JP6565232B2 - Silver recovery method - Google Patents

Silver recovery method Download PDF

Info

Publication number
JP6565232B2
JP6565232B2 JP2015045743A JP2015045743A JP6565232B2 JP 6565232 B2 JP6565232 B2 JP 6565232B2 JP 2015045743 A JP2015045743 A JP 2015045743A JP 2015045743 A JP2015045743 A JP 2015045743A JP 6565232 B2 JP6565232 B2 JP 6565232B2
Authority
JP
Japan
Prior art keywords
silver
flux
inorganic compound
weight
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015045743A
Other languages
Japanese (ja)
Other versions
JP2016166382A (en
Inventor
健吾 岡嶌
健吾 岡嶌
洋 武田
洋 武田
清隆 重弘
清隆 重弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2015045743A priority Critical patent/JP6565232B2/en
Publication of JP2016166382A publication Critical patent/JP2016166382A/en
Application granted granted Critical
Publication of JP6565232B2 publication Critical patent/JP6565232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、銀含有無機化合物から金属銀を分離回収する方法に関するものである。   The present invention relates to a method for separating and recovering metallic silver from a silver-containing inorganic compound.

金属銀は、古くから高級食器や宝飾品として広く利用され、又、工業用途では写真感光材などの原料である硝酸銀や銀ロウ、メッキ用電極としても用いられてきた。又、近年では、電子機器類の配線や、様々な化学反応に対する触媒、吸着剤の構成成分としても多用されており、非常に重要な物質である。   Metal silver has been widely used as high-quality tableware and jewelry since ancient times, and has also been used as an electrode for silver nitrate, silver brazing, and plating, which are raw materials for photographic photosensitive materials, in industrial applications. In recent years, it is also a very important substance because it is frequently used as a component of wiring for electronic devices, a catalyst for various chemical reactions, and an adsorbent.

金属銀は通常、銅や鉛を得るための電解精錬時の副生物として得られる。しかしながら、銀は埋蔵量が少ない稀少金属であり供給量に制限がある。その為、近年では銀を含む廃棄物や使用済み触媒等から効率的に回収する技術が検討されている。   Metallic silver is usually obtained as a by-product during electrolytic refining to obtain copper and lead. However, silver is a rare metal with a small reserve and its supply is limited. Therefore, in recent years, techniques for efficiently recovering from silver-containing wastes, spent catalysts, and the like have been studied.

例えば、銀を含む物質を硝酸で処理し、銀を硝酸銀として溶解させ、この水溶液に塩酸を添加することで塩化銀を析出させ、濾過にて分離回収後、更に水素にて還元することで金属銀を回収する方法が開示されている(例えば、特許文献1参照)。しかしながら、この方法では工程数が多いため、設備投資額が嵩み、銀のロス量が多く、更に、硝酸、塩酸、水素等の薬剤を多量に使用するためランニングコストが高額になるなど、多くの課題があった。   For example, a substance containing silver is treated with nitric acid, silver is dissolved as silver nitrate, silver chloride is precipitated by adding hydrochloric acid to this aqueous solution, separated and recovered by filtration, and further reduced with hydrogen to form a metal. A method for recovering silver is disclosed (for example, see Patent Document 1). However, since this method has many steps, the capital investment is large, the amount of silver loss is large, and the running cost is high due to the large amount of chemicals such as nitric acid, hydrochloric acid, and hydrogen. There was a problem.

別法として、ハロゲン化銀や硫酸銀を含む原料をアンモニア溶液により浸出し、該浸出液に2段階でヒドラジンを添加することで銀イオンを還元処理し、得られる金属銀を濾過によって分離回収する方法が開示されている(例えば、特許文献2参照)。しかしながら、この方法も工程数が多く、設備投資額が高く、更には薬剤としてヒドラジン等を使用するため、変動費が嵩むといった課題があった。   Alternatively, a raw material containing silver halide or silver sulfate is leached with an ammonia solution, hydrazine is added to the leached solution in two stages to reduce silver ions, and the resulting metallic silver is separated and recovered by filtration Is disclosed (for example, see Patent Document 2). However, this method also has the problem that the number of steps is large, the capital investment is high, and furthermore, since hydrazine or the like is used as a medicine, the variable cost increases.

