JP6544227B2 - Porcelain composition and ceramic electronic component - Google Patents

Porcelain composition and ceramic electronic component Download PDF

Info

Publication number
JP6544227B2
JP6544227B2 JP2015247174A JP2015247174A JP6544227B2 JP 6544227 B2 JP6544227 B2 JP 6544227B2 JP 2015247174 A JP2015247174 A JP 2015247174A JP 2015247174 A JP2015247174 A JP 2015247174A JP 6544227 B2 JP6544227 B2 JP 6544227B2
Authority
JP
Japan
Prior art keywords
composition
temperature
ceramic
range
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015247174A
Other languages
Japanese (ja)
Other versions
JP2016128372A (en
Inventor
圭祐 岡井
圭祐 岡井
智也 柴崎
智也 柴崎
秀定 夏井
秀定 夏井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of JP2016128372A publication Critical patent/JP2016128372A/en
Application granted granted Critical
Publication of JP6544227B2 publication Critical patent/JP6544227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Description

本発明は、磁器組成物と、その磁器組成物を用いるセラミック電子部品に関するものである。   The present invention relates to a ceramic composition and a ceramic electronic component using the ceramic composition.

近年、電気機器および電子機器の小型化かつ高性能化が急速に進み、このような機器に使用されるセラミック電子部品についても、小型かつ容量の拡大(小型大容量化)が求められている。   In recent years, miniaturization and high performance of electric devices and electronic devices has rapidly progressed, and ceramic electronic components used in such devices are also required to be small in size and increase in capacity (small in size and large in capacity).

セラミック電子部品の一つであるセラミックコンデンサにおいては、小型大容量化のため、磁器組成物として比誘電率が高いBaTiO系の材料が用いられている。しかしながら、BaTiO系の磁器組成物は、直流電圧印加によりその比誘電率が低下する。このため、直流電圧印加の環境で使用する場合には、印加する直流電圧の増加によって比誘電率が低下し、電子部品として容量が低下してしまう。このため、こうした電子部品を電子回路に用いるには、直流電圧の印加による容量の低下を加味する必要があった。 In a ceramic capacitor which is one of ceramic electronic components, a BaTiO 3 based material having a high relative dielectric constant is used as a ceramic composition for the purpose of small size and high capacity. However, the dielectric constant of the BaTiO 3 -based ceramic composition is lowered by the application of a DC voltage. For this reason, when using it in the environment of direct current voltage application, a relative dielectric constant will fall by the increase in the direct current voltage to apply, and capacity | capacitance will fall as an electronic component. For this reason, in order to use such an electronic component for an electronic circuit, it was necessary to consider the fall of the capacity | capacitance by the application of a DC voltage.

またBaTiOはキュリー点が125℃付近であり、150℃以上の高温領域では、室温の比誘電率に比較して大きく低下してしまい、100℃以上の領域では、キュリー点近傍となるために、室温に比べて比誘電率が著しく増大してしまうために、単体では比誘電率の温度変化率が非常に大きく実用に耐えられない。 In addition, BaTiO 3 has a Curie point near 125 ° C., and in a high temperature range of 150 ° C. or more, it drops significantly as compared to the dielectric constant at room temperature, and in a region of 100 ° C. or more, it is near the Curie point. Since the relative permittivity significantly increases as compared with room temperature, the temperature change rate of the relative permittivity is very large and can not stand practical use.

このため、印加する直流電圧によって、磁器組成物の比誘電率や電子部品の容量の低下を抑制すること、また比誘電率の温度特性が良く、しかも高い誘電率を持たせることが要求されている。   For this reason, it is required to suppress the decrease in the relative dielectric constant of the porcelain composition and the capacitance of the electronic component by the applied DC voltage, and to have a good temperature characteristic of the relative dielectric constant and to have a high dielectric constant. There is.

これに対して、非特許文献1および非特許文献2には、BaTiO系に代わる材料として(Na0.5Bi0.5)TiOとSrTiOを組み合わせた材料を提案している。また特許文献1では、SrTiOの他に、PbTiO及びCaTiOを(Na0.5Bi0.5)TiOと組み合わせた材料を提案している。 On the other hand, Non-Patent Document 1 and Non-Patent Document 2 propose a material in which (Na 0.5 Bi 0.5 ) TiO 3 and SrTiO 3 are combined as a material to replace the BaTiO 3 system. The Patent Document 1, in addition to the SrTiO 3, has proposed a material that combines PbTiO 3 and CaTiO 3 and (Na 0.5 Bi 0.5) TiO 3 .

