JP6573069B2 - Charge control device - Google Patents

Charge control device Download PDF

Info

Publication number
JP6573069B2
JP6573069B2 JP2015153591A JP2015153591A JP6573069B2 JP 6573069 B2 JP6573069 B2 JP 6573069B2 JP 2015153591 A JP2015153591 A JP 2015153591A JP 2015153591 A JP2015153591 A JP 2015153591A JP 6573069 B2 JP6573069 B2 JP 6573069B2
Authority
JP
Japan
Prior art keywords
charging
battery
voltage difference
time
balancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015153591A
Other languages
Japanese (ja)
Other versions
JP2017034887A (en
Inventor
裕樹 河村
裕樹 河村
森田 博之
博之 森田
義晃 大田
義晃 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2015153591A priority Critical patent/JP6573069B2/en
Publication of JP2017034887A publication Critical patent/JP2017034887A/en
Application granted granted Critical
Publication of JP6573069B2 publication Critical patent/JP6573069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、複数の電池セルと、普通充電時に作動して電池セルの放電を行うバランサ回路とを有するバッテリと、外部電源を用いてバッテリを充電する充電装置とを備える電動車両に搭載され、充電装置を制御する充電制御装置に関する。   The present invention is mounted on an electric vehicle including a plurality of battery cells, a battery having a balancer circuit that operates during normal charging and discharges the battery cells, and a charging device that charges the battery using an external power source. The present invention relates to a charging control device that controls a charging device.

電気自動車やプラグインハイブリッド自動車等の電動車両に搭載されるバッテリ(二次電池)は、例えば、家庭用電源による普通充電、又は専用電源を用いた急速充電により、電力が供給されるように構成されている。   A battery (secondary battery) mounted on an electric vehicle such as an electric vehicle or a plug-in hybrid vehicle is configured to be supplied with power by, for example, ordinary charging using a household power source or rapid charging using a dedicated power source. Has been.

バッテリは、複数の電池セルを備えており、充放電サイクルを繰り返しているうちに、各電池セル間の温度状態や劣化状況の違い等に起因して、各電池セル間に電圧差が生じてしまう。そして、バッテリの充電時には、各電池セルの最高電圧(最高セル電圧)が許容最高電圧に達すると充電を停止し、放電時には、各電池セルの最低電圧(最低セル電圧)が許容最低電圧になると放電を停止する。このため、バッテリを構成する各電池セルの電圧差が小さいほど、バッテリが本来有する電池容量をより多く使用することができる。したがって、バッテリを構成する各電池セルの電圧差は極力小さい状態に維持されていることが好ましい。   The battery includes a plurality of battery cells, and a voltage difference occurs between the battery cells due to a difference in temperature state or deterioration state between the battery cells while the charge / discharge cycle is repeated. End up. When the battery is charged, the charging is stopped when the maximum voltage (maximum cell voltage) of each battery cell reaches the allowable maximum voltage. When the battery is discharged, the minimum voltage (minimum cell voltage) of each battery cell becomes the allowable minimum voltage. Stop discharging. For this reason, the smaller the voltage difference between the battery cells constituting the battery, the more battery capacity that the battery originally has can be used. Therefore, it is preferable that the voltage difference between the battery cells constituting the battery is kept as small as possible.

しかしながら、バッテリを構成する各電池セルの電圧差は、バッテリを使用するに従い大きくなる。このため、実際に使用できるバッテリの電池容量は、バッテリを使用するに従い、徐々に減少してしまう。   However, the voltage difference between the battery cells constituting the battery increases as the battery is used. For this reason, the battery capacity of the battery that can actually be used gradually decreases as the battery is used.

このような問題を解消するために、電池セルを放電させるためのバランサ回路が各電池セルに対応して設けられたバッテリがある。バランサ回路の抵抗によって電圧の高い電池セルを放電させることで、各電池セル間の電圧差を低減させることができる(例えば、特許文献1参照)。   In order to solve such a problem, there is a battery in which a balancer circuit for discharging a battery cell is provided corresponding to each battery cell. By discharging the battery cell having a high voltage by the resistance of the balancer circuit, the voltage difference between the battery cells can be reduced (see, for example, Patent Document 1).

特開2012−191679号公報JP 2012-191679 A

このバランサ回路は、例えば、バッテリの普通充電時に作動させるが、電池セル間の電圧差が大きい場合には、普通充電中に、電池セル間の電圧差を十分に低減することができない虞がある。詳しくは、バランサ回路の抵抗の大きさ(抵抗値)は一定であり、またバッテリの普通充電時には、通常、一定の大きさの充電電流がバッテリに供給される。このため、電池セル間の電圧差が大きいと、普通充電の実行中にバランサ回路を作動させただけでは、電池セル間の電圧差を十分に低減することができない虞がある。   This balancer circuit is operated, for example, during normal charging of the battery. If the voltage difference between the battery cells is large, the voltage difference between the battery cells may not be sufficiently reduced during normal charging. . Specifically, the magnitude (resistance value) of the resistance of the balancer circuit is constant, and when the battery is normally charged, normally, a constant charging current is supplied to the battery. For this reason, if the voltage difference between the battery cells is large, there is a possibility that the voltage difference between the battery cells cannot be sufficiently reduced only by operating the balancer circuit during normal charging.

本発明は、このような事情に鑑みてなされたものであり、バッテリを構成する電池セル間の電圧差を適切に減少させることができる充電制御装置を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the charge control apparatus which can reduce the voltage difference between the battery cells which comprise a battery appropriately.

上記課題を解決する本発明の第1の態様は、複数の電池セルと、普通充電時に作動して前記電池セルの放電を行うバランサ回路とを有するバッテリと、外部電源を用いて前記バッテリを充電する充電装置とを備える電動車両に搭載され、前記充電装置を制御する充電制御装置であって、充電終了時刻を含む設定情報に基づいて、所定のタイミングで前記充電装置により前記バッテリに充電電流を供給して予約充電を実行する予約充電手段と、電池セルの電圧を検出すると共に、各電池セル間の電圧差の最大値を算出する電圧差算出手段と、前記予約充電手段による前記予約充電の実行中に前記バランサ回路を作動させて前記電圧差の低減を図るバランサ作動手段と、前記電圧差の最大値が所定閾値以上である場合に、前記バランサ回路の作動時の前記充電電流を減少させる電流調整手段と、前記電圧差の解消に要する前記バランサ回路の作動時間を算出する作動時間算出手段と、を有し、前記電流調整手段は、前記バランサ回路が前記作動時間だけ作動するように前記充電電流を減少させることを特徴とする充電制御装置にある。 According to a first aspect of the present invention for solving the above-described problem, a battery having a plurality of battery cells, a balancer circuit that operates during normal charging and discharges the battery cells, and the battery is charged using an external power source. A charging control device that is mounted on an electric vehicle including a charging device that controls the charging device, and the charging device supplies a charging current to the battery at a predetermined timing based on setting information including a charging end time. a reservation charge means for executing the reservation charge is supplied, and detects the voltage of each battery cell, and the voltage difference calculating means for calculating the maximum value of the voltage difference between the battery cells, the reservation charging by the reservation charging means a balancer actuating means to reduce the voltage difference by operating the balancer circuit during execution of, when the maximum value of the voltage difference is equal to or greater than a predetermined threshold value, action of the balancer circuit Includes a current regulating means for reducing the charging current when the operating time calculating means for calculating the operating time of the balancer circuit required to eliminate the voltage difference, and the current adjusting means, the balancer circuit is the The charging control apparatus is characterized in that the charging current is decreased so as to operate only for an operating time .