特開2002−80919号公報JP 2002-80919 A 特開2000−297332号公報JP 2000-297332 A

本発明は、上記の背景技術に鑑みてなされたもので、銀含有無機化合物から金属銀を効果的、効率的に回収する方法を提供することにある。   This invention is made | formed in view of said background art, and is providing the method of collect | recovering metallic silver from a silver containing inorganic compound effectively and efficiently.

本発明者らは、銀含有無機化合物から金属銀を回収する方法について、鋭意検討した結果、特定の薬剤と混合し、加熱処理することで金属銀を容易に分離回収できることを見い出し、本発明を完成するに至った。   As a result of intensive investigations on the method of recovering metallic silver from silver-containing inorganic compounds, the present inventors have found that metallic silver can be easily separated and recovered by mixing with a specific agent and heat treatment, and the present invention. It came to be completed.

即ち本発明は、銀含有無機化合物に融剤を混合し、融剤の融点以上の温度で処理することで、金属銀を分離回収する方法に関する。   That is, the present invention relates to a method for separating and recovering metallic silver by mixing a flux with a silver-containing inorganic compound and treating at a temperature equal to or higher than the melting point of the flux.

本発明の方法により、触媒や吸着剤として使用した後の銀を含むゼオライトやシリカ等から、効果的かつ効率的に金属銀を回収することができる。又、工程数が少なく、設備がコンパクトで、設置面積も小さくできる事から、設備投資額を抑えることができる。又、運転操作性も容易である。更に、安価な薬剤を使用することでランニングコストも抑えることができる。   By the method of the present invention, metallic silver can be effectively and efficiently recovered from zeolite or silica containing silver after being used as a catalyst or adsorbent. Moreover, since the number of processes is small, the equipment is compact, and the installation area can be reduced, the capital investment can be suppressed. Also, the driving operability is easy. Furthermore, running costs can be reduced by using inexpensive drugs.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明における銀含有無機化合物とは、銀を含む無機化合物であれば特に限定しない。具体的には銀が、銀塩、銀イオン、酸化銀、金属銀等を例示でき、より具体的には、無機イオン交換体などに銀イオンとして吸着させたものや、酸化物として担持させたもの等を例示できる。銀含有無機化合物中の銀含有率は、特に限定しない。好ましくは、銀含有率が1重量%以上である。1重量%より低いと融剤の使用量に対して、回収できる銀量が少ないため、効率がやや低下する。より好ましい銀含有率は2重量%以上である。無機化合物中での銀の存在状態は、物理的に吸着していても、化学的に結合していても構わない。   The silver-containing inorganic compound in the present invention is not particularly limited as long as it is an inorganic compound containing silver. Specific examples of silver include silver salts, silver ions, silver oxide, and metallic silver. More specifically, silver is adsorbed on an inorganic ion exchanger as silver ions, or is supported as an oxide. The thing etc. can be illustrated. The silver content rate in a silver containing inorganic compound is not specifically limited. Preferably, the silver content is 1% by weight or more. If the amount is less than 1% by weight, the amount of silver that can be recovered is small with respect to the amount of flux used, and the efficiency is slightly reduced. A more preferable silver content is 2% by weight or more. The presence state of silver in the inorganic compound may be physically adsorbed or chemically bonded.

本発明の無機化合物とは、無機物質を主成分とするものであって、組成等は特に限定しない。又、少量の有機物や樹脂等が含まれていても構わない。無機化合物は、具体的にはケイ素を含むゼオライト、シリカ、シリカアルミナ、ガラス、炭化ケイ素やアルミナ、ジルコニア、活性炭、グラファイト、等を例示できる。好ましくは、融剤との反応性の面からケイ素を含む化合物であり、より好ましくはゼオライト、シリカ、シリカアルミナ、ガラスである。更に好ましくはゼオライトで、触媒や吸着剤として使用した後の使用済みのものでも好適に用いることができる。   The inorganic compound of the present invention is mainly composed of an inorganic substance, and the composition and the like are not particularly limited. Moreover, a small amount of organic matter or resin may be contained. Specific examples of the inorganic compound include zeolite containing silicon, silica, silica alumina, glass, silicon carbide and alumina, zirconia, activated carbon, graphite, and the like. Preferred is a compound containing silicon from the viewpoint of reactivity with the flux, and more preferred are zeolite, silica, silica alumina, and glass. More preferably, it is a zeolite, and a used one after being used as a catalyst or an adsorbent can be suitably used.