特開平1−242464号公報Unexamined-Japanese-Patent No. 1-242464 Ferroelectric and antiferroelectric properties of(Na0.5Bi0.5)TiO3−SrTiO3 solid solution ceramics(1974)Ferroelectric and antiferroelectric properties of (Na0.5Bi0.5) TiO3-SrTiO3 solid solution ceramics (1974) Variations of structure and dielectric properties on substituting A site cations for Sr2+ in (Na1/2Bi1/2)TiO3(1997)Variations of structure and dielectric properties on substitution A site cations for Sr2 + in (Na1 / 2Bi1 / 2) TiO3 (1997)

しかしながら、特許文献1に開示されている磁器組成物では、焦電性セラミックとしての特性を提案しており、実施の多くが鉛を含有した組成に関するものであり、焼成時における鉛の揮発、市場に流通し廃棄された後における環境中への鉛の放出につながってしまう。   However, in the porcelain composition disclosed in Patent Document 1, properties as a pyroelectric ceramic are proposed, and most of the implementation relates to a composition containing lead, volatilization of lead at the time of firing, the market Lead to the release of lead into the environment after being distributed and disposed of.

また非特許文献1に開示されている磁器組成物では、電子部品に印加する直流電圧が高くなると、容量の変化を抑制するには十分ではなかった。特に、磁器組成物に対して5V/μm以上の高い電界強度の直流電圧がかかる場合では、その比誘電率の変化率が直流電圧を印加していない場合に比べ、15%から27%まで低下してしまっていた。   In the case of the porcelain composition disclosed in Non-Patent Document 1, when the direct current voltage applied to the electronic component is high, it was not sufficient to suppress the change in capacity. In particular, when a DC voltage with a high electric field strength of 5 V / μm or more is applied to the porcelain composition, the rate of change of the relative dielectric constant is reduced by 15% to 27% compared to the case where no DC voltage is applied. It was done.

さらに、非特許文献2に開示されている磁器組成物では、−55℃〜150℃においての温度変化による比誘電率の変化が50%以上あり、容量の変化を抑制するには十分ではなかった。   Furthermore, in the ceramic composition disclosed in Non-Patent Document 2, the change in relative permittivity due to the temperature change at -55 ° C to 150 ° C is 50% or more, which is not sufficient to suppress the change in capacity. .

本発明は、上記課題に鑑みてなされたものであって、5V/μm以上の直流電圧を印加しても、比誘電率の低下を±15%以内に抑制することが出来、また広範囲の温度範囲(−55℃〜150℃)でも、容量変化率が±15%以内の磁器組成物及びセラミック電子部品を提供することを目的とする。   The present invention has been made in view of the above problems, and even when a DC voltage of 5 V / μm or more is applied, the decrease in relative dielectric constant can be suppressed to within ± 15%, and a wide range of temperatures An object of the present invention is to provide a ceramic composition and a ceramic electronic component having a capacity change rate within ± 15% even in the range (-55 ° C to 150 ° C).

本発明の磁器組成物は、(Na0.5Bi0.5)TiOとSrTiOとCaTiOのモル比をa:b:cとすると((Na0.5Bi0.5)TiO:SrTiO:CaTiO=a:b:c)、前記三成分の組成図上で、(a、b、c)の組成の範囲がA(0.45、0.35、0.20)、B(0.25、0.55、0.20)、C(0.15、0.55、0.30)、D(0.35、0.35、0.30)で囲まれる領域内(各点を結ぶ線上を含む。)であることを特徴とする磁器組成物である。 In the ceramic composition of the present invention, when the molar ratio of (Na 0.5 Bi 0.5 ) TiO 3 to SrTiO 3 to CaTiO 3 is a: b: c ((Na 0.5 Bi 0.5 ) TiO 3 : SrTiO 3 : CaTiO 3 = a: b: c), the composition range of (a, b, c) is A (0.45, 0.35, 0.20), on the composition diagram of the three components. Within the area surrounded by B (0.25, 0.55, 0.20), C (0.15, 0.55, 0.30), D (0.35, 0.35, 0.30) It is a porcelain composition characterized by being in the line which connects each point.

これによって、5V/μm以上の直流電圧を印加しても比誘電率の低下を±15%以内に抑制することの出来、また広範囲の温度範囲(−55℃〜150℃)でも、容量変化率が±15%以内の新規の磁器組成物を提供することができる。   As a result, even when a DC voltage of 5 V / μm or more is applied, the decrease in relative dielectric constant can be suppressed to within ± 15%, and the capacity change rate also in a wide temperature range (−55 ° C. to 150 ° C.) Can provide a new porcelain composition within ± 15%.

さらに前記三成分の組成図上で、(a、b、c)の組成の範囲が、E(0.35、0.45、0.20)、F(0.30、0.50、0.20)、G(0.20、0.50、0.30)、H(0.25、0.45、0.30)で囲まれる領域内(各点を結ぶ線上を含む。)であることが好ましい。   Further, on the composition diagram of the three components, the range of the composition of (a, b, c) is E (0.35, 0.45, 0.20), F (0.30, 0.50, 0. 20) within a region surrounded by G (0.20, 0.50, 0.30), H (0.25, 0.45, 0.30) (including the line connecting points) Is preferred.

この範囲では、広範囲の温度範囲でも、抵抗値が高い磁器組成物を提供することができる。   In this range, a ceramic composition having a high resistance value can be provided even in a wide temperature range.

