JP6562781B2 - Propagation delay difference measuring device - Google Patents

Propagation delay difference measuring device Download PDF

Info

Publication number
JP6562781B2
JP6562781B2 JP2015173787A JP2015173787A JP6562781B2 JP 6562781 B2 JP6562781 B2 JP 6562781B2 JP 2015173787 A JP2015173787 A JP 2015173787A JP 2015173787 A JP2015173787 A JP 2015173787A JP 6562781 B2 JP6562781 B2 JP 6562781B2
Authority
JP
Japan
Prior art keywords
propagation
measuring
propagation mode
waveform
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015173787A
Other languages
Japanese (ja)
Other versions
JP2017049167A (en
Inventor
雄太 若山
雄太 若山
五十嵐 浩司
浩司 五十嵐
釣谷 剛宏
剛宏 釣谷
多賀 秀徳
秀徳 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2015173787A priority Critical patent/JP6562781B2/en
Publication of JP2017049167A publication Critical patent/JP2017049167A/en
Application granted granted Critical
Publication of JP6562781B2 publication Critical patent/JP6562781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Description

本発明は、光ファイバを伝搬する複数の伝搬モードの光信号間に生じる伝搬遅延差の測定技術に関する。   The present invention relates to a technique for measuring a propagation delay difference generated between optical signals in a plurality of propagation modes propagating through an optical fiber.

光通信における伝送容量の拡大のため、モード多重光通信システムが提案されている。ここで、光ファイバにおける伝搬速度は伝搬モードによって異なり、よって、モード多重光通信システムにおいては伝搬モード毎に異なる伝搬遅延が生じる。つまり、伝搬モード間での伝搬遅延差が生じる。   In order to increase transmission capacity in optical communication, a mode multiplexed optical communication system has been proposed. Here, the propagation speed in the optical fiber differs depending on the propagation mode. Therefore, in the mode multiplexed optical communication system, a propagation delay that differs for each propagation mode occurs. That is, a propagation delay difference occurs between the propagation modes.

非特許文献1は、この伝搬モード間の伝搬遅延差を測定する方法を開示している。図3は、非特許文献1が開示する伝搬遅延差の測定方法の説明図である。光源21は、パルス状の光を出力する。励起部22は、所謂、バットジョイント(Butt Joint)であり、光源21が出力するパルス光から複数の伝搬モードのパルス光を励起して被測定ファイバ23に出力する。被測定ファイバ23を伝搬した各モードのパルス光は光電変換部24において電気信号に変換され、波形測定部25に出力される。波形測定部25は、例えば、オシロスコープであり、入力される電気信号の時間波形を測定・表示する。伝搬モードが異なれば、被測定ファイバ23を伝搬する時間が異なるため、波形測定部25は、時間的に異なる複数の極大値を観測し、この極大値間の時間差が伝搬モード間の伝搬遅延差となる。   Non-Patent Document 1 discloses a method of measuring the propagation delay difference between the propagation modes. FIG. 3 is an explanatory diagram of a method for measuring a propagation delay difference disclosed in Non-Patent Document 1. The light source 21 outputs pulsed light. The excitation unit 22 is a so-called butt joint, which excites pulse light in a plurality of propagation modes from pulse light output from the light source 21 and outputs the excited light to the measured fiber 23. The pulse light of each mode propagated through the measured fiber 23 is converted into an electric signal by the photoelectric conversion unit 24 and output to the waveform measurement unit 25. The waveform measurement unit 25 is, for example, an oscilloscope, and measures and displays a time waveform of an input electric signal. Since the propagation time of the measured fiber 23 is different if the propagation mode is different, the waveform measuring unit 25 observes a plurality of local maximum values that are temporally different, and the time difference between these local maximum values is the propagation delay difference between the propagation modes. It becomes.

