JP6572859B2 - Vacuum valve - Google Patents

Vacuum valve Download PDF

Info

Publication number
JP6572859B2
JP6572859B2 JP2016197681A JP2016197681A JP6572859B2 JP 6572859 B2 JP6572859 B2 JP 6572859B2 JP 2016197681 A JP2016197681 A JP 2016197681A JP 2016197681 A JP2016197681 A JP 2016197681A JP 6572859 B2 JP6572859 B2 JP 6572859B2
Authority
JP
Japan
Prior art keywords
peripheral surface
flexible insulating
insulating covering
covering
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016197681A
Other languages
Japanese (ja)
Other versions
JP2018060697A (en
Inventor
泰智 大竹
泰智 大竹
吉村 学
学 吉村
貴弘 梅本
貴弘 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016197681A priority Critical patent/JP6572859B2/en
Publication of JP2018060697A publication Critical patent/JP2018060697A/en
Application granted granted Critical
Publication of JP6572859B2 publication Critical patent/JP6572859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

この発明は、真空遮断器などに用いられる真空バルブに関するもので、とくに絶縁容器の外周部を覆う可撓性絶縁被覆体を備えた真空バルブに関する。   The present invention relates to a vacuum valve used for a vacuum circuit breaker and the like, and more particularly, to a vacuum valve provided with a flexible insulating covering that covers an outer peripheral portion of an insulating container.

真空バルブは、一般にセラミックスまたはガラスよりなる円筒状の絶縁容器の両端開口部を金属からなる固定側端板と可動側端板とでそれぞれ密封した真空容器と、この真空容器内に設置される可動電極および固定電極とで構成されている。固定電極は棒状の固定導体と接合され、この固定導体は固定側端板を貫通している。可動電極は棒状の可動導体と接合され、この可動導体は真空バルブ内の真空を維持しつつ軸方向に動作できるよう蛇腹状のベローズを介して前記可動側端板を貫通している。可動導体を軸方向に動かして可動電極を固定電極から離間することで、可動電極と固定電極との間を流れる電流を遮断する。電流遮断時に電極間で発生した真空アークで生じる金属蒸気が絶縁容器の内面に付着して内沿面の絶縁性能が低下するのを防止するため、電極周囲には金属からなるアークシールドが設けられている。   The vacuum valve is generally a vacuum container in which both ends of a cylindrical insulating container made of ceramics or glass are sealed with a fixed end plate and a movable end plate made of metal, and a movable container installed in the vacuum container. It consists of an electrode and a fixed electrode. The fixed electrode is joined to a rod-shaped fixed conductor, and this fixed conductor penetrates the fixed side end plate. The movable electrode is joined to a rod-shaped movable conductor, and this movable conductor penetrates the movable side end plate via a bellows-shaped bellows so that it can operate in the axial direction while maintaining the vacuum in the vacuum valve. By moving the movable conductor in the axial direction and separating the movable electrode from the fixed electrode, the current flowing between the movable electrode and the fixed electrode is interrupted. In order to prevent the metal vapor generated by the vacuum arc generated between the electrodes when the current is interrupted from adhering to the inner surface of the insulating container and deteriorating the insulation performance on the inner surface, an arc shield made of metal is provided around the electrodes. Yes.

真空バルブの開極状態では、固定側端板と可動側端板との間に高い電位差が生じる。そのため、真空バルブの固定側端板と可動側端板との間には高い電気絶縁性能が要求される。通常、絶縁容器の内側である真空中沿面より外側の大気中沿面の方が沿面絶縁性能が劣り、運転中に汚損や湿潤環境の影響を受けた場合、大気中沿面の沿面絶縁性能に低下を生じ、最悪は沿面閃絡事故に至る可能性がある。   In the open state of the vacuum valve, a high potential difference is generated between the fixed side end plate and the movable side end plate. Therefore, high electrical insulation performance is required between the fixed side end plate and the movable side end plate of the vacuum valve. Normally, the creeping insulation performance in the atmosphere outside the vacuum creepage inside the insulating container is inferior to the creeping insulation performance. Can happen, and the worst can be a creeping flash accident.

このような問題に対して、絶縁容器の外側の沿面絶縁性能を向上させるひとつの方法として絶縁容器の外周部にひだ形状を有する可撓性絶縁被覆体を被覆する方法がある(例えば、特許文献1参照)。また、他の方法として、絶縁容器の外周部に絶縁性リングを装着し、その上から撥水性の熱収縮チューブを被覆する方法なども提案されている(例えば、特許文献2参照)。   As a method for improving the creeping insulation performance outside the insulating container, there is a method of covering the outer peripheral portion of the insulating container with a flexible insulating covering having a pleated shape (for example, Patent Documents). 1). As another method, there has been proposed a method in which an insulating ring is attached to the outer peripheral portion of an insulating container, and a water-repellent heat-shrinkable tube is coated thereon (see, for example, Patent Document 2).

特開2014−186879号公報(4頁、図1)JP 2014-186879 A (page 4, FIG. 1) 特開昭55−030116号公報(2頁、第2図)JP-A-55-030116 (2 pages, Fig. 2)

従来のひだ形状を有する可撓性絶縁被覆体を絶縁容器の外周部に被覆する方法では、可撓性絶縁被覆体の弾性により可撓性絶縁被覆体は絶縁容器に密着している。この場合、可撓性絶縁被覆体と絶縁容器との界面には可撓性絶縁被覆体の弾性による面圧が印加されているが、長期運転時には可撓性絶縁被覆体の材質の劣化などに起因してこの面圧が低下し界面に空気層が生じる場合がある。この空気層は、絶縁容器や可撓性絶縁被覆体に比べて耐電圧が低い部分となり真空バルブの絶縁性能が低下する。とくに、固定側端板から可動側端板までの界面に連続的に空気層が存在する場合には最も絶縁性能が低下して閃絡する可能性が高くなるという問題があった。   In the conventional method of coating the outer peripheral portion of the insulating container with the pleated shape, the flexible insulating covering is in close contact with the insulating container due to the elasticity of the flexible insulating covering. In this case, the surface pressure due to the elasticity of the flexible insulating coating is applied to the interface between the flexible insulating coating and the insulating container. However, the material of the flexible insulating coating may deteriorate during long-term operation. As a result, the surface pressure may be reduced and an air layer may be formed at the interface. This air layer becomes a portion where the withstand voltage is lower than that of the insulating container or the flexible insulating covering, and the insulating performance of the vacuum valve is lowered. In particular, when there is a continuous air layer at the interface from the fixed side end plate to the movable side end plate, there is a problem that the insulation performance is most deteriorated and the possibility of flashing increases.

従来の絶縁容器の外周部に絶縁性リングを装着し、その上から撥水性の熱収縮チューブを被覆する方法においても、熱収縮チューブと絶縁容器との界面および熱収縮チューブと絶縁性リングとの界面に空気層が生じる場合があり、固定側端板から可動側端板までの界面に連続的に空気層が存在する可能性がある。その結果、固定側端板から可動側端板までの界面に連続的に空気層が存在する場合には最も絶縁性能が低下して閃絡する可能性が高くなるという問題があった。   In the conventional method of attaching an insulating ring to the outer periphery of an insulating container and covering the water-repellent heat-shrinkable tube from above, the interface between the heat-shrinkable tube and the insulating container and the heat-shrinkable tube and the insulating ring An air layer may occur at the interface, and there is a possibility that an air layer continuously exists at the interface from the fixed side end plate to the movable side end plate. As a result, there is a problem that when there is a continuous air layer at the interface from the fixed side end plate to the movable side end plate, the insulation performance is most deteriorated and the possibility of flashing increases.

