JP5910317B2 - Dielectric porcelain composition and electronic component - Google Patents

Dielectric porcelain composition and electronic component Download PDF

Info

Publication number
JP5910317B2
JP5910317B2 JP2012121096A JP2012121096A JP5910317B2 JP 5910317 B2 JP5910317 B2 JP 5910317B2 JP 2012121096 A JP2012121096 A JP 2012121096A JP 2012121096 A JP2012121096 A JP 2012121096A JP 5910317 B2 JP5910317 B2 JP 5910317B2
Authority
JP
Japan
Prior art keywords
subcomponent
dielectric
composition
samples
composition formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012121096A
Other languages
Japanese (ja)
Other versions
JP2013245150A (en
Inventor
大輔 大津
大輔 大津
阿部 賢
賢 阿部
廣瀬 正和
正和 廣瀬
裕二 梅田
裕二 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012121096A priority Critical patent/JP5910317B2/en
Priority to KR1020130058279A priority patent/KR101432442B1/en
Priority to CN201310203788.1A priority patent/CN103449812B/en
Publication of JP2013245150A publication Critical patent/JP2013245150A/en
Application granted granted Critical
Publication of JP5910317B2 publication Critical patent/JP5910317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Description

本発明は、誘電体磁器組成物および電子部品に関する。   The present invention relates to a dielectric ceramic composition and an electronic component.

近年、急速に進む電気機器の高性能化に伴い、電気回路の小型化、複雑化もまた急速に進んでいる。そのため、電子部品にもより一層の小型化、高性能化が求められている。すなわち、良好な温度特性を維持しつつ、小型化しても静電容量を維持するために比誘電率が高く、さらに高電圧下で使用するために交流破壊電圧が高い誘電体磁器組成物および電子部品が求められている。   In recent years, along with rapid progress in performance of electrical equipment, miniaturization and complexity of electrical circuits are also progressing rapidly. For this reason, electronic components are required to be further reduced in size and performance. That is, a dielectric ceramic composition and an electron having a high relative dielectric constant in order to maintain capacitance even when miniaturized while maintaining good temperature characteristics, and also having a high AC breakdown voltage for use under a high voltage Parts are required.

従来、磁器コンデンサ、積層コンデンサ、高周波用コンデンサ、高電圧用コンデンサ等として広く利用されている高誘電率誘電体磁器組成物として、特許文献1〜4のようにBaTiO−BaZrO−CaTiO−SrTiO系の磁器組成物を主成分としたものが知られている。 Conventionally, as a high dielectric constant dielectric ceramic composition widely used as a ceramic capacitor, a multilayer capacitor, a high frequency capacitor, a high voltage capacitor or the like, as in Patent Documents 1 to 4, BaTiO 3 —BaZrO 3 —CaTiO 3 — A material mainly composed of a SrTiO 3 -based porcelain composition is known.

しかし、このような従来のBaTiO−BaZrO−CaTiO−SrTiO系の磁器組成物は、強誘電性であるため、高い静電容量、低い誘電損失を維持したまま、高い交流破壊電圧を確保することが困難であった。 However, since such a conventional BaTiO 3 —BaZrO 3 —CaTiO 3 —SrTiO 3 based ceramic composition is ferroelectric, it has a high AC breakdown voltage while maintaining a high capacitance and a low dielectric loss. It was difficult to secure.

特開1994−302219号公報JP-A-1994-302219 特開2003−104774号公報JP 2003-104774 A 特開2003−109430号公報JP 2003-109430 A 特開2004−238251号公報JP 2004-238251 A

本発明は、このような実状に鑑みてなされ、その目的は、比誘電率および交流破壊電圧が高く、誘電損失が低く、温度特性および焼結性が良好な誘電体磁器組成物を提供することを目的とする。また、本発明は、このような誘電体磁器組成物により構成される誘電体層を有する電子部品を提供することも目的とする。   The present invention has been made in view of such circumstances, and its object is to provide a dielectric ceramic composition having a high relative dielectric constant and AC breakdown voltage, low dielectric loss, and good temperature characteristics and sinterability. With the goal. Another object of the present invention is to provide an electronic component having a dielectric layer composed of such a dielectric ceramic composition.

本発明者等は、上記目的を達成するために、鋭意検討を行った結果、誘電体磁器組成物の組成を特定の成分とし、これらの比率を所定範囲とすることにより、上記目的を達成できることを見出し、本発明を完成させるに至った。   As a result of intensive investigations to achieve the above object, the present inventors are able to achieve the above object by setting the composition of the dielectric ceramic composition as a specific component and setting these ratios within a predetermined range. As a result, the present invention has been completed.