本発明は、上記課題に鑑みてなされたものであって、5V/μm以上の直流電圧を印加しても、比誘電率の低下を±15%以内に抑制することが出来、また広範囲の温度範囲(−55℃〜150℃)でも、容量変化率が±15%以内の磁器組成物及びセラミック電子部品を提供することができる。   The present invention has been made in view of the above problems, and even when a DC voltage of 5 V / μm or more is applied, the decrease in relative dielectric constant can be suppressed to within ± 15%, and a wide range of temperatures Even in the range (−55 ° C. to 150 ° C.), it is possible to provide a ceramic composition and a ceramic electronic component having a volume change rate of ± 15% or less.

本発明による磁器組成物の好ましい組成を示す三成分組成図である。It is a three-component composition figure which shows the preferable composition of the porcelain composition by this invention. 本発明の一実施形態に係る積層セラミックコンデンサの断面図である。FIG. 1 is a cross-sectional view of a laminated ceramic capacitor according to an embodiment of the present invention.

以下、本発明を、図面に示す実施形態に基づき説明する。   Hereinafter, the present invention will be described based on embodiments shown in the drawings.

本実施形態の磁器組成物は、(Na0.5Bi0.5)TiOとSrTiOとCaTiOのモル比をa:b:cとすると((Na0.5Bi0.5)TiO:SrTiO:CaTiO=a:b:c)、前記三成分の組成図上で、(a、b、c)の組成の範囲がA(0.45、0.35、0.20)、B(0.25、0.55、0.20)、C(0.15、0.55、0.30)、D(0.35、0.35、0.30)で囲まれる領域内(各点を結ぶ線上を含む。)であることを特徴とする。 When the molar ratio of (Na 0.5 Bi 0.5 ) TiO 3 to SrTiO 3 to CaTiO 3 is a: b: c ((Na 0.5 Bi 0.5 ) TiO 2, the ceramic composition of the present embodiment is 3 : SrTiO 3 : CaTiO 3 = a: b: c), the composition range of (a, b, c) is A (0.45, 0.35, 0.20) on the composition diagram of the above three components , B (0.25, 0.55, 0.20), C (0.15, 0.55, 0.30), D (0.35, 0.35, 0.30) (Including the line connecting the points).

A,B,C,Dが上記範囲を外れると5V/μm以上の直流電圧を印加しても比誘電率の低下、もしくは−55℃〜150℃における温度の容量変化率が高くなってしまう。   If A, B, C, and D are out of the above ranges, the relative dielectric constant drops or the rate of change of capacity at temperature of -55 ° C to 150 ° C increases even if a DC voltage of 5 V / μm or more is applied.

さらに前記三成分の組成図上で、(a、b、c)の組成の範囲が、E(0.35、0.45、0.20)、F(0.30、0.50、0.20)、G(0.20、0.50、0.30)、H(0.25、0.45、0.30)で囲まれる領域内(各点を結ぶ線上を含む。)であることが好ましい。   Further, on the composition diagram of the three components, the range of the composition of (a, b, c) is E (0.35, 0.45, 0.20), F (0.30, 0.50, 0. 20) within a region surrounded by G (0.20, 0.50, 0.30), H (0.25, 0.45, 0.30) (including the line connecting points) Is preferred.

EFGHが上記範囲を外れると−55℃〜150℃における温度領域における抵抗が低くなってしまう。   When the EFGH is out of the above range, the resistance in the temperature range at -55 ° C to 150 ° C becomes low.

誘電体磁器組成物として実用に十分な誘電率が得られる等の観点から、式(1)で表さ
れる複合酸化物の含有量は、誘電体磁器組成物全体を基準として、90質量%以上である
ことが好ましく、作製プロセス上混入する可能性があるAl、Zrなどの不純物を含んでい
ても良い。
From the viewpoint of obtaining a dielectric constant sufficient for practical use as a dielectric ceramic composition, the content of the composite oxide represented by the formula (1) is 90% by mass or more based on the entire dielectric ceramic composition. And may contain impurities such as Al and Zr which may be mixed in the manufacturing process.

ここで、誘電体磁器組成物の組成は、例えば、蛍光X線分析やICP発光分光分析で測
定することができる。
Here, the composition of the dielectric ceramic composition can be measured, for example, by fluorescent X-ray analysis or ICP emission spectral analysis.

上記誘電体磁器組成物の相対密度は、95%以上の相対密度を有することが好ましい。ここで、本明細書において、相対密度とは、理論密度に対する、密度の実測値をいう。なお、理論密度は、X線回折によって求めた格子定数と、完全結晶を仮定して求めた量論比により計算される。誘電体磁器組成物の相対密度は、例えば、アルキメデス法によって測定することができる。ここで、誘電体磁器組成物の相対密度は、焼成温度や焼成時間を変えることによって調整することができる。   The relative density of the dielectric ceramic composition preferably has a relative density of 95% or more. Here, in the present specification, the relative density refers to the measured value of density relative to the theoretical density. The theoretical density is calculated by the lattice constant determined by X-ray diffraction and the stoichiometric ratio determined assuming a perfect crystal. The relative density of the dielectric ceramic composition can be measured, for example, by the Archimedes method. Here, the relative density of the dielectric ceramic composition can be adjusted by changing the firing temperature or the firing time.

