好ましい。上限値以下であると、粘度が充分に低くなり作業性に優れやすい点で好ましい。
重合体Aの分子量分布は1.8以下が好ましい。粘度低減の点から、分子量分布は小さいほうが好ましく、1.5以下がより好ましく、1.4以下がさらに好ましく、1.2以下が特に好ましい。
The Mn of the polymer A is preferably 2,000 to 100,000, more preferably 3,000 to 50,000, and further preferably 4,000 to 30,000. When it is at least the lower limit of the above range, the amount of reactive silicon groups introduced per mass of the polymer A is not excessively increased, and this is preferable in terms of easy elongation properties. It is preferable that the viscosity is not more than the upper limit because the viscosity is sufficiently low and the workability is easily improved.
The molecular weight distribution of the polymer A is preferably 1.8 or less. From the viewpoint of viscosity reduction, the molecular weight distribution is preferably small, more preferably 1.5 or less, further preferably 1.4 or less, and particularly preferably 1.2 or less.

重合体Aは、1分子中に主鎖末端を2〜8個有するものが好ましく、2〜6個有するものがより好ましく、2個又は3個有するものがさらに好ましく、2個有するものが特に好ましい。
重合体Aは、1分子中に主鎖末端を2個有し、各主鎖末端に上記式1で表される反応性ケイ素基、活性水素含有基又は不飽和基のいずれかである末端基を2個有することが好ましく、さらに1分子中に上記末端基を4個以上有し、シリル化率が50モル%超100モル%以下であることが好ましい。
上記末端基を、1つの主鎖末端に2個有しており、1分子中に上記末端基を4個有する場合、分子量とシリル化率が同じであれば、上記末端基を、1つの主鎖末端に1個有しており、1分子中に上記末端基を4個有する重合体と比較して伸び物性が大きくなる傾向がある。
The polymer A preferably has 2 to 8 main chain ends in one molecule, more preferably 2 to 6, more preferably 2 or 3, and particularly preferably 2 .
The polymer A has two main chain terminals in one molecule, and each main chain terminal is a reactive silicon group represented by the above formula 1, an active hydrogen-containing group or an unsaturated group. It is preferable to have two, and it is preferable that four or more of the above-mentioned end groups are contained in one molecule, and the silylation rate is more than 50 mol% and not more than 100 mol%.
When the terminal group has two end groups at one end of the main chain and has four end groups in one molecule, the end group is converted into one main group as long as the molecular weight and the silylation rate are the same. It has one at the chain end, and the elongation property tends to be larger than a polymer having four end groups in one molecule.

重合体Aは、前駆重合体の1つの主鎖末端に平均して上記反応性ケイ素基を1個より多く導入して得られる。
重合体Aの製造方法は、前駆重合体の1つの主鎖末端に平均して不飽和基を1.0個よりも多く導入した後、上記不飽和基とシリル化剤を反応させる方法が好ましい。
前駆重合体は、活性水素含有基を有する開始剤の活性水素に、開環重合触媒の存在下で、アルキレンオキシド単量体を開環付加重合させたオキシアルキレン重合体である。開始剤の活性水素の数と、前駆重合体の主鎖末端の数と、重合体Aの主鎖末端の数は同じである。
前駆重合体は、水酸基を有する開始剤にアルキレンオキシド単量体を開環付加重合させた、主鎖末端の末端基が水酸基である重合体が好ましい。
上記開始剤としては、水酸基を2〜8個有する開始剤が好ましく、水酸基を2〜6個有する開始剤がより好ましく、水酸基を2個有する開始剤又は水酸基を3個有する開始剤がさらに好ましい。開始剤は1種類を単独で使用してもよく2種類以上を併用してもよい。
水酸基を2個有する開始剤としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、ネオペンチルグリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、低分子量のポリオキシプロピレングリコールが例示できる。
水酸基を3個有する開始剤としては、グリセリン、トリメチロールプロパン、トリメチロールエタン、ソルビトール、ペンタエリスリトール、低分子量のポリオキシプロピレントリオールが例示できる。
重合体Aの主鎖は、硬化物の伸び物性に優れる点から直鎖状が好ましい。そのために、開始剤としては、活性水素含有基を2個有する化合物が好ましく、水酸基を2個有する化合物がより好ましい。
The polymer A is obtained by introducing more than one reactive silicon group on average on one main chain end of the precursor polymer.
The production method of the polymer A is preferably a method in which an unsaturated group and a silylating agent are reacted after introducing more than 1.0 unsaturated groups on the average to one main chain terminal of the precursor polymer. .
The precursor polymer is an oxyalkylene polymer obtained by subjecting an active hydrogen of an initiator having an active hydrogen-containing group to ring-opening addition polymerization of an alkylene oxide monomer in the presence of a ring-opening polymerization catalyst. The number of active hydrogens in the initiator, the number of main chain ends of the precursor polymer, and the number of main chain ends of the polymer A are the same.
The precursor polymer is preferably a polymer in which an alkylene oxide monomer is subjected to ring-opening addition polymerization with an initiator having a hydroxyl group, and the terminal group at the end of the main chain is a hydroxyl group.
The initiator is preferably an initiator having 2 to 8 hydroxyl groups, more preferably an initiator having 2 to 6 hydroxyl groups, and still more preferably an initiator having 2 hydroxyl groups or an initiator having 3 hydroxyl groups. One type of initiator may be used alone, or two or more types may be used in combination.
As initiators having two hydroxyl groups, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, low molecular weight The polyoxypropylene glycol can be exemplified.
Examples of the initiator having three hydroxyl groups include glycerin, trimethylolpropane, trimethylolethane, sorbitol, pentaerythritol, and low molecular weight polyoxypropylenetriol.
The main chain of the polymer A is preferably a straight chain from the viewpoint of excellent elongation properties of the cured product. Therefore, as the initiator, a compound having two active hydrogen-containing groups is preferable, and a compound having two hydroxyl groups is more preferable.

上記前駆重合体を得る際の、開始剤にアルキレンオキシド単量体を開環付加重合させる触媒としては、従来公知の触媒を用いることができ、例えば、KOHのようなアルカリ触媒、有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体のような遷移金属化合物−ポルフィリン錯体触媒、複合金属シアン化物錯体触媒、ホスファゼン化合物からなる触媒が挙げられる。
複合金属シアン化物錯体触媒を用いて上記前駆重合体を得る場合、得られる重合体の分子量分布が狭くすることができ、粘度の低い硬化性組成物が得られやすい点から好ましい。複合金属シアン化物錯体は、従来公知の化合物を用いることができ、複合金属シアン化物錯体を用いた重合体の製造方法も公知の方法を採用することができる。例えば、国際公開第2003/062301号、国際公開報第2004/067633号、特開2004−269776号公報、特開2005−15786号公報、国際公開第2013/065802号、特開2015−010162号公報などに開示される化合物及び製造方法を用いることができる。
As a catalyst for ring-opening addition polymerization of an alkylene oxide monomer as an initiator in obtaining the precursor polymer, a conventionally known catalyst can be used, for example, an alkali catalyst such as KOH, an organoaluminum compound, and the like. Examples include transition metal compound-porphyrin complex catalysts such as complexes obtained by reacting with porphyrins, double metal cyanide complex catalysts, and catalysts comprising phosphazene compounds.
When obtaining the said precursor polymer using a composite metal cyanide complex catalyst, it is preferable from the point that the molecular weight distribution of the obtained polymer can be narrowed and a curable composition with a low viscosity is easy to be obtained. As the double metal cyanide complex, a conventionally known compound can be used, and a known method can be adopted as a method for producing a polymer using the double metal cyanide complex. For example, International Publication No. 2003/066301, International Publication No. 2004/067633, Japanese Patent Application Laid-Open No. 2004-267976, Japanese Patent Application Laid-Open No. 2005-15786, International Publication No. 2013/066582, Japanese Patent Application Laid-Open No. 2015-010162. The compounds and production methods disclosed in the above can be used.

前駆重合体の1つの主鎖末端に平均して不飽和基を1.0個よりも多く導入する方法としては、前駆重合体に、アルカリ金属塩を作用させた後、不飽和基を有するエポキシ化合物を反応させ、次いで不飽和基を有するハロゲン化炭化水素化合物を反応させる方法が好ましい。
不飽和基を有するエポキシ化合物としては、下式3で表される化合物が好ましい。
As a method of introducing more than 1.0 unsaturated groups on the average of one main chain end of the precursor polymer, an epoxy having an unsaturated group is allowed to act on the precursor polymer after an alkali metal salt is allowed to act. A method of reacting a compound and then reacting a halogenated hydrocarbon compound having an unsaturated group is preferred.
As the epoxy compound having an unsaturated group, a compound represented by the following formula 3 is preferable.

Figure 0006579206
Figure 0006579206

式3のR,Rは、式2のR,Rと同じである。
不飽和基を有するエポキシ化合物としては、アリルグリシジルエーテル、メタリルグリシジルエーテル、グリシジルアクリレート、グリシジルメタクリレート、ブタジエンモノオキシド、1,4−シクロペンタジエンモノエポキシドが例示できる。アリルグリシジルエーテルが好ましい。
R 1, R 2 of formula 3 is the same as R 1, R 2 of Formula 2.
Examples of the epoxy compound having an unsaturated group include allyl glycidyl ether, methallyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate, butadiene monoxide, and 1,4-cyclopentadiene monoepoxide. Allyl glycidyl ether is preferred.

前駆重合体の1つの主鎖末端に不飽和基を1個よりも多く導入する方法としては、公知の方法を特に制限なく用いることができ、例えば、国際公開第2013/180203号公報、国際公開第2014/192842号公報、特開2015−105293号、特開2015−105322号、特開2015−105323号、特開2015−105324号、国際公開第2015/080067号公報、国際公開第2015/105122号公報、国際公開第2015/111577号公報、国際公開第2016/002907号公報、特開2016−216633号、特開2017−39782号に記載される方法を用いることができる。   As a method for introducing more than one unsaturated group into one main chain terminal of the precursor polymer, a known method can be used without any particular limitation. For example, International Publication No. 2013/180203, International Publication No. 2014/192842, JP-A-2015-105293, JP-A-2015-105322, JP-A-2015-105323, JP-A-2015-105324, International Publication No. 2015/080067, International Publication No. 2015/105122 The methods described in Japanese Laid-Open Patent Publication No. 2015/11577, International Publication No. 2016/002907, Japanese Patent Application Laid-Open No. 2006-216633, and Japanese Patent Application Laid-Open No. 2017-39882 can be used.

上記反応により、前駆重合体の主鎖末端に上記不飽和基を有するエポキシ化合物に由来する不飽和基が導入され、次いで上記ハロゲン化炭化水素化合物に由来する不飽和基が導入された中間体が得られる。中間体は主鎖末端における末端基の一部が未反応の活性水素含有基であってもよい。
上記中間体の1分子中に含まれる活性水素含有基の数は、貯蔵安定性の点から0.3個以下が好ましく、0.1個以下がより好ましい。
By the above reaction, an intermediate in which an unsaturated group derived from an epoxy compound having an unsaturated group is introduced into the main chain terminal of the precursor polymer, and then an unsaturated group derived from the halogenated hydrocarbon compound is introduced. can get. The intermediate may be an active hydrogen-containing group in which some of the end groups at the ends of the main chain are unreacted.
The number of active hydrogen-containing groups contained in one molecule of the intermediate is preferably 0.3 or less, more preferably 0.1 or less from the viewpoint of storage stability.