すなわち、上記課題を解決する本発明に係る誘電体磁器組成物は、
(Ba1−x−y ,Ca,Sr(Ti1−z−a ,Zr,Sn)Oの組成式で表わされる主成分と、第1副成分と、第2副成分と、第3副成分とを有する誘電体磁器組成物であって、
前記組成式中のxが0.03≦x≦0.30であり、
前記組成式中のyが0.00<y≦0.05であり、
前記組成式中のzが0.02<z≦0.2であり、
前記組成式中のaが0≦a≦0.2であり、
前記組成式中のz+aが0.04≦z+a≦0.3であり、
前記組成式中のmが0.97≦m≦1.03であり、
前記第1副成分は、酸化亜鉛であり、
前記第2副成分は、La、Pr、Pm、Nd、Sm、Eu、GdおよびYから選ばれる少なくとも1種の酸化物であり、
前記第3副成分は、Al、Ga、In、Mg、Cu、Ni、Co、FeおよびSiから選ばれる少なくとも1種の酸化物であり、
前記第1副成分が前記主成分100重量%に対して0.45〜10重量%含有されており、
前記第2副成分は前記主成分100重量%に対して酸化物換算で0.0重量%より多く、0.3重量%以下含有され、
前記第3副成分は前記主成分100重量%に対して酸化物換算で0.02〜1.5重量%含有されている。
That is, the dielectric ceramic composition according to the present invention for solving the above problems is
(Ba 1-xy , Ca x , Sr y ) m (Ti 1-za , Zr z , Sn a ) O 3 , the first subcomponent, the second subcomponent A dielectric ceramic composition having a component and a third subcomponent,
X in the composition formula is 0.03 ≦ x ≦ 0.30,
Y in the composition formula is 0.00 <y ≦ 0.05,
Z in the composition formula is 0.02 <z ≦ 0.2,
A in the composition formula is 0 ≦ a ≦ 0.2,
Z + a in the composition formula is 0.04 ≦ z + a ≦ 0.3,
M in the composition formula is 0.97 ≦ m ≦ 1.03,
The first subcomponent is zinc oxide;
The second subcomponent is at least one oxide selected from La, Pr, Pm, Nd, Sm, Eu, Gd and Y;
The third subcomponent is at least one oxide selected from Al, Ga, In, Mg, Cu, Ni, Co, Fe and Si,
The first subcomponent is contained in an amount of 0.45 to 10% by weight with respect to 100% by weight of the main component,
The second subcomponent is more than 0.0 wt% and 0.3 wt% or less in terms of oxide with respect to 100 wt% of the main component,
The third subcomponent is contained in an amount of 0.02 to 1.5% by weight in terms of oxide with respect to 100% by weight of the main component.

本発明によれば、比誘電率および交流破壊電圧が高く、誘電損失が低く、温度特性および焼結性が良好な誘電体磁器組成物を提供することができる。   According to the present invention, it is possible to provide a dielectric ceramic composition having a high relative dielectric constant and AC breakdown voltage, low dielectric loss, and good temperature characteristics and sinterability.

本発明の実施形態に係る電子部品は、前記誘電体磁器組成物で構成してある誘電体層を有する。   An electronic component according to an embodiment of the present invention has a dielectric layer made of the dielectric ceramic composition.

本発明の実施形態に係る電子部品としては、特に限定されないが、単板型セラミックコンデンサ、貫通型コンデンサ、積層セラミックコンデンサ、圧電素子、チップインダクタ、チップバリスタ、チップサーミスタ、チップ抵抗、その他の表面実装(SMD)チップ型電子部品が例示される。   The electronic component according to the embodiment of the present invention is not particularly limited, but includes a single plate type ceramic capacitor, a feedthrough capacitor, a multilayer ceramic capacitor, a piezoelectric element, a chip inductor, a chip varistor, a chip thermistor, a chip resistor, and other surface mounts. (SMD) chip type electronic components are exemplified.

図1(A)は本発明の一実施形態に係るセラミックコンデンサの正面図、図1(B)は本発明の一実施形態に係るセラミックコンデンサの側面断面図である。FIG. 1A is a front view of a ceramic capacitor according to an embodiment of the present invention, and FIG. 1B is a side sectional view of the ceramic capacitor according to an embodiment of the present invention.

以下、本発明を、図面に示す実施形態に基づき説明する。   Hereinafter, the present invention will be described based on embodiments shown in the drawings.

セラミックコンデンサ2
図1(A)に示すように、本発明の実施形態に係るセラミックコンデンサ2は、誘電体層10と、その対向表面に形成された一対の端子電極12,14と、この端子電極12,14に、それぞれ接続されたリード端子6,8とを有する構成となっており、これらは保護樹脂4に覆われている。セラミックコンデンサ2の形状は、目的や用途に応じて適宜決定すればよいが、誘電体層10が円板形状となっている円板型のコンデンサであることが好ましい。また、そのサイズは、目的や用途に応じて適宜決定すればよいが、通常、直径が3〜20mm程度、好ましくは3〜15mm程度である。
Ceramic capacitor 2
As shown in FIG. 1A, a ceramic capacitor 2 according to an embodiment of the present invention includes a dielectric layer 10, a pair of terminal electrodes 12, 14 formed on the opposing surface thereof, and the terminal electrodes 12, 14 The lead terminals 6 and 8 are connected to each other, and these are covered with the protective resin 4. The shape of the ceramic capacitor 2 may be appropriately determined according to the purpose and application, but is preferably a disk-type capacitor in which the dielectric layer 10 has a disk shape. The size may be appropriately determined according to the purpose and application, but the diameter is usually about 3 to 20 mm, preferably about 3 to 15 mm.

誘電体層10の厚みは、特に限定されず、用途等に応じて適宜決定すれば良いが、好ましくは0.3〜2mmである。誘電体層10の厚みを、このような範囲とすることにより、中高圧用途に好適に用いることができる。   The thickness of the dielectric layer 10 is not particularly limited, and may be appropriately determined according to the use or the like, but is preferably 0.3 to 2 mm. By setting the thickness of the dielectric layer 10 in such a range, it can be suitably used for medium to high pressure applications.

端子電極12,14は、導電材で構成される。端子電極12,14に用いられる導電材としては、たとえば、Cu、Cu合金、Ag、Ag合金、In−Ga合金等が挙げられる。   The terminal electrodes 12 and 14 are made of a conductive material. Examples of the conductive material used for the terminal electrodes 12 and 14 include Cu, Cu alloy, Ag, Ag alloy, and In—Ga alloy.

誘電体層10
セラミックコンデンサ2の誘電体層10は、本発明の実施形態に係る誘電体磁器組成物により構成される。
Dielectric layer 10
The dielectric layer 10 of the ceramic capacitor 2 is composed of a dielectric ceramic composition according to an embodiment of the present invention.