本実施形態の磁器組成物の製造方法としては、所望の割合となるように原料を用意し、混合し、1200℃以上で熱処理(焼成)を実施し、焼結体を得ることができる。   As a manufacturing method of the porcelain composition of this embodiment, a raw material is prepared so that it may become a desired ratio, it mixes, heat processing (baking) can be implemented above 1200 degreeC, and a sintered compact can be obtained.

原料には、Biや、Sr、Ca、Na、Tiを主として構成する酸化物やその混合物を原料粉として用いることができる。さらには、焼成により上記した酸化物や複合酸化物となる各種化合物、たとえば炭酸塩、シュウ酸塩、硝酸塩、水酸化物、有機金属化合物等から適宜選択し、混合して用いることもできる。   As a raw material, an oxide mainly composed of Bi, Sr, Ca, Na, Ti, or a mixture thereof can be used as a raw material powder. Furthermore, various compounds which become the above-described oxides or composite oxides by firing, for example, carbonates, oxalates, nitrates, hydroxides, organic metal compounds and the like can be appropriately selected and mixed and used.

また、本実施形態に係る磁器組成物は、その焼結体の組成が均一、つまり、組成を構成する元素の偏りがなく分布する組織(均一な組織)であることが、直流電圧の印加による比誘電率の低下を少なくする観点でより好ましい。得られた磁器組成物が、均一な組織であるか否かを判断する方法は、CuKαを線源とするX線回折測定によるX線回折パターンよりABOで表されるペロブスカイト構造を形成しているかどうかで判断することができる。 In addition, the ceramic composition according to the present embodiment has a composition (uniform structure) in which the composition of the sintered body is uniform, that is, distributed without deviation of the elements constituting the composition, by application of a DC voltage It is more preferable in the viewpoint of reducing the fall of a dielectric constant. The method to determine whether the obtained ceramic composition has a uniform structure is to form a perovskite structure represented by ABO 3 from an X-ray diffraction pattern by X-ray diffraction measurement using CuKα as a radiation source. It can be judged by whether it is

本実施形態に係る磁器組成物を有することを特徴とするセラミック電子部品とは、例えば、特に限定されないが、積層セラミックコンデンサ、圧電素子、チップインダクタ、チップバリスタ、チップサーミスタ、チップ抵抗、その他の表面実装(SMD)チップ型電子部品が例示される。   Examples of the ceramic electronic component having the ceramic composition according to the present embodiment include, but are not particularly limited to, multilayer ceramic capacitors, piezoelectric elements, chip inductors, chip varistors, chip thermistors, chip resistances, and other surfaces. A mounting (SMD) chip type electronic component is illustrated.

積層セラミックコンデンサを例示し説明する。図2には、本発明の一実施形態に係る積層セラミックコンデンサを示す。積層セラミックコンデンサ1は誘電体層2と内部電極層3とが交互に積層された構成のコンデンサ素子本体10を有する。このコンデンサ素子本体10の両端部には、素子本体10の内部で交互に配置された内部電極層3と各々導通する一対の外部電極4が形成してある。コンデンサ素子本体10の形状に特に制限はないが、通常、直方体状とされる。また、その寸法にも特に制限はなく、用途に応じて適当な寸法とすればよい。   A multilayer ceramic capacitor is illustrated and described. FIG. 2 shows a multilayer ceramic capacitor according to an embodiment of the present invention. A multilayer ceramic capacitor 1 has a capacitor element body 10 in which dielectric layers 2 and internal electrode layers 3 are alternately stacked. At both ends of the capacitor element body 10, a pair of external electrodes 4 are formed which are respectively conducted to the internal electrode layers 3 alternately arranged inside the element body 10. The shape of the capacitor element body 10 is not particularly limited, but is generally in the form of a rectangular parallelepiped. Also, the size is not particularly limited, and may be an appropriate size according to the application.

誘電体層2の厚みは、特に限定されず、積層セラミックコンデンサ1の用途に応じて適宜決定すれば良い。   The thickness of the dielectric layer 2 is not particularly limited, and may be appropriately determined according to the application of the multilayer ceramic capacitor 1.

内部電極層3に含有される導電材は特に限定されないが、Pd、Ag、Pd−Ag合金、CuまたはCu系合金が好ましい。なお、Pd、Ag、Pd−Ag合金、CuまたはCu系合金中には、P等の各種微量成分が0.1重量%程度以下含まれていてもよい。また、内部電極層3は、市販の電極用ペーストを使用して形成してもよい。内部電極層3の厚さは用途等に応じて適宜決定すればよい。   The conductive material contained in the internal electrode layer 3 is not particularly limited, but is preferably Pd, Ag, a Pd-Ag alloy, Cu or a Cu-based alloy. In addition, about 0.1 weight% or less of various trace components, such as P, may be contained in Pd, Ag, a Pd-Ag alloy, Cu, or a Cu-type alloy. Alternatively, the internal electrode layer 3 may be formed using a commercially available electrode paste. The thickness of the internal electrode layer 3 may be appropriately determined in accordance with the application and the like.