上記中間体の不飽和基とシリル化剤とを反応させて、主鎖末端に反応性ケイ素基を導入して重合体Aを得る。
シリル化剤としては、不飽和基と反応して結合を形成し得る基(例えばスルファニル基)及び上記反応性ケイ素基の両方を有する化合物、ヒドロシラン化合物(例えばHSiX3−a、ただし、X、R、aは上記式1と同じである。)が例示できる。具体的には、例えば、トリメトキシシラン、トリエトキシシラン、トリイソプロポキシシラン、トリス(2−プロペニルオキシ)シラン、トリアセトキシシラン、ジメトキシメチルシラン、ジエトキシメチルシラン、ジメトキシエチルシラン、ジイソプロポキシメチルシラン、(α−クロロメチル)ジメトキシシラン、(α−クロロメチル)ジエトキシシランが例示できる。活性が高く良好な硬化性が得られる点から、トリメトキシシラン、トリエトキシシラン、ジメトキシメチルシラン、ジエトキシメチルシランが好ましく、ジメトキシメチルシラン又はトリメトキシシランがより好ましい。
By reacting the unsaturated group of the intermediate and the silylating agent, a reactive silicon group is introduced at the end of the main chain to obtain a polymer A.
Examples of the silylating agent include compounds having both a group capable of reacting with an unsaturated group to form a bond (for example, a sulfanyl group) and the reactive silicon group, a hydrosilane compound (for example, HSiX a R 3-a , where X , R and a are the same as those in the above formula 1.). Specifically, for example, trimethoxysilane, triethoxysilane, triisopropoxysilane, tris (2-propenyloxy) silane, triacetoxysilane, dimethoxymethylsilane, diethoxymethylsilane, dimethoxyethylsilane, diisopropoxymethyl Examples include silane, (α-chloromethyl) dimethoxysilane, and (α-chloromethyl) diethoxysilane. From the viewpoint of high activity and good curability, trimethoxysilane, triethoxysilane, dimethoxymethylsilane, and diethoxymethylsilane are preferable, and dimethoxymethylsilane or trimethoxysilane is more preferable.

上記反応により、主鎖末端における末端基は上記反応性ケイ素基、活性水素含有基又は不飽和基のいずれかであり、1つの主鎖末端に平均して上記反応性ケイ素基を1個より多く有する重合体Aが得られる。
重合体Aの「シリル化率」は、50モル%超100モル%以下が好ましく、60〜97モル%がより好ましく、65〜95モル%がさらに好ましい。
1つの主鎖末端に上記末端基を2個有する場合、シリル化率が50%超であれば、上記1つの主鎖末端に平均して反応性ケイ素基が1.0個より多く存在する。
シリル化率は、上記中間体の不飽和基に対して反応させる上記反応性ケイ素基含有化合物の量によって調整することができる。
硬化性組成物が、2種以上の重合体Aを含む場合、重合体A全体における平均のシリル化率が上記の範囲内であればよい。
By the above reaction, the terminal group at the end of the main chain is either the reactive silicon group, the active hydrogen-containing group or the unsaturated group, and on average one main chain terminal has more than one reactive silicon group. The polymer A which has is obtained.
The “silylation rate” of the polymer A is preferably more than 50 mol% and 100 mol% or less, more preferably 60 to 97 mol%, further preferably 65 to 95 mol%.
When two terminal groups are present at one main chain terminal, if the silylation rate exceeds 50%, the average number of reactive silicon groups is more than 1.0 at the one main chain terminal.
The silylation rate can be adjusted by the amount of the reactive silicon group-containing compound reacted with the unsaturated group of the intermediate.
When a curable composition contains 2 or more types of polymers A, the average silylation rate in the whole polymer A should just be in said range.

硬化性組成物に含まれる重合体Aの含有割合は、硬化性組成物に対して、1〜80質量%が好ましく、3〜60質量%がより好ましく、5〜40質量%がさらに好ましい。重合体Aの含有量が上記範囲の下限値以上であると機械的強度に優れやすく、上限値以下であると伸び物性に優れやすい。   1-80 mass% is preferable with respect to a curable composition, as for the content rate of the polymer A contained in a curable composition, 3-60 mass% is more preferable, and 5-40 mass% is further more preferable. When the content of the polymer A is not less than the lower limit of the above range, the mechanical strength tends to be excellent, and when it is equal to or less than the upper limit, the elongation physical properties are likely to be excellent.

<重合体B>
本発明の硬化性組成物に含まれる重合体Bは1種でもよく、2種類以上でもよい。
重合体Bの主鎖は(メタ)アクリル酸エステルを含む単量体を重合して形成される。重合体Bの主鎖は、(メタ)アクリル酸アルキルエステルに基づく単位のほかに、(メタ)アクリル酸アルキルエステルと共重合可能な不飽和基を有する単量体に基づく単位を有してもよい。
重合体Bを構成する単量体としては、例えば、特公平3−14068号公報、特開平6−211922号公報、特開平11−130931号公報に記載される、従来公知の単量体を用いることができる。
重合体Bを構成する全単量体に対して、(メタ)アクリル酸エステル単量体は50質量%以上が好ましく、70質量%以上がより好ましく、100質量%でもよい。
<Polymer B>
The polymer B contained in the curable composition of the present invention may be one type or two or more types.
The main chain of the polymer B is formed by polymerizing a monomer containing a (meth) acrylic acid ester. The main chain of the polymer B may have a unit based on a monomer having an unsaturated group copolymerizable with the (meth) acrylic acid alkyl ester, in addition to the unit based on the (meth) acrylic acid alkyl ester. Good.
As the monomer constituting the polymer B, for example, conventionally known monomers described in JP-B-3-14068, JP-A-6-221922, and JP-A-11-130931 are used. be able to.
50 mass% or more is preferable with respect to all the monomers which comprise the polymer B, 50 mass% or more is more preferable, and 100 mass% may be sufficient.

重合体Bの重合方法は、上記文献に記載される従来公知の方法を用いることができ、分子量分布が狭く、低粘度の重合体が得られることから、リビングラジカル重合が好ましい。
リビングラジカル重合法は、例えば、ジャーナル・オブ・アメリカン・ケミカル・ソサエティー(J.Am.Chem.Soc.)、1994年、116巻、7943頁に示されているようなコバルトポルフィリン錯体を用いるもの、特表2003−500378号公報に示されているようなニトロオキサイドラジカルを用いるもの、特開平11−130931号公報に示されているような有機ハロゲン化物やハロゲン化スルホニル化合物などを開始剤とし、遷移金属錯体を触媒とする原子移動ラジカル重合(Atom Transfer Radical Polymerization:ATRP法)が挙げられる。
As the polymerization method of the polymer B, a conventionally known method described in the above-mentioned document can be used, and a living radical polymerization is preferable because a polymer having a narrow molecular weight distribution and a low viscosity can be obtained.
The living radical polymerization method is, for example, a method using a cobalt porphyrin complex as shown in Journal of American Chemical Society (J. Am. Chem. Soc.), 1994, 116, 7943, Those using nitrooxide radicals as shown in JP-T-2003-500378, organic halides or sulfonyl halides as shown in JP-A-11-130931, etc. An atom transfer radical polymerization (ATRP method) using a metal complex as a catalyst can be given.

重合体BのMnは、10,000〜100,000が好ましく、15,000〜80,000がより好ましい。上記範囲の下限値以上であると、硬化物の伸び物性に優れやすく、上限値以下であると、作業性に優れやすい。
重合体Bの分子量分布は、1.8以下であり、1.7以下が好ましい。
重合体Bは、1分子中に反応性ケイ素基を1個以上有する。少なくとも1個の主鎖末端における末端基は反応性ケイ素基であることが好ましい。全主鎖末端における末端基が反応性ケイ素基であることがより好ましい。全主鎖末端における末端基が反応性ケイ素基であり、かつ1分子中に存在する反応性ケイ素基の全部が主鎖末端における末端基であることがさらに好ましい。すなわち、重合体Bは側鎖に導入された反応性ケイ素基を有しないことが好ましい。
The Mn of the polymer B is preferably 10,000 to 100,000, and more preferably 15,000 to 80,000. It is easy to be excellent in the elongation physical property of hardened | cured material as it is more than the lower limit of the said range, and it is easy to be excellent in workability | operativity as it is below an upper limit.
The molecular weight distribution of the polymer B is 1.8 or less, and preferably 1.7 or less.
The polymer B has one or more reactive silicon groups in one molecule. The terminal group at the end of at least one main chain is preferably a reactive silicon group. More preferably, the terminal groups at all main chain terminals are reactive silicon groups. More preferably, the terminal groups at the ends of all main chains are reactive silicon groups, and all of the reactive silicon groups present in one molecule are terminal groups at the ends of main chains. That is, the polymer B preferably does not have a reactive silicon group introduced into the side chain.

重合体Bの1分子あたりの反応性ケイ素基の数の平均は1.0個以上であることが好ましい。硬化後の強度の点から1.2個以上が好ましく、1.6個以上がより好ましい。硬化物の伸びが良好となる点から4.0個以下が好ましく、3.0個以下がより好ましい。
重合体Bの1分子あたりの反応性ケイ素基の数の平均は「重合体B中の反応性ケイ素基の濃度[mol/g]×重合体BのMn」で算出される。重合体B中の反応性ケイ素基の濃度[mol/g]は、NMRにより測定できる。
The average number of reactive silicon groups per molecule of the polymer B is preferably 1.0 or more. From the point of strength after curing, 1.2 or more is preferable, and 1.6 or more is more preferable. 4.0 or less are preferable and 3.0 or less are more preferable from the point from which the elongation of hardened | cured material becomes favorable.
The average number of reactive silicon groups per molecule of the polymer B is calculated by “concentration of reactive silicon groups in the polymer B [mol / g] × Mn of the polymer B”. The concentration [mol / g] of the reactive silicon group in the polymer B can be measured by NMR.

硬化性組成物に含まれる重合体Bの含有量は、重合体Aの100質量部に対して、5〜200質量部が好ましく、10〜180質量部がより好ましく、15〜150質量部がさらに好ましい。重合体Bの含有量が上記範囲の下限値以上であると機械強度や耐候性に優れやすく、上限値以下であると粘度が低くなりやすく、作業性に優れやすい。   The content of the polymer B contained in the curable composition is preferably 5 to 200 parts by weight, more preferably 10 to 180 parts by weight, and further 15 to 150 parts by weight with respect to 100 parts by weight of the polymer A. preferable. When the content of the polymer B is not less than the lower limit of the above range, the mechanical strength and weather resistance are easily excellent, and when it is not more than the upper limit, the viscosity tends to be low and the workability is easily excellent.

<重合体C>
硬化性組成物に含まれる重合体Cは1種でもよく、2種以上でもよい。
重合体Cの主鎖の例示は、重合体Aの主鎖の例示と同じである。
<Polymer C>
The polymer C contained in the curable composition may be one type or two or more types.
The illustration of the main chain of the polymer C is the same as the illustration of the main chain of the polymer A.

重合体Cは、伸び物性の観点から、1つの主鎖末端に平均して上記反応性ケイ素基を0.55〜0.97個有するものが好ましく、0.65〜0.95個有するものがより好ましい。
重合体CのMnは2,000〜100,000が好ましく、3,000〜50,000がより好ましく、4,000〜30,000がさらに好ましい。上記範囲の下限値以上であると、硬化物の伸び物性に優れやすく、上限値以下であると、粘度が充分に低くなりやすく作業性に優れやすい。
重合体Cの分子量分布は1.8以下が好ましい。粘度低減の点から、分子量分布は小さいほうが好ましく、1.5以下がより好ましく、1.4以下がさらに好ましく、1.2以下が特に好ましい。
From the viewpoint of elongation properties, the polymer C preferably has 0.5 to 0.97 reactive silicon groups on average at one main chain end, and preferably has 0.65 to 0.95. More preferred.
The Mn of the polymer C is preferably 2,000 to 100,000, more preferably 3,000 to 50,000, and further preferably 4,000 to 30,000. When it is at least the lower limit of the above range, the stretched physical properties of the cured product are easily excellent, and when it is at most the upper limit, the viscosity tends to be sufficiently low and the workability is easily excellent.
The molecular weight distribution of the polymer C is preferably 1.8 or less. From the viewpoint of viscosity reduction, the molecular weight distribution is preferably small, more preferably 1.5 or less, further preferably 1.4 or less, and particularly preferably 1.2 or less.