本発明の融剤とは、加熱することで溶融し、銀化合物を金属銀に転化し、無機化合物の一部又は全部と反応するものであれば特に限定しない。具体的には炭酸ナトリウム、炭酸カリウム等の炭酸塩、水酸化ナトリウム、水酸化カリウム等の水酸化物、ホウ酸、ホウ砂、メタホウ酸ナトリウム、四ホウ酸ナトリウム等ホウ素化合物、フッ化ナトリウム、フッ化カリウム等の含フッ素化合物、硝酸ナトリウム、硝酸カリウムの硝酸塩、硫酸ナトリウム、硫酸カリウム等の硫酸塩を例示できる。より好ましくは炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、ホウ酸、ホウ砂である。銀含有無機化合物に対する融剤の重量は、銀化合物を金属銀に転化できる量であれば特に限定しない。融剤の添加量が少なすぎると、無機化合物の分解が不十分となり、銀の回収率が低下し、過剰に添加すると薬剤コストが嵩む。好ましくは、融剤の重量が、銀含有無機化合物の重量の0.3〜20倍、より好ましくは0.5〜15倍である。   The flux of the present invention is not particularly limited as long as it melts by heating, converts a silver compound into metallic silver, and reacts with a part or all of the inorganic compound. Specifically, carbonates such as sodium carbonate and potassium carbonate, hydroxides such as sodium hydroxide and potassium hydroxide, boric acid, borax, sodium metaborate, sodium metaborate, sodium tetraborate, and other boron compounds, sodium fluoride, fluorine Examples thereof include fluorine-containing compounds such as potassium fluoride, and sulfates such as sodium nitrate, potassium nitrate, sodium sulfate, and potassium sulfate. More preferred are sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, boric acid and borax. The weight of the flux with respect to the silver-containing inorganic compound is not particularly limited as long as it is an amount capable of converting the silver compound into metallic silver. If the addition amount of the flux is too small, the decomposition of the inorganic compound becomes insufficient, the silver recovery rate decreases, and if added excessively, the drug cost increases. Preferably, the weight of the flux is 0.3 to 20 times, more preferably 0.5 to 15 times the weight of the silver-containing inorganic compound.

本発明は、融剤の融点以上の温度とすることを必須とする。融剤の融点以上の温度で処理することで、銀化合物を金属銀に転化し、無機化合物の一部又は全てが融剤と反応するからである。加熱処理温度は高いほど、生成した金属銀粒子の成長や凝集沈降を促進できるため好ましいが、高すぎるとエネルギーコストが高く、装置材質も高級なものとなる。好ましくは加熱処理温度は、融剤の融点〜1,400℃、より好ましくは、融剤の融点+50℃〜1,300℃である。銀含有無機化合物と融剤は予め混合しておいても、或いは加熱処理している中へ別々に供給しても、同時に供給してもいずれであっても構わない。又、撹拌はあっても無くても構わない。好ましくは、撹拌することである。撹拌により銀含有無機化合物と融剤の反応を促進でき、銀粒子の凝集沈降を促進できる。銀含有無機化合物と融剤を反応させる際のガス雰囲気は特に限定しない。具体的には、空気中、不活性ガス中、還元性ガス中、酸化性ガス中、いずれであっても構わない。好ましくは、空気中であり、雰囲気を制御する必要がなく運転操作が容易になる。又、理由は定かではないが、空気中で加熱処理することで、得られる金属銀の純度を高めることができる。   In the present invention, it is essential that the temperature be equal to or higher than the melting point of the flux. This is because the silver compound is converted to metallic silver by treatment at a temperature equal to or higher than the melting point of the flux, and a part or all of the inorganic compound reacts with the flux. A higher heat treatment temperature is preferable because growth and coagulation sedimentation of the produced silver metal particles can be promoted. However, if the heat treatment temperature is too high, the energy cost is high, and the apparatus material is high-grade. The heat treatment temperature is preferably the melting point of the flux to 1,400 ° C., more preferably the melting point of the flux + 50 ° C. to 1,300 ° C. The silver-containing inorganic compound and the fluxing agent may be mixed in advance, or may be supplied separately during heating treatment, or may be supplied simultaneously. The agitation may or may not be performed. Preferably, it is stirring. By stirring, the reaction between the silver-containing inorganic compound and the flux can be promoted, and the aggregation and precipitation of silver particles can be promoted. The gas atmosphere at the time of making a silver containing inorganic compound and a flux react is not specifically limited. Specifically, any of air, inert gas, reducing gas, and oxidizing gas may be used. Preferably, it is in the air, and it is not necessary to control the atmosphere, and the driving operation is facilitated. Moreover, although the reason is not certain, the purity of the metal silver obtained can be improved by heat-treating in air.