この発明は、上述のような課題を解決するためになされたもので、可撓性絶縁被覆体と絶縁容器との界面に生じる空気層が軸方向に連続的に存在することを抑制し、真空バルブの外側の沿面絶縁性能を向上させることを目的とする。   The present invention has been made to solve the above-described problems, and suppresses the air layer generated at the interface between the flexible insulating covering and the insulating container from being continuously present in the axial direction, and the vacuum. The purpose is to improve the creeping insulation performance outside the valve.

この発明の真空バルブにおいては、筒状の絶縁容器の両端部が封着部材で密封された真空容器と、この真空容器の内部に設置され、絶縁容器の軸方向で互いに接触および非接触となる固定電極および可動電極と、絶縁容器の外周面を覆う可撓性絶縁被覆体とを備えており、可撓性絶縁被覆体は、外周面を周方向に延在するひだ形状の外周面突出部と、内周面を周方向に1周するひだ形状の内周面突出部とを備えたものである。   In the vacuum valve according to the present invention, a vacuum container in which both ends of a cylindrical insulating container are sealed with a sealing member and the vacuum container are installed inside the vacuum container, and are in contact and non-contact with each other in the axial direction of the insulating container. A fixed electrode and a movable electrode, and a flexible insulating covering for covering the outer peripheral surface of the insulating container are provided. The flexible insulating covering is a pleated outer peripheral surface protruding portion extending in the circumferential direction on the outer peripheral surface. And a pleated inner peripheral surface protruding portion that makes one round of the inner peripheral surface in the circumferential direction.

この発明は、絶縁容器の外周面を覆う可撓性絶縁被覆体が内周面を周方向に1周するひだ形状の内周面突出部を備えているので、可撓性絶縁被覆体と絶縁容器との界面の軸方向に生じる空気層が連続的に存在することを抑制することができる。その結果、真空バルブの外側の沿面絶縁性能を向上させることができる。   In this invention, since the flexible insulating covering covering the outer peripheral surface of the insulating container has a pleated inner peripheral surface protruding portion that makes one round of the inner peripheral surface in the circumferential direction, it is insulated from the flexible insulating covering. It can suppress that the air layer produced in the axial direction of the interface with a container exists continuously. As a result, the creeping insulation performance outside the vacuum valve can be improved.

この発明の実施の形態1に係る真空バルブの断面図である。It is sectional drawing of the vacuum valve which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る可撓性絶縁被覆体の斜視図である。It is a perspective view of the flexible insulation coating body which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る可撓性絶縁被覆体の断面図である。It is sectional drawing of the flexible insulation coating body which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る内周面突出部の断面拡大図である。It is a cross-sectional enlarged view of the internal peripheral surface protrusion part which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る可撓性絶縁被覆体の断面図である。It is sectional drawing of the flexible insulation coating body which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る可撓性絶縁被覆体の断面図である。It is sectional drawing of the flexible insulation coating body which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る可撓性絶縁被覆体の断面図である。It is sectional drawing of the flexible insulation coating body which concerns on Embodiment 3 of this invention. この発明の実施の形態3に係る可撓性絶縁被覆体の断面図である。It is sectional drawing of the flexible insulation coating body which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る真空バルブの断面図である。It is sectional drawing of the vacuum valve which concerns on Embodiment 4 of this invention. この発明の実施の形態4に係る可撓性絶縁被覆体の断面図である。It is sectional drawing of the flexible insulation coating body which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係る可撓性絶縁被覆体の断面図である。It is sectional drawing of the flexible insulation coating body which concerns on Embodiment 5 of this invention. この発明の実施の形態5に係る可撓性絶縁被覆体の断面図である。It is sectional drawing of the flexible insulation coating body which concerns on Embodiment 5 of this invention. この発明の実施の形態5に係る可撓性絶縁被覆体の断面図である。It is sectional drawing of the flexible insulation coating body which concerns on Embodiment 5 of this invention. この発明の実施の形態5に係る可撓性絶縁被覆体の断面図である。It is sectional drawing of the flexible insulation coating body which concerns on Embodiment 5 of this invention.

以下、この発明を実施するための実施の形態について図を用いて説明する。以下の実施の形態の説明において、各図における同一または相当部分には同一符号を付して、その説明を繰返さない。   Embodiments for carrying out the present invention will be described below with reference to the drawings. In the following description of embodiments, the same or corresponding parts in the drawings will be denoted by the same reference numerals, and description thereof will not be repeated.

実施の形態1.
図1は、この発明を実施するための実施の形態1に係る真空バルブの断面図である。図1において、真空バルブ100は、セラミックスやガラスからなる円筒状の絶縁容器1と、絶縁容器1の一方の開口端部にろう付けにより封着された金属製の固定側端板2と、絶縁容器1の他方の開口端部にろう付けにより封着された金属製の可動側端板3と、固定側端板2を貫通して固定側端板2に接続された棒状の固定導体4と、固定導体4の絶縁容器側の先端に接合された固定電極5と、可動側端板3を貫通し、蛇腹状のベローズ6を介して可動側端板3に接続された棒状の可動導体7と、可動導体7の絶縁容器側の先端に接合された可動電極8とで構成されている。絶縁容器1と固定側端板2と可動側端板3とで、内部を真空に保持した真空容器を構成している。
Embodiment 1 FIG.
FIG. 1 is a sectional view of a vacuum valve according to Embodiment 1 for carrying out the present invention. In FIG. 1, a vacuum valve 100 includes a cylindrical insulating container 1 made of ceramics or glass, a metal fixed-side end plate 2 sealed by brazing to one open end of the insulating container 1, A metal movable side end plate 3 sealed by brazing to the other opening end of the container 1, and a rod-like fixed conductor 4 penetrating the fixed side end plate 2 and connected to the fixed side end plate 2; The fixed electrode 5 joined to the tip of the fixed conductor 4 on the insulating container side, and the rod-shaped movable conductor 7 that passes through the movable side end plate 3 and is connected to the movable side end plate 3 via the bellows-like bellows 6. And the movable electrode 8 joined to the tip of the movable conductor 7 on the insulating container side. The insulating container 1, the fixed side end plate 2 and the movable side end plate 3 constitute a vacuum container whose interior is maintained in a vacuum.

ここで、円筒状の真空容器の中心軸方向を軸方向と定義し、この軸方向に垂直な方向を径方向と定義する。したがって、可動導体7は軸方向に動作し、可動導体7の動作によって可動電極5と固定電極8とは、軸方向に互いに接触および非接触となる。   Here, the central axis direction of the cylindrical vacuum vessel is defined as the axial direction, and the direction perpendicular to the axial direction is defined as the radial direction. Accordingly, the movable conductor 7 moves in the axial direction, and the movable electrode 5 and the fixed electrode 8 are brought into contact and non-contact with each other in the axial direction by the movement of the movable conductor 7.