本発明の実施形態に係る誘電体磁器組成物は、(Ba1−x−y,Ca,Sr(Ti1−z−a,Zr,Sn)Oの組成式で表わされる主成分と、第1副成分と、第2副成分と、第3副成分とを有する誘電体磁器組成物である。 The dielectric ceramic composition according to an embodiment of the present invention is represented by a composition formula of (Ba 1-x-y, Ca x, Sr y) m (Ti 1-z-a, Zr z, Sn a) O 3 A dielectric ceramic composition having a main component, a first subcomponent, a second subcomponent, and a third subcomponent.

組成式中のxは、Caの比率を表し、その範囲は0.03≦x≦0.30である。Caがこの範囲で含有されることにより、比誘電率、交流破壊電圧および焼結性が向上し、温度特性が良好になる傾向となる。このような観点から、xは、好ましくは0.03≦x≦0.17、さらに好ましくは0.08≦x≦0.16である。   X in the composition formula represents the ratio of Ca, and the range is 0.03 ≦ x ≦ 0.30. By containing Ca in this range, the relative permittivity, the AC breakdown voltage and the sinterability are improved, and the temperature characteristics tend to be good. From such a viewpoint, x is preferably 0.03 ≦ x ≦ 0.17, more preferably 0.08 ≦ x ≦ 0.16.

前記組成式中のyは、Srの比率を表し、その範囲は0.00<y≦0.05である。Srがこの範囲で含有されることにより、比誘電率が向上し、低温側と高温側の両方の温度特性が良好になる傾向となる。このような観点から、yは好ましくは0.006≦y≦0.03、さらに好ましくは0.006≦y≦0.02である。   Y in the composition formula represents the ratio of Sr, and the range is 0.00 <y ≦ 0.05. By containing Sr in this range, the relative permittivity is improved, and the temperature characteristics on both the low temperature side and the high temperature side tend to be good. From such a viewpoint, y is preferably 0.006 ≦ y ≦ 0.03, and more preferably 0.006 ≦ y ≦ 0.02.

前記組成式中のzは、Zrの比率を表し、その範囲は0.02<z≦0.2である。Zrがこの範囲で含有されることにより、比誘電率および交流破壊電圧が向上し、誘電損失が低下し、低温側と高温側の両方の温度特性が良好になる傾向となる。このような観点から、zは好ましくは0.06≦z≦0.16、さらに好ましくは0.06≦z≦0.15である。   Z in the composition formula represents the ratio of Zr, and the range is 0.02 <z ≦ 0.2. By containing Zr in this range, the relative permittivity and the AC breakdown voltage are improved, the dielectric loss is lowered, and the temperature characteristics on both the low temperature side and the high temperature side tend to be good. From such a viewpoint, z is preferably 0.06 ≦ z ≦ 0.16, more preferably 0.06 ≦ z ≦ 0.15.

前記組成式中のaは、Snの比率を表し、その範囲は0≦a≦0.2である。Snがこの範囲で含有されることにより、比誘電率および交流破壊電圧が向上し、温度特性が良好になる傾向となる。このような観点から、aは好ましくは0≦a≦0.16、さらに好ましくは0≦a≦0.15である。   A in the composition formula represents the ratio of Sn, and the range is 0 ≦ a ≦ 0.2. By containing Sn in this range, the relative permittivity and the AC breakdown voltage are improved, and the temperature characteristics tend to be good. From such a viewpoint, a is preferably 0 ≦ a ≦ 0.16, more preferably 0 ≦ a ≦ 0.15.

前記組成式中のz+aは、ZrとSnの合計比率を表し、その範囲は0.04≦z+a≦0.3である。Snがこの範囲で含有されることにより、比誘電率および交流破壊電圧が向上し、誘電損失が低下し、温度特性が良好になる傾向となる。このような観点から、z+aは好ましくは0.06≦z+a≦0.2である。   Z + a in the composition formula represents the total ratio of Zr and Sn, and the range is 0.04 ≦ z + a ≦ 0.3. When Sn is contained in this range, the relative permittivity and the AC breakdown voltage are improved, the dielectric loss is lowered, and the temperature characteristics tend to be improved. From such a viewpoint, z + a is preferably 0.06 ≦ z + a ≦ 0.2.

前記組成式中のmはAサイトの成分であるBa、Ca、Srと、Bサイト成分であるTi、Zr、Snのモル比を表わし、0.97≦m≦1.03である。mをこの範囲とすることにより、比誘電率、交流破壊電圧および焼結性が向上する傾向となる。このような観点から、mは好ましくは0.97≦m≦1.00、さらに好ましくは0.97≦m<1.00である。   M in the composition formula represents a molar ratio of Ba, Ca, and Sr as components of the A site and Ti, Zr, and Sn as components of the B site, and 0.97 ≦ m ≦ 1.03. By setting m within this range, the relative permittivity, AC breakdown voltage, and sinterability tend to be improved. From such a viewpoint, m is preferably 0.97 ≦ m ≦ 1.00, and more preferably 0.97 ≦ m <1.00.

前記第1副成分は、酸化亜鉛である。本発明の実施形態に係る誘電体磁器組成物は、前記第1副成分が前記主成分100重量%に対して0.45〜10重量%含有されている。第1副成分の含有量をこの範囲とすることにより、比誘電率、交流破壊電圧、焼結性が向上し、温度特性が良好になる傾向となる。このような観点から第1副成分の含有量は好ましくは、好ましくは0.45〜6重量%、さらに好ましくは0.8〜6重量%である。   The first subcomponent is zinc oxide. In the dielectric ceramic composition according to the embodiment of the present invention, the first subcomponent is contained in an amount of 0.45 to 10% by weight with respect to 100% by weight of the main component. By setting the content of the first subcomponent within this range, the relative permittivity, the AC breakdown voltage, and the sinterability are improved, and the temperature characteristics tend to be good. From such a viewpoint, the content of the first subcomponent is preferably 0.45 to 6% by weight, more preferably 0.8 to 6% by weight.