このようにして生成した金属銀は、反応槽の下部に沈降するので、回収が容易である。金属銀の回収は、冷却後、固化させてから回収しても、熱時に回収しても構わない。又、無機化合物と融剤、或いはその反応生成物の抜き出しも、冷却固化させてからでも、熱時であっても構わない。   Since the metallic silver produced in this way settles in the lower part of the reaction vessel, it can be easily recovered. The metallic silver may be collected after cooling and solidifying or may be collected during heating. Further, the inorganic compound and the flux, or the reaction product thereof may be taken out after being cooled and solidified or during heating.

本発明の方法で回収した金属銀は、そのまま、あるいはさらに精製して高純度な金属銀として利用できる。   The metallic silver recovered by the method of the present invention can be used as it is or after further purification as high-purity metallic silver.

そして、無機化合物、融剤、及びその反応生成物は、セメントやガラスの原料として再利用できることもある。この場合、環境保全の面、資源活用の面から社会への貢献も大きくなる。   And an inorganic compound, a flux, and its reaction product may be reused as a raw material of cement or glass. In this case, contributions to society will also increase from the viewpoint of environmental conservation and resource utilization.

以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these Examples.

なお、本発明における無機成分の分析は、酸にて溶解後、誘導結合プラズマ発光分光装置(ICP−AES)を用い、絶対検量線法にて定量した。又、得られた金属銀の純度は、100%から定量できた無機不純物の含量を差し引くことで求めた。   In addition, the analysis of the inorganic component in this invention was quantified by the absolute calibration curve method using the inductively coupled plasma emission spectrometer (ICP-AES) after melt | dissolving with an acid. Moreover, the purity of the obtained metal silver was calculated | required by subtracting the content of the inorganic impurity which could be quantified from 100%.

実施例1
銀含有無機化合物として使用済ゼオライトを用いた。これは燃料電池の燃料であるLPGに含まれる含硫黄着臭剤の吸着に使用した後のもので、銀が12.2重量%、硫黄が1.5重量%、SiOが36.1重量%、Alが26.7重量%含まれていた。この使用済ゼオライト10.6gと炭酸ナトリウム(キシダ化学(株)製試薬特級)(融点851℃)13.5g、ホウ酸(和光純薬工業(株)製試薬特級)(169℃で分解)3.6gを内容積50mLのアルミナ製ルツボ内で混合した。この中に、金属銀の合一を促進するため、種として純度99.999重量%の金属銀インゴット33.12gも仕込んだ。これをルツボ炉(入江商会(株)製MIR−3)に入れ、空気中にて温度1,050℃まで1.2時間で昇温、1,050℃にて2時間保持した。反応終了後、温度30℃に冷却し、金属銀を取り出して重量を測定した結果、34.29gで使用済ゼオライトに含まれた銀の回収重量1.17g、回収率90.5%と高く良好であった。又、回収した金属銀には不純物としてAlが750重量ppm、Siが520重量ppm含まれたが、純度は99.87重量%と高く、良好であった。
Example 1
Used zeolite was used as the silver-containing inorganic compound. This is after use for adsorption of sulfur-containing odorant contained in LPG, which is the fuel of the fuel cell. Silver is 12.2% by weight, sulfur is 1.5% by weight, and SiO 2 is 36.1% by weight. %, And 26.7% by weight of Al 2 O 3 . 10.6 g of this used zeolite, sodium carbonate (special grade made by Kishida Chemical Co., Ltd.) (melting point 851 ° C.) 13.5 g, boric acid (special grade made by Wako Pure Chemical Industries, Ltd.) (decomposes at 169 ° C.) 3 .6 g was mixed in an alumina crucible having an internal volume of 50 mL. In order to promote coalescence of metallic silver, 33.12 g of metallic silver ingot having a purity of 99.999% by weight was also charged. This was put into a crucible furnace (MIR-3 manufactured by Irie Shokai Co., Ltd.), heated in air to a temperature of 1,050 ° C. in 1.2 hours, and held at 1,050 ° C. for 2 hours. After the completion of the reaction, the temperature was cooled to 30 ° C., and the weight of the metallic silver was taken out and measured. Met. The recovered silver metal contained 750 ppm by weight of Al and 520 ppm by weight of Si as impurities, but the purity was as high as 99.87% by weight, which was good.