重合体Cは、上記式1で表される反応性ケイ素基、活性水素含有基又は不飽和基のいずれかである末端基を、1つの主鎖末端に1個有しており、かつ1分子中に上記末端基を2個以上有することが好ましく、上記末端基を2個有することがより好ましい。
重合体Cは、前駆重合体の1つの主鎖末端に平均して上記反応性ケイ素基を0.5個超1.0個以下導入して得られる。
重合体Cの製造方法は、前駆重合体の一つの主鎖末端に平均して不飽和基を0.5個超1.0個以下導入した後、不飽和基とシリル化剤を反応させる方法が好ましい。
重合体Cの前駆重合体は、重合体Aの前駆重合体と同様のものを用いることができ、好ましい態様も同様である。また、上記前駆重合体は、重合体Aの前駆重合体と同様の方法で製造することができる。
The polymer C has one terminal group at one end of the main chain, which is one of the reactive silicon group, the active hydrogen-containing group or the unsaturated group represented by the above formula 1, and one molecule. It preferably has 2 or more of the above end groups, and more preferably has 2 of the above end groups.
The polymer C is obtained by introducing, on average, more than 0.5 reactive silicon groups to not more than 1.0 at one main chain end of the precursor polymer.
The production method of the polymer C is a method in which an average of more than 0.5 unsaturated groups is introduced to one end of one main chain of the precursor polymer, and then the unsaturated groups are reacted with the silylating agent. Is preferred.
As the precursor polymer of the polymer C, the same polymer as the precursor polymer of the polymer A can be used, and the preferred embodiment is also the same. Moreover, the said precursor polymer can be manufactured by the method similar to the precursor polymer of the polymer A.

重合体Cの製造方法は、従来公知の方法を用いることができ、例えば、特公昭45−36319号、特開昭50−156599号、特開昭61−197631号、特開平3−72527号、特開平8−231707号、米国特許3632557、米国特許4960844等の各公報に提案されている方法が挙げられる。   As a method for producing the polymer C, conventionally known methods can be used. For example, JP-B No. 45-36319, JP-A No. 50-156599, JP-A No. 61-197631, JP-A No. 3-72527, Examples thereof include methods proposed in JP-A-8-231707, US Pat. No. 3,632,557, US Pat. No. 4,960,844, and the like.

重合体Cは2個以上の末端基を有し、末端基として上記反応性ケイ素基を有し、1つの主鎖末端に平均して反応性ケイ素基を0.5個超1.0個以下有するものが好ましい。
重合体Cは、1つの主鎖末端に平均して、反応性ケイ素基以外の末端基として、未反応の活性水素含有基又は不飽和基を1.0個有していてもよい。
重合体Cは、反応性ケイ素基、活性水素含有基又は不飽和基のいずれかである末端基を、1分子中に2個以上有するものが好ましい。
重合体Cは、反応性ケイ素基、活性水素含有基又は不飽和基のいずれかである末端基を1つの主鎖末端に1個有するものが好ましい。
重合体Cのシリル化率は50モル%超100モル%以下が好ましく、60〜97モル%がより好ましく、65〜95モル%がさらに好ましい。
硬化性組成物が、2種以上の重合体Cを含む場合、重合体C全体における平均のシリル化率が上記の範囲内であればよい。
The polymer C has two or more terminal groups, the above-mentioned reactive silicon groups as terminal groups, and an average of more than 0.5 reactive silicon groups at one main chain terminal. What has is preferable.
The polymer C may have 1.0 unreacted active hydrogen-containing group or unsaturated group as a terminal group other than the reactive silicon group on average at one main chain terminal.
The polymer C preferably has two or more terminal groups in one molecule which are any of reactive silicon groups, active hydrogen-containing groups or unsaturated groups.
The polymer C preferably has one terminal group at one end of the main chain, which is a reactive silicon group, an active hydrogen-containing group or an unsaturated group.
The silylation rate of the polymer C is preferably more than 50 mol% and 100 mol% or less, more preferably 60 to 97 mol%, and still more preferably 65 to 95 mol%.
When a curable composition contains 2 or more types of polymers C, the average silylation rate in the whole polymer C should just be in said range.

硬化性組成物が重合体Cを含む場合の重合体Cの含有量は、重合体Aの100質量部に対して、5〜300質量部が好ましく、10〜200質量部がより好ましく、15〜100質量部がさらに好ましい。上記範囲の下限値以上であると伸び物性に優れ、上限値以下であると強度物性に優れている。
また重合体B/重合体Cで表される質量比は、100/1〜1/100が好ましく、100/10〜10/100がより好ましく、100/20〜20/100がさらに好ましい。上記範囲内であると、低粘度となりやすく、作業性が良好となりやすく、良好な機械強度が得られやすい。
When the curable composition contains the polymer C, the content of the polymer C is preferably 5 to 300 parts by weight, more preferably 10 to 200 parts by weight, with respect to 100 parts by weight of the polymer A. 100 parts by mass is more preferable. When it is at least the lower limit of the above range, the stretched physical properties are excellent, and when it is at most the upper limit, the strength physical properties are excellent.
The mass ratio represented by polymer B / polymer C is preferably 100/1 to 1/100, more preferably 100/10 to 10/100, and even more preferably 100/20 to 20/100. Within the above range, the viscosity tends to be low, workability tends to be good, and good mechanical strength is likely to be obtained.

<重合体D>
本発明の硬化性組成物は、重合体Dを含んでもよい。重合体Dは1種でもよく、2種類以上でもよい。重合体Dは反応性可塑剤として働き、硬化性組成物の低粘度化及び塗料汚染性の向上に寄与する。
重合体Dの主鎖の例示は、重合体Aの主鎖の例示と同じである。
重合体Dは、1つの主鎖末端に平均して上記反応性ケイ素基を0.23〜0.5個有するものが好ましく、伸び物性の観点から、0.27〜0.43個であるものがより好ましい。
<Polymer D>
The curable composition of the present invention may contain a polymer D. The polymer D may be one type or two or more types. The polymer D acts as a reactive plasticizer and contributes to lowering the viscosity of the curable composition and improving the stain resistance of the paint.
Examples of the main chain of the polymer D are the same as those of the main chain of the polymer A.
Polymer D preferably has 0.23-0.5 reactive silicon groups on average at one main chain end, and is 0.27-0.43 from the viewpoint of elongation properties. Is more preferable.

重合体DのMnは2,000〜12,000が好ましく、2,200〜10,000がより好ましく、2,500〜9,000がさらに好ましい。上記範囲内であると、硬化物の伸び物性に優れやすく、硬化物の塗料汚染性に優れやすい。
重合体Dの分子量分布は1.8以下が好ましい。粘度低減の点から、分子量分布は小さいほうが好ましく、1.6以下がより好ましく、1.5以下がさらに好ましく、1.4以下が特に好ましい。
The Mn of the polymer D is preferably 2,000 to 12,000, more preferably 2,200 to 10,000, and further preferably 2,500 to 9,000. Within the above range, the cured product is easily excellent in stretch properties, and the cured product is easily excellent in paint stain resistance.
The molecular weight distribution of the polymer D is preferably 1.8 or less. From the viewpoint of viscosity reduction, the molecular weight distribution is preferably small, more preferably 1.6 or less, still more preferably 1.5 or less, and particularly preferably 1.4 or less.

重合体Dは、1つの主鎖末端における末端基が不活性な1価の有機基である前駆重合体に、1つの主鎖末端に平均して上記反応性ケイ素基を0個超0.5個以下導入して得られる。
不活性な1価の有機基としては、例えばR10−O−(R10は1価の炭化水素基)が挙げられる。R10としては、炭素数1〜20の分岐状又は直鎖状のアルキル基が好ましく、炭素数1〜10の分岐状又は直鎖状のアルキル基がより好ましく、炭素数1〜4の分岐状又は直鎖状のアルキル基がさらに好ましく、メチル基、エチル基、イソプロピル基、n−ブチル基又はt−ブチル基が特に好ましい。
The polymer D is a precursor polymer in which the terminal group at one main chain terminal is an inactive monovalent organic group, and the average number of the reactive silicon groups exceeds one in one main chain terminal. It is obtained by introducing less than one piece.
Examples of the inert monovalent organic group include R 10 —O— (R 10 is a monovalent hydrocarbon group). R 10 is preferably a branched or straight chain alkyl group having 1 to 20 carbon atoms, more preferably a branched or straight chain alkyl group having 1 to 10 carbon atoms, and a branched chain having 1 to 4 carbon atoms. Alternatively, a linear alkyl group is more preferable, and a methyl group, an ethyl group, an isopropyl group, an n-butyl group, or a t-butyl group is particularly preferable.

重合体Dの前駆重合体は、活性水素含有基を1個有する開始剤を用いる他は、重合体Aの前駆重合体と同様の方法で得られる。開始剤は1種類でもよく2種類以上を併用してもよい。
開始剤の活性水素含有基は水酸基が好ましい。前駆重合体は、主鎖末端における末端基として水酸基を1個有する重合体が好ましい。
水酸基を1個有する開始剤としては、直鎖状又は分岐状の炭化水素基を有する1価のアルコールが好ましい。具体的には、メタノール、エタノール、2−プロパノール、n−ブタノール、イソブタノール、2-ブタノール、t−ブタノール、2−エチルヘキサノール、デシルアルコール、ラウリルアルコール、トリデカノール、セチルアルコール、ステアリルアルコール、オレイルアルコール、低分子量のポリオキシアルキレンモノオールが例示できる。
重合体Dの製造方法は、従来公知の方法を用いることができ、重合体Cと同様の方法を用いることができる。
The precursor polymer of the polymer D is obtained in the same manner as the precursor polymer of the polymer A except that an initiator having one active hydrogen-containing group is used. One type of initiator may be used, or two or more types may be used in combination.
The active hydrogen-containing group of the initiator is preferably a hydroxyl group. The precursor polymer is preferably a polymer having one hydroxyl group as a terminal group at the end of the main chain.
The initiator having one hydroxyl group is preferably a monovalent alcohol having a linear or branched hydrocarbon group. Specifically, methanol, ethanol, 2-propanol, n-butanol, isobutanol, 2-butanol, t-butanol, 2-ethylhexanol, decyl alcohol, lauryl alcohol, tridecanol, cetyl alcohol, stearyl alcohol, oleyl alcohol, A low molecular weight polyoxyalkylene monool can be exemplified.
As a method for producing the polymer D, a conventionally known method can be used, and a method similar to that for the polymer C can be used.

重合体Dは、1分子中に主鎖末端を2個有し、一方の主鎖末端の末端基が上記反応性ケイ素基、活性水素含有基又は不飽和基のいずれかであり、他方の主鎖末端の末端基が開始剤から活性水素を1個除いた残基(不活性な1価の有機基)であるものが好ましく、1分子中の2個の主鎖末端がそれぞれ末端基を1個のみ有し、一方の上記末端基は、上記反応性ケイ素基、活性水素含有基又は不飽和基のいずれかであり、他方の上記末端基は、上記開始剤から活性水素を1個除いた残基であるものがより好ましい。
重合体Dのシリル化率は45〜100モル%が好ましく、50〜97モル%がより好ましく、55〜95%がさらに好ましい。
硬化性組成物が、2種以上の重合体Dを含む場合、重合体D全体における平均のシリル化率が上記の範囲内であればよい。
The polymer D has two main chain ends in one molecule, and the terminal group at one main chain end is one of the reactive silicon group, the active hydrogen-containing group or the unsaturated group, and the other main chain end. The chain end group is preferably a residue obtained by removing one active hydrogen from the initiator (inactive monovalent organic group), and two main chain ends in one molecule each have 1 end group. One end group is either the reactive silicon group, the active hydrogen-containing group or the unsaturated group, and the other end group is obtained by removing one active hydrogen from the initiator. What is a residue is more preferable.
The silylation rate of the polymer D is preferably 45 to 100 mol%, more preferably 50 to 97 mol%, and still more preferably 55 to 95%.
When a curable composition contains 2 or more types of polymers D, the average silylation rate in the whole polymer D should just be in said range.