第2副成分は、La、Pr、Pm、Nd、Sm、Eu、GdおよびYから選ばれる少なくとも1種の酸化物であり、好ましくはLa、Pm、Nd、Sm、GdおよびYから選ばれる少なくとも1種の酸化物である。本発明の実施形態に係る誘電体磁器組成物は、第2副成分が前記主成分100重量%に対して0.0重量%より多く、0.3重量%以下含有されている。第2副成分の含有量をこの範囲にすることで、交流破壊電圧が向上し、温度特性が良好になる傾向となる。また、本発明の実施形態に係る誘電体磁器組成物は、所定の組成および量の主成分を有し、所定の量の第1副成分を有することにより、第2副成分の含有量を比較的少なくしても、交流破壊電圧を向上させ、温度特性を良好にすることができる。このような観点から、第2副成分の含有量は好ましくは0.005〜0.1重量%、さらに好ましくは0.01重量%以上0.09重量%以下である。   The second subcomponent is at least one oxide selected from La, Pr, Pm, Nd, Sm, Eu, Gd and Y, preferably at least selected from La, Pm, Nd, Sm, Gd and Y One oxide. In the dielectric ceramic composition according to the embodiment of the present invention, the second subcomponent is contained in an amount of more than 0.0 wt% and 0.3 wt% or less with respect to 100 wt% of the main component. By setting the content of the second subcomponent within this range, the AC breakdown voltage is improved and the temperature characteristics tend to be good. In addition, the dielectric ceramic composition according to the embodiment of the present invention has a main component of a predetermined composition and amount, and has a predetermined amount of the first subcomponent, thereby comparing the content of the second subcomponent. Even if the amount is reduced, the AC breakdown voltage can be improved and the temperature characteristics can be improved. From such a viewpoint, the content of the second subcomponent is preferably 0.005 to 0.1% by weight, more preferably 0.01% by weight or more and 0.09% by weight or less.

第3副成分は、Al、Ga、In、Mg、Cu、Ni、Co、FeおよびSiから選ばれる少なくとも1種の酸化物であり、好ましくは、Al、Ga、In、MgおよびSiから選ばれる少なくとも1種の酸化物である。本発明の実施形態に係る誘電体磁器組成物は、第3副成分が主成分100重量%に対して酸化物換算で0.02〜1.5重量%、好ましくは0.05〜1.2重量%含有されている。第3副成分の含有量をこの範囲にすることで、交流破壊電圧が特に向上し、誘電率が高く、誘電損失も小さく、温度特性が良好になる。   The third subcomponent is at least one oxide selected from Al, Ga, In, Mg, Cu, Ni, Co, Fe and Si, and preferably selected from Al, Ga, In, Mg and Si. At least one oxide. In the dielectric ceramic composition according to the embodiment of the present invention, the third subcomponent is 0.02 to 1.5% by weight in terms of oxide with respect to 100% by weight of the main component, preferably 0.05 to 1.2%. Contains by weight. By setting the content of the third subcomponent within this range, the AC breakdown voltage is particularly improved, the dielectric constant is high, the dielectric loss is small, and the temperature characteristics are good.

セラミックコンデンサ2の製造方法
次に、セラミックコンデンサ2の製造方法について説明する。
まず、焼成後に図1に示す誘電体層10を形成することとなる誘電体磁器組成物粉末を製造する。
Manufacturing method of ceramic capacitor 2
Next, a method for manufacturing the ceramic capacitor 2 will be described.
First, a dielectric ceramic composition powder that will form the dielectric layer 10 shown in FIG. 1 after firing is manufactured.

主成分の原料および各副成分の原料を準備する。主成分の原料としては、Ba、Ca、Sr、Ti、Zr、Snの各酸化物および/または焼成により酸化物となる原料や、これらの複合酸化物などが挙げられ、たとえば、炭酸バリウム(BaCO)、炭酸カルシウム(CaCO)、炭酸ストロンチウム(SrCO)、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、酸化スズ(SnO)などを用いることができる。この他、たとえば水酸化物など、焼成後に酸化物やチタン化合物となる種々の化合物を用いることも可能である。その場合、金属元素の元素数が合うように、含有量を適宜変更すればよい。 A raw material for the main component and a raw material for each subcomponent are prepared. Examples of the main component raw material include Ba, Ca, Sr, Ti, Zr, Sn oxides and / or raw materials that become oxides by firing, and composite oxides thereof. For example, barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), tin oxide (SnO 2 ), and the like can be used. In addition, it is also possible to use various compounds that become oxides or titanium compounds after firing, such as hydroxides. In that case, the content may be changed as appropriate so that the number of metal elements matches.

また、主成分の原料は、固相法により製造してもよいし、水熱合成法や蓚酸塩法などの液相法により製造してもよいが、製造コストの面から、固相法により製造することが好ましい。   The main component raw material may be manufactured by a solid phase method or a liquid phase method such as a hydrothermal synthesis method or an oxalate method. It is preferable to manufacture.

第1副成分、第2副成分および第3副成分の原料としては、特に限定されず、焼成により上記した酸化物となる各種化合物、たとえば炭酸塩、硝酸塩、水酸化物、有機金属化合物などから適宜選択して用いることができる。   The raw materials for the first subcomponent, the second subcomponent, and the third subcomponent are not particularly limited, and various compounds that become the oxides described above by firing, such as carbonates, nitrates, hydroxides, organometallic compounds, and the like. It can be appropriately selected and used.