ベローズ6は、可動導体7が軸方向に動作した際においても前記真空容器内部を真空に保持するための部材であり、可動側端板3と可動導体7とに接合されている。固定電極5と可動電極8とは同軸上に対向配置され、可動導体7の動作に伴い接触および非接触となる。真空バルブ100は、可動電極と固定電極との間の開閉動作によって固定導体4、固定電極5、可動電極8および可動導体7を流れる通電電流を制御する。電流遮断時には電極間で発生する真空アークの熱によって電極を構成する金属が蒸発する。この金属蒸気が絶縁容器1の内面に付着すると絶縁容器の内沿面の絶縁性能が低下する。金属蒸気が絶縁容器の内沿面に付着するのを抑制するため、固定電極5および可動電極8の周囲には金属製で円筒状のアークシールド9が設けられている。   The bellows 6 is a member for holding the inside of the vacuum vessel in a vacuum even when the movable conductor 7 operates in the axial direction, and is joined to the movable side end plate 3 and the movable conductor 7. The fixed electrode 5 and the movable electrode 8 are coaxially opposed to each other, and come into contact and non-contact with the operation of the movable conductor 7. The vacuum valve 100 controls an energization current flowing through the fixed conductor 4, the fixed electrode 5, the movable electrode 8 and the movable conductor 7 by an opening / closing operation between the movable electrode and the fixed electrode. When the current is interrupted, the metal constituting the electrode is evaporated by the heat of the vacuum arc generated between the electrodes. When this metal vapor adheres to the inner surface of the insulating container 1, the insulating performance on the inner surface of the insulating container is degraded. In order to prevent the metal vapor from adhering to the inner surface of the insulating container, a metal-made cylindrical arc shield 9 is provided around the fixed electrode 5 and the movable electrode 8.

絶縁容器1の外周には可撓性絶縁物からなる可撓性絶縁被覆体10が具備されている。自然体の状態での可撓性絶縁被覆体10の内径は、絶縁容器1の外径より小さく構成されており、可撓性絶縁被覆体10自身の弾性により可撓性絶縁被覆体10と絶縁容器1との界面に面圧が加わり可撓性絶縁被覆体10は絶縁容器1に密着する。なお、ここで自然体の状態とは、荷重などの外部からの応力が加わっていない状態を意味する。   A flexible insulating covering 10 made of a flexible insulating material is provided on the outer periphery of the insulating container 1. The inner diameter of the flexible insulating covering 10 in a natural state is configured to be smaller than the outer diameter of the insulating container 1, and the flexible insulating covering 10 and the insulating container are formed by the elasticity of the flexible insulating covering 10 itself. A surface pressure is applied to the interface with 1 and the flexible insulating covering 10 is in close contact with the insulating container 1. Here, the state of the natural body means a state where no external stress such as a load is applied.

可撓性絶縁被覆体10の材料としては、シリコーンゴム、EVA(Ethylene-Vinyl Acetate:エチレン-酢酸ビニル共重合体)、EPDM(Etylene Propylene Diene Metylene Linkage:エチレンプロピレンジエンゴム)、EPゴム(Ethylene Propyleneゴム)、フッ素系ゴムなどが挙げられるが、長期劣化耐性および材料コストの観点からシリコーンゴムが一般的に用いられている。また、シリコーンゴムは、無機物であるフィラーを含有させることで絶縁性能が向上するため、主に水和アルミナのフィラーが添加される場合が多い。フィラー添加によりシリコーンゴムの表面で放電が発生した際のシリコーンゴムの損傷を抑制することもできる。   Examples of the material for the flexible insulating covering 10 include silicone rubber, EVA (Ethylene-Vinyl Acetate), EPDM (Ethylene Propylene Diene Methylene Linkage), and EP rubber (Ethylene Propylene). Rubber), fluorine-based rubber, and the like, and silicone rubber is generally used from the viewpoint of long-term deterioration resistance and material cost. Moreover, since the insulation performance improves by including the filler which is an inorganic substance in silicone rubber, the filler of a hydrated alumina is mainly added in many cases. By adding a filler, it is also possible to suppress damage to the silicone rubber when discharge occurs on the surface of the silicone rubber.

図2は、本実施の形態における可撓性絶縁被覆体10の斜視図である。また、図3は可撓性絶縁被覆体10の断面図である。図2は、可撓性絶縁被覆体10の内周面の構造をわかり易く示すために、一部を切り取った斜視図である。図2に示すとおり、可撓性絶縁被覆体10の外周面には周方向に延在する少なくとも1つのひだ形状の外周面突出部11と、内周面には周方向に延在する少なくとも1つのひだ形状の内周面突出部12とが形成されている。外周面突出部11は固定側端板2から可撓性絶縁被覆体10の表面をたどり可動側端板3に至るまでの大気中沿面距離を増大させて絶縁性能を向上するために設置されている。外周面突出部11は軸対象となるよう1周にわたって突出している。大気中沿面距離の増大のために、外周面突出部11は複数配置されているのが好ましい。   FIG. 2 is a perspective view of the flexible insulating covering 10 in the present embodiment. FIG. 3 is a cross-sectional view of the flexible insulating covering 10. FIG. 2 is a perspective view with a part cut away in order to show the structure of the inner peripheral surface of the flexible insulating covering 10 in an easily understandable manner. As shown in FIG. 2, the outer peripheral surface of the flexible insulating covering 10 has at least one pleated outer peripheral surface protrusion 11 extending in the circumferential direction, and the inner peripheral surface has at least one extending in the circumferential direction. Two pleat-shaped inner peripheral surface protrusions 12 are formed. The outer peripheral surface protruding portion 11 is installed to improve the insulation performance by increasing the creeping distance in the atmosphere from the fixed side end plate 2 to the movable side end plate 3 following the surface of the flexible insulating covering 10. Yes. The outer peripheral surface protrusion part 11 protrudes over one circumference so that it may become an axis | shaft object. In order to increase the creeping distance in the atmosphere, it is preferable that a plurality of outer peripheral surface protrusions 11 are arranged.

図3に示すように、外周面突出部11の高さをLとし、外周面突出部11の軸方向の間隔をPとすると、L/Pは3を超えないように構成するのが好ましい。この条件を満足していれば、外周面突出部11の軸方向の隣り合う先端をたどって放電が進展することがなく、確実に大気中沿面距離の増大を図ることができる。   As shown in FIG. 3, it is preferable that L / P does not exceed 3 where L is the height of the outer peripheral surface protruding portion 11 and P is the interval in the axial direction of the outer peripheral surface protruding portion 11. If this condition is satisfied, the discharge does not progress along the axially adjacent tips of the outer peripheral surface protruding portion 11, and the creeping distance in the atmosphere can be reliably increased.

内周面突出部12は絶縁容器1と可撓性絶縁被覆体10の密着性を向上させるために配置されている。図2に示すように、内周面突出部12は軸対象となるよう1周にわたって突出している。すなわち、内周面突出部12は、その先端が内周面を1周する閉極線となるように構成されている。   The inner peripheral surface protruding portion 12 is disposed in order to improve the adhesion between the insulating container 1 and the flexible insulating covering 10. As shown in FIG. 2, the inner peripheral surface protruding portion 12 protrudes over one circumference so as to be an axis object. That is, the inner peripheral surface protruding portion 12 is configured such that the tip thereof becomes a closed line that goes around the inner peripheral surface once.

図4は、本実施の形態における内周面突出部12の断面拡大図である。図3に示した本実施の形態の内周面突出部12の断面形状は、図4(a)に示すように半球状である。これ以外の内周面突出部12の断面形状としては、図4(b)から(e)に示すように、楕円形状、三角形状、台形状、四角形状などであってもよい。   FIG. 4 is an enlarged cross-sectional view of the inner peripheral surface protruding portion 12 in the present embodiment. The cross-sectional shape of the inner peripheral surface protruding portion 12 of the present embodiment shown in FIG. 3 is hemispherical as shown in FIG. Other cross-sectional shapes of the inner peripheral surface protruding portion 12 may be an elliptical shape, a triangular shape, a trapezoidal shape, a quadrangular shape, or the like, as shown in FIGS.