硬化性組成物が重合体Dを含む場合の重合体Dの含有量は、重合体A、重合体B、重合体C及び後述の重合体Eの合計100質量部に対して、1〜600質量部が好ましく、5〜500質量部がより好ましく、10〜300質量部がさらに好ましい。重合体Dの含有量が上記範囲の下限値以上であると低粘度になりやすく、作業性が優れやすく、上限値以下であると耐疲労物性に優れやすい。   When the curable composition contains the polymer D, the content of the polymer D is 1 to 600 masses with respect to 100 mass parts in total of the polymer A, the polymer B, the polymer C, and the polymer E described later. Part is preferred, 5 to 500 parts by weight is more preferred, and 10 to 300 parts by weight is even more preferred. If the content of the polymer D is not less than the lower limit of the above range, the viscosity tends to be low, the workability tends to be excellent, and if it is less than the upper limit, the fatigue resistance is likely to be excellent.

<重合体E>
本発明の硬化性組成物は、側鎖に導入された反応性ケイ素基を有し、分子量分布が1.8超である(メタ)アクリル酸エステル重合体(以下、「重合体E」という。)を含んでもよい。
重合体Eは、主鎖末端と側鎖のいずれか一方または両方に反応性ケイ素基が導入されていてもよい。
重合体Eとしては、反応性ケイ素基及び不飽和基を含む単量体と、(メタ)アクリル酸エステルを含む単量体を重合させた(メタ)アクリル酸エステル重合体が例示できる。
<Polymer E>
The curable composition of the present invention is a (meth) acrylic acid ester polymer (hereinafter referred to as “polymer E”) having a reactive silicon group introduced into a side chain and a molecular weight distribution exceeding 1.8. ) May be included.
In the polymer E, a reactive silicon group may be introduced into one or both of the main chain terminal and the side chain.
Examples of the polymer E include a (meth) acrylic acid ester polymer obtained by polymerizing a monomer containing a reactive silicon group and an unsaturated group and a monomer containing a (meth) acrylic acid ester.

重合体Eは、重合体Bで用いられる単量体を制限なく用いることができる。
上記単量体と共重合させる反応性ケイ素基及び不飽和基を含む単量体としては、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリクロロシラン、トリス(2−メトキシエトキシ)ビニルシラン、(メタ)アクリル酸−3−(メチルジメトキシリル)プロピル、(メタ)アクリル酸−3−(トリメトキシシリル)プロピル、(メタ)アクリル酸−3−(トリエトキシシリル)プロピルが例示できる。これらは1種でもよく、2種以上を併用してもよい。
The polymer E can use the monomer used by the polymer B without a restriction | limiting.
As monomers containing reactive silicon groups and unsaturated groups to be copolymerized with the above monomers, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, vinylmethyldichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, Vinyltrichlorosilane, tris (2-methoxyethoxy) vinylsilane, (meth) acrylic acid-3- (methyldimethoxylyl) propyl, (meth) acrylic acid-3- (trimethoxysilyl) propyl, (meth) acrylic acid-3 An example is-(triethoxysilyl) propyl. These may be used alone or in combination of two or more.

重合体Eは、特開2006−257405号公報、特開2006−37076号公報、特開2008−45059号公報などに記載の従来公知の重合方法で重合できる。例えば、ラジカル重合で重合することができる。ラジカル重合の重合方法としては、例えば、溶液重合、乳化重合、懸濁重合、バルク重合が挙げられる。重合に必要な開始剤などの副資材についても従来公知のものを用いることができ、反応温度や反応圧力などの反応条件も適宜選択できる。   The polymer E can be polymerized by a conventionally known polymerization method described in JP-A-2006-257405, JP-A-2006-37076, JP-A-2008-45059, and the like. For example, it can polymerize by radical polymerization. Examples of the polymerization method of radical polymerization include solution polymerization, emulsion polymerization, suspension polymerization, and bulk polymerization. A conventionally well-known thing can be used also about auxiliary materials, such as an initiator required for superposition | polymerization, and reaction conditions, such as reaction temperature and reaction pressure, can also be selected suitably.

重合体EのMnは500〜100,000が好ましく、1,000〜80,000がより好ましく、2,000〜50,000がさらに好ましい。上記範囲の下限値以上であると、硬化物の伸び物性に優れやすく、上限値以下であると、粘度が充分に低くなり作業性に優れやすい。
分子量分布は1.8超5.0以下が好ましく、1.9〜3.5がより好ましく、2.0〜3.5がさらに好ましい。
重合体Eの1分子あたりの反応性ケイ素基の数の平均は0.05〜4個が好ましく、0.1〜3個がより好ましく、0.1〜2個がさらに好ましい。0.05個以上であると硬化物における架橋密度が高く、破断強度に優れやすい。4個以下であると硬化物の伸び物性に優れやすい。
重合体Eの1分子あたりの反応性ケイ素基の数の平均は、重合体Bと同様の方法で測定できる。
The Mn of the polymer E is preferably 500 to 100,000, more preferably 1,000 to 80,000, and still more preferably 2,000 to 50,000. If it is at least the lower limit of the above range, the cured product will be excellent in elongation properties, and if it is at most the upper limit, the viscosity will be sufficiently low and the workability will be excellent.
The molecular weight distribution is preferably more than 1.8 and not more than 5.0, more preferably 1.9 to 3.5, and further preferably 2.0 to 3.5.
The average number of reactive silicon groups per molecule of the polymer E is preferably 0.05 to 4, more preferably 0.1 to 3, and even more preferably 0.1 to 2. When it is 0.05 or more, the cross-linked density in the cured product is high, and the breaking strength tends to be excellent. When it is 4 or less, the stretched material properties of the cured product are easily excellent.
The average number of reactive silicon groups per molecule of the polymer E can be measured by the same method as for the polymer B.

硬化性組成物が重合体Eを含む場合の重合体Eの含有量は、重合体Bの合計の含有量よりも少なく、かつ、重合体Aの合計100質量部に対して、1〜80質量部が好ましく、2〜60質量部がより好ましく、3〜50質量部がさらに好ましい。上記範囲の下限値以上であると機械強度や耐候性に優れやすく、上限値以下であると低粘度になりやすく、作業性に優れやすい。   When the curable composition contains the polymer E, the content of the polymer E is less than the total content of the polymer B, and 1 to 80 masses with respect to 100 mass parts of the polymer A in total. Part is preferable, 2 to 60 parts by weight is more preferable, and 3 to 50 parts by weight is further preferable. When it is at least the lower limit of the above range, it tends to be excellent in mechanical strength and weather resistance, and when it is at most the upper limit, it tends to be low in viscosity and easy to work.

<重合体F>
本発明の硬化性組成物は、反応性ケイ素基を有しない、Mnが1,000以上の重合体(以下、「重合体F」という。)を1種以上含んでもよい。
重合体Fは、硬化物の表面の汚染低減、硬化物の表面上の塗料の乾燥性向上、塗料表面の汚染低減に寄与する。
重合体Fとしては、飽和炭化水素重合体、(メタ)アクリル酸エステル重合体及びオキシアルキレン重合体からなる群から選ばれる1種以上が好ましい。
<Polymer F>
The curable composition of the present invention may contain one or more polymers having no reactive silicon group and having a Mn of 1,000 or more (hereinafter referred to as “polymer F”).
The polymer F contributes to reducing the contamination on the surface of the cured product, improving the drying property of the coating on the surface of the cured product, and reducing the contamination on the surface of the coating.
The polymer F is preferably at least one selected from the group consisting of saturated hydrocarbon polymers, (meth) acrylic acid ester polymers, and oxyalkylene polymers.

飽和炭化水素重合体は、主鎖が飽和炭化水素の単量体に基づく単位を含む重合体であり、ポリエチレン、ポリプロピレンが例示できる。
(メタ)アクリル酸エステル重合体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリルを含む単量体の重合体又は共重合体が例示できる。市販の(メタ)アクリル酸エステル重合体としては、ARUFON UP−1000、ARUFON UP−1110、ARUFON UP−1171(いずれも東亜合成社製品名)が例示できる。
オキシアルキレン重合体としては、ポリエーテルポリオール(例えばポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール)、上記ポリエーテルポリオールの水酸基を封止してエステル又はエーテルにした誘導体が例示できる。市販のオキシアルキレン重合体としては、プレミノールS3011、プレミノールS4012、プレミノールS4013F(いずれも旭硝子社製品名)が例示できる。
The saturated hydrocarbon polymer is a polymer whose main chain includes units based on a saturated hydrocarbon monomer, and examples thereof include polyethylene and polypropylene.
(Meth) acrylic acid ester polymers include methyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylate-2-ethylhexyl, lauryl (meth) acrylate, and stearyl (meth) acrylate. A monomeric polymer or copolymer can be exemplified. Examples of commercially available (meth) acrylic acid ester polymers include ARUFON UP-1000, ARUFON UP-1110, and ARUFON UP-1171 (all manufactured by Toa Gosei Co., Ltd.).
Examples of the oxyalkylene polymer include polyether polyols (for example, polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol), and derivatives obtained by sealing the hydroxyl groups of the polyether polyols to esters or ethers. Examples of commercially available oxyalkylene polymers include Preminol S3011, Preminol S4012, and Preminol S4013F (all Asahi Glass Co., Ltd. product names).

重合体FのMnは、1,000〜40,000が好ましく、1,500〜35,000がより好ましく、2,000〜30,000がさらに好ましい。上記範囲の下限値以上であると熱や降雨による流出防止に優れやすく、上限値以下であると粘度が低く、作業性に優れやすい。
重合体Fの分子量分布は、(メタ)アクリル酸エステル重合体の場合、6.0未満が好ましく、5.5以下がより好ましく、5.0以下がさらに好ましい。オキシアルキレン重合体の場合、2.0未満が好ましく、1.8以下がより好ましく、1.6以下がさらに好ましい。
硬化性組成物が重合体Fを含む場合の重合体Fの含有量は、重合体A、重合体B、重合体C及び重合体Eの合計100質量部に対して、1〜600質量部が好ましく、5〜500質量部がより好ましく、10〜300質量部がさらに好ましい。上記範囲の下限値以上であると、表面の汚染性が低下しやすく、上限値以下であると低粘度となりやすく、作業性に優れやすい。
The Mn of the polymer F is preferably 1,000 to 40,000, more preferably 1,500 to 35,000, and still more preferably 2,000 to 30,000. When it is at least the lower limit of the above range, it is easy to prevent outflow due to heat and rain, and when it is at most the upper limit, the viscosity is low and workability is easy.
In the case of the (meth) acrylic acid ester polymer, the molecular weight distribution of the polymer F is preferably less than 6.0, more preferably 5.5 or less, and even more preferably 5.0 or less. In the case of an oxyalkylene polymer, less than 2.0 is preferable, 1.8 or less is more preferable, and 1.6 or less is more preferable.
When the curable composition contains the polymer F, the content of the polymer F is 1 to 600 parts by mass with respect to 100 parts by mass in total of the polymer A, the polymer B, the polymer C, and the polymer E. Preferably, 5-500 mass parts is more preferable, and 10-300 mass parts is further more preferable. When it is at least the lower limit of the above range, the surface contamination is liable to be lowered, and when it is at most the upper limit, the viscosity tends to be low, and the workability is easy.