本発明の第2の態様は、第1の態様の充電制御装置であって、前記電流調整手段は、前記電圧差の最大値が大きいほど前記充電電流を減少させることを特徴とする充電制御装置にある。 A second aspect of the present invention is the charge control apparatus according to the first aspect, wherein the current adjustment means decreases the charge current as the maximum value of the voltage difference increases. It is in.

本発明の第の態様は、第1又は2の態様の充電制御装置であって、前記電圧差の解消を優先する電圧差解消優先モード、又は前記バッテリの充電を優先する充電優先モードを手動で選択する手動選択手段と、を備え、前記手動選択手段により前記電圧差解消優先モードが選択されている場合、前記予約充電手段は、前記バランサ回路が前記作動時間だけ作動するように前記充電終了時刻を遅らせることを特徴とする充電制御装置にある。 A third aspect of the present invention is the charge control device according to the first or second aspect, wherein the voltage difference elimination priority mode that prioritizes elimination of the voltage difference or the charge priority mode that prioritizes charging of the battery is manually performed. Manual selection means for selecting, when the voltage difference elimination priority mode is selected by the manual selection means, the reservation charging means terminates the charging so that the balancer circuit operates only for the operation time. The charging control apparatus is characterized by delaying the time.

本発明の第の態様は、第1から3の何れか一つの態様の充電制御装置であって、前記バランサ作動手段は、前記バッテリのSOCとOCVとの関係に基づいて予め設定されているバランサ作動期間に前記バランサ回路を作動させることを特徴とする充電制御装置にある。 A fourth aspect of the present invention is the charge control device according to any one of the first to third aspects, wherein the balancer operating means is set in advance based on a relationship between the SOC and the OCV of the battery. In the charge control device, the balancer circuit is operated during a balancer operation period.

かかる本発明の充電制御装置によれば、予約充電時にバランサ回路を適切に作動させることができ、バッテリを構成する電池セル間の電圧差を効果的に減少させることができる。したがって、バッテリが本来有する電池容量をより多く使用することができるようになる。   According to such a charging control device of the present invention, the balancer circuit can be appropriately operated during reserved charging, and the voltage difference between the battery cells constituting the battery can be effectively reduced. Therefore, the battery capacity that the battery originally has can be used more.

本発明の一実施形態に係る電動車両の概略構成を示す図である。It is a figure showing the schematic structure of the electric vehicle concerning one embodiment of the present invention. バランサ回路を備えるバッテリの概略構成を説明するための模式図である。It is a schematic diagram for demonstrating schematic structure of a battery provided with a balancer circuit. 本発明の一実施形態に係る充電制御装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the charge control apparatus which concerns on one Embodiment of this invention. 従来技術に係る予約充電制御の一例を示すタイミングチャートである。It is a timing chart which shows an example of the reservation charge control which concerns on a prior art. 本発明に係る予約充電制御の一例を示すタイミングチャートである。It is a timing chart which shows an example of the reservation charge control which concerns on this invention. 本発明の一実施形態に係る充電制御装置の変形例を示すブロック図である。It is a block diagram which shows the modification of the charge control apparatus which concerns on one Embodiment of this invention. バッテリのSOC―OCV特性の一例を示す図である。It is a figure which shows an example of the SOC-OCV characteristic of a battery. 本発明に係る予約充電制御の一例を示すタイミングチャートである。It is a timing chart which shows an example of the reservation charge control which concerns on this invention. 本発明に係る予約充電制御の一例を示すタイミングチャートである。It is a timing chart which shows an example of the reservation charge control which concerns on this invention.

以下、本発明を実施するための形態について説明する。
図1は電動車両の概略構成を示す図であり、図2はバッテリが備えるバランサ回路の概略構成を説明するための模式図であり、図3は電動車両の制御装置の概略構成を示すブロック図である。
Hereinafter, modes for carrying out the present invention will be described.
1 is a diagram showing a schematic configuration of an electric vehicle, FIG. 2 is a schematic diagram for explaining a schematic configuration of a balancer circuit included in a battery, and FIG. 3 is a block diagram showing a schematic configuration of a control device for the electric vehicle. It is.

本実施形態に係る電動車両1は、電気自動車(EV)であり、二次電池であるバッテリ2と、このバッテリ2からの電力供給により作動する電動機である走行用モータ3と、を備えている。走行用モータ3は、駆動機構4を介して駆動輪(本実施形態では、前輪)5に連結されている。   The electric vehicle 1 according to the present embodiment is an electric vehicle (EV), and includes a battery 2 that is a secondary battery and a traveling motor 3 that is an electric motor that operates by supplying power from the battery 2. . The traveling motor 3 is connected to driving wheels (in this embodiment, front wheels) 5 via a driving mechanism 4.

ここで、バッテリ2は、例えば、図2に示すように、直列に接続された複数の電池セル21と、各電池セル21に対応するバランサ回路22と、を備えている。また各電池セル21には、電池セル21の電圧を検出するためのセル電圧モニタ(電圧検出手段)23が設けられている。バランサ回路22は、直列に接続されたスイッチ24と抵抗25とを、各電池セル21に対応して備えている。このバランサ回路22が設けられていることで、各電池セル21間の電圧差を小さくして、バッテリ2の実質的な充電容量の低下を抑制することができるようになっている。   Here, for example, as illustrated in FIG. 2, the battery 2 includes a plurality of battery cells 21 connected in series and a balancer circuit 22 corresponding to each battery cell 21. Each battery cell 21 is provided with a cell voltage monitor (voltage detection means) 23 for detecting the voltage of the battery cell 21. The balancer circuit 22 includes a switch 24 and a resistor 25 connected in series corresponding to each battery cell 21. By providing the balancer circuit 22, the voltage difference between the battery cells 21 can be reduced, and a substantial reduction in the charge capacity of the battery 2 can be suppressed.