このように構成された真空バルブの絶縁特性について説明する。上述のとおり、絶縁容器1と可撓性絶縁被覆体10との界面は可撓性絶縁被覆体10の弾性により密着されている。この密着力により絶縁容器1と可撓性絶縁被覆体10との界面の固定側端板2から可動側端板3に至るまで絶縁が保たれる。この界面の絶縁性能は、可撓性絶縁被覆体10から絶縁容器1に印加される面圧に強く依存し、高面圧であることが望まれる。しかし、可撓性絶縁被覆体10を絶縁容器1に被覆する作業性の観点から、可撓性絶縁被覆体10の弾性による収縮力を必要以上に高めること、すなわち自然体の状態での可撓性絶縁被覆体10の内径を絶縁容器1の外径より必要以上に小さくすることは困難である。また、長期的な使用により、可撓性絶縁被覆体10の弾性が低下して絶縁容器1に印加される面圧が低下していくことは避けられない。   The insulating characteristics of the vacuum valve configured as described above will be described. As described above, the interface between the insulating container 1 and the flexible insulating covering 10 is in close contact with the elasticity of the flexible insulating covering 10. With this adhesion, insulation is maintained from the fixed side end plate 2 to the movable side end plate 3 at the interface between the insulating container 1 and the flexible insulating covering 10. The insulation performance of this interface strongly depends on the surface pressure applied to the insulating container 1 from the flexible insulating coating 10, and it is desired that the interface has a high surface pressure. However, from the viewpoint of workability for covering the insulating container 1 with the flexible insulating covering 10, the contraction force due to the elasticity of the flexible insulating covering 10 is increased more than necessary, that is, flexibility in a natural state. It is difficult to make the inner diameter of the insulating covering 10 smaller than necessary than the outer diameter of the insulating container 1. In addition, due to long-term use, it is inevitable that the elasticity of the flexible insulating covering 10 decreases and the surface pressure applied to the insulating container 1 decreases.

可撓性絶縁被覆体10から絶縁容器1に印加される面圧を必要以上に高めることができず、また長期的な使用によりこの面圧が低下していくと、絶縁容器1と可撓性絶縁被覆体10との界面に気泡や剥離などによる空気層を生じる場合がある。この空気層は他の部位よりも耐電圧特性が低くなる。その結果この空気層を通じて固定側端板2から可動側端板3に至るまで絶縁性能が低下して閃絡に至る可能性がある。この場合の絶縁性能は空気層の配置に大きく影響される。   If the surface pressure applied to the insulating container 1 from the flexible insulating covering 10 cannot be increased more than necessary, and the surface pressure decreases due to long-term use, the insulating container 1 and the flexible There is a case where an air layer is generated due to bubbles or peeling at the interface with the insulating covering 10. This air layer has lower withstand voltage characteristics than other parts. As a result, there is a possibility that the insulation performance deteriorates from the fixed side end plate 2 to the movable side end plate 3 through this air layer, resulting in a flash. Insulation performance in this case is greatly influenced by the arrangement of the air layer.

とくに、固定側端板2から可動側端板3までの界面に連続的に空気層が存在する場合は最も絶縁性能が大幅に低下し閃絡する可能性が高くなる。本実施の形態のように、内周面を一周する内周面突出部12を設けることで、可撓性絶縁被覆体10の弾性により絶縁容器に荷重される面圧が低い場合においても、内周面突出部12の先端は絶縁容器1と確実に密着する。また、内周面突出部12は、その先端が内周面を1周する閉極線となるように構成されているので、固定側端板2から可動側端板3まで空気層が連続的に存在するという事象を避けることができる。つまり、可撓性絶縁被覆体と絶縁容器との界面の軸方向に空気層が連続的に存在することを抑制することができる。その結果、真空バルブの外側の沿面絶縁性能を向上させることができる。   In particular, when there is a continuous air layer at the interface from the fixed side end plate 2 to the movable side end plate 3, the insulation performance is greatly reduced and the possibility of flashing is increased. As in the present embodiment, by providing the inner peripheral surface protruding portion 12 that goes around the inner peripheral surface, even when the surface pressure loaded on the insulating container is low due to the elasticity of the flexible insulating covering 10, The tip of the circumferential protrusion 12 is in close contact with the insulating container 1. Moreover, since the inner peripheral surface protruding portion 12 is configured so that the tip thereof becomes a closed line that goes around the inner peripheral surface, the air layer is continuous from the fixed side end plate 2 to the movable side end plate 3. Can be avoided. That is, it can suppress that an air layer exists in the axial direction of the interface of a flexible insulating coating body and an insulating container continuously. As a result, the creeping insulation performance outside the vacuum valve can be improved.

また、可撓性絶縁被覆体10に外周面突出部11と内周面突出部12とが一体で形成されているので、可撓性絶縁被覆体10を絶縁容器1に被覆する作業は1回で完了する。そのため、可撓性絶縁被覆体10を絶縁容器1に被覆する作業によって発生が懸念される気泡の混入を可能な限り排除することができる。   Moreover, since the outer peripheral surface protrusion part 11 and the inner peripheral surface protrusion part 12 are integrally formed on the flexible insulating cover 10, the work of covering the insulating container 1 with the flexible insulating cover 10 is performed once. Complete with. For this reason, it is possible to eliminate as much as possible the mixing of bubbles that may be generated by the operation of covering the insulating container 1 with the flexible insulating covering 10.

なお、絶縁容器1と可撓性絶縁被覆体10との界面にはグリースや接着剤が塗布されていることが好ましい。これは絶縁容器1に可撓性絶縁被覆体10を被覆するときの作業性の向上のためや、界面の密着性の向上のためである。グリースなどが塗布された状態での被覆作業においては気泡の混入が懸念されるが、混入しうる気泡は大きいもので厚さが0.2mm程度、直径10mm程度である。内周面突出部12と絶縁容器1との間に気泡が介在しないようにするには、内周面突出部12の幅は10mm以下、高さは0.2mm以下であるのが好ましい。また、可撓性絶縁被覆体10の内面で内周面突出部12の間となる凹部分にあらかじめグリースなどを塗布しておき、その状態で被覆作業を行えば、気泡の混入をさらに防ぐことができる。   In addition, it is preferable that grease or an adhesive is applied to the interface between the insulating container 1 and the flexible insulating covering 10. This is for improving workability when the insulating container 1 is covered with the flexible insulating covering 10 and for improving adhesion at the interface. In the coating operation in a state where grease or the like is applied, there is a concern about the mixing of bubbles, but the bubbles that can be mixed are large and have a thickness of about 0.2 mm and a diameter of about 10 mm. In order to prevent air bubbles from intervening between the inner peripheral surface protruding portion 12 and the insulating container 1, the inner peripheral surface protruding portion 12 preferably has a width of 10 mm or less and a height of 0.2 mm or less. In addition, if grease or the like is applied in advance to the concave portion between the inner peripheral surface protrusions 12 on the inner surface of the flexible insulating covering 10 and the covering operation is performed in this state, the mixing of bubbles is further prevented. Can do.

実施の形態2.
一般に真空バルブは、開極状態では固定側端板が高電圧側となり、可動側端板が低電圧側となるように設置される。また、周囲に接地電位となる構造物が存在する場合、可動側端板より固定側端板の方に高電界が形成されるため、固定側端板の方により高い絶縁性能が要求される。実施の形態2においては、高電界が形成される固定側端板に近い方の可撓性絶縁被覆体の絶縁性能を高めたものである。
Embodiment 2. FIG.
In general, the vacuum valve is installed such that the fixed end plate is on the high voltage side and the movable end plate is on the low voltage side in the open state. Further, when there is a structure having a ground potential in the surroundings, a higher electric field is formed on the fixed side end plate than on the movable side end plate, so that higher insulation performance is required on the fixed side end plate. In the second embodiment, the insulating performance of the flexible insulating covering closer to the fixed side end plate where a high electric field is formed is enhanced.