T.Mori et al.,"Few−mode fibers supporting more than two LP modes for mode−division−multiplexed transmission with MIMO DSP",J.Light.Tech.,32(14),2468,2014年T.A. Mori et al. "Few-mode fibers supporting more than two LPs for mode-division-multiplexed transmission with MIMO DSP", J. Light. Tech. , 32 (14), 2468, 2014

非特許文献1の構成においては、伝搬モードの数と同じ数の極大値が観測され、その内の2つの極大値の時間差が、当該2つの極大値に対応する2つの伝搬モードの伝搬遅延差を示しているが、どの極大値がどの伝搬モードに対応するかについては、伝搬モードと、被測定ファイバ3の長さ及び伝搬特性に基づき計算により判定しなければならず、煩雑である。また、2つの伝搬モード間の単位距離当たりの伝搬遅延差が小さいと、被測定ファイバ3の長さをかなり長くしないと、波形測定部25が観測する当該2つの極大値が重なり、伝搬遅延差を測定することはできない。このため、光源21が出力するパルス光のパルス幅を極力短くすることも考えられるが、その様な光源21は高価である。   In the configuration of Non-Patent Document 1, the same number of local maximum values as the number of propagation modes are observed, and the time difference between the two local maximum values is the propagation delay difference between the two propagation modes corresponding to the two local maximum values. However, which maximum value corresponds to which propagation mode must be determined by calculation based on the propagation mode, the length of the fiber 3 to be measured, and the propagation characteristics, which is complicated. If the propagation delay difference per unit distance between the two propagation modes is small, the two local maximum values observed by the waveform measuring unit 25 overlap unless the length of the measured fiber 3 is significantly increased. Cannot be measured. For this reason, it is conceivable to reduce the pulse width of the pulsed light output from the light source 21 as much as possible, but such a light source 21 is expensive.

本発明は、被測定ファイバの長さを長くする必要がなく、かつ、低コストで伝搬モード間の伝搬遅延差を測定できる測定装置を提供するものである。   The present invention provides a measuring apparatus that does not require an increase in the length of a fiber to be measured and can measure a propagation delay difference between propagation modes at a low cost.

本発明の一側面によると、伝搬モード間の遅延差の測定装置は、パルス光を生成する光源と、前記光源が生成した前記パルス光を複数の伝搬モードのパルス光に変換して光ファイバに出力する出力手段と、前記光ファイバを伝搬した前記複数の伝搬モードのパルス光を各伝搬モードのパルス光に分離する分離手段と、前記分離手段が分離した前記各伝搬モードのパルス光のそれぞれを電気信号に変換する複数の光電変換手段と、前記複数の光電変換手段それぞれが出力する前記電気信号の波形を測定する測定手段と、を備えていることを特徴とする。 According to one aspect of the present invention, an apparatus for measuring a delay difference between propagation modes includes a light source that generates pulsed light, and converts the pulsed light generated by the light source into pulsed light of a plurality of propagation modes into an optical fiber. Output means for outputting, separation means for separating the plurality of propagation mode pulse lights propagated through the optical fiber into pulse light of each propagation mode, and each of the propagation mode pulse lights separated by the separation means A plurality of photoelectric conversion means for converting into an electric signal, and a measurement means for measuring the waveform of the electric signal output from each of the plurality of photoelectric conversion means.

被測定ファイバの長さを長くする必要がなく、かつ、低コストで伝搬モード間の伝搬遅延差を測定することができる。   It is not necessary to increase the length of the fiber to be measured, and the propagation delay difference between the propagation modes can be measured at a low cost.

一実施形態による伝搬遅延差の測定装置の構成図。The block diagram of the measuring apparatus of the propagation delay difference by one Embodiment. 一実施形態による伝搬遅延差の測定装置の構成図。The block diagram of the measuring apparatus of the propagation delay difference by one Embodiment. 非特許文献1による伝搬遅延差の測定装置の構成図。The block diagram of the measuring apparatus of the propagation delay difference by a nonpatent literature 1. FIG.

以下、本発明の例示的な実施形態について図面を参照して説明する。なお、以下の実施形態は例示であり、本発明を実施形態の内容に限定するものではない。また、以下の各図においては、実施形態の説明に必要ではない構成要素については図から省略する。   Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings. In addition, the following embodiment is an illustration and does not limit this invention to the content of embodiment. In the following drawings, components that are not necessary for the description of the embodiments are omitted from the drawings.