本発明の実施形態に係る誘電体磁器組成物の製造方法としては、まず主成分の原料または、主成分の原料と各副成分の原料とを配合し、ジルコニアボールなどによるボールミルなどを用いて湿式混合する。第1副成分〜第3副成分をこの時点で配合する場合には、上記した誘電体磁器組成物の組成になるように第1副成分〜第3副成分を配合してもよいし、一部のみ配合して、仮焼き後に残りの第1副成分〜第3副成分を添加してもよい。   As a method for producing a dielectric ceramic composition according to an embodiment of the present invention, first, a raw material of a main component or a raw material of a main component and a raw material of each subcomponent are blended, and wet using a ball mill using zirconia balls or the like. Mix. When the first subcomponent to the third subcomponent are blended at this point, the first subcomponent to the third subcomponent may be blended so as to be the composition of the dielectric ceramic composition described above. Only the part may be blended, and the remaining first to third subcomponents may be added after calcining.

得られた混合物を、造粒し、成形して、得られた成形物を、空気雰囲気中にて仮焼きすることにより、仮焼き粉を得ることができる。仮焼き条件としては、たとえば、仮焼き温度を、好ましくは1000〜1300℃、より好ましくは1150〜1250℃、仮焼き時間を、好ましくは0.5〜4時間とすれば良い。また、主成分の原料と、副成分の原料と、を別々に仮焼した後、混合して誘電体磁器組成物粉末としても良い。   The obtained mixture is granulated and molded, and the obtained molded product is calcined in an air atmosphere to obtain a calcined powder. As the calcining conditions, for example, the calcining temperature is preferably 1000 to 1300 ° C., more preferably 1150 to 1250 ° C., and the calcining time is preferably 0.5 to 4 hours. Alternatively, the raw material of the main component and the raw material of the subcomponent may be calcined separately and then mixed to form a dielectric ceramic composition powder.

次いで、得られた仮焼き粉を粗粉砕する。第1副成分〜第3副成分を一部のみ配合した場合には、ここで、仮焼き前に添加した第1副成分〜第3副成分の原料と合わせて上記した誘電体磁器組成物の組成になるように残りの第1副成分〜第3副成分を添加する。   Next, the obtained calcined powder is coarsely pulverized. When only a part of the first subcomponent to the third subcomponent is blended, the dielectric ceramic composition described above together with the raw materials of the first subcomponent to the third subcomponent added before calcination is used. The remaining first to third subcomponents are added so as to obtain a composition.

仮焼き粉または仮焼き粉と副成分の原料を、ボールミルなどにより湿式粉砕して、さらに混合し、乾燥して誘電体磁器組成物粉末とする。上記のように、誘電体磁器組成物粉末を固相法により製造することで、所望の特性を実現しながら、製造コストの低減を図ることができる。   The calcined powder or the calcined powder and the raw materials of the accessory components are wet-ground by a ball mill or the like, further mixed, and dried to obtain a dielectric ceramic composition powder. As described above, by manufacturing the dielectric ceramic composition powder by the solid phase method, it is possible to reduce the manufacturing cost while realizing desired characteristics.

次いで、得られた誘電体磁器組成物粉末にバインダを適量添加し、造粒し、得られた造粒物を、所定の大きさを有する円板状に圧縮成形することにより、グリーン成形体とする。そして、得られたグリーン成形体を、焼成することにより、誘電体磁器組成物の焼結体を得る。なお、焼成の条件としては、特に限定されないが、保持温度が、好ましくは1200〜1400℃、より好ましくは1280〜1360℃であり、焼成雰囲気を空気中とすることが好ましい。   Next, an appropriate amount of a binder is added to the obtained dielectric ceramic composition powder, granulated, and the obtained granulated product is compression-molded into a disk having a predetermined size, thereby forming a green molded body and To do. The obtained green molded body is fired to obtain a sintered body of the dielectric ceramic composition. In addition, although it does not specifically limit as conditions for baking, Preferably holding temperature is 1200-1400 degreeC, More preferably, it is 1280-1360 degreeC, It is preferable to make a baking atmosphere into the air.

得られた誘電体磁器組成物の焼結体の主表面に、端子電極を印刷し、必要に応じて焼き付けすることにより、端子電極12,14を形成する。その後、端子電極12,14に、ハンダ付等により、リード端子6,8を接合し、最後に、素子本体を保護樹脂4で覆うことにより、図1(A)、図1(B)に示すような単板型セラミックコンデンサを得る。   Terminal electrodes 12 and 14 are formed by printing terminal electrodes on the main surface of the sintered body of the obtained dielectric ceramic composition and baking it as necessary. Thereafter, the lead terminals 6 and 8 are joined to the terminal electrodes 12 and 14 by soldering or the like, and finally, the element main body is covered with the protective resin 4 so as to be shown in FIGS. 1 (A) and 1 (B). Such a single plate type ceramic capacitor is obtained.

このようにして製造された本発明のセラミックコンデンサは、リード端子6,8を介してプリント基板上などに実装され、各種電子機器等に使用される。   The ceramic capacitor of the present invention thus manufactured is mounted on a printed circuit board or the like via lead terminals 6 and 8, and is used for various electronic devices.

以上、本発明の実施形態について説明してきたが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々異なる態様で実施し得ることは勿論である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to such embodiment at all, Of course, it can implement with a various aspect in the range which does not deviate from the summary of this invention. .

上述した実施形態では、本発明に係る電子部品として誘電体層が単層である単板型セラミックコンデンサを例示したが、本発明に係る電子部品としては、単板型セラミックコンデンサに限定されず、上記した誘電体磁器組成物を含む誘電体ペーストおよび電極ペーストを用いた通常の印刷法やシート法により作製される積層型セラミックコンデンサであっても良いし、貫通型コンデンサの誘電体層を上記した誘電体磁器組成物を用いて作製してもよい。   In the embodiment described above, the single-plate ceramic capacitor whose dielectric layer is a single layer is exemplified as the electronic component according to the present invention, but the electronic component according to the present invention is not limited to the single-plate ceramic capacitor, A multilayer ceramic capacitor produced by a normal printing method or sheet method using a dielectric paste and an electrode paste containing the dielectric ceramic composition described above may be used, and the dielectric layer of the feedthrough capacitor is described above. You may produce using a dielectric ceramic composition.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。   Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.