以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments in any way, and various modifications can be made without departing from the scope of the present invention.

以下、本発明の具体的実施例を挙げ、本発明をさらに詳細に説明するが、本発明は、これら実施例に限定されない。   Hereinafter, the present invention will be described in more detail by way of specific examples of the present invention, but the present invention is not limited to these examples.

原料として、Bi、SrCO、CaCO、NaCO、TiOの各粉末を用意した。 As raw materials, powders of Bi 2 O 3 , SrCO 3 , CaCO 3 , Na 2 CO 3 , and TiO 2 were prepared.

これらを組成が表1となるように秤量して、ボールミルにて湿式混合した後、乾燥して各混合粉を得た。そして、これらの混合粉を800℃で仮焼し、仮焼粉を得た。   These were weighed so that the composition was as shown in Table 1, wet-mixed in a ball mill, and then dried to obtain each mixed powder. Then, these mixed powders were calcined at 800 ° C. to obtain calcined powders.

得られた仮焼粉:100重量部と、ポリビニルアルコール樹脂:0.6重量部とを混合して、誘電体造粒粉を作製した。   The obtained calcined powder: 100 parts by weight and polyvinyl alcohol resin: 0.6 parts by weight were mixed to prepare a dielectric granulated powder.

そして、作製した誘電体造粒粉を用いて、金型プレス:0.6tで仮プレスを行い、その後、金型プレス:1.2tで本プレスを行うことで、直径12mmφの円盤状バルク体を得た。   Then, using the manufactured dielectric granulated powder, temporary pressing is performed at a mold press: 0.6 t, and then, main press is performed at a mold press: 1.2 t to obtain a disc-shaped bulk body having a diameter of 12 mmφ. I got

次いで、得られたバルク体について、脱バインダ処理(昇温速度:150℃/時間、保持温度:400℃、温度保持時間:2時間、雰囲気:空気中)で行い、焼成(昇温速度:200℃/時間、保持温度:表1に示す温度、温度保持時間:2時間、冷却速度:200℃/時間、雰囲気:空気中)で行いセラミック焼成体を得た。   Next, the obtained bulk body is subjected to binder removal processing (temperature raising rate: 150 ° C./hour, holding temperature: 400 ° C., temperature holding time: 2 hours, atmosphere: in air), and firing (temperature raising rate: 200) C./hour, holding temperature: temperature shown in Table 1, temperature holding time: 2 hours, cooling rate: 200 ° C./hour, atmosphere: in air) to obtain a ceramic sintered body.

得られたセラミック焼成体の両面をラップ研磨盤にて研磨した後、電極としてAgを1μmの厚さで蒸着させ、試料番号1〜23のセラミックコンデンサ得た。   After polishing both surfaces of the obtained ceramic fired body with a lapping machine, Ag was vapor deposited at a thickness of 1 μm as an electrode to obtain ceramic capacitors of sample numbers 1 to 23.

Figure 0006544227
Figure 0006544227

得られた試料番号1〜23のセラミックコンデンサについて、比誘電率、直流電圧の印加による比誘電率の変化(DCバイアス特性)、容量温度変化率△C/C25を下記に示す方法により測定した。   With respect to the obtained ceramic capacitors of sample numbers 1 to 23, the relative dielectric constant, the change in the relative dielectric constant due to the application of a DC voltage (DC bias characteristics), and the capacity temperature change rate ΔC / C 25 were measured by the methods shown below.

比誘電率
セラミックコンデンサに対し、25℃において、デジタルLCRメータ(YHP社製4284A)にて、周波数1kHz、入力信号レベル(測定電圧)1Vrmsの信号を入力し、静電容量Cを測定した。そして、比誘電率を、誘電体層の厚みと、有効電極面積と、測定の結果得られた静電容量Cとに基づき算出した。比誘電率は高いほうが好ましく、400以上を良好であると判断した。
Relative Permittivity A signal having a frequency of 1 kHz and an input signal level (measurement voltage) of 1 Vrms was input to a ceramic capacitor at 25 ° C. with a digital LCR meter (4284A manufactured by YHP), and capacitance C was measured. Then, the relative dielectric constant was calculated based on the thickness of the dielectric layer, the effective electrode area, and the capacitance C obtained as a result of the measurement. The higher the relative dielectric constant, the better, and it was judged that 400 or more was good.