図1は、本実施形態による伝搬遅延差の測定装置の構成図である。光源1は、パルス状の光を出力する。励起部2は、光源1が出力するパルス光を複数の伝搬モードのパルス光に変換して被測定ファイバ3に出力する。励起部2は、例えば、所謂、バットジョイント、つまり、光源1と被測定ファイバ3との間に間隙を設けることにより構成することができる。あるいは、モード変換器を使用することもできる。被測定ファイバ3を伝搬した各伝搬モードのパルス光はモード分離部6において、伝搬モード毎に分離される。各伝搬モードのパルス光は、各光電変換部4において電気信号に変換され、波形測定部5に出力される。波形測定部5は、例えば、オシロスコープであり、入力される各電気信号の時間波形をそれぞれ測定して表示する。   FIG. 1 is a configuration diagram of a propagation delay difference measuring apparatus according to the present embodiment. The light source 1 outputs pulsed light. The excitation unit 2 converts the pulsed light output from the light source 1 into pulsed light of a plurality of propagation modes and outputs it to the measured fiber 3. The excitation unit 2 can be configured by, for example, a so-called butt joint, that is, by providing a gap between the light source 1 and the measured fiber 3. Alternatively, a mode converter can be used. The pulse light of each propagation mode propagated through the measured fiber 3 is separated for each propagation mode by the mode separation unit 6. The pulse light in each propagation mode is converted into an electric signal in each photoelectric conversion unit 4 and output to the waveform measurement unit 5. The waveform measuring unit 5 is, for example, an oscilloscope, and measures and displays the time waveform of each input electric signal.

本実施形態において、波形測定部5は、伝搬モード毎に信号波形を表示し、よって、どの信号波形がどの伝搬モードに対応しているかは、波形測定部5の入力ポートにより判定でき、繁雑な計算を必要としない。また、波形測定部5は、伝搬モード毎に信号波形を表示するため、伝搬遅延差が小さい様な場合であっても、従来技術の様に2つの極大値が1つの極大値に合成されることはない。つまり、被測定ファイバ3の長さに拘らず伝搬遅延差を測定可能である。   In the present embodiment, the waveform measurement unit 5 displays a signal waveform for each propagation mode, and therefore which signal waveform corresponds to which propagation mode can be determined by the input port of the waveform measurement unit 5, which is complicated. Does not require calculation. In addition, since the waveform measurement unit 5 displays the signal waveform for each propagation mode, even if the propagation delay difference is small, the two maximum values are combined into one maximum value as in the prior art. There is nothing. That is, the propagation delay difference can be measured regardless of the length of the measured fiber 3.

なお、図1の測定装置では、測定したい伝搬モードの数と同じ数の光電変換部4と、測定したい伝搬モードの数以上の入力ポートを有する波形測定部5が必要になる。図2は、測定したい伝搬モードの数に拘らず、1つの光電変換部4と、少なくとも1つの入力ポートを有する波形測定部5とで構成される、本発明の他の実施形態による伝搬遅延差の測定装置の構成図である。なお、図1と同じ構成要素については、同様の参照符号を付してその詳細な説明は省略する。   1 requires the same number of photoelectric conversion units 4 as the number of propagation modes to be measured and the waveform measurement unit 5 having more input ports than the number of propagation modes to be measured. FIG. 2 shows a propagation delay difference according to another embodiment of the present invention, which includes one photoelectric conversion unit 4 and a waveform measurement unit 5 having at least one input port regardless of the number of propagation modes to be measured. It is a block diagram of this measuring device. In addition, about the same component as FIG. 1, the same referential mark is attached | subjected and the detailed description is abbreviate | omitted.