図5および図6は、実施の形態2における真空バルブの可撓性絶縁被覆体10の断面図である。本実施の形態の可撓性絶縁被覆体10は、実施の形態1の可撓性絶縁被覆体と同様に、外周面には周方向に延在する少なくとも1つのひだ形状の外周面突出部11と、内周面には周方向に延在する少なくとも1つのひだ形状の内周面突出部12とが形成されている。   5 and 6 are cross-sectional views of the flexible insulating covering 10 of the vacuum valve in the second embodiment. The flexible insulating covering 10 according to the present embodiment is similar to the flexible insulating covering according to the first embodiment, and has at least one pleated outer peripheral surface protrusion 11 extending in the circumferential direction on the outer peripheral surface. And at least one pleated inner peripheral surface protrusion 12 extending in the circumferential direction is formed on the inner peripheral surface.

図5および図6において、上側が固定側端板に近い方とする。また、図5および図6において、固定側端板に近い方の可撓性絶縁被覆体10の開口部の内径をA1、外径をB1および厚さをd1、可動側端板に近い方の可撓性絶縁被覆体10の開口部の内径をA2、外径をB2および厚さをd2とする。ここで、内径A1およびA2、外径B1およびB2、並びに厚さd1およびd2は、可撓性絶縁被覆体10の外周面突出部11および内周面突出部12のない部分の厚さである。   5 and 6, the upper side is closer to the fixed side end plate. 5 and FIG. 6, the inner diameter of the opening of the flexible insulating covering 10 closer to the fixed end plate is A1, the outer diameter is B1, the thickness is d1, and the opening closer to the movable end plate is closer to the movable end plate. The inner diameter of the opening of the flexible insulating covering 10 is A2, the outer diameter is B2, and the thickness is d2. Here, the inner diameters A1 and A2, the outer diameters B1 and B2, and the thicknesses d1 and d2 are the thicknesses of the portions without the outer peripheral surface protrusion 11 and the inner peripheral surface protrusion 12 of the flexible insulating covering 10. .

図5に示す可撓性絶縁被覆体10は、B1とB2とを等しく、A1をA2より小さくしたものである。その結果、d1はd2より大きくなる。   The flexible insulating covering 10 shown in FIG. 5 is such that B1 and B2 are equal and A1 is smaller than A2. As a result, d1 becomes larger than d2.

また、図6に示す可撓性絶縁被覆体10は、A1とA2とを等しく、B1をB2より大きくしたものである。その結果、d1はd2より大きくなる。   Further, the flexible insulating covering 10 shown in FIG. 6 is obtained by making A1 and A2 equal and B1 larger than B2. As a result, d1 becomes larger than d2.

このように構成された可撓性絶縁被覆体10は、内周面を一周する内周面突出部12が設けてあるので、可撓性絶縁被覆体10の弾性により絶縁容器に荷重される面圧が低い場合においても、内周面突出部12の先端は絶縁容器1と確実に密着する。また、内周面突出部12は、その先端が内周面を1周する閉極線となるように構成されているので、固定側端板2から可動側端板3まで空気層が連続的に存在するという事象を避けることができる。その結果、真空バルブの外側の沿面絶縁性能を向上させることができる。   Since the flexible insulating covering 10 configured in this manner is provided with the inner peripheral surface protruding portion 12 that goes around the inner peripheral surface, the surface that is loaded on the insulating container by the elasticity of the flexible insulating covering 10. Even when the pressure is low, the tip of the inner peripheral surface protruding portion 12 is in intimate contact with the insulating container 1. Moreover, since the inner peripheral surface protruding portion 12 is configured so that the tip thereof becomes a closed line that goes around the inner peripheral surface, the air layer is continuous from the fixed side end plate 2 to the movable side end plate 3. Can be avoided. As a result, the creeping insulation performance outside the vacuum valve can be improved.

また、固定側端板に近い方の可撓性絶縁被覆体10の厚さd1を、可動側端板に近い方の可撓性絶縁被覆体10の厚さd2より大きく設定しているので、可撓性絶縁被覆体10自身の弾性により絶縁容器1に加わる面圧を可動側端板に近い方から固定側端板に近い方に向かって高くすることができる。その結果、可動側端板3に近い方より固定側端板2に近い方の可撓性絶縁被覆体10の密着性を高めることができ、高電界が形成される固定側端板に近い方の可撓性絶縁被覆体10の絶縁性能が向上する。   Further, since the thickness d1 of the flexible insulating covering 10 closer to the fixed side end plate is set larger than the thickness d2 of the flexible insulating covering 10 closer to the movable side end plate, The surface pressure applied to the insulating container 1 by the elasticity of the flexible insulating covering 10 itself can be increased from the side closer to the movable side end plate toward the side closer to the fixed side end plate. As a result, the adhesiveness of the flexible insulating covering 10 closer to the fixed side end plate 2 than to the closer to the movable side end plate 3 can be improved, and the closer to the fixed side end plate where a high electric field is formed. The insulating performance of the flexible insulating covering 10 is improved.

なお、本実施の形態においては、高電界が形成される端板を固定側端板としたが、必ずしも固定側端板の方に高電界が形成されるとは限らず、可動側端板の方が高電界となる場合もある。その場合、図5および図6において、上側が可動側端板に近い方とすればよい。   In this embodiment, the end plate on which the high electric field is formed is the fixed side end plate, but the high electric field is not necessarily formed on the fixed side end plate. In some cases, the electric field is higher. In that case, the upper side in FIGS. 5 and 6 may be closer to the movable side end plate.

実施の形態3.
実施の形態2においては、真空バルブの両端板同士を比較した場合に、高電界が形成される端板に近い方の可撓性絶縁被覆体の絶縁性能が向上させる構造について説明した。実施の形態3においては、真空バルブの端板に近い部分と真空バルブの中央部分とを比較して、高電界が形成される端板に近い部分の可撓性絶縁被覆体の絶縁性能を向上させる構造について説明する。
Embodiment 3 FIG.
In the second embodiment, the structure that improves the insulating performance of the flexible insulating covering closer to the end plate where a high electric field is formed when both end plates of the vacuum valve are compared with each other has been described. In the third embodiment, the insulating performance of the flexible insulating covering at the portion near the end plate where the high electric field is formed is improved by comparing the portion near the end plate of the vacuum valve with the central portion of the vacuum valve. The structure to be made will be described.

図7および図8は、本実施の形態における真空バルブの可撓性絶縁被覆体10の断面図である。本実施の形態の可撓性絶縁被覆体10は、実施の形態1の可撓性絶縁被覆体と同様に、外周面には周方向に延在する少なくとも1つのひだ形状の外周面突出部11と、内周面には周方向に延在する少なくとも1つのひだ形状の内周面突出部12とが形成されている。   7 and 8 are cross-sectional views of the flexible insulating covering 10 of the vacuum valve in the present embodiment. The flexible insulating covering 10 according to the present embodiment is similar to the flexible insulating covering according to the first embodiment, and has at least one pleated outer peripheral surface protrusion 11 extending in the circumferential direction on the outer peripheral surface. And at least one pleated inner peripheral surface protrusion 12 extending in the circumferential direction is formed on the inner peripheral surface.