試料1〜58
主成分の原料として、炭酸バリウム(BaCO)、炭酸カルシウム(CaCO)、炭酸ストロンチウム(SrCO)、酸化チタン(TiO)、酸化ジルコニウム(ZrO)および酸化スズ(SnO)を、それぞれ準備した。この主成分原料と、第1副成分の原料としてZnO、第2副成分の原料としての希土類添加剤とを、焼成後の組成が表1〜表4に示す試料1〜73に示す組成となるように、それぞれ秤量し、この原料配合物をボールミルで湿式混合撹拌を3時間行い、脱水乾燥後、1170〜1210℃で仮焼成し、化学反応を行わせた。
Samples 1-58
As raw materials for the main components, barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ) and tin oxide (SnO 2 ), respectively, Got ready. With this main component raw material, ZnO as the first subcomponent raw material, and the rare earth additive as the second subcomponent raw material, the compositions after firing are the compositions shown in samples 1 to 73 shown in Tables 1 to 4. Thus, each raw material composition was weighed and wet mixed and stirred for 3 hours in a ball mill, dehydrated and dried, and then calcined at 1170 to 1210 ° C. to cause a chemical reaction.

なお、第1副成分原料としてのZnOと、Al、Ga、In、Mg、Cu、Ni、Co、Fe、Siの酸化物などの第3副成分原料とに関しては、主成分原料のみを仮焼成した後、あるいは主成分原料と第2副成分原料とを仮焼成した後に添加しても良い。また、ZnOなどの第1副成分原料と第3副成分原料とに関しては、予め混合・仮焼を行い反応させた化合物という形で添加しても良い。   Regarding ZnO as the first subcomponent material and third subcomponent materials such as Al, Ga, In, Mg, Cu, Ni, Co, Fe, and Si oxides, only the main component material is temporarily fired. Or after the preliminary firing of the main component raw material and the second subcomponent raw material. Further, the first subcomponent raw material such as ZnO and the third subcomponent raw material may be added in the form of a compound that has been mixed and calcined in advance for reaction.

次いで、これを粗粉砕した後,再びポットミルで0.5〜2μm程度に微粉砕し,脱水乾燥した後,これに有機結合剤としてポリビニルアルコール(PVA)を添加し,造粒整粒を行い,顆粒粉末とした。この顆粒粉末を300MPaの圧力で成形し直径16.5mm,厚さ1.15mmの円板状の成形物とした。   Next, after coarsely pulverizing this, it is again finely pulverized to about 0.5 to 2 μm in a pot mill, dehydrated and dried, and then polyvinyl alcohol (PVA) is added as an organic binder to this, granulating and sizing, Granule powder was obtained. This granular powder was molded at a pressure of 300 MPa to obtain a disk-shaped molded product having a diameter of 16.5 mm and a thickness of 1.15 mm.

得られた成形体を、空気中で、1350℃前後で本焼成し,磁器素体を得た。このようにして得られた磁器素体の両面に銀(Ag)ペーストで焼付け電極を形成し、これにリード線を半田付けして磁器コンデンサを得た。このようにして得られた試料の比誘電率、誘電損失、交流破壊電圧、温度特性、焼結性を測定した結果を表2および表4に示す。   The obtained molded body was subjected to main firing at around 1350 ° C. in air to obtain a porcelain body. A sintered electrode was formed with silver (Ag) paste on both sides of the porcelain body thus obtained, and a lead wire was soldered to this to obtain a porcelain capacitor. Tables 2 and 4 show the results of measuring the relative dielectric constant, dielectric loss, AC breakdown voltage, temperature characteristics, and sinterability of the samples thus obtained.

(比誘電率(ε))
比誘電率εは、コンデンサ試料に対し、基準温度20℃において、デジタルLCRメータ(アジレントテクノロジー社製4274A)にて、周波数1kHz,入力信号レベル(測定電圧)1.0Vrmsの条件下で測定された静電容量から算出した(単位なし)。比誘電率は高いほうが好ましく、本実施例では、8000以上を良好とした。
(Relative permittivity (ε))
The relative dielectric constant ε was measured for a capacitor sample at a reference temperature of 20 ° C. using a digital LCR meter (4274A manufactured by Agilent Technologies) under the conditions of a frequency of 1 kHz and an input signal level (measurement voltage) of 1.0 Vrms. Calculated from capacitance (no unit). It is preferable that the relative dielectric constant is high. In this example, 8000 or more was considered good.

(誘電損失(tanδ))
誘電損失(tanδ)は、コンデンサ試料に対し、基準温度20℃において、デジタルLCRメータ(アジレントテクノロジー社製4274A)にて、周波数1kHz,入力信号レベル(測定電圧)1.0Vrmsの条件下で測定した。誘電損失は低いほうが好ましく、本実施例では1.5%以下を良好とした。
(Dielectric loss (tan δ))
Dielectric loss (tan δ) was measured with a digital LCR meter (Agilent Technology 4274A) at a reference temperature of 20 ° C. and a frequency of 1 kHz and an input signal level (measurement voltage) of 1.0 Vrms with respect to a capacitor sample. . The dielectric loss is preferably as low as possible. In this example, 1.5% or less was considered good.

(交流破壊電圧(AC−Eb))
交流破壊電圧(AC−Eb)は、コンデンサの試料に対し、コンデンサの両端に交流電界を100V/sで徐々に印加し、100mAのもれ電流が流れた時点での電圧を測定し、単位厚み当たりの交流破壊電圧を求めた。交流破壊電圧は高いほうが好ましく、本実施例では、5kV/mm以上を良好とした。
(AC breakdown voltage (AC-Eb))
The AC breakdown voltage (AC-Eb) was measured by applying an AC electric field to the capacitor sample gradually at 100 V / s at both ends of the capacitor and measuring the voltage when a leakage current of 100 mA flowed. The AC breakdown voltage was determined. It is preferable that the AC breakdown voltage is high. In this example, 5 kV / mm or more was considered good.