図2の測定装置において、スイッチ部7は、モード分離部6が出力する各伝搬モードのパルス光の1つを選択して光電変換部4に出力する。なお、スイッチ部7が光電変換部4に出力するパルス光の切り替えは手動であって良い。同期信号生成部8は、光源1と波形測定部5に同期信号を出力する。光源1は、同期信号生成部8から同期信号を受信すると、同期信号を受信したタイミングを基準とした所定タイミングにおいてパルス光を出力する。また、波形測定部5は、同期信号生成部8から同期信号を受信すると、同期信号を受信したタイミングを基準とした所定タイミングから測定を開始する。つまり、光源1は、同期信号に基づきパルス光を出力するタイミングを決定し、波形測定部5は、同期信号に基づき測定の開始タイミングを決定する。   In the measurement apparatus of FIG. 2, the switch unit 7 selects one of the pulse lights of each propagation mode output from the mode separation unit 6 and outputs it to the photoelectric conversion unit 4. The switching of the pulsed light output from the switch unit 7 to the photoelectric conversion unit 4 may be manual. The synchronization signal generation unit 8 outputs a synchronization signal to the light source 1 and the waveform measurement unit 5. When the light source 1 receives the synchronization signal from the synchronization signal generator 8, the light source 1 outputs pulsed light at a predetermined timing based on the timing at which the synchronization signal is received. In addition, when the waveform measurement unit 5 receives the synchronization signal from the synchronization signal generation unit 8, the waveform measurement unit 5 starts measurement from a predetermined timing based on the timing at which the synchronization signal is received. That is, the light source 1 determines the timing for outputting the pulsed light based on the synchronization signal, and the waveform measurement unit 5 determines the measurement start timing based on the synchronization signal.

スイッチ部7の設定を手動で行った後、同期信号生成部8に同期信号を出力させることで1つの伝搬モードについての時間波形を得ることができる。これを、スイッチ部7を切り替えて各伝搬モードについて測定することで、各伝搬モードの時間波形を得ることができる。光源1及び波形測定部5は、それぞれ、同期信号に基づいてパルス光の出力及び波形の測定を開始するので、各伝搬モードの時間波形の極大値の差は、伝搬遅延差を表している。なお、図2のスイッチ部7が出力する伝搬モードの切り替えは手動であるとしたが、同期信号生成部8が出力する同期信号に応じて自動的に順に切り替えてゆく構成であっても良い。この場合、スイッチ部7は、同期信号を受信すると、1つの時間波形の測定が終了する所定期間だけ待機し、同期信号の受信後当該所定期間が経過すると、次の伝搬モードを選択する様にスイッチの設定を変更する。なお、本実施形態において、スイッチ部7は1つの伝搬モードを選択するものとしたが、波形測定部5のポート数が2つ以上ある場合には、2つ以上の伝搬モードを選択して出力する構成であっても良い。   After the setting of the switch unit 7 is performed manually, the synchronization signal generation unit 8 outputs a synchronization signal to obtain a time waveform for one propagation mode. By measuring this for each propagation mode by switching the switch unit 7, the time waveform of each propagation mode can be obtained. Since the light source 1 and the waveform measuring unit 5 start the output of the pulsed light and the measurement of the waveform based on the synchronization signal, respectively, the difference in the maximum value of the time waveform in each propagation mode represents the propagation delay difference. In addition, although the switching of the propagation mode output from the switch unit 7 in FIG. 2 is manual, it may be configured to automatically switch in order according to the synchronization signal output from the synchronization signal generation unit 8. In this case, when receiving the synchronization signal, the switch unit 7 waits for a predetermined period during which the measurement of one time waveform is completed, and selects the next propagation mode when the predetermined period elapses after receiving the synchronization signal. Change switch settings. In the present embodiment, the switch unit 7 selects one propagation mode. However, when there are two or more ports of the waveform measuring unit 5, two or more propagation modes are selected and output. It may be configured to do so.