実施例2
実施例1と同じ使用済ゼオライト10.7gと炭酸ナトリウム13.6g、ホウ酸3.5gを内容積50mLのアルミナ製ルツボ内で混合した。この中に、種として実施例1と同じ金属銀インゴット29.38gも仕込んだ。これを実施例1と同じルツボ炉に入れ、窒素ガスを流通しながら温度1,050℃まで1.4時間で昇温、1,050℃にて2時間保持した。反応終了後、温度30℃に冷却し、金属銀の重量を測定した結果、30.53gで使用済ゼオライトに含まれた銀からの回収重量1.15g、回収率88.1%と高く良好であった。又、回収した金属銀には不純物としてAlが2,300重量ppm、Siが600重量ppm含まれたが、純度は99.71重量%と高く、良好であった。
Example 2
The same spent zeolite 10.7 g as in Example 1, 13.6 g of sodium carbonate, and 3.5 g of boric acid were mixed in an alumina crucible having an internal volume of 50 mL. Into this, 29.38 g of the same metallic silver ingot as in Example 1 was also charged as a seed. This was put into the same crucible furnace as in Example 1, heated up to a temperature of 1,050 ° C. in 1.4 hours and kept at 1,050 ° C. for 2 hours while flowing nitrogen gas. After completion of the reaction, the temperature was cooled to 30 ° C., and the weight of the metallic silver was measured. there were. The recovered metallic silver contained 2,300 ppm by weight of Al and 600 ppm by weight of Si as impurities. The purity was as high as 99.71% by weight and was good.

実施例3
ナイロン樹脂が5.2重量%付着した使用済ゼオライトを原料に用いた。樹脂以外は、銀が11.6重量%、硫黄が1.3重量%、SiOが34.3重量%、Alが25.4重量%含まれていた。この使用済ゼオライト50.6gと炭酸ナトリウム59.0g、ホウ酸13.5gを内容積370mLのアルミナ製ルツボ内で混合した。この中に、種として実施例1と同じ金属銀インゴット152.33gを仕込んだ。これを実施例1と同じルツボ炉に入れ、空気中にて温度1,050℃まで2.6時間で昇温、1,050℃にて2時間保持した。尚、ルツボ内はアルミナ棒にて時々撹拌した。反応終了後、温度30℃に冷却し、金属銀の重量を測定した結果、157.90gで使用済ゼオライトに含まれた銀からの回収重量5.57g、回収率96.0重量%と高く良好であった。又、回収した金属銀には不純物としてAlが630重量ppm、Siが350重量ppm含まれたが、純度は99.90%と高く、良好であった。
Example 3
Spent zeolite with 5.2% by weight of nylon resin was used as a raw material. Except for the resin, 11.6% by weight of silver, 1.3% by weight of sulfur, 34.3% by weight of SiO 2 and 25.4% by weight of Al 2 O 3 were contained. 50.6 g of this used zeolite, 59.0 g of sodium carbonate, and 13.5 g of boric acid were mixed in an alumina crucible having an internal volume of 370 mL. In this, 152.33 g of the same metallic silver ingot as in Example 1 was charged as a seed. This was placed in the same crucible furnace as in Example 1, heated to a temperature of 1,050 ° C. in 2.6 hours in air, and held at 1,050 ° C. for 2 hours. The crucible was sometimes stirred with an alumina rod. After completion of the reaction, the temperature was cooled to 30 ° C., and the weight of the metallic silver was measured. As a result, the recovered weight from silver contained in the used zeolite at 157.90 g was 5.57 g and the recovery rate was 96.0% by weight and good. Met. The recovered metallic silver contained 630 ppm by weight of Al and 350 ppm by weight of Si as impurities. The purity was as high as 99.90%, which was good.