DCバイアス特性
セラミックコンデンサに対し、25℃において、直流電圧5V/μmの電界印加状態に保持し、デジタルLCRメータ(YHP社製4284A)にて、周波数1kHz、入力信号レベル(測定電圧)1Vrmsの信号を入力し、静電容量Cを測定した。DCバイアス特性は0V/μmの電界下における静電容量に対する変化率として(1)式に基づき算出した。
DCバイアス特性=(5V/μmの電界下での静電容量−0V/μmの電界下での静電容量)/0V/μmの電界下での静電容量×100 ・・・(1)
本実施例では、DCバイアス特性が±15%以内を流電圧の印加による比誘電率の低下が少なく、良好であると判断した。
DC bias characteristics With respect to a ceramic capacitor, a DC voltage of 5 V / μm is maintained at 25 ° C, and a digital LCR meter (YHP 4284A) with a frequency of 1 kHz and an input signal level (measurement voltage) of 1 Vrms The capacitance C was measured. The DC bias characteristics were calculated based on equation (1) as a rate of change with respect to the capacitance under an electric field of 0 V / μm.
DC bias characteristics = (capacitance under an electric field of 5 V / μm −capacitance under an electric field of 0 V / μm) / capacitance under an electric field of 0 V / μm × 100 (1)
In this example, it was judged that the DC bias characteristics were within ± 15%, with a decrease in relative dielectric constant due to the application of the flow voltage being good.

容量温度変化率△C/C25
セラミックコンデンサに対し、−55℃〜150℃において、デジタルLCRメータ(YHP社製4284A)にて、周波数1kHz、入力信号レベル(測定電圧)1Vrmsの信号を入力し、静電容量Cを測定した。容量温度変化率は基準温度の静電容量値C25に対して、適用される温度範囲での静電容量変化率の最大値最小値で規定した。温度T℃における静電容量値の変化率は(3)式に基づき算出した。
静電容量変化率=(温度T℃における静電容量−25℃(基準温度)における静電容量)/(25℃(基準温度)における静電容量)×100 ・・・(2)
本実施例では、−55℃〜150℃の範囲内においてEIA規格に規定するX8R特性規格に基づき、容量温度変化率が±15%以内のものを、良好であると判断した。
Capacity temperature change rate ΔC / C 25
A signal with a frequency of 1 kHz and an input signal level (measurement voltage) of 1 Vrms was input to the ceramic capacitor at -55 ° C. to 150 ° C. with a digital LCR meter (4284A manufactured by YHP), and the capacitance C was measured. The capacitance temperature change rate was defined as the maximum value minimum value of the capacitance change rate in the applied temperature range with respect to the capacitance value C25 of the reference temperature. The change rate of the capacitance value at the temperature T ° C. was calculated based on the equation (3).
Capacitance change rate = (capacitance at temperature T ° C.−capacitance at 25 ° C. (reference temperature)) / (capacitance at 25 ° C. (reference temperature)) × 100 (2)
In this example, based on the X8R characteristic standard specified in the EIA standard within the range of -55 ° C to 150 ° C, the one having a capacity temperature change rate within ± 15% was judged to be good.

抵抗温度変化率△R/R25
セラミックコンデンサに対し、−55℃〜150℃において、デジタルLCRメータ(YHP社製4284A)にて、周波数1kHz、入力信号レベル(測定電圧)4Vrmsの信号を入力し、抵抗値Rを測定した。抵抗温度変化率は基準温度の抵抗値R25に対して、適用される温度範囲での抵抗変化率の最大値最小値で規定した。温度T℃における抵抗値の変化率は(3)式に基づき算出した。
抵抗変化率=(温度T℃における抵抗−25℃(基準温度)における抵抗)/(25℃(基準温度)における抵抗)×100 ・・・(3)
本実施例では、−55℃〜150℃の範囲内において、抵抗温度変化率が25%以内のものを良好(○)10%以内のものを、大変良好(◎)であると判断した。
Resistance temperature change rate RR / R25
A signal with a frequency of 1 kHz and an input signal level (measurement voltage) 4 Vrms was input to the ceramic capacitor at -55 ° C. to 150 ° C. with a digital LCR meter (4284A manufactured by YHP), and the resistance value R was measured. The resistance temperature change rate was defined as the maximum value minimum value of the resistance change rate in the applied temperature range with respect to the resistance value R25 of the reference temperature. The rate of change of the resistance value at temperature T ° C. was calculated based on equation (3).
Resistance change rate = (resistance at temperature T ° C.−resistance at 25 ° C. (reference temperature)) / (resistance at 25 ° C. (reference temperature)) × 100 (3)
In this example, in the range of -55.degree. C. to 150.degree. C., those having a resistance temperature change rate of 25% or less were judged as good (.smallcircle.) And 10% or less as very good (.smallcircle.).

Figure 0006544227
Figure 0006544227

表2に示すように、試料番号1から15では、温度に対する静電容量の変化率が−55℃〜150℃の範囲内でEIA規格に規定するX8R特性規格を満足する。しかも、DCバイアス特性も±15%以内を満足している。   As shown in Table 2, in sample numbers 1 to 15, the rate of change in capacitance with temperature satisfies the X8R characteristic standard defined in EIA standard within the range of -55 ° C to 150 ° C. In addition, the DC bias characteristics also satisfy ± 15% or less.