1:光源、2:励起部、6:モード分離部、4:光電変換部、5:波形測定部   1: light source, 2: excitation unit, 6: mode separation unit, 4: photoelectric conversion unit, 5: waveform measurement unit

Claims (5)

パルス光を生成する光源と、
前記光源が生成した前記パルス光を複数の伝搬モードのパルス光に変換して光ファイバに出力する出力手段と、
前記光ファイバを伝搬した前記複数の伝搬モードのパルス光を各伝搬モードのパルス光に分離する分離手段と、
前記分離手段が分離した前記各伝搬モードのパルス光のそれぞれを電気信号に変換する複数の光電変換手段と、
前記複数の光電変換手段それぞれが出力する前記電気信号の波形を測定する測定手段と、
を備えていることを特徴とする伝搬モード間の遅延差の測定装置。
A light source that generates pulsed light;
Output means for converting the pulsed light generated by the light source into pulsed light of a plurality of propagation modes and outputting it to an optical fiber;
Separating means for separating the plurality of propagation mode pulse lights propagated through the optical fiber into each propagation mode pulse light;
A plurality of photoelectric conversion means for converting each of the pulse light of each propagation mode separated by the separation means into an electrical signal;
Measuring means for measuring the waveform of the electrical signal output by each of the plurality of photoelectric conversion means;
An apparatus for measuring a delay difference between propagation modes.
前記測定手段は、前記複数の光電変換手段のうちの2つの光電変換手段が出力する2つの前記電気信号の極大値の時間差を測定し、当該時間差を当該2つの光電変換手段が出力する2つの前記電気信号の元となった2つの伝搬モード間の遅延差とすることを特徴とする請求項1に記載の測定装置。 Said measuring means, said plurality of measuring the time difference between the maximum value of the two said electric signals are two photoelectric converting means for outputting one of the photoelectric conversion means, the time difference between two output by the two photoelectric conversion means measuring device according to claim 1, characterized in that the delay difference between the two propagation modes is the source of the electrical signal. パルス光を生成する光源と、
前記光源が生成した前記パルス光を複数の伝搬モードのパルス光に変換して光ファイバに出力する出力手段と、
前記光ファイバを伝搬した前記複数の伝搬モードのパルス光を各伝搬モードのパルス光に分離する分離手段と、
前記分離手段が分離した前記各伝搬モードのパルス光の少なくとも1つを選択する選択手段と、
前記選択手段が選択した伝搬モードのパルス光を電気信号に変換する光電変換手段と、
前記光電変換手段が出力する前記電気信号の波形を測定する測定手段と、
同期信号を生成する生成手段と、
を備えており、
前記光源がパルス光を生成するタイミングと、前記測定手段が波形の測定を開始するタイミングは、前記同期信号により決定されることを特徴とする伝搬モード間の遅延差の測定装置。
A light source that generates pulsed light;
Output means for converting the pulsed light generated by the light source into pulsed light of a plurality of propagation modes and outputting it to an optical fiber;
Separating means for separating the plurality of propagation mode pulse lights propagated through the optical fiber into each propagation mode pulse light;
Selecting means for selecting at least one of the pulsed light beams of the respective propagation modes separated by the separating means;
Photoelectric conversion means for converting the pulse light of the propagation mode selected by the selection means into an electrical signal;
Measuring means for measuring the waveform of the electrical signal output by the photoelectric conversion means;
Generating means for generating a synchronization signal;
With
An apparatus for measuring a delay difference between propagation modes, wherein a timing at which the light source generates pulsed light and a timing at which the measurement unit starts measuring a waveform are determined by the synchronization signal.
前記測定手段は、前記選択手段が第1伝搬モードを選択したときに測定した電気信号の波形が極大となるタイミングと、前記選択手段が第2伝搬モードを選択したときに測定した電気信号の波形が極大となるタイミングとの時間差を、前記第1伝搬モードと前記第2伝搬モードとの遅延差とすることを特徴とする請求項3に記載の測定装置。   The measuring means includes a timing at which the waveform of the electrical signal measured when the selecting means selects the first propagation mode and a waveform of the electrical signal measured when the selecting means selects the second propagation mode. The measurement apparatus according to claim 3, wherein a time difference from a timing at which the signal becomes maximum is a delay difference between the first propagation mode and the second propagation mode. 前記選択手段は、前記同期信号を受信した後、所定期間が経過すると選択する伝搬モードを変更することを特徴とする請求項3又は4に記載の測定装置。   The measuring device according to claim 3 or 4, wherein the selection unit changes a propagation mode to be selected when a predetermined period has elapsed after receiving the synchronization signal.
JP2015173787A 2015-09-03 2015-09-03 Propagation delay difference measuring device Active JP6562781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015173787A JP6562781B2 (en) 2015-09-03 2015-09-03 Propagation delay difference measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015173787A JP6562781B2 (en) 2015-09-03 2015-09-03 Propagation delay difference measuring device