図7および図8において、上側が固定側端板に近い方とする。また、図7および図8において、固定側端板に近い方の可撓性絶縁被覆体10の開口部の内径をA1、外径をB1および厚さをd1、可動側端板に近い方の可撓性絶縁被覆体10の開口部の内径をA2、外径をB2および厚さをd2とし、さらに中央部の開口部の内径をA3、外径をB3および厚さをd3とする。ここで、内径A1、A2およびA3、外径B1、B2およびB3、並びに厚さd1、d2およびd3は、可撓性絶縁被覆体10の外周面突出部11および内周面突出部12のない部分の厚さである。   7 and 8, the upper side is closer to the fixed side end plate. 7 and 8, the inner diameter of the opening of the flexible insulating covering 10 closer to the fixed side end plate is A1, the outer diameter is B1, the thickness is d1, and the side closer to the movable side end plate is closer to the movable side end plate. The inner diameter of the opening of the flexible insulating covering 10 is A2, the outer diameter is B2 and the thickness is d2, the inner diameter of the opening at the center is A3, the outer diameter is B3 and the thickness is d3. Here, the inner diameters A1, A2 and A3, the outer diameters B1, B2 and B3, and the thicknesses d1, d2 and d3 are not the outer peripheral surface protruding portion 11 and the inner peripheral surface protruding portion 12 of the flexible insulating covering 10. The thickness of the part.

図7に示す可撓性絶縁被覆体10は、B1とB2とB3とを等しく、A1とA2とを等しく、さらにA1およびA2をA3より小さくしたものである。その結果、d1およびd2はd3より大きくなる。   The flexible insulating covering 10 shown in FIG. 7 has B1, B2, and B3 equal, A1 and A2 equal, and A1 and A2 smaller than A3. As a result, d1 and d2 are larger than d3.

また、図8に示す可撓性絶縁被覆体10は、A1とA2とA3とを等しく、B1とB2とを等しく、さらにB1およびB2をB3より大きくしたものである。その結果、d1およびd2はd3より大きくなる。   Further, in the flexible insulating covering 10 shown in FIG. 8, A1, A2 and A3 are equal, B1 and B2 are equal, and B1 and B2 are larger than B3. As a result, d1 and d2 are larger than d3.

このように構成された可撓性絶縁被覆体10は、内周面を一周する内周面突出部12が設けてあるので、可撓性絶縁被覆体10の弾性により絶縁容器に荷重される面圧が低い場合においても、内周面突出部12の先端は絶縁容器1と確実に密着する。また、内周面突出部12は、その先端が内周面を1周する閉極線となるように構成されているので、固定側端板2から可動側端板3まで空気層が連続的に存在するという事象を避けることができる。その結果、真空バルブの外側の沿面絶縁性能を向上させることができる。   Since the flexible insulating covering 10 configured in this manner is provided with the inner peripheral surface protruding portion 12 that goes around the inner peripheral surface, the surface that is loaded on the insulating container by the elasticity of the flexible insulating covering 10. Even when the pressure is low, the tip of the inner peripheral surface protruding portion 12 is in intimate contact with the insulating container 1. Moreover, since the inner peripheral surface protruding portion 12 is configured so that the tip thereof becomes a closed line that goes around the inner peripheral surface, the air layer is continuous from the fixed side end plate 2 to the movable side end plate 3. Can be avoided. As a result, the creeping insulation performance outside the vacuum valve can be improved.

また、固定側端板に近い方の可撓性絶縁被覆体10の厚さd1および可動側端板に近い方の可撓性絶縁被覆体10の厚さd2を中央部の可撓性絶縁被覆体10の厚さd3より大きく設定しているので、可撓性絶縁被覆体10自身の弾性により絶縁容器1に加わる面圧を中央部から両方の端板に向かって高くすることができる。その結果、両方の端板に近い方の可撓性絶縁被覆体10の密着性を高めることができ、高電界が形成される両端板に近い方の可撓性絶縁被覆体10の絶縁性能が向上する。   Further, the thickness d1 of the flexible insulating covering 10 closer to the fixed side end plate and the thickness d2 of the flexible insulating covering 10 closer to the movable side end plate are set to the flexible insulating covering at the center. Since the thickness is set to be greater than the thickness d3 of the body 10, the surface pressure applied to the insulating container 1 by the elasticity of the flexible insulating covering 10 itself can be increased from the central portion toward both end plates. As a result, the adhesiveness of the flexible insulating covering 10 closer to both end plates can be improved, and the insulating performance of the flexible insulating covering 10 closer to the both end plates where a high electric field is formed is improved. improves.

実施の形態4.
図9は、この発明を実施するための実施の形態4に係る真空バルブの断面図である。図9において、本実施の形態の真空バルブ100の構成は、実施の形態1の真空バルブの構成と同様であるが、可撓性絶縁被覆体10の両端部の構造が異なっている。
Embodiment 4 FIG.
FIG. 9 is a cross-sectional view of a vacuum valve according to Embodiment 4 for carrying out the present invention. In FIG. 9, the configuration of the vacuum valve 100 of the present embodiment is the same as the configuration of the vacuum valve of the first embodiment, but the structure of both ends of the flexible insulating covering 10 is different.

図9に示すように、真空バルブの軸方向における絶縁容器1の長さをD1、可撓性絶縁被覆体10の長さをD2としたときに、D2はD1より大きく設定されている。可撓性絶縁被覆体10は、絶縁容器1に固定側端板2を封着する固定側ろう付け部23、および絶縁容器1に可動側端板3を封着する可動側ろう付け部24まで覆う構造である。   As shown in FIG. 9, when the length of the insulating container 1 in the axial direction of the vacuum valve is D1, and the length of the flexible insulating covering 10 is D2, D2 is set larger than D1. The flexible insulating covering 10 includes a fixed side brazing part 23 for sealing the fixed side end plate 2 to the insulating container 1 and a movable side brazing part 24 for sealing the movable side end plate 3 to the insulating container 1. It is a covering structure.

図10は、本実施の形態の可撓性絶縁被覆体10の断面図である。図10に示すように、本実施の形態の可撓性絶縁被覆体10は、実施の形態1の可撓性絶縁被覆体と同様に、外周面には周方向に延在する少なくとも1つのひだ形状の外周面突出部11と、内周面には周方向に延在する少なくとも1つのひだ形状の内周面突出部12とが形成されている。また、可撓性絶縁被覆体10の両端部には、固定側ろう付け部23および可動側ろう付け部24をそれぞれ覆う、肉厚部25、26がそれぞれ設けられている。   FIG. 10 is a cross-sectional view of the flexible insulating covering 10 according to the present embodiment. As shown in FIG. 10, the flexible insulating covering 10 according to the present embodiment has at least one pleat extending in the circumferential direction on the outer peripheral surface, similarly to the flexible insulating covering according to the first embodiment. An outer peripheral surface protruding portion 11 having a shape and at least one pleated inner peripheral surface protruding portion 12 extending in the circumferential direction are formed on the inner peripheral surface. In addition, thick portions 25 and 26 that cover the fixed brazing portion 23 and the movable brazing portion 24 are provided at both ends of the flexible insulating covering 10, respectively.