(温度特性(TC))
コンデンサ試料に対し、85℃において、デジタルLCRメータ(YHP社製4284A)にて、周波数1kHz、入力信号レベル(測定電圧)1Vrmsの条件で静電容量を測定し、基準温度20℃における静電容量に対する85℃での静電容量の変化率(ΔC/C20)(単位は%)を算出した。本実施例ではΔC/C20は、Z5U特性を満たす+20%〜−56%を好ましい範囲とした。
(Temperature characteristics (TC))
The capacitance of the capacitor sample was measured at 85 ° C. with a digital LCR meter (YHP 4284A) under the conditions of frequency 1 kHz and input signal level (measurement voltage) 1 Vrms. The rate of change in capacitance at 85 ° C. (ΔC / C20) (unit:%) was calculated. In this embodiment, ΔC / C20 is set to a preferable range of + 20% to −56% that satisfies the Z5U characteristic.

(焼結性)
得られた焼結体について、焼成後の焼結体の寸法および重量から、焼結体密度を算出し、その焼結体密度が5.5g/cm以上のものを○、5.5g/cm未満の物を×とした。ここで、基準を5.5g/cm未満としたのは、5.5g/cm未満だと素地の強度が著しく低下してしまうためである。
(Sinterability)
About the obtained sintered compact, a sintered compact density is computed from the dimension and weight of the sintered compact after baking, The thing whose sintered compact density is 5.5 g / cm < 3 > or more (circle), 5.5 g / The thing below cm 3 was made into x. Here, the reason why the standard is less than 5.5 g / cm 3 is that the strength of the substrate is remarkably lowered when it is less than 5.5 g / cm 3 .

(評価)
試料1〜7より、組成式中のmが0.97≦m≦1.03の場合(試料2〜6)は、mが0.96の場合(試料1)に比べ、比誘電率が高く、交流破壊電圧が高くなることが確認できた。また、組成式中のmが0.97≦m≦1.03の場合(試料2〜6)は、mが1.04の場合(試料7)に比べ、焼結性が良好になることが確認できた。なお、試料7では、焼結性が低いため、比誘電率、誘電損失、交流破壊電圧および温度特性を測定できなかった。
(Evaluation)
From Samples 1 to 7, when m in the composition formula is 0.97 ≦ m ≦ 1.03 (Samples 2 to 6), the relative dielectric constant is higher than when m is 0.96 (Sample 1). It was confirmed that the AC breakdown voltage was increased. In addition, when m in the composition formula is 0.97 ≦ m ≦ 1.03 (samples 2 to 6), the sinterability may be better than when m is 1.04 (sample 7). It could be confirmed. In Sample 7, since the sinterability was low, the relative permittivity, dielectric loss, AC breakdown voltage, and temperature characteristics could not be measured.

試料8〜13より、組成式中のxが0.03≦x≦0.30の場合(試料9〜12)には、xが0の場合(試料8)に比べ、誘電損失が低くなり、交流破壊電圧および温度特性が向上することが確認できた。また、組成式中のxが0.03≦x≦0.30の場合(試料9〜12)には、xが0.4の場合(試料13)に比べ、比誘電率が高くなることが確認できた。   From Samples 8 to 13, when x in the composition formula is 0.03 ≦ x ≦ 0.30 (Samples 9 to 12), the dielectric loss is lower than when x is 0 (Sample 8). It was confirmed that the AC breakdown voltage and temperature characteristics were improved. In addition, when x in the composition formula is 0.03 ≦ x ≦ 0.30 (samples 9 to 12), the relative permittivity may be higher than when x is 0.4 (sample 13). It could be confirmed.

試料14〜18より、組成式中のyが0.00<y≦0.05の場合(試料15〜17)は、yが0の場合(試料14)に比べ、比誘電率が高くなることが確認できた。また、組成式中のyが0.00<y≦0.05の場合(試料15〜17)は、yが0.06の場合(試料18)に比べ、比誘電率が高くなり、温度特性が良好になることが確認できた。   From samples 14 to 18, when y in the composition formula is 0.00 <y ≦ 0.05 (samples 15 to 17), the relative permittivity is higher than when y is 0 (sample 14). Was confirmed. Further, when y in the composition formula is 0.00 <y ≦ 0.05 (samples 15 to 17), the relative dielectric constant is higher than that when y is 0.06 (sample 18), and the temperature characteristics are increased. Was confirmed to be good.

試料19〜26より、組成式中のzが0.02<z≦0.2の場合(試料20〜25)は、zが0.02の場合(試料19)に比べ、比誘電率が高くなり、誘電損失が低くなり、交流破壊電圧が高くなることが確認できた。また、組成式中のzが0.02<z≦0.2の場合(試料20〜25)は、zが0.25の場合(試料26)に比べ、比誘電率が高くなり、温度特性が良好になることが確認できた。   From samples 19 to 26, when z in the composition formula is 0.02 <z ≦ 0.2 (samples 20 to 25), the relative dielectric constant is higher than when z is 0.02 (sample 19). Thus, it was confirmed that the dielectric loss was reduced and the AC breakdown voltage was increased. Further, when z in the composition formula is 0.02 <z ≦ 0.2 (samples 20 to 25), the relative dielectric constant is higher than that when z is 0.25 (sample 26), and the temperature characteristics are increased. Was confirmed to be good.

試料27〜32より、組成式中のaが0≦a≦0.2の場合(試料27〜31)は、aが0.25の場合(試料32)に比べ、比誘電率が高くなり、温度特性が良好になることが確認できた。   From samples 27 to 32, when a in the composition formula is 0 ≦ a ≦ 0.2 (samples 27 to 31), the relative dielectric constant is higher than when a is 0.25 (sample 32), It was confirmed that the temperature characteristics were good.