またバッテリ2は、急速充電及び普通充電の二つの充電方式に対応して外部電源による充電が可能となっている。急速充電とは、バッテリ2を短時間で充電することを目的とし、外部電源として専用の急速充電設備を用いて、バッテリ2に大電流(普通充電よりも大きい電流)を流すことにより行われる充電方式である。普通充電とは、外部電源として、例えば、家庭用電源等を使用し、バッテリ2に急速充電よりも少ない電流を流すことにより行われる充電方式である。   Further, the battery 2 can be charged by an external power source in accordance with two charging methods of quick charging and normal charging. The quick charging is intended to charge the battery 2 in a short time, and charging is performed by passing a large current (current larger than normal charging) through the battery 2 using a dedicated rapid charging facility as an external power source. It is a method. The normal charging is a charging method that is performed by using, for example, a household power source as an external power source, and flowing a smaller current to the battery 2 than the quick charging.

電動車両1のユーザは、バッテリ2の充電を行う際、普通充電又は急速充電の何れか一方の充電方式を選択して、所定の外部電源とバッテリ2とを接続して充電する。電動車両1には、外部電源に繋がる給電コネクタが接続される充電口(インレット)6が設けられている。なお充電口6は、普通充電用及び急速充電用にそれぞれ設けられていてもよいし、普通充電用及び急速充電用に共通し設けられていてもよい。   When charging the battery 2, the user of the electric vehicle 1 selects either the normal charging or the quick charging and connects the predetermined external power source and the battery 2 to charge. The electric vehicle 1 is provided with a charging port (inlet) 6 to which a power feeding connector connected to an external power source is connected. The charging port 6 may be provided for normal charging and quick charging, respectively, or may be provided in common for normal charging and quick charging.

また電動車両1には、バッテリ2を充電するための充電装置7が搭載されている。充電装置7は、バッテリ2と充電口6との間に介装されている。そして、例えば、バッテリ2を普通充電する際には、電動車両1の充電口6に接続された充電コネクタを介して家庭用電源と充電装置7とが接続され、充電装置7には家庭用電源から100V程度の交流電力が入力される。充電装置7では、家庭用電源から入力された入力電力を350V程度の直流電力に変換・昇圧することで、バッテリ2の充電に適した充電電流とする。この充電電流をバッテリ2へ入力することで、バッテリ2が充電される。   The electric vehicle 1 is equipped with a charging device 7 for charging the battery 2. The charging device 7 is interposed between the battery 2 and the charging port 6. For example, when the battery 2 is normally charged, a household power source and the charging device 7 are connected via a charging connector connected to the charging port 6 of the electric vehicle 1, and the household power source is connected to the charging device 7. AC power of about 100V is input. The charging device 7 converts the input power input from the household power source into DC power of about 350 V and boosts it to obtain a charging current suitable for charging the battery 2. By inputting this charging current to the battery 2, the battery 2 is charged.

また電動車両1は、電動車両1の総合的な制御を行う制御装置10を備えている。この制御装置10は、例えばCPUやROM、RAM等を集積したLSIデバイスや組み込み電子デバイスとして構成され、電動車両1に設けられた車載ネットワーク網の通信ラインに接続されている。   The electric vehicle 1 also includes a control device 10 that performs comprehensive control of the electric vehicle 1. The control device 10 is configured as, for example, an LSI device or an embedded electronic device in which a CPU, a ROM, a RAM, and the like are integrated, and is connected to a communication line of an in-vehicle network provided in the electric vehicle 1.

そして制御装置10は、電動車両1の制御の一つとして、充電装置7によるバッテリ2の充電を制御する。すなわち本実施形態に係る制御装置10は、充電制御装置としての充電制御部11を備え、この充電制御部11が充電装置7によるバッテリ2の急速充電及び普通充電を制御する。   The control device 10 controls the charging of the battery 2 by the charging device 7 as one of the controls of the electric vehicle 1. That is, the control device 10 according to the present embodiment includes a charge control unit 11 as a charge control device, and the charge control unit 11 controls rapid charging and normal charging of the battery 2 by the charging device 7.

ここで、充電制御部11は、普通充電として、マニュアル充電と共に予約充電を実行可能に構成されている。マニュアル充電とは、充電装置7と外部電源とが接続されると直ちに実行される通常の普通充電をいい、予約充電とは、充電装置7と家庭用電源とが接続された状態で、予約された充電終了時刻までに自動的に実行される普通充電をいう。   Here, the charge control unit 11 is configured to be able to execute reserved charging as well as manual charging as normal charging. Manual charging refers to normal normal charging that is performed immediately after the charging device 7 and an external power source are connected. Reserved charging is reserved in a state where the charging device 7 and the household power source are connected. Normal charging that is automatically performed before the end of charging.

そして本発明に係る充電制御部(充電制御装置)11は、この予約充電時におけるバッテリ2の充電制御に特徴を有する。以下、充電制御部11による予約充電時のバッテリ2の充電制御について詳細に説明する。   And the charge control part (charge control apparatus) 11 which concerns on this invention has the characteristics in charge control of the battery 2 at the time of this reservation charge. Hereinafter, charging control of the battery 2 at the time of reserved charging by the charging control unit 11 will be described in detail.

図3に示すように、充電制御部11は、予約充電手段12と、電圧差算出手段13と、電圧差判定手段14と、バランサ作動手段15と、電流調整手段16と、作動時間算出手段17を有する。   As shown in FIG. 3, the charging control unit 11 includes a reserved charging unit 12, a voltage difference calculating unit 13, a voltage difference determining unit 14, a balancer operating unit 15, a current adjusting unit 16, and an operating time calculating unit 17. Have

予約充電手段12は、例えば、電動車両1に設けられたナビゲーション装置8等からユーザによって入力される設定情報に基づいて、充電装置7によりバッテリ2に所定の充電電流を供給して予約充電を実行する。設定情報には、少なくとも予約充電の終了時刻(充電終了時刻)が含まれている。なお設定情報には、例えば、充電開始時刻や、充電動作を実行する時間(充電時間)等が含まれていてもよい。そして予約充電手段12は、この設定情報に基づいて、基本的には充電終了時刻までに予約充電が終了するように充電装置7を適宜作動させて充電動作を実行する。   The reserved charging means 12 performs reserved charging by supplying a predetermined charging current to the battery 2 by the charging device 7 based on setting information input by the user from the navigation device 8 or the like provided in the electric vehicle 1, for example. To do. The setting information includes at least a reservation charging end time (charging end time). The setting information may include, for example, a charging start time, a time for performing a charging operation (charging time), and the like. Based on the setting information, the reserved charging means 12 basically operates the charging device 7 so that the reserved charging is completed before the charging end time, and executes the charging operation.

電圧差算出手段13は、予約充電手段12によって予約充電が実行される際に、バッテリ2が備えるセル電圧モニタ23からの情報を取得して各電池セル21の電圧を検出すると共に、それらの電圧差(最大値)Vdを算出する。   The voltage difference calculation means 13 acquires information from the cell voltage monitor 23 provided in the battery 2 and detects the voltage of each battery cell 21 when reservation charging is executed by the reservation charging means 12, and those voltages The difference (maximum value) Vd is calculated.