また試料番号1から15と試料番号16から23とを比較することで、その領域は(Na0.5Bi0.5)TiOとSrTiOとCaTiOのモル比をa:b:cとすると((Na0.5Bi0.5)TiO:SrTiO:CaTiO=a:b:c)、前記三成分の組成図上で、(a、b、c)の組成の範囲がA(0.45、0.35、0.20)、B(0.25、0.55、0.20)、C(0.15、0.55、0.30)、D(0.35、0.35、0.30)で囲まれる領域内(各点を結ぶ線上を含む。)であることがわかる。 Also, comparing sample numbers 1 to 15 with sample numbers 16 to 23, the region has a molar ratio of (Na 0.5 Bi 0.5 ) TiO 3 to SrTiO 3 to CaTiO 3 as a: b: c and Then, ((Na 0.5 Bi 0.5 ) TiO 3 : SrTiO 3 : CaTiO 3 = a: b: c), the composition range of (a, b, c) is A on the composition diagram of the three components. (0.45, 0.35, 0.20), B (0.25, 0.55, 0.20), C (0.15, 0.55, 0.30), D (0.35, It can be seen that it is inside a region surrounded by 0.35, 0.30) (including the line connecting points).

試料番号16と19では、(Na0.5Bi0.5)TiOの含有率が0.15以下であるため、比誘電率が低く、温度特性が悪かった。 In the sample numbers 16 and 19, since the content rate of (Na 0.5 Bi 0.5 ) TiO 3 was 0.15 or less, the relative dielectric constant was low and the temperature characteristics were poor.

試料番号16と21では、SrTiOの含有率が0.55以上であるため、温度特性が悪かった。また試料番号17と18と20では、SrTiOの含有率が0.35以下であるため、DCバイアス特性が好ましくなかった。 In the sample numbers 16 and 21, since the content rate of SrTiO 3 is 0.55 or more, the temperature characteristics were poor. In addition Sample No. 17 and 18 and 20, since the content of SrTiO 3 is 0.35 or less, DC bias characteristics were not favorable.

試料番号16と19と23では、CaTiOの含有率が0.3以上であるため、温度特性が悪かった。また試料番号17と22では、CaTiOの含有率が0.2以下であるため、DCバイアス特性が好ましくなかった。 In sample numbers 16, 19 and 23, the content of CaTiO 3 was 0.3 or more, so the temperature characteristics were poor. In addition Sample No. 17 and 22, since the content of CaTiO 3 is 0.2 or less, DC bias characteristics were not favorable.

また試料番号9から試料番号15と試料番号1から試料番号8とを比較することで、その領域は(Na0.5Bi0.5)TiOとSrTiOとCaTiOのモル比をa:b:cとすると((Na0.5Bi0.5)TiO:SrTiO:CaTiO=a:b:c)、前記三成分の組成図上で、(a、b、c)の組成の範囲が、E(0.35、0.45、0.20)、F(0.30、0.50、0.20)、G(0.20、0.50、0.30)、H(0.25、0.45、0.30)で囲まれる領域内(各点を結ぶ線上を含む。)であることがわかる。 Moreover, comparing the sample numbers 9 to 15 with the sample numbers 1 to 8, the region has a molar ratio of (Na 0.5 Bi 0.5 ) TiO 3 to SrTiO 3 to CaTiO 3 as a: Assuming that b: c ((Na 0.5 Bi 0.5 ) TiO 3 : SrTiO 3 : CaTiO 3 = a: b: c), the composition of (a, b, c) on the composition diagram of the above three components Range of E (0.35, 0.45, 0.20), F (0.30, 0.50, 0.20), G (0.20, 0.50, 0.30), H It can be seen that it is inside the area (0.25, 0.45, 0.30) (including the line connecting the points).

これらから、誘電体磁器組成物組成を本発明所定の範囲とすることにより、良好なDCバイアス特性と広範囲の温度特性をもつ磁器組成物を得られることが確認できた。   From these results, it was confirmed that a ceramic composition having good DC bias characteristics and a wide range of temperature characteristics can be obtained by setting the composition of the dielectric ceramic composition within the predetermined range of the present invention.

以上のように、本発明に係る磁器組成物は、誘電体デバイスおよび圧電体デバイスにとして産業上の利用可能性を有する。   As described above, the porcelain composition according to the present invention has industrial applicability as a dielectric device and a piezoelectric device.