<その他の成分>
硬化性組成物は、上記重合体A〜F以外のその他の成分を含んでもよい。その他の成分としては、硬化性化合物、硬化触媒(シラノール縮合触媒)、充填剤、可塑剤、チキソ性付与剤、安定剤、接着性付与剤、物性調整剤、粘着性付与樹脂、フィラーなどの補強材、表面改質剤(界面活性剤)、難燃剤、発泡剤、溶剤、シリケートが例示できる。
その他の成分は、それぞれ、国際公開第2013/180203号、国際公開第2014/192842号、国際公開第2016/002907号、特開2014−88481号公報、特開2015−10162号公報、特開2015−105293号公報、特開2017−039728号公報、特開2017−214541号公報などに記載される従来公知のものを、制限なく組み合わせて用いることができる。
<Other ingredients>
The curable composition may contain other components other than the polymers A to F. Other components include reinforcements such as curable compounds, curing catalysts (silanol condensation catalysts), fillers, plasticizers, thixotropic agents, stabilizers, adhesion promoters, property modifiers, tackifier resins, fillers, etc. Examples thereof include materials, surface modifiers (surfactants), flame retardants, foaming agents, solvents, and silicates.
Other components include International Publication No. 2013/180203, International Publication No. 2014/192842, International Publication No. 2016/002907, Japanese Unexamined Patent Application Publication No. 2014-88481, Japanese Unexamined Patent Application Publication No. 2015-10162, Japanese Unexamined Patent Application Publication No. 2015, respectively. Conventionally known ones described in JP-A-105293, JP-A-2017-039728, JP-A-2017-214541 and the like can be used in combination without limitation.

<硬化性組成物>
硬化性組成物は、硬化性組成物に配合する重合体を合成し、得られた重合体と、重合体以外の配合成分を混合して得られる。
硬化性組成物が重合体Eを含む場合、重合体A又は重合体Cの存在下で重合体Eを構成する単量体を重合させてもよい。
硬化性組成物における、重合体A、重合体B、重合体C及び重合体Eの合計の含有割合は、1.05〜84質量%が好ましく、3.3〜66質量%がより好ましく、5.75〜46質量%がさらに好ましい。上記範囲の下限値以上であると、機械強度に優れやすく、上限値以下であると、低粘度となりやすく、伸び物性及び耐疲労性に優れやすい。
硬化性組成物における、重合体Aを100質量部としたときの、(重合体Aの含有量/重合体Bの含有量/重合体Cの含有量/重合体Eの含有量)としては、(100質量部/5〜200質量部/5〜500質量部/5〜200質量部)が好ましく、(100質量部/10〜180質量部/10〜400質量部/10〜180質量部)がより好ましく、(100質量部/15〜150質量部/15〜300質量部/15〜150質量部)がさらに好ましい。上記範囲内であると、機械強度に優れやすく、伸び物性及び耐疲労性に優れやすい。
<Curable composition>
A curable composition synthesize | combines the polymer mix | blended with a curable composition, and is obtained by mixing the obtained polymer and compounding components other than a polymer.
When the curable composition contains the polymer E, the monomer constituting the polymer E may be polymerized in the presence of the polymer A or the polymer C.
1.05-84 mass% is preferable, as for the total content rate of the polymer A, the polymer B, the polymer C, and the polymer E in a curable composition, 3.3-66 mass% is more preferable, 5 More preferably, it is 75 to 46% by mass. When it is at least the lower limit of the above range, it tends to be excellent in mechanical strength, and when it is not more than the upper limit, it tends to be low in viscosity and easily excellent in elongation properties and fatigue resistance.
When the polymer A in the curable composition is 100 parts by mass, (the content of the polymer A / the content of the polymer B / the content of the polymer C / the content of the polymer E) (100 parts by mass / 5 to 200 parts by mass / 5 to 500 parts by mass / 5 to 200 parts by mass) is preferable, and (100 parts by mass / 10 to 180 parts by mass / 10 to 400 parts by mass / 10 to 180 parts by mass). More preferred is (100 parts by mass / 15 to 150 parts by mass / 15 to 300 parts by mass / 15 to 150 parts by mass). Within the above range, mechanical strength is likely to be excellent, and elongation property and fatigue resistance are likely to be excellent.

硬化性組成物は、すべての配合成分を予め配合し密封保存して、施工後に空気中の湿気により硬化させる、1成分型でもよく、少なくとも反応性ケイ素基を有する成分を含む主剤組成物と、少なくとも硬化触媒を含む硬化剤組成物とを別々に保存し、使用前に硬化剤組成物と主剤組成物を混合する、2成分型でもよい。   The curable composition may be a one-component type in which all the ingredients are pre-blended and hermetically preserved and cured by moisture in the air after construction, and a main ingredient composition containing at least a component having a reactive silicon group, A two-component type in which at least a curing agent composition containing a curing catalyst is stored separately and the curing agent composition and the main agent composition are mixed before use may be used.

1成分型の硬化性組成物は水分を含まないことが好ましい。水分を含む配合成分を予め脱水乾燥するか、また配合混練中に減圧して脱水することが好ましい。
2成分型の硬化性組成物において、硬化剤組成物は水を含んでもよい、主剤組成物は少量の水分を含んでもゲル化し難いが、貯蔵安定性の点からは配合成分を予め脱水乾燥することが好ましい。貯蔵安定性を向上させるために、1成分型の硬化性組成物又は2成分型の主剤組成物にメタノールやエタノールなどの低級アルコールやアルコキシシランなどの従来公知の脱水剤を添加することができる。
The one-component curable composition preferably does not contain moisture. It is preferable to dehydrate and dry the ingredients containing water in advance, or dehydrate them under reduced pressure during compounding.
In the two-component curable composition, the curing agent composition may contain water, and the main component composition hardly gels even if it contains a small amount of water, but from the viewpoint of storage stability, the blended components are dehydrated and dried in advance. It is preferable. In order to improve the storage stability, a conventionally known dehydrating agent such as a lower alcohol such as methanol or ethanol or an alkoxysilane can be added to the one-component curable composition or the two-component main agent composition.

硬化性組成物の用途としては、シーリング材(例えば建築用弾性シーリング材、複層ガラス用シーリング材、ガラス端部の防錆・防水用封止材、太陽電池裏面封止材、建造物用密封材、船舶用密封材、自動車用密封材、道路用密封材)、電気絶縁材料(電線・ケーブル用絶縁被覆材)、接着剤が好適である。
特に、硬化物の伸び物性及び耐疲労性が要求される用途に好適であり、例えば屋外に施工されるシーリング材が例示できる。
Applications of the curable composition include sealing materials (for example, elastic sealing materials for construction, sealing materials for double-glazed glass, sealing materials for rust prevention and waterproofing of glass edges, solar cell back surface sealing materials, and sealing for buildings) Materials, sealing materials for ships, sealing materials for automobiles, sealing materials for roads), electrical insulating materials (insulating coating materials for electric wires and cables), and adhesives are suitable.
In particular, it is suitable for applications that require stretched material properties and fatigue resistance of a cured product. For example, a sealing material applied outdoors can be exemplified.

本発明の硬化性組成物は、後述の実施例に示されるように、重合体Aと重合体Bとを組み合わせて用いることにより、引張強度、伸び物性及び耐疲労性に優れた硬化物が得られる。   As the curable composition of the present invention is used in combination with polymer A and polymer B as shown in the examples described later, a cured product having excellent tensile strength, elongation property and fatigue resistance is obtained. It is done.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
実施例においては、以下の測定方法を用いた。
[Mn及び分子量分布]
東ソー製、HLC−8220GPC(製品名)を用い、テトラヒドロフランを溶離液として、ポリスチレン換算のMwとMnを測定した。これらを用いて分子量分布(以下、「Mw/Mn」と記す。)の値を算出した。
Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
In the examples, the following measuring methods were used.
[Mn and molecular weight distribution]
Mw and Mn in terms of polystyrene were measured using HLC-8220GPC (product name) manufactured by Tosoh Corporation with tetrahydrofuran as an eluent. Using these, the value of molecular weight distribution (hereinafter referred to as “Mw / Mn”) was calculated.

[水酸基換算分子量]
JIS K 1557に基づいて算出した水酸基価の値を用いて、「56,100/(水酸基価)×(開始剤の活性水素の数)」の式から算出した。
[シリル化率]
主鎖末端に塩化アリルを用いて不飽和基を導入し、シリル化剤を上記不飽和基と反応させて反応性ケイ素基を導入する方法において、主鎖末端に導入された不飽和基に対する、シリル化剤の反応性ケイ素基の仕込み当量(モル比)をシリル化率とした。
塩化アリルを用いて導入された不飽和基とシリル化剤の反応において、副反応によりシリル化剤と反応しない不飽和基はおよそ10%である。したがって不飽和基の90モル%未満をシリル化剤と反応させる場合には、上記仕込み当量がシリル化率となる。
[Molecular weight equivalent molecular weight]
Using the hydroxyl value calculated based on JIS K 1557, the value was calculated from the formula “56,100 / (hydroxyl value) × (number of active hydrogens of initiator)”.
[Silylation rate]
In the method of introducing an unsaturated group using allyl chloride at the end of the main chain and reacting the silylating agent with the unsaturated group to introduce a reactive silicon group, the unsaturated group introduced at the end of the main chain, The charged silicon group equivalent (molar ratio) of the silylating agent was defined as the silylation rate.
In the reaction between the unsaturated group introduced using allyl chloride and the silylating agent, the unsaturated group that does not react with the silylating agent due to side reactions is about 10%. Therefore, when less than 90 mol% of the unsaturated groups are reacted with the silylating agent, the charged equivalent is the silylation rate.

[引張特性の評価(H型試験)]
JIS A 1439の建築用シーリング材の試験方法に準拠してH型試験体を作製し引張特性を評価した。
具体的には、作製したH型試験体を温度23℃、湿度50%で7日間養生し、更に温度50℃、湿度65%で7日間養生した。得られた硬化物について、テンシロン試験機にて引張特性試験を行い、モジュラス(50%伸張した時の応力(M50)、単位:N/mm)、最大点凝集力(単位:N/mm)、最大点伸び(単位:%)を測定した。
M50の値は小さいほど硬化物が柔らかく、最大点凝集力の値は大きいほど硬化物の引張強度が高く、最大点伸びの値は大きいほど硬化物の伸びが良い。
[Evaluation of tensile properties (H-type test)]
An H-type specimen was prepared in accordance with JIS A 1439 architectural sealing material test method, and tensile properties were evaluated.
Specifically, the produced H-type specimen was cured at a temperature of 23 ° C. and a humidity of 50% for 7 days, and further cured at a temperature of 50 ° C. and a humidity of 65% for 7 days. About the obtained hardened | cured material, a tensile characteristic test is done with a Tensilon tester, modulus (stress (M50) when extended 50%, unit: N / mm 2 ), maximum point cohesive force (unit: N / mm 2) ) And maximum point elongation (unit:%) were measured.
The smaller the M50 value is, the softer the cured product is. The larger the maximum point cohesion value is, the higher the tensile strength of the cured product is, and the larger the maximum point elongation value is, the better the cured product is.

[耐疲労性試験]
JIS A 1439(2016)の5.22に記載の耐疲労性試験の、耐疲労性の区分CR90に準じて試験した。被着体として表面陽極酸化アルミニウムを使用した。伸縮回数250回ごとに被着体と硬化物との接着界面近傍における硬化物の亀裂を観察し、亀裂が2.5mm以上に達した時点の伸縮回数を記録した。伸縮回数が多いほど耐疲労性に優れる。
[Fatigue resistance test]
The fatigue resistance test described in 5.22 of JIS A 1439 (2016) was tested according to the fatigue resistance category CR90. Surface anodized aluminum was used as the adherend. The crack of the hardened | cured material in the vicinity of the adhesion interface of a to-be-adhered body and hardened | cured material was observed every 250 times of expansion / contraction, and the frequency | count of expansion / contraction when a crack reached 2.5 mm or more was recorded. The greater the number of expansions and contractions, the better the fatigue resistance.