電圧差判定手段14は、電圧差算出手段13によって算出された電圧差Vdが、第1の閾値又は第2の閾値を超えているか否かを判定する。第1の閾値及び第2の閾値は、バッテリ2の電気容量等に基づいて適宜設定されている。すなわち電圧差判定手段14は、電池セル21間の電圧差の大きさを判定する。   The voltage difference determination unit 14 determines whether or not the voltage difference Vd calculated by the voltage difference calculation unit 13 exceeds the first threshold value or the second threshold value. The first threshold value and the second threshold value are appropriately set based on the electric capacity of the battery 2 and the like. That is, the voltage difference determination means 14 determines the magnitude of the voltage difference between the battery cells 21.

バランサ作動手段15は、予約充電手段12によってバッテリ2の予約充電が実行される際、バランサ回路22を適宜動作させる。詳しくは、バランサ作動手段15は、電圧差判定手段14によって電池セル21間の電圧差Vdが第1の閾値以上であると判定されると、つまり電池セル21間に電圧差が存在する場合には、電圧値が最大である電池セル21に対応するスイッチ24をオンにしてバランサ回路22を作動させ、抵抗25によりその電池セル21を放電させる。このようにバランサ回路22を適宜作動させることで、予約充電を実行する際に電池セル21間の電圧差の低減を図ることができる。   The balancer operating unit 15 appropriately operates the balancer circuit 22 when the reserved charging unit 12 performs reserved charging of the battery 2. Specifically, the balancer actuating means 15 determines that the voltage difference determining means 14 determines that the voltage difference Vd between the battery cells 21 is greater than or equal to the first threshold, that is, if there is a voltage difference between the battery cells 21. Turns on the switch 24 corresponding to the battery cell 21 having the maximum voltage value, operates the balancer circuit 22, and discharges the battery cell 21 by the resistor 25. By appropriately operating the balancer circuit 22 in this way, it is possible to reduce the voltage difference between the battery cells 21 when performing reserved charging.

電流調整手段16は、電池セル21間の電圧差Vdが所定閾値(本実施形態では、第1の閾値よりも大きい第2の閾値)以上である場合、つまり電池セル21間の電圧差Vdが比較的大きい場合、予約充電におけるバランサ回路22の作動時の充電電流を適宜減少させる。なお電池セル21間の電圧差Vdが第2の閾値を超えている場合、バッテリ2が本来有する電池容量を適切に使用できていない状態であるといえる。   When the voltage difference Vd between the battery cells 21 is equal to or greater than a predetermined threshold value (a second threshold value that is larger than the first threshold value in this embodiment), that is, the current adjustment unit 16 has a voltage difference Vd between the battery cells 21. If it is relatively large, the charging current during the operation of the balancer circuit 22 in reserved charging is appropriately reduced. In addition, when the voltage difference Vd between the battery cells 21 exceeds the second threshold value, it can be said that the battery capacity originally possessed by the battery 2 is not properly used.

このような状態では、通常の充電電流で予約充電を行う時間だけでは、バランサ回路22の作動により電池セル21間の電圧差を十分に解消できない虞があるため、本発明では、バランサ回路22の作動時の充電電流を適宜減少させている。   In such a state, there is a possibility that the voltage difference between the battery cells 21 cannot be sufficiently eliminated by the operation of the balancer circuit 22 only by the time for performing the reserved charging with the normal charging current. The charging current during operation is appropriately reduced.

充電電流が調整(低減)された場合、予約充電手段12は、例えば、充電開始時刻T1を早めてバッテリ2の充電時間を延長することで、予約充電によるバッテリ2の充電量を確保する。すなわち予約充電手段12は、充電電流が調整された場合でも、極力、予約終了時刻までにバッテリ2の予約充電を完了できるように充電時間を適宜制御する。そして、このように充電時間が長くなることに伴い、バランサ回路22を作動できる時間も長くなる。このため、電池セル21間の電圧差Vdが比較的大きくても、予約充電時にその電圧差Vdを十分に低減することができる。   When the charging current is adjusted (reduced), the reserved charging unit 12 ensures the amount of charge of the battery 2 by reserved charging, for example, by extending the charging start time T1 and extending the charging time of the battery 2. That is, the reserved charging means 12 appropriately controls the charging time so that the reserved charging of the battery 2 can be completed as much as possible even when the charging current is adjusted. As the charging time becomes longer, the time during which the balancer circuit 22 can be operated becomes longer. For this reason, even if the voltage difference Vd between the battery cells 21 is relatively large, the voltage difference Vd can be sufficiently reduced during reserved charging.

ここで、電流調整手段16は、電池セル21間の電圧差Vdが大きいほど、通常時(電圧差が生じていない時)に比べて充電電流を減少させることが好ましい。これにより、電池セル21間の電圧差Vdを一回の予約充電によってより確実に低減させることができる。さらに、例えば、ナビゲーション装置8でユーザが予約充電の設定を行った設定時刻から充電終了時刻までの時間(設定時間)に余裕がある場合、つまり設定時間が充電時間よりも十分に長い場合、電流調整手段16は、作動時間算出手段17によって算出される作動時間だけバランサ回路22が作動するように、充電電流を減少させることが好ましい。   Here, as the voltage difference Vd between the battery cells 21 is larger, it is preferable that the current adjusting unit 16 reduce the charging current as compared with the normal time (when no voltage difference is generated). Thereby, the voltage difference Vd between the battery cells 21 can be more reliably reduced by one reservation charge. Furthermore, for example, when there is a margin in the time (set time) from the set time when the user sets the reserved charge in the navigation device 8 to the charge end time, that is, when the set time is sufficiently longer than the charge time, The adjusting means 16 preferably reduces the charging current so that the balancer circuit 22 operates for the operating time calculated by the operating time calculating means 17.

作動時間算出手段17は、例えば、バッテリ2の充電量(SOC)、電池セル21間の電圧差Vd、バランサ回路22を構成する抵抗25の抵抗値R1等に基づいて、電圧差Vdの解消に要するバランサ回路22の作動時間を算出する。すなわちバッテリ2の残量(SOC)に基づく出力電圧と、抵抗25の抵抗値から、バランサ回路22の作動による電池セル21の放電電流iが分かるため、その値に応じて、電圧差Vdの解消に要するバランサ回路22の作動時間を算出することができる。   The operating time calculation means 17 is used to eliminate the voltage difference Vd based on, for example, the amount of charge (SOC) of the battery 2, the voltage difference Vd between the battery cells 21, the resistance value R1 of the resistor 25 constituting the balancer circuit 22, and the like. The required operation time of the balancer circuit 22 is calculated. That is, since the discharge current i of the battery cell 21 due to the operation of the balancer circuit 22 is known from the output voltage based on the remaining amount (SOC) of the battery 2 and the resistance value of the resistor 25, the voltage difference Vd is eliminated according to the value. The operation time of the balancer circuit 22 required for the calculation can be calculated.