比較例1
実施例1と同じ使用済ゼオライト10.4gと炭酸ナトリウム13.2g、ホウ酸3.3gを内容積50mLのアルミナ製ルツボ内で混合した。この中に、種として実施例1と同じ金属銀インゴット31.55gも仕込んだ。これを実施例1と同じルツボ炉に入れ、窒素ガスを流通しながら温度750℃まで1時間で昇温、750℃にて2時間保持した。反応終了後、温度30℃に冷却し、金属銀の重量を測定した結果、炭酸ナトリムのの融点未満の温度で処理したことから31.55gで使用済ゼオライトに含まれた銀は全く回収できなかった。
Comparative Example 1
10.4 g of the same used zeolite as in Example 1, 13.2 g of sodium carbonate, and 3.3 g of boric acid were mixed in an alumina crucible having an internal volume of 50 mL. Into this, 31.55 g of the same metallic silver ingot as in Example 1 was also charged. This was put into the same crucible furnace as in Example 1, and the temperature was raised to a temperature of 750 ° C. over 1 hour while flowing nitrogen gas, and kept at 750 ° C. for 2 hours. After the reaction was completed, the temperature was lowered to 30 ° C., and the weight of the metallic silver was measured. As a result, the silver contained in the used zeolite at 31.55 g could not be recovered at all because it was processed at a temperature lower than the melting point of sodium carbonate. It was.

本発明は、銀含有無機化合物からの銀の回収方法であって、特定の薬剤と混合し、加熱処理することによって金属銀を容易に分離回収できる。工程数が少ない為、設備投資額を抑えることができ、設備はコンパクトで、設置面積を小さくできる。   The present invention is a method for recovering silver from a silver-containing inorganic compound, and it is possible to easily separate and recover metallic silver by mixing with a specific agent and subjecting it to a heat treatment. Since the number of processes is small, the capital investment can be reduced, the equipment is compact, and the installation area can be reduced.

以上のことから、本発明は、銀含有無機化合物から金属銀を工業的に効率良く回収できる方法と位置付けされる。   From the above, the present invention is positioned as a method capable of industrially recovering metallic silver from silver-containing inorganic compounds.

Claims (9)

銀含有無機化合物融剤混合物に金属銀インゴットを加え、融剤の融点以上の温度で処理することを特徴とする銀の回収方法。 A method for recovering silver, comprising adding a metallic silver ingot to a mixture of a silver-containing inorganic compound and a flux and treating the mixture at a temperature equal to or higher than the melting point of the flux. 無機化合物が、ケイ素を含むことを特徴とする請求項1記載の銀の回収方法。 The silver recovery method according to claim 1, wherein the inorganic compound contains silicon. 無機化合物が、ゼオライト、シリカ、シリカアルミナ、ガラスから選ばれた1種以上であることを特徴とする請求項1又は請求項2に記載の銀の回収方法。 The method for recovering silver according to claim 1 or 2, wherein the inorganic compound is at least one selected from zeolite, silica, silica alumina, and glass. 無機化合物が、ゼオライトであることを特徴とする請求項1乃至請求項3のいずれかに記載の銀の回収方法。 The method for recovering silver according to any one of claims 1 to 3, wherein the inorganic compound is zeolite. 銀含有無機化合物中の銀含有率が、1重量%以上であることを特徴とする請求項1乃至請求項4のいずれかに記載の銀の回収方法。 The silver recovery method according to any one of claims 1 to 4, wherein the silver content in the silver-containing inorganic compound is 1% by weight or more. 融剤の重量が、銀含有無機化合物の重量の0.3〜20倍であることを特徴とする請求項1乃至請求項5のいずれかに記載の銀の回収方法。 Weight of the flux is, silver method the recovery of any crab according to claim 1 to claim 5, characterized in that 0.3 to 20 times the weight of the silver-containing inorganic compound. 融剤が炭酸塩、水酸化物、含ホウ素化合物から選ばれた1種以上であることを特徴とする請求項1乃至請求項6のいずれかに記載の銀の回収方法。 The method for recovering silver according to any one of claims 1 to 6, wherein the flux is one or more selected from carbonates, hydroxides, and boron-containing compounds. 融剤が炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、ホウ酸、ホウ砂から選ばれた1種以上であることを特徴とする請求項1乃至請求項7のいずれかに記載の銀の回収方法。 8. The silver according to claim 1, wherein the flux is at least one selected from sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, boric acid, and borax. Recovery method. 融剤による処理が、空気中でなされることを特徴とする請求項1乃至請求項8のいずれかに記載の銀の回収方法。 The method for recovering silver according to any one of claims 1 to 8, wherein the treatment with the flux is performed in air.
JP2015045743A 2015-03-09 2015-03-09 Silver recovery method Active JP6565232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015045743A JP6565232B2 (en) 2015-03-09 2015-03-09 Silver recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015045743A JP6565232B2 (en) 2015-03-09 2015-03-09 Silver recovery method