このように構成された可撓性絶縁被覆体10は、内周面を一周する内周面突出部12が設けてあるので、可撓性絶縁被覆体10の弾性により絶縁容器に荷重される面圧が低い場合においても、内周面突出部12の先端は絶縁容器1と確実に密着する。また、内周面突出部12は、その先端が内周面を1周する閉極線となるように構成されているので、固定側端板2から可動側端板3まで空気層が連続的に存在するという事象を避けることができる。その結果、真空バルブの外側の沿面絶縁性能を向上させることができる。   Since the flexible insulating covering 10 configured in this manner is provided with the inner peripheral surface protruding portion 12 that goes around the inner peripheral surface, the surface that is loaded on the insulating container by the elasticity of the flexible insulating covering 10. Even when the pressure is low, the tip of the inner peripheral surface protruding portion 12 is in intimate contact with the insulating container 1. Moreover, since the inner peripheral surface protruding portion 12 is configured so that the tip thereof becomes a closed line that goes around the inner peripheral surface, the air layer is continuous from the fixed side end plate 2 to the movable side end plate 3. Can be avoided. As a result, the creeping insulation performance outside the vacuum valve can be improved.

また、可撓性絶縁被覆体10の両端部に固定側ろう付け部23および可動側ろう付け部24をそれぞれ覆う肉厚部25、26がそれぞれ設けられているので、最も電界が高くなる固定側ろう付け部23および可動側ろう付け部24の表面の絶縁性能の向上を図ることができる。   Moreover, since the thick side parts 25 and 26 which each cover the fixed side brazing part 23 and the movable side brazing part 24 are provided in the both ends of the flexible insulation coating 10, respectively, the fixed side where electric field becomes the highest The insulation performance of the surfaces of the brazing part 23 and the movable side brazing part 24 can be improved.

実施の形態5.
図11〜図14は、この発明を実施するための実施の形態5における可撓性絶縁被覆体10の断面図である。本実施の形態において、真空バルブの構成は実施の形態1と同様であるが、可撓性絶縁被覆体10の形状が異なっている。
Embodiment 5 FIG.
FIGS. 11-14 is sectional drawing of the flexible insulation coating body 10 in Embodiment 5 for implementing this invention. In the present embodiment, the configuration of the vacuum valve is the same as that of the first embodiment, but the shape of the flexible insulating covering 10 is different.

本実施の形態の可撓性絶縁被覆体10は、実施の形態1の可撓性絶縁被覆体と同様に、外周面には周方向に延在する少なくとも1つのひだ形状の外周面突出部11と、内周面には周方向に延在する少なくとも1つのひだ形状の内周面突出部12とが形成されている。   The flexible insulating covering 10 according to the present embodiment is similar to the flexible insulating covering according to the first embodiment, and has at least one pleated outer peripheral surface protrusion 11 extending in the circumferential direction on the outer peripheral surface. And at least one pleated inner peripheral surface protrusion 12 extending in the circumferential direction is formed on the inner peripheral surface.

さらに、本実施の形態の可撓性絶縁被覆体10は、図11に示すように、外周面突出部11の個数より内周面突出部12の個数が多く構成されている。実施の形態1でも説明したが、外周面突出部11の高さをLとし、外周面突出部11の軸方向の間隔をPとすると、L/Pは3を超えないように構成するのが好ましい。この条件を満足するためには、外周面突出部11の高さLが決まると軸方向の間隔Pには下限があり、外周面突出部11の個数もそれにより上限がある。これに対して、内周面突出部12には、絶縁容器1と可撓性絶縁被覆体10との界面に混入する気泡が軸方向に連続的に存在するのを分断する作用が期待されるため、外周面突出部11の個数より内周面突出部12の個数が多くてもよい。   Furthermore, as shown in FIG. 11, the flexible insulating covering 10 of the present embodiment is configured such that the number of inner peripheral surface protrusions 12 is larger than the number of outer peripheral surface protrusions 11. As described in the first embodiment, when the height of the outer peripheral surface protruding portion 11 is L and the axial interval between the outer peripheral surface protruding portions 11 is P, L / P is configured not to exceed 3. preferable. In order to satisfy this condition, when the height L of the outer peripheral surface protrusion 11 is determined, the axial interval P has a lower limit, and the number of the outer peripheral surface protrusions 11 also has an upper limit. On the other hand, the inner peripheral surface protruding portion 12 is expected to act to divide the presence of bubbles continuously mixed in the axial direction at the interface between the insulating container 1 and the flexible insulating covering 10. Therefore, the number of inner peripheral surface protrusions 12 may be larger than the number of outer peripheral surface protrusions 11.

また、図12に示す本実施の形態の別の可撓性絶縁被覆体10は、内周面突出部12の個数より外周面突出部11の個数が多く構成されたものである。内周面突出部12には、絶縁容器1と可撓性絶縁被覆体10との界面に混入する気泡が軸方向に連続的に存在するのを分断する作用が期待されるが、内周面突出部12のない部分の可撓性絶縁被覆体10と絶縁容器1との界面に気泡が残る恐れがある。内周面突出部12の個数があまりにも多いと、内周面突出部12のない部分の可撓性絶縁被覆体10と絶縁容器1との界面に気泡が残る可能性が高くなるため、内周面突出部12の個数にも限度がある。このような理由から、絶縁容器1と内周面突出部12との密着面積は絶縁容器1の外表面積の2分の1以下であることが好ましく、図12に示すように、内周面突出部12の個数より外周面突出部11の個数が多い場合もある。   Further, another flexible insulating covering 10 of the present embodiment shown in FIG. 12 is configured such that the number of outer peripheral surface protruding portions 11 is larger than the number of inner peripheral surface protruding portions 12. The inner peripheral surface protruding portion 12 is expected to act to divide bubbles continuously mixed in the interface between the insulating container 1 and the flexible insulating covering 10 in the axial direction. There is a possibility that bubbles may remain at the interface between the flexible insulating covering 10 and the insulating container 1 in a portion where there is no protrusion 12. If the number of the inner peripheral surface protrusions 12 is too large, there is a high possibility that bubbles will remain at the interface between the flexible insulating covering 10 and the insulating container 1 where there are no inner peripheral surface protrusions 12. There is also a limit to the number of circumferential protrusions 12. For this reason, the contact area between the insulating container 1 and the inner peripheral surface protruding portion 12 is preferably less than or equal to half of the outer surface area of the insulating container 1, and as shown in FIG. In some cases, the number of the outer peripheral surface protruding portions 11 is larger than the number of the portions 12.

さらに、図13に示す本実施の形態の別の可撓性絶縁被覆体10においては、内周面突出部12の個数と外周面突出部11の個数とを同じとし、内周面突出部12の位置と外周面突出部11の位置とを軸方向で同じ位置としたものである。このように構成された真空バルブにおいては、絶縁容器1と可撓性絶縁被覆体10との面圧分布が軸方向の内周面突出部12の位置で最大となり、隣接する内周面突出部12との中間位置で最低となる。その結果、絶縁容器1と内周面突出部12との密着が確実になされる。   Furthermore, in another flexible insulating covering 10 of the present embodiment shown in FIG. 13, the number of inner peripheral surface protrusions 12 and the number of outer peripheral surface protrusions 11 are the same, and the inner peripheral surface protrusions 12 are the same. And the position of the outer peripheral surface protrusion 11 are the same position in the axial direction. In the vacuum valve configured as described above, the surface pressure distribution between the insulating container 1 and the flexible insulating covering 10 is maximized at the position of the inner peripheral surface protrusion 12 in the axial direction, and the adjacent inner peripheral surface protrusion It is the lowest at an intermediate position of 12. As a result, the insulating container 1 and the inner peripheral surface protruding portion 12 are securely adhered.