そして、この作動時間に対して設定時間が十分に長い場合、電流調整手段16は、通常時の充電電流を減少させ、それに伴い、予約充電手段12は、充電開始時刻を早める。したがって充電電流を減少させていない通常よりも充電時間が長くなり、バランサ回路22を作動させることができる作動時間も長くなる。これにより、充電終了時刻までにバッテリ2の予約充電を完了することができ、且つ電池セル21間の電圧差Vdも十分に低減させることができる。   When the set time is sufficiently longer than the operation time, the current adjusting unit 16 decreases the normal charging current, and accordingly, the reserved charging unit 12 advances the charging start time. Therefore, the charging time becomes longer than usual when the charging current is not reduced, and the operating time during which the balancer circuit 22 can be operated also becomes longer. Thereby, the reserved charge of the battery 2 can be completed by the charge end time, and the voltage difference Vd between the battery cells 21 can be sufficiently reduced.

ただし、通常の予約充電時には、予め設定された充電電流をバッテリ2に供給しており、充電動作を実行する充電時間は、この通常時の充電電流とバッテリ2の残量等で決定される。このため、電池セル21間の電圧差Vdが比較的大きいと、充電時間中にバランサ回路22を作動させただけでは、対応する電池セル21を十分に放電させることができず、電池セル21間の電圧差Vdを十分に低減させることができない虞がある。   However, at the time of normal reserved charging, a preset charging current is supplied to the battery 2, and the charging time for performing the charging operation is determined by the normal charging current, the remaining amount of the battery 2, and the like. For this reason, if the voltage difference Vd between the battery cells 21 is relatively large, the corresponding battery cell 21 cannot be sufficiently discharged only by operating the balancer circuit 22 during the charging time. The voltage difference Vd may not be sufficiently reduced.

しかしながら、本発明に係る充電制御部(充電制御装置)11では、電圧差Vdが比較的大きい場合には、バランサ回路22の作動時の充電電流を、通常時の充電電流に比べて適宜減少させるようにしているため、予約充電時に、電池セル21間の電圧差Vdを効果的に低減させることができる。   However, in the charge control unit (charge control device) 11 according to the present invention, when the voltage difference Vd is relatively large, the charge current during operation of the balancer circuit 22 is appropriately reduced as compared with the normal charge current. Thus, the voltage difference Vd between the battery cells 21 can be effectively reduced during reserved charging.

次に、図4及び図5のタイムチャートを参照して、本実施形態に係る充電制御装置によるバッテリの充電制御について、さらに詳細に説明する。
図4及び図5に示すように、例えば、時刻(設定時刻)T1に、充電終了時刻T2を含む設定情報が、電動車両1のユーザによってナビゲーション装置8等により設定されたとする。予約充電の設定情報が設定されると、まずは、通常の充電電流Iaで満充電までバッテリ2を充電するのに要する充電時間Taを算出する。さらに予約充電の設定時刻(例えば、現在時刻)T1から充電終了時刻T2までの時間(設定時間)Tbを算出する。
Next, with reference to the time charts of FIGS. 4 and 5, the charging control of the battery by the charging control device according to the present embodiment will be described in more detail.
As shown in FIGS. 4 and 5, for example, it is assumed that setting information including the charging end time T2 is set by the user of the electric vehicle 1 by the navigation device 8 or the like at time (set time) T1. When the setting information for reserved charging is set, first, the charging time Ta required to charge the battery 2 until full charging is calculated with the normal charging current Ia. Further, a time (set time) Tb from the set time (for example, current time) T1 to the charge end time T2 of the reserved charge is calculated.

また充電終了時刻T2までにバッテリ2の予約充電を完了する(本実施形態ではバッテリ2を満充電とする)ために、それに必要な充電開始時刻T3を算出する。すなわち充電時間Taを充電終了時刻T2から逆算することで、充電開始時刻T3が求められる。   Further, in order to complete the reserved charging of the battery 2 by the charging end time T2 (in this embodiment, the battery 2 is fully charged), a charging start time T3 required for it is calculated. That is, the charging start time T3 is obtained by calculating the charging time Ta backward from the charging end time T2.

そして従来は、図4に示すように、電池セル21間の電圧差に拘わらず、設定時刻T1から所定の待機時間Tcを経て、充電開始時刻T3になると、通常の充電電流Iaでバッテリ2の充電動作が開始(ON)される。その際、電池セル21間の電圧差Vd(Vd1)が生じている場合には、充電開始と共にバランサ回路22を作動させる(バランサ回路ON)。これにより、電池セル21間の電圧差Vdの低減を図ることができる。ただし、電池セル21間の電圧差Vdが比較的大きい場合、その効果は小さい。すなわち予約充電開始時の電圧差Vd1が大きい場合、充電終了時T2の電圧差Vd2は充電開始時刻の電圧差Vd1に対して大きく減少しないことがある。   And conventionally, as shown in FIG. 4, regardless of the voltage difference between the battery cells 21, when the charging start time T3 is reached after the predetermined standby time Tc from the set time T1, the battery 2 is charged with the normal charging current Ia. The charging operation is started (ON). At this time, if a voltage difference Vd (Vd1) between the battery cells 21 is generated, the balancer circuit 22 is activated at the same time as charging is started (balancer circuit ON). Thereby, the voltage difference Vd between the battery cells 21 can be reduced. However, when the voltage difference Vd between the battery cells 21 is relatively large, the effect is small. That is, when the voltage difference Vd1 at the start of reserved charging is large, the voltage difference Vd2 at the end of charging T2 may not be significantly reduced with respect to the voltage difference Vd1 at the charging start time.

一方、本実施形態では、さらにバッテリ2の残量、電圧差Vd、バランサ回路22を構成する抵抗25の大きさ(抵抗値)等に基づいて、電圧差Vdの解消に要するバランサ回路22の作動時間Tdを算出する。そして図5に示すように、作動時間Tdが充電時間Taよりも長い場合には、通常よりも減少させた充電電流Ibでバッテリ2の充電を行うことで、バッテリ2の充電時間Taを長く確保する。そして、充電開始(充電動作ON)と共にバランサ回路22を作動させ(バランサ回路ON)、充電終了(充電動作OFF)と共にバランサ回路22の作動も終了させている(バランサ回路OFF)。これにより、バランサ回路22の作動時間Tdも長くなるため、電圧差Vdをより確実に低減させることができる。すなわち充電終了時刻T2の電圧差Vd2は、充電開始時刻T3の電圧差Vd1に対して大きく減少する。   On the other hand, in the present embodiment, the operation of the balancer circuit 22 required to eliminate the voltage difference Vd is further based on the remaining amount of the battery 2, the voltage difference Vd, the size (resistance value) of the resistor 25 constituting the balancer circuit 22, and the like. Time Td is calculated. As shown in FIG. 5, when the operation time Td is longer than the charging time Ta, the battery 2 is charged with a charging current Ib that is decreased from the normal time, thereby ensuring a long charging time Ta of the battery 2. To do. Then, the balancer circuit 22 is actuated at the start of charging (charging operation ON) (balancer circuit ON), and the operation of the balancer circuit 22 is terminated at the end of charging (charging operation OFF) (balancer circuit OFF). As a result, the operation time Td of the balancer circuit 22 is also lengthened, so that the voltage difference Vd can be reduced more reliably. That is, the voltage difference Vd2 at the charging end time T2 greatly decreases with respect to the voltage difference Vd1 at the charging start time T3.