Publications (2)

Publication Number Publication Date
JP2016166382A JP2016166382A (en) 2016-09-15
JP6565232B2 true JP6565232B2 (en) 2019-08-28

Family

ID=56897258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015045743A Active JP6565232B2 (en) 2015-03-09 2015-03-09 Silver recovery method

Country Status (1)

Country Link
JP (1) JP6565232B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875246A (en) * 2022-04-25 2022-08-09 江西耐华环保科技有限公司 Pretreatment recovery method of waste silver-aluminum catalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4564391A (en) * 1985-03-05 1986-01-14 The United States Of America As Represented By The United States Department Of Energy Method for the recovery of silver from silver zeolite
JPH06340933A (en) * 1992-08-21 1994-12-13 Panatsuku Kogyo Kk Method for refining silver and method for recovering silver from photographic material, photographic processing solution or photographic emulsion
JP2737824B2 (en) * 1994-04-12 1998-04-08 古河電気工業株式会社 Melt separation method for composite silver products

Also Published As

Publication number Publication date
JP2016166382A (en) 2016-09-15

Similar Documents

Publication Publication Date Title
JP7384904B2 (en) Method for producing fine metal powder from metal compounds
US7615202B2 (en) Method for producing high purity silicon
JP2013139595A (en) Method for recovering valuables from impurity lump containing copper derived from lead smelting
EP2446065B1 (en) USE OF A BINARY SALT FLUX OF NaCl AND MgCI2 FOR THE PURIFICATION OF ALUMINUM OR ALUMINUM ALLOYS, AND METHOD THEREOF
CN1396962A (en) Process for refining silver bullion with gold separation
CN109809440B (en) Method for preparing high-purity lithium chloride, high-purity lithium formate and high-purity lithium carbonate
EP1437326A1 (en) METHOD FOR PRODUCING Si
EP2995702A1 (en) Zinc production method
JP6565232B2 (en) Silver recovery method
JP2018131351A (en) Method for recovering co2 in air to separate carbon
JP4702091B2 (en) Method for producing silver ingot
JP5062111B2 (en) Method for producing high-purity arsenous acid aqueous solution from copper-free slime
KR101865262B1 (en) Method for refining carbon concentration using edta
CN114836635A (en) Method for preparing high-purity metal arsenic by using non-ferrous smelting arsenic-containing solid waste short process
EP3870536B1 (en) Coupled production of high purity silicon and alumina
JP2019026871A (en) Manufacturing method of rare earth fluoride
JP4351912B2 (en) Method for purifying niobium compound and / or tantalum compound
JP4087196B2 (en) Method for recovering ruthenium and / or iridium
WO2000029329A1 (en) Method of producing zinc bromide
RU2534323C1 (en) Metallic cobalt obtaining method
KR101453149B1 (en) Method for collection of in and sn-containing alloy and method for processing ito recycle material
JP7410361B2 (en) Separation method
JPH09324227A (en) Low-alpha-ray, low-oxygen metallic scandium and its production
KR20140082066A (en) Method for producing high purity calcium oxide
WO2010126016A1 (en) Method for removing impurities from flux

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190715

R151 Written notification of patent or utility model registration

Ref document number: 6565232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151