Publications (2)

Publication Number Publication Date
JP2017049167A JP2017049167A (en) 2017-03-09
JP6562781B2 true JP6562781B2 (en) 2019-08-21

Family

ID=58278820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015173787A Active JP6562781B2 (en) 2015-09-03 2015-09-03 Propagation delay difference measuring device

Country Status (1)

Country Link
JP (1) JP6562781B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6785711B2 (en) * 2017-04-20 2020-11-18 Kddi株式会社 Evaluation device for optical members

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269037A (en) * 1985-05-24 1986-11-28 Kokusai Denshin Denwa Co Ltd <Kdd> System for measuring dispersing characteristics of optical fiber
JPH10339687A (en) * 1997-06-10 1998-12-22 Furukawa Electric Co Ltd:The Method for evaluating multimode optical fiber
JP2002048680A (en) * 2000-08-01 2002-02-15 Anritsu Corp Polarization mode dispersion distribution measuring method and apparatus for optical fiber
KR100719892B1 (en) * 2005-03-23 2007-05-18 광주과학기술원 Apparatus for measuring a differential mode delay of a multimode optical fiber
EP2645609B1 (en) * 2012-03-30 2014-10-29 Alcatel Lucent Method of optical data transmission using mode division multiplexing
US9871584B2 (en) * 2013-10-15 2018-01-16 Draka Comteq, B.V. Method of characterizing a multimode optical fiber link and corresponding methods of fabricating multimode optical fiber links and of selecting multimode optical fibers from a batch of multimode optical fibers

Also Published As

Publication number Publication date
JP2017049167A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
US11788928B2 (en) Light intensity distribution measurement method and light intensity distribution measurement device
JP2004132719A (en) Optical sampling method, system, and program
JP2018195997A (en) Device and method for measuring optical signal-to-noise ratio
JP6562781B2 (en) Propagation delay difference measuring device
JP5715660B2 (en) Optical sampling apparatus and optical sampling method
JP5986272B1 (en) Inter-core crosstalk evaluation method and system
JP4586033B2 (en) Optical heterodyne interferometer and optical path length difference measuring method thereof
US20160020852A1 (en) Optical transmitter and optical transmission method
WO2020071127A1 (en) Backscattering optical amplification device, optical pulse testing device, backscattering optical amplification method and optical pulse testing method
JP6748027B2 (en) Optical pulse test apparatus and optical pulse test method
TWI785103B (en) Optical distance measuring device and processing device
JP5852693B2 (en) Optical fiber test apparatus and optical fiber test method
WO2020031862A1 (en) Optical device loss measurement apparatus, and optical device loss measurement method
JP2017072495A (en) Test light multi/demultiplexer and light beam path testing system
JP6653616B2 (en) Optical pulse test method and optical pulse test apparatus
JP2019020276A (en) Spatial multiplexing optical transmission path evaluation device and method
JP2005265458A (en) Measurement device for optical fiber temperature distribution
JP6785711B2 (en) Evaluation device for optical members
JP5415467B2 (en) PDL measuring instrument and PDL measuring method
JP2007218628A (en) Polarization state measuring device and optical sampling device
JP5564586B1 (en) measuring device
JP2010219594A (en) Optical transmission system
JP2012189502A (en) Evaluation device of optical fiber and evaluation method thereof
JP5419935B2 (en) Multi-wavelength simultaneous OTDR and multi-wavelength simultaneous OTDR measurement method
JP2010261918A (en) Optical fiber sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190723

R150 Certificate of patent or registration of utility model

Ref document number: 6562781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150