例えば、設定時間Tbが作動時間Tdに対して十分に長い場合には、図5に示すように、バッテリ2の充電開始時刻T3を早めることで、充電終了時刻T2までに予約充電を完了させることができる。これにより、ユーザの希望する時刻までに予約充電を終了させ、且つ電池セル21間の電圧差Vdも十分に抑制することができる。なお、このような充電動作をマニュアル充電時に実行すると、充電終了時刻が遅れてしまうことになるが、予約充電時に実行することで、充電終了時刻を遅らせなくても、電池セル21間の電圧差Vdを十分に低減させることができる。   For example, when the set time Tb is sufficiently longer than the operation time Td, the reserved charging is completed by the charging end time T2 by advancing the charging start time T3 of the battery 2 as shown in FIG. Can do. Thereby, reservation charge is complete | finished by the time which a user desires, and the voltage difference Vd between the battery cells 21 can also be fully suppressed. Note that if such a charging operation is performed during manual charging, the charging end time will be delayed. However, if the charging operation is performed during reserved charging, the voltage difference between the battery cells 21 can be achieved without delaying the charging end time. Vd can be sufficiently reduced.

ここで、電流調整手段16による充電電流の調整量は、電池セル21間の電圧差Vdに応じて適宜決定されればよいが、電池セル21間の電圧差(最大値)Vdが大きいほど充電電流の減少量も大きくすることが好ましい。さらに、電流調整手段16は、バランサ回路22が、作動時間算出手段17によって算出された作動時間Tdだけ作動するように充電電流を適宜減少させることが好ましい。言い換えれば、充電電流の減少量は極力小さくすることが好ましい。これにより充電効率の低下を抑えつつ電池セル21間の電圧差Vdを減少させることができる。   Here, the amount of adjustment of the charging current by the current adjusting means 16 may be appropriately determined according to the voltage difference Vd between the battery cells 21, but the charging is performed as the voltage difference (maximum value) Vd between the battery cells 21 increases. It is also preferable to increase the amount of decrease in current. Furthermore, it is preferable that the current adjusting unit 16 appropriately reduce the charging current so that the balancer circuit 22 operates only for the operation time Td calculated by the operation time calculating unit 17. In other words, it is preferable to reduce the reduction amount of the charging current as much as possible. Thereby, the voltage difference Vd between the battery cells 21 can be reduced while suppressing a decrease in charging efficiency.

ところで、本実施形態に係る充電制御部11による予約充電では、原則として充電終了時刻T2までに予約充電が終了するように制御される。すなわち充電終了時刻T2になると、バッテリ2の残量が所望の充電量に達していなくても充電動作が停止されるようになっている。しかしながら、充電終了時刻T2を必要に応じて遅らせるようにしてもよい。   By the way, in the reserved charging by the charging control unit 11 according to the present embodiment, in principle, the reserved charging is controlled to be completed by the charging end time T2. That is, when the charging end time T2 is reached, the charging operation is stopped even if the remaining amount of the battery 2 does not reach the desired charging amount. However, the charging end time T2 may be delayed as necessary.

例えば、図6に示すように、制御装置10が、手動選択手段としての切り換えスイッチ18を備え、この切り換えスイッチ18により、例えば、電池セル21間の電圧差Vdの解消を優先する電圧差解消優先モード、又はバッテリの充電終了時刻を優先する時刻優先モードとを手動で選択可能とする。   For example, as shown in FIG. 6, the control device 10 includes a changeover switch 18 as manual selection means, and the changeover switch 18 gives priority to voltage difference elimination priority, for example, to eliminate the voltage difference Vd between the battery cells 21. It is possible to manually select a mode or a time priority mode that prioritizes the battery charging end time.

そして、切り換えスイッチ18により電圧差解消優先モードが選択されている場合には、バランサ回路22が作動時間Tdだけ作動するように充電終了時刻を遅らせるようにしてもよい。すなわち、作動時間Tdが設定時間Tbよりも長い場合には(図4,5参照)、充電終了時刻T2を超えて充電動作(バランサ回路22の作動)を継続するようにしてもよい。
これにより、ユーザの意志に応じて、電池セル21間の電圧差Vdをより確実に解消することができる。
When the voltage difference elimination priority mode is selected by the changeover switch 18, the charging end time may be delayed so that the balancer circuit 22 operates only for the operation time Td. That is, when the operation time Td is longer than the set time Tb (see FIGS. 4 and 5), the charging operation (operation of the balancer circuit 22) may be continued beyond the charging end time T2.
Thereby, according to a user's will, the voltage difference Vd between the battery cells 21 can be eliminated more reliably.

ところで、バランサ回路22を作動させるタイミングは、OCV(開放電圧)の変化が比較的小さい期間に作動させることが好ましい。言い換えれば、バランサ回路22は、バッテリ2のSOC(充電率)とOCVとの関係に基づいて予め設定されるバランサ作動期間に作動させることが好ましい。例えば、図7に示すように、バッテリ2の特性として、SOCがX%よりも低い状態、及びSOCがY%よりも高い状態では、OCVの変化が大きい傾向にあるとする。この場合には、OCVの変化が比較的小さいバッテリのSOCがX%からY%である期間をバランサ作動期間として設定し、このバランサ作動期間にバランサ回路22が作動させることが好ましい。例えば、充電制御部11が、このようなSOC−OCV特性グラフを、所定のマップとして備えておき、そのマップに基づいて、バランサ回路22を適宜作動させることが好ましい。   By the way, it is preferable to operate the balancer circuit 22 during a period in which a change in OCV (open voltage) is relatively small. In other words, the balancer circuit 22 is preferably operated during a balancer operation period set in advance based on the relationship between the SOC (charge rate) of the battery 2 and the OCV. For example, as shown in FIG. 7, it is assumed that the change in OCV tends to be large when the SOC is lower than X% and the SOC is higher than Y% as the characteristics of the battery 2. In this case, it is preferable to set a period in which the SOC of the battery having a relatively small change in OCV is from X% to Y% as the balancer operation period, and to operate the balancer circuit 22 during this balancer operation period. For example, it is preferable that the charge control unit 11 includes such a SOC-OCV characteristic graph as a predetermined map and appropriately operates the balancer circuit 22 based on the map.