(合成例1:重合体A1)
Mnが約2,000で、末端水酸基を2個有するポリオキシプロピレングリコールを開始剤として使用し、配位子がt−ブチルアルコールの亜鉛ヘキサシアノコバルテート錯体 (以下、「TBA−DMC触媒」という。)を触媒として使用してプロピレンオキシドを重合し、ポリオキシプロピレンを得た。ポリオキシプロピレンは、両末端に水酸基を有し、水酸基換算分子量は15,000であった。
得られたポリオキシプロピレンの水酸基に対して1.15モル当量のナトリウムメトキシドの濃度が28質量%であるメタノール溶液を添加した。減圧下でメタノールを留去した後、ポリオキシプロピレンの水酸基に対して1.05モル当量のアリルグリシジルエーテルを添加し、130℃で2時間反応させた。その後、0.28モル当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを除去し、さらに2.10モル当量の塩化アリルを添加して130℃で2時間反応を行い、末端基をアリル基に変換し、減圧下で系中から未反応の塩化アリルを除去し、主鎖末端にアリル基を有するアリル基末端オキシアルキレン重合体を得た。系中には、副生塩としてNaClが含まれていた。
次いで、副生塩であるNaCl含むアリル基末端オキシアルキレン重合体の100質量部に対して、ポリオキシエチレンオキシプロピレンブロック共重合体を1質量部、及び水を5質量部加え、窒素雰囲気下、液温80℃で撹拌混合して、副生塩であるNaClを水で抽出した。
次いで、反応器内に窒素を流しながら、80℃に加温し5時間保持して水分を蒸発させてNaClの結晶を析出させた後、ろ過し、得られたろ液を減圧下で脱水して、主鎖末端にアリル基が導入されたポリオキシプロピレン重合体(重合体Q1)を得た。重合体Q1の1つの主鎖末端に導入されたアリル基は平均2.0個であった。
(Synthesis Example 1: Polymer A1)
A polyoxypropylene glycol having a Mn of about 2,000 and having two terminal hydroxyl groups is used as an initiator, and the ligand is t-butyl alcohol zinc hexacyanocobaltate complex (hereinafter referred to as “TBA-DMC catalyst”). ) As a catalyst to polymerize propylene oxide to obtain polyoxypropylene. The polyoxypropylene had hydroxyl groups at both ends, and the hydroxyl equivalent molecular weight was 15,000.
A methanol solution having a concentration of 1.15 molar equivalents of sodium methoxide based on the hydroxyl group of the obtained polyoxypropylene was 28% by mass. After distilling off methanol under reduced pressure, 1.05 molar equivalent of allyl glycidyl ether was added to the hydroxyl group of polyoxypropylene and reacted at 130 ° C. for 2 hours. Thereafter, 0.28 molar equivalent of sodium methoxide in methanol was added to remove the methanol, and 2.10 molar equivalent of allyl chloride was added, followed by reaction at 130 ° C. for 2 hours. The unreacted allyl chloride was removed from the system under reduced pressure to obtain an allyl group-terminated oxyalkylene polymer having an allyl group at the end of the main chain. In the system, NaCl was contained as a by-product salt.
Next, with respect to 100 parts by mass of the allyl group-terminated oxyalkylene polymer containing NaCl as a by-product salt, 1 part by mass of polyoxyethyleneoxypropylene block copolymer and 5 parts by mass of water were added, and under a nitrogen atmosphere, By stirring and mixing at a liquid temperature of 80 ° C., NaCl as a by-product salt was extracted with water.
Next, while flowing nitrogen into the reactor, the mixture was heated to 80 ° C. and held for 5 hours to evaporate water and precipitate NaCl crystals, followed by filtration. The obtained filtrate was dehydrated under reduced pressure. A polyoxypropylene polymer (polymer Q1) having an allyl group introduced at the end of the main chain was obtained. The average number of allyl groups introduced at one main chain end of the polymer Q1 was 2.0.

次いで、白金ジビニルジシロキサン錯体の存在下、重合体Q1のアリル基に対して0.80モル当量のジメトキシメチルシランをシリル化剤として添加し、70℃にて5時間反応させた後、未反応のジメトキシメチルシランを減圧下で除去し、反応性ケイ素基としてジメトキシメチルシリル基が主鎖末端に導入された重合体(重合体A1)を得た。
得られた重合体A1について、Mn、Mw/Mn、シリル化率を表1に示す。また重合体A1の主鎖末端の数、前駆重合体(重合体Q1)における1分子あたりのアリル基の平均数、シリル化率に基づいて算出した1分子あたりの反応性ケイ素基の平均数及び1つの主鎖末端あたりの反応性ケイ素基の平均数を表1に示す(以下、同様。)。
Next, in the presence of a platinum divinyldisiloxane complex, 0.80 molar equivalent of dimethoxymethylsilane was added as a silylating agent with respect to the allyl group of the polymer Q1, reacted at 70 ° C. for 5 hours, and then unreacted. The dimethoxymethylsilane was removed under reduced pressure to obtain a polymer in which a dimethoxymethylsilyl group was introduced as a reactive silicon group at the end of the main chain (polymer A1).
Table 1 shows Mn, Mw / Mn, and silylation rate of the obtained polymer A1. The number of main chain ends of the polymer A1, the average number of allyl groups per molecule in the precursor polymer (polymer Q1), the average number of reactive silicon groups per molecule calculated based on the silylation rate, and The average number of reactive silicon groups per main chain end is shown in Table 1 (the same applies hereinafter).

(合成例2:重合体A2)
重合体A1と同様にして重合体Q1を得た後、白金ジビニルジシロキサン錯体の存在下、重合体Q1のアリル基に対して0.60モル当量のジメトキシメチルシランをシリル化剤として添加し、70℃にて5時間反応させた後、未反応のジメトキシメチルシランを減圧下で除去し、ジメトキシメチルシリル基が主鎖末端に導入された重合体(重合体A2)を得た。
(Synthesis Example 2: Polymer A2)
After obtaining the polymer Q1 in the same manner as the polymer A1, in the presence of a platinum divinyldisiloxane complex, 0.60 molar equivalent of dimethoxymethylsilane to the allyl group of the polymer Q1 was added as a silylating agent, After reacting at 70 ° C. for 5 hours, unreacted dimethoxymethylsilane was removed under reduced pressure to obtain a polymer in which a dimethoxymethylsilyl group was introduced at the end of the main chain (polymer A2).

(合成例3:重合体B1)
本例では、リビングラジカル重合法を用い、重合反応の終期にアルケニル基を2個有する化合物を反応させる方法で下記重合体B1を合成した。 2Lフラスコに臭化第一銅の8.39g、アセトニトリルの112mLを添加し、窒素気流下70℃で20分間加熱撹拌した。これに2,5−ジブロモアジピン酸ジエチルの17.6g、アクリル酸エチルの130mL、アクリル酸ブチルの720mL、アクリル酸ステアリルの251gを添加し、さらに70℃で40分間加熱撹拌した。これにペンタメチルジエチレントリアミン(以下、「トリアミン」という。)0.41mLを添加して反応を開始した。引き続き70℃で加熱撹拌を続け、さらにトリアミンの2.05mLを添加した。反応開始から330分後に1,7−オクタジエンの244mL及びトリアミンの4.1mLを添加し、引き続き70℃で加熱撹拌を続け、反応開始から570分後に加熱を停止した。
得られた反応溶液をトルエンで希釈してろ過し、ろ液を減圧加熱処理して、末端にアルケニル基を有するアクリル酸エステル重合体(重合体Q2)を得た。
重合体Q2のMnは22,800、分子量分布は1.40、H−NMR分析より求めた重合体Q2の1分子あたりのアルケニル基の平均数は2.8個であった。
(Synthesis Example 3: Polymer B1)
In this example, the following polymer B1 was synthesized by a method in which a living radical polymerization method was used and a compound having two alkenyl groups was reacted at the end of the polymerization reaction. To a 2 L flask, 8.39 g of cuprous bromide and 112 mL of acetonitrile were added, and the mixture was heated and stirred at 70 ° C. for 20 minutes under a nitrogen stream. To this was added 17.6 g of diethyl 2,5-dibromoadipate, 130 mL of ethyl acrylate, 720 mL of butyl acrylate, and 251 g of stearyl acrylate, and the mixture was further heated and stirred at 70 ° C. for 40 minutes. To this, 0.41 mL of pentamethyldiethylenetriamine (hereinafter referred to as “triamine”) was added to initiate the reaction. Subsequently, heating and stirring were continued at 70 ° C., and 2.05 mL of triamine was further added. 330 minutes after the start of the reaction, 244 mL of 1,7-octadiene and 4.1 mL of triamine were added, followed by continued heating and stirring at 70 ° C., and the heating was stopped 570 minutes after the start of the reaction.
The obtained reaction solution was diluted with toluene and filtered, and the filtrate was heated under reduced pressure to obtain an acrylate polymer (polymer Q2) having an alkenyl group at the terminal.
The Mn of the polymer Q2 was 22,800, the molecular weight distribution was 1.40, and the average number of alkenyl groups per molecule of the polymer Q2 determined from 1 H-NMR analysis was 2.8.

窒素雰囲気下、2Lフラスコに、得られた上記重合体Q2の全量、酢酸カリウムの17.2g、N,N−ジメチルアセトアミドメチル(以下、「DMAc」という。)の700mLを添加し、100℃で10時間加熱撹拌した。反応溶液を減圧加熱してDMAcを除去し、トルエンを添加してろ過した。ろ液を減圧加熱して揮発分を除去した残りを2Lフラスコに添加し、吸着剤(キョーワード500SNとキョーワード700SN(いずれも協和化学製品名)の質量比で1対1の混合物)の100gを添加し、窒素気流下130℃で9時間加熱撹拌した。トルエンで希釈し、ろ過して吸着剤を除去し、ろ液中のトルエンを減圧留去して重合体(重合体Q3)を得た。   Under a nitrogen atmosphere, a total amount of the obtained polymer Q2, 17.2 g of potassium acetate, and 700 mL of N, N-dimethylacetamidomethyl (hereinafter referred to as “DMAc”) were added to a 2 L flask at 100 ° C. The mixture was heated and stirred for 10 hours. The reaction solution was heated under reduced pressure to remove DMAc, and toluene was added and filtered. The filtrate was heated under reduced pressure to remove the volatile matter, and the residue was added to a 2 L flask, and 100 g of adsorbent (one-to-one mixture of Kyoward 500SN and Kyoward 700SN (both Kyowa Chemical product names) in mass ratio). And heated and stirred at 130 ° C. for 9 hours under a nitrogen stream. Diluted with toluene, filtered to remove the adsorbent, and toluene in the filtrate was distilled off under reduced pressure to obtain a polymer (polymer Q3).

1L耐圧反応容器に、重合体Q3の700g、ジメトキシメチルヒドロシランの22.2mL、オルトぎ酸メチルの7.71mL及び白金触媒(0価白金の1,1,3,3−テトラメチル−1,3−ジビニルジシロキサン錯体)を添加した。ただし、白金触媒の使用量は、重合体Q3のアルケニル基に対して9×10−3モル当量とした。反応容器内の混合物を100℃で195分加熱撹拌した。混合物の揮発分を減圧留去して、主鎖末端にジメトキシメチルシリル基を有する重合体(重合体B1)を得た。
1分子あたりの反応性ケイ素基の平均数を、H−NMR分析により求めたところ2.0個であった。
In a 1 L pressure-resistant reaction vessel, 700 g of polymer Q3, 22.2 mL of dimethoxymethylhydrosilane, 7.71 mL of methyl orthoformate and platinum catalyst (1,1,3,3-tetramethyl-1,3 of zerovalent platinum) -Divinyldisiloxane complex) was added. However, the amount of platinum catalyst used was 9 × 10 −3 molar equivalents relative to the alkenyl group of polymer Q3. The mixture in the reaction vessel was heated and stirred at 100 ° C. for 195 minutes. Volatiles of the mixture were distilled off under reduced pressure to obtain a polymer having a dimethoxymethylsilyl group at the end of the main chain (polymer B1).
The average number of reactive silicon groups per molecule determined by 1 H-NMR analysis was 2.0.