1 積層セラミックコンデンサ
2 誘電体層
3 内部電極層
4 外部電極
10 コンデンサ素子本体
Reference Signs List 1 laminated ceramic capacitor 2 dielectric layer 3 internal electrode layer 4 external electrode 10 capacitor element body

Claims (3)

(Na0.5Bi0.5)TiOとSrTiOとCaTiOのモル比をa:b:cとすると((Na0.5Bi0.5)TiO:SrTiO:CaTiO=a:b:c)、前記三成分の組成図上で、(a、b、c)の組成の範囲がA(0.45、0.35、0.20)、B(0.25、0.55、0.20)、C(0.15、0.55、0.30)、D(0.35、0.35、0.30)で囲まれる領域内(各点を結ぶ線上を含む。)であることを特徴とする、磁器組成物。 Assuming that the molar ratio of (Na 0.5 Bi 0.5 ) TiO 3 to SrTiO 3 to CaTiO 3 is a: b: c ((Na 0.5 Bi 0.5 ) TiO 3 : SrTiO 3 : CaTiO 3 = a : B: c), the composition range of (a, b, c) on the composition diagram of the three components is A (0.45, 0.35, 0.20), B (0.25, 0. 0). In a region surrounded by 55, 0.20), C (0.15, 0.55, 0.30), D (0.35, 0.35, 0.30) (including a line connecting points). The porcelain composition characterized by being. 前記三成分の組成図上で、(a、b、c)の組成の範囲が、E(0.35、0.45、0.20)、F(0.30、0.50、0.20)、G(0.20、0.50、0.30)、H(0.25、0.45、0.30)で囲まれる領域内(各点を結ぶ線上を含む。)であることを特徴とする、請求項1記載の磁器組成物。   The range of the composition of (a, b, c) is E (0.35, 0.45, 0.20), F (0.30, 0.50, 0.20) on the composition diagram of the three components. Within the area enclosed by G) (0.20, 0.50, 0.30) and H (0.25, 0.45, 0.30) (including the line connecting the points). The porcelain composition according to claim 1, characterized in that. 請求項1及び2に記載の磁器組成物を有することを特徴とするセラミック電子部品。   A ceramic electronic component comprising the porcelain composition according to any one of claims 1 and 2.
JP2015247174A 2014-12-26 2015-12-18 Porcelain composition and ceramic electronic component Active JP6544227B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014263737 2014-12-26
JP2014263737 2014-12-26

Publications (2)

Publication Number Publication Date
JP2016128372A JP2016128372A (en) 2016-07-14
JP6544227B2 true JP6544227B2 (en) 2019-07-17

Family

ID=56384003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015247174A Active JP6544227B2 (en) 2014-12-26 2015-12-18 Porcelain composition and ceramic electronic component

Country Status (1)

Country Link
JP (1) JP6544227B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021229919A1 (en) * 2020-05-12 2021-11-18 株式会社村田製作所 Dielectric composition and laminated ceramic capacitor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242464A (en) * 1988-03-24 1989-09-27 Mitsubishi Mining & Cement Co Ltd Piezoelectric or pyroelectric ceramic composition
JP2555791B2 (en) * 1991-03-27 1996-11-20 住友金属工業株式会社 Porcelain composition and method for producing the same
US20020036282A1 (en) * 1998-10-19 2002-03-28 Yet-Ming Chiang Electromechanical actuators
US7808161B2 (en) * 2008-03-25 2010-10-05 Ngk Spark Plug Co., Ltd. Piezoelectric ceramic composition and piezoelectric device
US9487445B2 (en) * 2013-03-28 2016-11-08 Tdk Corporation Ceramic composition
CN103833354B (en) * 2014-01-13 2016-03-02 西安科技大学 A kind of solid solution modification metatitanic acid bismuth sodium system leadless piezo-electric ceramic and preparation method thereof

Also Published As

Publication number Publication date
JP2016128372A (en) 2016-07-14

Similar Documents

Publication Publication Date Title
JP5664228B2 (en) Dielectric porcelain composition and electronic component
JP7036022B2 (en) Dielectric Porcelain Compositions for Ceramic Electronic Components and Ceramic Electronic Components
JP4706398B2 (en) Method for producing dielectric ceramic composition
JP5910317B2 (en) Dielectric porcelain composition and electronic component
JP6467648B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JP2008174413A (en) Dielectric porcelain composition and electronic component
KR101178952B1 (en) Dielectric ceramic composition and electronic component
JP2007246347A (en) Electronic part, dielectric porcelain composition, and method for manufacturing the same
KR20070070260A (en) Dielectric ceramic and multilayer ceramic capacitor
JP6636744B2 (en) Dielectric ceramic composition and electronic device using the same
JP2007261913A (en) Dielectric porcelain composition, electronic part and multilayer ceramic capacitor
CN110894160B (en) Dielectric composition and electronic component
JP6544227B2 (en) Porcelain composition and ceramic electronic component
JP4710574B2 (en) Dielectric porcelain composition and electronic component
JP2020043299A (en) Dielectric composition and electronic component
JP6413862B2 (en) Dielectric porcelain composition and electronic component
JP6376001B2 (en) Dielectric composition
JP2021031346A (en) Dielectric composition and electronic component
KR101429034B1 (en) Dielectric ceramic composition and electronic component
JP5103761B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP2007153710A (en) Dielectric porcelain composition and electronic component
JP2023069307A (en) Dielectric composition and electronic component
JP2022111644A (en) Dielectric composition and electronic component
JP2014189464A (en) Ceramic composition and ceramic electronic part
JP2021020830A (en) Dielectric ceramic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R150 Certificate of patent or registration of utility model

Ref document number: 6544227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150