図8は、バッテリの残量がX%よりも少ない状態でバッテリの予約充電を行った場合のタイミングチャートである。
この例では、充電開始時刻T3になると、まずは通常の充電電流Iaでの充電動作を実行する。その後、バッテリ2のSOCがX%まで回復した時点(時刻T4)で、充電電流を減少させると共にバランサ回路22を作動させ、バッテリ2のSOCがY%に達した時点(時刻T5)で、バランサ回路22の作動を停止させることが好ましい。さらにこの場合も、バランサ回路22を作動させている期間(T4−T5間)が、作動時間算出手段17によって算出された作動時間Tdと一致するように設定されていることが望ましい。これにより電池セル21間の電圧差Vdをより適切に低減させることができる。
FIG. 8 is a timing chart when the reserved charge of the battery is performed in a state where the remaining amount of the battery is less than X%.
In this example, when the charging start time T3 is reached, first, the charging operation with the normal charging current Ia is executed. Thereafter, when the SOC of the battery 2 recovers to X% (time T4), the charging current is reduced and the balancer circuit 22 is operated. When the SOC of the battery 2 reaches Y% (time T5), the balancer is It is preferable to stop the operation of the circuit 22. Further in this case, it is desirable that the period during which the balancer circuit 22 is operated (between T4 and T5) is set so as to coincide with the operation time Td calculated by the operation time calculation means 17. Thereby, the voltage difference Vd between the battery cells 21 can be reduced more appropriately.

なお、本実施形態では、バランサ回路22の作動を停止した後も、減少させた充電電流Ibでバッテリ2の充電を継続しているが、バランサ回路22の作動を停止した後は、通常の充電電流Iaに戻すようにしてもよい。   In the present embodiment, the battery 2 is continuously charged with the reduced charging current Ib even after the operation of the balancer circuit 22 is stopped. However, after the operation of the balancer circuit 22 is stopped, normal charging is performed. You may make it return to the electric current Ia.

また上述の実施形態では、バランサ回路22の作動時の充電電流を低減し、バッテリ2の充電を行いつつ所定電池セル21の放電を行うようにしたが、設定時間Tbに十分な余裕があれば、バッテリ2の充電と、電池セル21の放電とは異なるタイミングで実施するようにしてもよい。例えば、図9に示すように、充電開始時刻T3になると、充電動作は開始するものの、まずはバッテリ2に対して実質的に充電電流を供給することなく(充電電流を実質的にゼロとなるように減少させて)バランサ回路22を作動させる。すなわち、充電開始時刻T3になると、まずは所定の電池セル21の放電を行う。そして、電池セル21間の電圧差Vdが実質的に解消した時点(時刻T6)で、バッテリ2に通常の充電電流Iaを供給して充電終了時刻T2までバッテリ2を充電するようにしてもよい。   In the above-described embodiment, the charging current during operation of the balancer circuit 22 is reduced, and the predetermined battery cell 21 is discharged while charging the battery 2. However, if the set time Tb has a sufficient margin, The charging of the battery 2 and the discharging of the battery cell 21 may be performed at different timings. For example, as shown in FIG. 9, at the charging start time T3, the charging operation starts, but first, the charging current is not substantially supplied to the battery 2 (the charging current is substantially zero). The balancer circuit 22 is activated. That is, when the charging start time T3 is reached, the predetermined battery cell 21 is first discharged. Then, when the voltage difference Vd between the battery cells 21 is substantially eliminated (time T6), the battery 2 may be charged until the normal charging current Ia is supplied to the battery 2 until the charging end time T2. .

この場合にも、ユーザの希望する時刻までには予約充電が終了し、且つ電池セル21間の電圧差Vdも十分に抑制することができる。   Also in this case, the reserved charging is completed by the time desired by the user, and the voltage difference Vd between the battery cells 21 can be sufficiently suppressed.

以上、本発明の一実施形態について説明したが、勿論、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。   As mentioned above, although one embodiment of the present invention has been described, of course, the present invention is not limited to the above-described embodiment, and addition, omission, replacement, etc., of a configuration is possible without departing from the spirit of the present invention. And other changes are possible.

例えば、上述の実施形態では、電池セルの電圧を検出すると共に、その電圧差を算出し、この電圧差が所定閾値以上である場合に、バランサ回路の作動時の充電電流を減少させるようにしたが、必ずしも電圧セルの電圧を検出しなくてもよい。例えば、普通充電を実行した履歴を管理し、普通充電が一定期間以上実行されていない場合には、電圧差が所定閾値以上であると推定し、バランサ回路の作動時の充電電圧を適宜減少させるようにしてもよい。   For example, in the above-described embodiment, the voltage of the battery cell is detected and the voltage difference is calculated, and when the voltage difference is equal to or larger than a predetermined threshold, the charging current during operation of the balancer circuit is decreased. However, it is not always necessary to detect the voltage of the voltage cell. For example, the history of performing normal charging is managed, and when normal charging has not been performed for a certain period of time, the voltage difference is estimated to be equal to or greater than a predetermined threshold, and the charging voltage during operation of the balancer circuit is appropriately reduced. You may do it.

また例えば、上述の実施形態では、設定情報を、車両が備えるナビゲーション装置を介して入力する構成を説明したが、例えば、無線通信可能な携帯電話機やスマートフォン等の携帯機器を介して設定情報を入力する構成としてもよい。   Further, for example, in the above-described embodiment, the configuration information is input via the navigation device included in the vehicle. However, for example, the setting information is input via a mobile device such as a mobile phone or a smartphone capable of wireless communication. It is good also as composition to do.

また上述の実施形態では、予約充電によりバッテリを満充電まで充電する場合を例示したが、予約充電によりどの程度までバッテリを充電するかは、ユーザにより設定できるようにしてもよい。   Further, in the above-described embodiment, the case where the battery is charged to the full charge by the reservation charge is illustrated, but the extent to which the battery is charged by the reservation charge may be set by the user.

また例えば、上述の実施形態では、電動車両として電気自動車を一例として本発明を説明したが、勿論、本発明は、駆動用モータと共にエンジン(内燃機関)を備えるハイブリッド自動車等にも適用可能なものである。   Further, for example, in the above-described embodiment, the present invention has been described by taking an electric vehicle as an example of an electric vehicle. However, the present invention can also be applied to a hybrid vehicle including an engine (internal combustion engine) together with a drive motor. It is.