(合成例4:重合体C1)
プロピレングリコールを開始剤とし、配位子がグライムの亜鉛ヘキサシアノコバルテート錯体の存在下に、プロピレンオキシドを重合し、水酸基換算分子量が20,000の前駆重合体c1を得た。次いで、前駆重合体c1の水酸基に対して1.05モル当量のナトリウムメトキシドのメタノール溶液を添加して前駆重合体c1をアルコラート化した。次に、加熱減圧によりメタノールを留去し、さらに前駆重合体c1の水酸基量に対して過剰量の塩化アリルを添加して主鎖末端における末端基をアリル基に変換した。次に、塩化白金酸六水和物の存在下、前駆重合体c1の変換されたアリル基に対して0.75モル当量のジメトキシメチルシランをシリル化剤として添加し、70℃にて5時間反応させ、反応性ケイ素基としてジメトキシメチルシリル基が主鎖末端に導入されたオキシプロピレン重合体(重合体C1)を得た。
(Synthesis Example 4: Polymer C1)
Propylene oxide was polymerized in the presence of a zinc hexacyanocobaltate complex having propylene glycol as an initiator and glyme as a ligand to obtain a precursor polymer c1 having a hydroxyl equivalent molecular weight of 20,000. Next, 1.05 molar equivalent of a methanol solution of sodium methoxide was added to the hydroxyl group of the precursor polymer c1 to alcoholate the precursor polymer c1. Next, methanol was distilled off by heating under reduced pressure, and an excessive amount of allyl chloride relative to the amount of hydroxyl group in the precursor polymer c1 was added to convert the end group at the end of the main chain to an allyl group. Next, in the presence of chloroplatinic acid hexahydrate, 0.75 molar equivalent of dimethoxymethylsilane is added as a silylating agent to the converted allyl group of the precursor polymer c1, and the mixture is added at 70 ° C. for 5 hours. An oxypropylene polymer (polymer C1) in which a dimethoxymethylsilyl group was introduced as a reactive silicon group at the end of the main chain was obtained.

(合成例5:重合体C2)
プロピレングリコールを開始剤とし、TBA−DMC触媒の存在下に、プロピレンオキシドを重合し、水酸基換算分子量が18,000の前駆重合体c2を得た。次いで、合成例4と同様にして得られた、末端基がアリル基に変換された前駆重合体c2のアリル基に対して0.73モル当量のジメトキシメチルシランをシリル化剤として添加する他は、合成例4と同様にして、反応性ケイ素基としてジメトキシメチルシリル基が主鎖末端に導入されたオキシプロピレン重合体(重合体C2)を得た。
(Synthesis Example 5: Polymer C2)
Using propylene glycol as an initiator, propylene oxide was polymerized in the presence of a TBA-DMC catalyst to obtain a precursor polymer c2 having a hydroxyl equivalent molecular weight of 18,000. Next, 0.73 molar equivalent of dimethoxymethylsilane was added as a silylating agent to the allyl group of the precursor polymer c2 obtained in the same manner as in Synthesis Example 4 and having terminal groups converted to allyl groups. In the same manner as in Synthesis Example 4, an oxypropylene polymer (polymer C2) having a dimethoxymethylsilyl group introduced as a reactive silicon group at the end of the main chain was obtained.

(合成例6:重合体C3)
グリセリンを開始剤とし、TBA−DMC触媒の存在下に、プロピレンオキシドを重合し、水酸基換算分子量が15,000の前駆重合体c3を得た。末端基がアリル基に変換された前駆重合体c3のアリル基に対して0.70モル当量のジメトキシメチルシランをシリル化剤として添加する他は、合成例4と同様にして、反応性ケイ素基としてジメトキシメチルシリル基が主鎖末端に導入されたオキシプロピレン重合体(重合体C3)を得た。
(Synthesis Example 6: Polymer C3)
Propylene oxide was polymerized in the presence of a TBA-DMC catalyst using glycerin as an initiator to obtain a precursor polymer c3 having a hydroxyl equivalent molecular weight of 15,000. A reactive silicon group was prepared in the same manner as in Synthesis Example 4 except that 0.70 molar equivalent of dimethoxymethylsilane was added as a silylating agent to the allyl group of the precursor polymer c3 whose end group was converted to an allyl group. As a result, an oxypropylene polymer (polymer C3) having a dimethoxymethylsilyl group introduced at the end of the main chain was obtained.

(合成例7:重合体D1)
n−ブチルアルコールを開始剤とし、TBA−DMC触媒の存在下に、プロピレンオキシドを重合し、水酸基換算分子量が5,000の前駆重合体d1を得た。前駆重合体d1の水酸基側の末端基がアリル基に変換された前駆重合体d1のアリル基に対して0.80モル当量のジメトキシメチルシランをシリル化剤として添加し、70℃にて5時間反応させ、反応性ケイ素基としてジメトキシメチルシリル基が主鎖末端に導入されたオキシプロピレン重合体(重合体D1)を得た。
(Synthesis Example 7: Polymer D1)
Propylene oxide was polymerized in the presence of a TBA-DMC catalyst using n-butyl alcohol as an initiator to obtain a precursor polymer d1 having a hydroxyl equivalent molecular weight of 5,000. 0.80 molar equivalent of dimethoxymethylsilane was added as a silylating agent to the allyl group of the precursor polymer d1 in which the hydroxyl group end group of the precursor polymer d1 was converted to an allyl group, and the mixture was added at 70 ° C. for 5 hours. An oxypropylene polymer (polymer D1) in which a dimethoxymethylsilyl group was introduced as a reactive silicon group at the end of the main chain was obtained.

(合成例8:重合体E1)
攪拌機付きの耐圧反応器にイソブタノールの50gを添加し、約80℃に昇温した。反応容器内温を約80℃に保ち、窒素雰囲気下、攪拌しながら、メタクリル酸メチルの1.65g、アクリル酸−n−ブチルの373.1g、アクリル酸ステアリルの110.0g、3−メタクリロキシプロピルメチルジメトキシシラン(KBM−502、信越シリコーン社製品名)の6.5g及び2,2’−アゾビス−2,4−ジメチルバレロニトリル(V−65、和光純薬工業社製品名)の7.3gの混合溶液を、イソブタノール中に2時間かけて滴下して重合し、側鎖にジメトキシメチルシリル基を有する(メタ)アクリル酸エステル重合体(重合体E1)を得た。
(Synthesis Example 8: Polymer E1)
50 g of isobutanol was added to a pressure-resistant reactor equipped with a stirrer, and the temperature was raised to about 80 ° C. While maintaining the reaction vessel internal temperature at about 80 ° C. and stirring under a nitrogen atmosphere, 1.65 g of methyl methacrylate, 373.1 g of n-butyl acrylate, 110.0 g of stearyl acrylate, 3-methacryloxy 6.5 g of propylmethyldimethoxysilane (KBM-502, product name of Shin-Etsu Silicone) and 2,2′-azobis-2,4-dimethylvaleronitrile (V-65, product name of Wako Pure Chemical Industries, Ltd.) 3 g of the mixed solution was dropped into isobutanol over 2 hours for polymerization to obtain a (meth) acrylic acid ester polymer (polymer E1) having a dimethoxymethylsilyl group in the side chain.

(その他の成分)
表2に記載の重合体F及び添加剤は以下の通りである。
ホワイトンSB:重質炭酸カルシウム、白石工業社製品名。
Viscolite EL20:膠質炭酸カルシウム、白石工業社製品名。
バルーン80GCA:有機バルーン、松本油脂社製品名。
UP−1171:ARUFON UP−1171、Mw3,000のアクリルポリマー、東亜合成社製品名。
S4012:プレミノール S4012、1分子あたり水酸基を2個有し、水酸基1個当たりのMnが10,000である高分子量ポリオール、旭硝子社製品名。
N−12:ノルマルパラフィン(n−ドデカン99.0%)、日鉱石油化学社製品名。
サンソサイザーEPS:4,5−エポキシシクロヘキサン−1,2−ジカルボン酸−ジ−2−エチルヘキシル、新日本理化社製品名。
ディスパロン#6500:水添ひまし油系チキソ性付与剤、楠本化成社製品名。
IRGANOX1135:ヒンダードフェノール系酸化防止剤、BASF社製品名。
TINUVIN326:ベンゾトリアゾール系紫外線吸収剤、BASF社製品名。
TINUVIN765:3級アミン含有ヒンダードアミン系光安定剤、BASF社製品名。
LA−63P:アデカスタブLA−63P、ADEKA社製品名。
KBM−1003:ビニルトリメトキシシラン、信越化学社製品名。
KBM−403:3−グリシジルオキシプロピルトリメトキシシラン、信越化学社製品名。
KBM−603:3−(2−アミノエチルアミノ)プロピルトリメトキシシラン、信越化学社製品名。
ファーミンCS:ココナットアミン、花王社製品名。
TMP−3TMS:トリメチロールプロパンのトリストリメチルシリル体。
桐油:空気酸化硬化性化合物、木村社製。
M−309:アロニックスM−309、東亜合成社製品名。
SCAT−32A:錫触媒、日東化成社製品名。
触媒組成物:スタノクト(オクチル酸第一錫、吉富製薬社品名)と、ラウリルアミン(試薬、純正化学社製、)とを質量比が6対1となるように混合した混合物の4質量部、サンソサイザーDINP(ジイソノニルフタレート、新日本理化社製品名)の6質量部、ホワイトンSB(重質炭酸カルシウム、白石カルシウム工業社製品名)の15質量部及びグロマックスLL(焼成カオリン、竹原化学工業社製品名)の5質量部を混合して得た組成物。
(Other ingredients)
The polymers F and additives listed in Table 2 are as follows.
Whiteon SB: Heavy calcium carbonate, product name of Shiroishi Kogyo Co., Ltd.
Viscolite EL20: Collagen calcium carbonate, product name of Shiroishi Kogyo Co., Ltd.
Balloon 80GCA: Organic balloon, product name of Matsumoto Yushi Co., Ltd.
UP-1171: ARUFON UP-1171, acrylic polymer of Mw 3,000, product name of Toa Gosei Co., Ltd.
S4012: Preminol S4012, a high molecular weight polyol having two hydroxyl groups per molecule and a Mn per hydroxyl group of 10,000, product name of Asahi Glass Co., Ltd.
N-12: normal paraffin (n-dodecane 99.0%), Nikko Petrochemical product name.
Sunsizer EPS: 4,5-epoxycyclohexane-1,2-dicarboxylic acid-di-2-ethylhexyl, a product name of Shin Nippon Rika Co., Ltd.
Disparon # 6500: Hydrogenated castor oil-based thixotropic agent, Enomoto Kasei's product name.
IRGANOX 1135: hindered phenol antioxidant, product name of BASF.
TINUVIN326: Benzotriazole ultraviolet absorber, product name of BASF Corporation.
TINUVIN765: tertiary amine-containing hindered amine light stabilizer, product name of BASF Corporation.
LA-63P: ADK STAB LA-63P, a product name of ADEKA.
KBM-1003: Vinyltrimethoxysilane, product name of Shin-Etsu Chemical Co., Ltd.
KBM-403: 3-glycidyloxypropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd. product name.
KBM-603: 3- (2-aminoethylamino) propyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd. product name.
Farmin CS: Coconutamine, Kao Corporation product name.
TMP-3TMS: Tristrimethylsilyl form of trimethylolpropane.
Tung Oil: Air oxidation curable compound, manufactured by Kimura Corporation.
M-309: Aronix M-309, product name of Toa Gosei Co., Ltd.
SCAT-32A: Tin catalyst, product name of Nitto Kasei Corporation.
Catalyst composition: 4 parts by mass of a mixture obtained by mixing stanocto (stannic octylate, product name of Yoshitomi Pharmaceutical Co., Ltd.) and laurylamine (reagent, manufactured by Junsei Chemical Co., Ltd.) so that the mass ratio is 6: 1. 6 parts by mass of Sansosizer DINP (diisononyl phthalate, product name of Shin Nippon Chemical Co., Ltd.), 15 parts by mass of Whiten SB (product name of heavy calcium carbonate, product name of Shiraishi Calcium Industry Co., Ltd.) and Glomax LL (calcined kaolin, Takehara Chemical Industry) A product obtained by mixing 5 parts by mass of a company product name).