また、図14に示す本実施の形態の別の可撓性絶縁被覆体10においては、外周面突出部11と内周面突出部12とが軸方向に交互に配置されたものである。このように構成された真空バルブにおいては、絶縁容器1と可撓性絶縁被覆体10との面圧分布が軸方向で均一に近い分布となる。その結果、絶縁容器1と可撓性絶縁被覆体10との全体の密着が確実になされる。   Further, in another flexible insulating covering 10 according to the present embodiment shown in FIG. 14, the outer peripheral surface protrusions 11 and the inner peripheral surface protrusions 12 are alternately arranged in the axial direction. In the vacuum valve configured as described above, the surface pressure distribution between the insulating container 1 and the flexible insulating covering 10 is almost uniform in the axial direction. As a result, the entire contact between the insulating container 1 and the flexible insulating covering 10 is ensured.

なお、実施の形態1〜5において、可撓性絶縁被覆体10の外周面突出部11を周方向に1周する構成で説明したが、必ずしも周方向に1周する構成である必要はなく、例えばらせん状に周方向に延在する構成であってもよい。   In the first to fifth embodiments, the outer peripheral surface protrusion 11 of the flexible insulating covering 10 has been described as having a structure that makes one round in the circumferential direction, but it is not necessarily required to have a structure that makes one round in the circumferential direction. For example, the structure extended in the circumferential direction at a spiral may be sufficient.

1 絶縁容器、 2 固定側端板、 3 可動側端板、 4 固定導体、 5 固定電極、 6 ベローズ、 7 可動導体、 8 可動電極、 9 アークシールド、 10 可撓性絶縁被覆体、11 外周面突出部、 12 内周面突出部、 23 固定側ろう付け部、 24 可動側ろう付け部、 25、26 肉厚部、 100 真空バルブ DESCRIPTION OF SYMBOLS 1 Insulation container, 2 Fixed side end plate, 3 Movable side end plate, 4 Fixed conductor, 5 Fixed electrode, 6 Bellows, 7 Movable conductor, 8 Movable electrode, 9 Arc shield, 10 Flexible insulating covering, 11 Outer peripheral surface Projection part, 12 Inner peripheral surface projection part, 23 Fixed side brazed part, 24 Movable side brazed part, 25, 26 Thick part, 100 Vacuum valve

Claims (6)

筒状の絶縁容器の両端部が封着部材で密封された真空容器と、
この真空容器の内部に設置され、前記絶縁容器の軸方向で互いに接触および非接触となる固定電極および可動電極と、
前記絶縁容器の外周面を覆う可撓性絶縁被覆体と
を備えた真空バルブであって、
前記可撓性絶縁被覆体は、外周面を周方向に延在するひだ形状の外周面突出部と、
内周面を周方向に1周するひだ形状の内周面突出部と
を備えたことを特徴とする真空バルブ。
A vacuum container in which both ends of a cylindrical insulating container are sealed with a sealing member;
A fixed electrode and a movable electrode that are installed inside the vacuum vessel and are in contact with and non-contact with each other in the axial direction of the insulating vessel
A vacuum valve provided with a flexible insulating covering covering the outer peripheral surface of the insulating container,
The flexible insulating covering is a pleated outer peripheral surface projecting portion extending in the circumferential direction on the outer peripheral surface;
A vacuum valve comprising a pleated inner peripheral surface protruding portion that makes one round in the circumferential direction on the inner peripheral surface.
前記絶縁容器の少なくとも一方の端部を覆う箇所における前記可撓性絶縁被覆体の前記外周面突出部および前記内周面突出部を除いた部分の厚さが、
他の箇所における前記厚さより厚い
ことを特徴とする請求項1に記載の真空バルブ。
The thickness of the portion excluding the outer peripheral surface protruding portion and the inner peripheral surface protruding portion of the flexible insulating covering at a location covering at least one end of the insulating container is:
The vacuum valve according to claim 1, wherein the vacuum valve is thicker than the thickness at other locations.
前記外周面突出部と前記内周面突出部とが、
前記可撓性絶縁被覆体の前記軸方向の一致した位置に配置されている
ことを特徴とする請求項1または2に記載の真空バルブ。
The outer peripheral surface protrusion and the inner peripheral surface protrusion are:
The vacuum valve according to claim 1, wherein the flexible insulating covering is disposed at a position that coincides with the axial direction of the flexible insulating covering.
前記外周面突出部と前記内周面突出部とが、
前記可撓性絶縁被覆体の前記軸方向の異なる位置に配置されている
ことを特徴とする請求項1または2に記載の真空バルブ。
The outer peripheral surface protrusion and the inner peripheral surface protrusion are:
The vacuum valve according to claim 1, wherein the flexible insulating covering is disposed at a different position in the axial direction.
前記絶縁容器と前記可撓性絶縁被覆体との接合面に接着剤またはグリースが存在する
ことを特徴とする請求項1〜4のいずれか1項に記載の真空バルブ。
The vacuum valve according to any one of claims 1 to 4, wherein an adhesive or grease is present on a joint surface between the insulating container and the flexible insulating covering.
前記可撓性絶縁被覆体の少なくとも一方の端部は、
前記封着部材まで覆う
ことを特徴とする請求項1〜5のいずれか1項に記載の真空バルブ。
At least one end of the flexible insulating covering is
The vacuum valve according to claim 1, wherein the vacuum valve covers up to the sealing member.
JP2016197681A 2016-10-06 2016-10-06 Vacuum valve Active JP6572859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016197681A JP6572859B2 (en) 2016-10-06 2016-10-06 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016197681A JP6572859B2 (en) 2016-10-06 2016-10-06 Vacuum valve

Publications (2)

Publication Number Publication Date
JP2018060697A JP2018060697A (en) 2018-04-12
JP6572859B2 true JP6572859B2 (en) 2019-09-11

Family

ID=61907779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016197681A Active JP6572859B2 (en) 2016-10-06 2016-10-06 Vacuum valve

Country Status (1)

Country Link
JP (1) JP6572859B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3780056A1 (en) * 2019-08-16 2021-02-17 Siemens Aktiengesellschaft Ventilating insulating member for interrupter units

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05298974A (en) * 1992-04-21 1993-11-12 Toshiba Corp Resin mould vacuum valve
JP2004335386A (en) * 2003-05-12 2004-11-25 Toshiba Corp Resin mold vacuum valve
JP6161354B2 (en) * 2013-03-25 2017-07-12 三菱電機株式会社 Vacuum valve

Also Published As

Publication number Publication date
JP2018060697A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
US8227720B2 (en) Vacuum switch and vacuum switchgear
US20100246102A1 (en) Insulation of a switchgear device of vacuum cartridge type by insert moulding
JPS623531B2 (en)
JP6572859B2 (en) Vacuum valve
EP3120370B1 (en) Circuit interrupting device
JP5606252B2 (en) Polymer sleeve
JP5175516B2 (en) Vacuum valve
JP5475601B2 (en) Vacuum valve
JP5292225B2 (en) Mold vacuum valve
EP3229254B1 (en) Vacuum interrupter for a vacuum circuit breaker
WO2018179542A1 (en) Marine hose
JPH04249816A (en) Lightening insulator
CN108878077B (en) High voltage insulator arrangement and gas insulation system comprising a high voltage insulator arrangement
JP6945709B2 (en) Gas insulation bushing
CN109564835B (en) Ceramic insulator for vacuum switch tube
JP6159060B2 (en) Resin mold vacuum valve
JP6161354B2 (en) Vacuum valve
JP4495514B2 (en) Cable termination
JP4734384B2 (en) Vacuum switch
TWI707103B (en) Vacuum valve
US11915895B2 (en) Interrupter unit having a vacuum tube and an insulating housing
JP5525364B2 (en) Vacuum valve
WO2018138754A1 (en) Vacuum valve
JPS6321870Y2 (en)
JP2021089828A (en) Vacuum valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190729

R151 Written notification of patent or utility model registration

Ref document number: 6572859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250