1 電動車両
2 バッテリ
3 走行用モータ
4 駆動機構
5 駆動輪
6 充電口
7 充電装置
10 制御装置
21 電池セル
22 バランサ回路
23 セル電圧モニタ
24 スイッチ
25 抵抗
DESCRIPTION OF SYMBOLS 1 Electric vehicle 2 Battery 3 Driving motor 4 Drive mechanism 5 Drive wheel 6 Charging port 7 Charging device 10 Control device 21 Battery cell 22 Balancer circuit 23 Cell voltage monitor 24 Switch 25 Resistance

Claims (4)

複数の電池セルと、普通充電時に作動して前記電池セルの放電を行うバランサ回路とを有するバッテリと、外部電源を用いて前記バッテリを充電する充電装置とを備える電動車両に搭載され、前記充電装置を制御する充電制御装置であって、
充電終了時刻を含む設定情報に基づいて、所定のタイミングで前記充電装置により前記バッテリに充電電流を供給して予約充電を実行する予約充電手段と、
電池セルの電圧を検出すると共に、各電池セル間の電圧差の最大値を算出する電圧差算出手段と、
前記予約充電手段による前記予約充電の実行中に前記バランサ回路を作動させて前記電圧差の低減を図るバランサ作動手段と、
前記電圧差の最大値が所定閾値以上である場合に、前記バランサ回路の作動時の前記充電電流を減少させる電流調整手段と
前記電圧差の解消に要する前記バランサ回路の作動時間を算出する作動時間算出手段と、を有し、
前記電流調整手段は、前記バランサ回路が前記作動時間だけ作動するように前記充電電流を減少させる
ことを特徴とする充電制御装置。
The battery is mounted on an electric vehicle including a battery having a plurality of battery cells, a balancer circuit that operates during normal charging and discharges the battery cells, and a charging device that charges the battery using an external power source, and the charging A charge control device for controlling the device,
Based on the setting information including the charging end time, reserved charging means for supplying a charging current to the battery by the charging device at a predetermined timing and executing reserved charging;
It detects a voltage of each battery cell, and the voltage difference calculating means for calculating the maximum value of the voltage difference between the battery cells,
Balancer operating means for operating the balancer circuit to reduce the voltage difference during execution of the reserved charging by the reserved charging means;
Current adjustment means for reducing the charging current during operation of the balancer circuit when the maximum value of the voltage difference is equal to or greater than a predetermined threshold ;
An operation time calculating means for calculating an operation time of the balancer circuit required to eliminate the voltage difference,
The charging control device according to claim 1, wherein the current adjusting means reduces the charging current so that the balancer circuit operates for the operating time .
請求項1に記載の充電制御装置であって、
前記電流調整手段は、前記電圧差の最大値が大きいほど前記充電電流を減少させる
ことを特徴とする充電制御装置。
The charge control device according to claim 1,
The charging control device according to claim 1, wherein the current adjusting unit decreases the charging current as the maximum value of the voltage difference increases.
請求項1又は2に記載の充電制御装置であって、
前記電圧差の解消を優先する電圧差解消優先モード、又は前記バッテリの充電を優先する充電優先モードを手動で選択する手動選択手段と、を備え、
前記手動選択手段により前記電圧差解消優先モードが選択されている場合、前記予約充電手段は、前記バランサ回路が前記作動時間だけ作動するように前記充電終了時刻を遅らせる
ことを特徴とする充電制御装置。
The charge control device according to claim 1 or 2 ,
Manual selection means for manually selecting a voltage difference cancellation priority mode that prioritizes cancellation of the voltage difference, or a charge priority mode that prioritizes charging of the battery,
When the voltage difference elimination priority mode is selected by the manual selection unit, the reserved charging unit delays the charging end time so that the balancer circuit operates only for the operation time. .
請求項1から3の何れか一項に記載の充電制御装置であって、
前記バランサ作動手段は、前記バッテリのSOCとOCVとの関係に基づいて予め設定されているバランサ作動期間に前記バランサ回路を作動させる
ことを特徴とする充電制御装置。
The charge control device according to any one of claims 1 to 3 ,
The charge control device, wherein the balancer operating means operates the balancer circuit during a balancer operating period set in advance based on a relationship between SOC and OCV of the battery.
JP2015153591A 2015-08-03 2015-08-03 Charge control device Active JP6573069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015153591A JP6573069B2 (en) 2015-08-03 2015-08-03 Charge control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015153591A JP6573069B2 (en) 2015-08-03 2015-08-03 Charge control device

Publications (2)

Publication Number Publication Date
JP2017034887A JP2017034887A (en) 2017-02-09
JP6573069B2 true JP6573069B2 (en) 2019-09-11

Family

ID=57989135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015153591A Active JP6573069B2 (en) 2015-08-03 2015-08-03 Charge control device

Country Status (1)

Country Link
JP (1) JP6573069B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6658425B2 (en) * 2016-09-23 2020-03-04 トヨタ自動車株式会社 Battery system
KR102308299B1 (en) 2017-11-06 2021-10-01 주식회사 엘지에너지솔루션 Cell module balancing and precharging apparatus and method
JP2019149922A (en) * 2018-02-28 2019-09-05 株式会社東芝 Control device and control method
KR102224076B1 (en) * 2019-02-27 2021-03-09 비테스코 테크놀로지스 코리아 주식회사 Apparatus for diagnosing reserving charging function of battery and method thereof
CN112659957B (en) * 2020-12-31 2022-11-25 爱驰汽车有限公司 Remote monitoring method of charging equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767422B2 (en) * 2001-06-01 2006-04-19 日産自動車株式会社 Charging method and charging device
JP4079428B2 (en) * 2003-05-26 2008-04-23 Necトーキン株式会社 Battery pack
JP6179407B2 (en) * 2014-01-20 2017-08-16 株式会社デンソー Battery pack equalization apparatus and method

Also Published As

Publication number Publication date
JP2017034887A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
JP6573069B2 (en) Charge control device
JP5249277B2 (en) Vehicle charging device
WO2019155751A1 (en) Vehicle-mounted charging device and vehicle-mounted charging device control method
KR102541040B1 (en) Supplementary charging sysemt and method for auxiliary battery of eco-friendly vehicle
JP2012178899A (en) Charger
JP6187308B2 (en) Charge control device
JP6724701B2 (en) In-vehicle battery charging system
JP2014107984A5 (en)
JPWO2015189983A1 (en) Charge control device and charge control method
JP6497385B2 (en) Lithium ion secondary battery system and operation method of lithium secondary battery system
KR101512879B1 (en) A system for charging electric vehicle
JP6572823B2 (en) Power system
JP2012244648A (en) Full charge control device for on-vehicle battery
KR20190073151A (en) Method and system for battery charge
JP5483588B2 (en) Charge control device
JP6888679B2 (en) Power supply system and its control method
JP6434798B2 (en) Power supply unit
JP2015220956A (en) Charger
CN111542982B (en) Control unit and method for adjusting an energy store of a vehicle
JP2020162295A (en) vehicle
JP2017107772A (en) Battery system
JP7352133B2 (en) How to raise the temperature of a secondary battery
JP6299963B2 (en) Secondary battery management device
JP2006325317A (en) Charging apparatus
JP2007143373A (en) Charging device, discharging device, charging/discharging device, charging method, and discharging method for battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190730

R151 Written notification of patent or utility model registration

Ref document number: 6573069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151