<硬化性組成物の調製>
例1、2及び6〜10は実施例、例3〜5は比較例である。
<Preparation of curable composition>
Examples 1, 2 and 6-10 are examples, and examples 3-5 are comparative examples.

(例1〜7)
表3に示す配合の反応性ケイ素を有する重合体及び表2に示す配合量の添加剤を添加して硬化性組成物を調製した。
得られた硬化性組成物を、温度23℃、湿度65%で1週間養生し、更に温度50℃、湿度65%で1週間養生して得られた試験体について、上記のH型試験及び耐疲労試験を実施した。結果を表3に示す。
(Examples 1-7)
A curable composition was prepared by adding a polymer having reactive silicon having a formulation shown in Table 3 and an additive having a formulation amount shown in Table 2.
The obtained curable composition was cured at a temperature of 23 ° C. and a humidity of 65% for 1 week, and further cured at a temperature of 50 ° C. and a humidity of 65% for 1 week. A fatigue test was conducted. The results are shown in Table 3.

(例8〜10)
表3の例1に示す配合において、添加剤1を表2に示す添加剤4〜6にそれぞれ変更して硬化性組成物を調製し、上記と同様にして硬化物を得た。例8〜10の硬化性組成物は良好に硬化した。
(Examples 8 to 10)
In the formulation shown in Example 1 of Table 3, additive 1 was changed to additives 4 to 6 shown in Table 2 to prepare curable compositions, and cured products were obtained in the same manner as described above. The curable compositions of Examples 8-10 cured well.

Figure 0006579206
Figure 0006579206

Figure 0006579206
Figure 0006579206

Figure 0006579206
Figure 0006579206

表3に示されるように、硬化性組成物が重合体Aと重合体Bを含む例1、2は、重合体Bの代わりに重合体Eを用いた例3、4、重合体Aの代わりに重合体Cを用いた例5に比べて、最大点凝集力、最大点伸び及び耐疲労性が向上し、M50はほぼ同等であった。
また、重合体A、重合体Bと重合体Cの組み合わせ(例1、2)の方が、重合体A、重合体Eと重合体Cの組み合わせ(例3、4)よりも、伸び物性が向上することがわかる。
As shown in Table 3, Examples 1 and 2 in which the curable composition contains polymer A and polymer B are examples 3 and 4 using polymer E instead of polymer B, instead of polymer A. As compared with Example 5 using the polymer C, the maximum point cohesive force, the maximum point elongation and the fatigue resistance were improved, and M50 was substantially equivalent.
Further, the combination of the polymer A, the polymer B and the polymer C (Examples 1 and 2) is more stretchable than the combination of the polymer A, the polymer E and the polymer C (Examples 3 and 4). It turns out that it improves.

Claims (7)

主鎖末端における末端基が、下式1で表される反応性ケイ素基、活性水素含有基又は不飽和基のいずれかであり、1分子中に含まれる活性水素含有基の数は、平均して0.3個以下であり、1つの主鎖末端に平均して1.0個より多くの前記反応性ケイ素基を有し、前記末端基の合計に対する前記反応性ケイ素基の数の割合で表されるシリル化率が50モル%超、97モル%以下であるオキシアルキレン重合体と、主鎖末端に下式1で表される反応性ケイ素基を有し、数平均分子量が15,000〜80,000であり、分子量分布が1.8以下である(メタ)アクリル酸エステル重合体を含む硬化性組成物。
−SiX3−a 式1
[式中、Rは炭素数1〜20の1価の有機基であって、加水分解性基以外の有機基を示し、Xは水酸基又は加水分解性基を示す。aは1〜3の整数である。aが1の場合、Rは互いに同一でも異なってもよい。aが2以上の場合、Xは互いに同一でも異なってもよい。]
The terminal group at the end of the main chain is either a reactive silicon group represented by the following formula 1, an active hydrogen-containing group or an unsaturated group, and the number of active hydrogen-containing groups contained in one molecule is averaged. Te is 0.3 or less, have a single average of 1.0 or more of the reactive silicon group in the main chain terminal, at a rate of the number of the reactive silicon group to the total of the end groups An oxyalkylene polymer having a silylation rate of more than 50 mol% and 97 mol% or less, a reactive silicon group represented by the following formula 1 at the main chain terminal, and a number average molecular weight of 15,000 A curable composition comprising a (meth) acrylic acid ester polymer having a molecular weight distribution of ˜80,000 and a molecular weight distribution of 1.8 or less.
-SiX a R 3-a Formula 1
[In formula, R is a C1-C20 monovalent organic group, Comprising: Organic groups other than a hydrolysable group show, X shows a hydroxyl group or a hydrolysable group. a is an integer of 1 to 3. When a is 1, R may be mutually the same or different. When a is 2 or more, Xs may be the same or different. ]
前記オキシアルキレン重合体は、少なくとも1つの主鎖末端が下式2で表される原子団である、請求項1に記載の硬化性組成物。
Figure 0006579206
(式中、R,Rはそれぞれ独立に2価の炭素数1〜6の結合基を示し、結合基中の炭素原子に結合している原子は、炭素原子、水素原子、酸素原子、窒素原子、又は硫黄原子である。R,Rはそれぞれ独立に水素原子又は炭素数1〜10の炭化水素基を示す。nは1から10の整数を示す。Rはそれぞれ独立に、炭素数1〜20の1価の有機基であって、加水分解性基以外の有機基を示し、Yはそれぞれ独立に水酸基又は加水分解性基を示す。bは1〜3の整数である。Rが複数存在する場合、Rは互いに同一でも異なってもよい。Yが複数存在する場合、Yは互いに同一でも異なってもよい。)
The curable composition according to claim 1, wherein the oxyalkylene polymer is an atomic group having at least one main chain terminal represented by the following formula 2.
Figure 0006579206
(Wherein R 1 and R 3 each independently represents a divalent linking group having 1 to 6 carbon atoms, and the atoms bonded to the carbon atoms in the linking group are carbon atoms, hydrogen atoms, oxygen atoms, A nitrogen atom or a sulfur atom, R 2 and R 4 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, n represents an integer of 1 to 10. R 5 represents each independently A monovalent organic group having 1 to 20 carbon atoms, which represents an organic group other than a hydrolyzable group, Y represents a hydroxyl group or a hydrolyzable group, and b represents an integer of 1 to 3. When a plurality of R 5 are present, R 5 may be the same as or different from each other, and when a plurality of Y are present, Y may be the same as or different from each other.
前記オキシアルキレン重合体が、1分子中に主鎖末端を2個有し、各主鎖末端に前記末端基を2個有する、請求項1又は2に記載の硬化性組成物。 The oxyalkylene polymer having two main chain terminus in the molecule, the terminal group at each end of the main chain to two chromatic curable composition according to claim 1 or 2. 前記式1で表される反応性ケイ素基、活性水素含有基又は不飽和基のいずれかである末端基を1つの主鎖末端に1個有し、かつ1つの主鎖末端に平均して反応性ケイ素基を0.5個超1.0個以下有するオキシアルキレン重合体をさらに含む、請求項1〜3のいずれか一項に記載の硬化性組成物。   The reactive silicon group represented by Formula 1 has one terminal group at one end of the main chain and is an average reaction at one end of the main chain, which is either a reactive hydrogen-containing group or an unsaturated group. The curable composition as described in any one of Claims 1-3 which further contains the oxyalkylene polymer which has more than 0.5 functional silicon groups and 1.0 or less. 1つの主鎖末端における末端基が、不活性な1価の有機基であり、1つの主鎖末端に平均して前記式1で表される反応性ケイ素基を0個超0.5個以下有するオキシアルキレン重合体をさらに含む、請求項1〜4のいずれか一項に記載の硬化性組成物。   The terminal group at one main chain terminal is an inactive monovalent organic group, and the average number of reactive silicon groups represented by the above-mentioned formula 1 at one main chain terminal is more than 0 and 0.5 or less. The curable composition according to any one of claims 1 to 4, further comprising an oxyalkylene polymer. シーリング材用途である、請求項1〜5のいずれか一項に記載の硬化性組成物。   The curable composition as described in any one of Claims 1-5 which is a sealing material use. 請求項1〜6のいずれか一項に記載の硬化性組成物の硬化物。   Hardened | cured material of the curable composition as described in any one of Claims 1-6.
JP2018041253A 2018-03-07 2018-03-07 Curable composition and cured product Active JP6579206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018041253A JP6579206B2 (en) 2018-03-07 2018-03-07 Curable composition and cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018041253A JP6579206B2 (en) 2018-03-07 2018-03-07 Curable composition and cured product

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019155919A Division JP2019206720A (en) 2019-08-28 2019-08-28 Curable composition, and cured product

Publications (2)

Publication Number Publication Date
JP2019156883A JP2019156883A (en) 2019-09-19
JP6579206B2 true JP6579206B2 (en) 2019-09-25

Family

ID=67994536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018041253A Active JP6579206B2 (en) 2018-03-07 2018-03-07 Curable composition and cured product

Country Status (1)

Country Link
JP (1) JP6579206B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200342A1 (en) * 2020-03-31 2021-10-07 株式会社カネカ Polyoxyalkylene polymer mixture and curable composition
WO2023127443A1 (en) * 2021-12-27 2023-07-06 株式会社カネカ Curable composition and cured product thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4101366B2 (en) * 1997-07-28 2008-06-18 株式会社カネカ Curable composition
CN106795366B (en) * 2014-07-02 2019-05-07 株式会社钟化 Solidification compound and its solidfied material

Also Published As

Publication number Publication date
JP2019156883A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP2022075628A (en) Method for producing curable composition
JP7367332B2 (en) Curable composition, cured product, and sealant
JP6579206B2 (en) Curable composition and cured product
JP6652213B2 (en) Curable composition and cured product
JP7127302B2 (en) Curable composition containing oxyalkylene polymer, curable composition containing oxyalkylene polymer for sealant, and cured product
JP7306120B2 (en) Curable composition and cured product
JP6977747B2 (en) Curable Compositions for Floor Adhesives and Cured Products
US20230399464A1 (en) Curable composition, and cured product
JP6610690B2 (en) Curable composition and cured product
JP2019189863A (en) Curable composition and cured article
JP7404838B2 (en) Curable composition and cured product
JP7375508B2 (en) Curable composition and cured product
JP7135432B2 (en) Curable composition, method for producing the same, cured product and sealant
JP7259346B2 (en) Curable composition
JP7394783B2 (en) Curable composition containing polyoxyalkylene polymer
JP2019206720A (en) Curable composition, and cured product
JP6953910B2 (en) Curable composition and its manufacturing method, cured product, and sealing material
JP7243332B2 (en) Curable composition and cured product
JP7056478B2 (en) Curable composition and its cured product
JP2021055013A (en) Reactive silicon group-containing polymer and curable composition
JP7358950B2 (en) Curable composition and cured product
WO2023282298A1 (en) Curable composition, cured product, adhesive, and sealing material
JP2023009597A (en) Curable composition, cured product, adhesive and sealing material
CN117597395A (en) Curable composition, cured product, adhesive, and sealing material
US20240132718A1 (en) Curable composition, cured product, adhesive, and sealing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190408

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190408

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190812

R150 Certificate of patent or registration of utility model

Ref document number: 6579206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250