試料19、33〜38より、組成式中のz+aが0.04≦z+a≦0.3の場合(試料33〜37)は、組成式中のz+aが0.02の場合(試料19)に比べ、比誘電率が高く、誘電損失が低く、交流破壊電圧が高くなることが確認できた。また、組成式中のz+aが0.04≦z+a≦0.3の場合(試料33〜37)は、組成式中のz+aが0.40の場合(試料38)に比べ、比誘電率が高く、温度特性が良好になることが確認できた。   From Samples 19 and 33 to 38, when z + a in the composition formula is 0.04 ≦ z + a ≦ 0.3 (samples 33 to 37), compared to the case where z + a in the composition formula is 0.02 (sample 19) It was confirmed that the dielectric constant was high, the dielectric loss was low, and the AC breakdown voltage was high. Further, when z + a in the composition formula is 0.04 ≦ z + a ≦ 0.3 (samples 33 to 37), the relative dielectric constant is higher than when z + a in the composition formula is 0.40 (sample 38). It was confirmed that the temperature characteristics were good.

試料39〜45より、酸化亜鉛(第1副成分)の含有量が主成分100重量%に対して0.45〜10重量%の場合(試料40〜44)は、酸化亜鉛の含有量が0.3重量%の場合(試料39)に比べ、焼結性が良好になることが確認できた。なお、試料38は焼結性が低いため、比誘電率、誘電損失、交流破壊電圧および温度特性の測定ができなかった。また、酸化亜鉛(第1副成分)の含有量が主成分100重量%に対して0.45〜10重量%の場合(試料40〜44)は、酸化亜鉛の含有量が15重量%の場合に比べ、比誘電率が高くなることが確認できた。   From the samples 39 to 45, when the content of zinc oxide (first subcomponent) is 0.45 to 10% by weight with respect to 100% by weight of the main component (samples 40 to 44), the content of zinc oxide is 0. It was confirmed that the sinterability was better than in the case of 3 wt% (Sample 39). In addition, since the sample 38 had low sinterability, the relative permittivity, dielectric loss, AC breakdown voltage, and temperature characteristics could not be measured. Further, when the content of zinc oxide (first subcomponent) is 0.45 to 10% by weight with respect to 100% by weight of the main component (samples 40 to 44), the content of zinc oxide is 15% by weight It was confirmed that the relative dielectric constant was higher than that.

試料4、46〜59より、第2副成分としてLa、Pr11、Pm、Nd、Sm、Eu、GdおよびYから選ばれる少なくとも1種からなる第2副成分が前記主成分100重量%に対して酸化物換算で0.0重量%より多く、0.3重量%以下含有されている場合(試料4、46〜52、54〜58)は、前記第2副成分が含まれない場合(試料53)に比べて交流破壊電圧が高くなることが確認できた。また、前記第2副成分が前記主成分100重量%に対して酸化物換算で0.0重量%より多く、0.3重量%以下含有されている場合(試料4、46〜52、54〜58)は、前記第2副成分が0.4重量%含まれる場合(試料59)に比べて比誘電率が高くなり、温度特性が良好になることが確認できた。 From Samples 4, 46 to 59, La 2 O 3 , Pr 6 O 11 , Pm 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 and Y 2 are used as the second subcomponent. When the second subcomponent consisting of at least one selected from O 3 is contained in an amount of more than 0.0 wt% and not more than 0.3 wt% in terms of oxide with respect to 100 wt% of the main component (Sample 4) 46-52, 54-58), it was confirmed that the AC breakdown voltage was higher than that in the case where the second subcomponent was not included (sample 53). Further, when the second subcomponent is contained in an amount of more than 0.0 wt% and 0.3 wt% or less in terms of oxide with respect to 100 wt% of the main component (Samples 4, 46 to 52, 54 to 58), it was confirmed that the relative permittivity was higher than that in the case where the second subcomponent was contained by 0.4% by weight (sample 59) and the temperature characteristics were improved.

試料2、4、60〜73より、第3副成分としてAl、Ga、In、MgO、CuO、NiO、CoO、Fe、SiOから選ばれる少なくとも1種からなる第3副成分が前記主成分100重量%に対して酸化物換算で0.02〜1.5重量%含有されている場合(試料2、4、61〜63、66〜73)は、前記第3副成分が含まれない場合(試料60)に比べて交流破壊電圧が高くなることが確認できた。また、前記第3副成分が前記主成分100重量%に対して酸化物換算で0.02〜1.5重量%含有されている場合(試料2、4、61〜63、66〜73)は、第3副成分が2.0重量%含まれる場合(試料64)に比べて比誘電率および交流破壊電圧が高くなることが確認できた。 From Samples 2, 4, 60 to 73, at least one selected from Al 2 O 3 , Ga 2 O 3 , In 2 O 3 , MgO, CuO, NiO, CoO, Fe 2 O 3 , SiO 2 as the third subcomponent. When the third subcomponent consisting of seeds is contained in an amount of 0.02 to 1.5% by weight in terms of oxide with respect to 100% by weight of the main component (Samples 2, 4, 61 to 63, 66 to 73) It was confirmed that the AC breakdown voltage was higher than when the third subcomponent was not included (sample 60). When the third subcomponent is contained in an amount of 0.02 to 1.5% by weight in terms of oxide with respect to 100% by weight of the main component (Samples 2, 4, 61 to 63, 66 to 73) It was confirmed that the relative permittivity and the AC breakdown voltage were higher than in the case where the third subcomponent was contained by 2.0% by weight (sample 64).

Figure 0005910317
Figure 0005910317

Figure 0005910317
Figure 0005910317

Figure 0005910317
Figure 0005910317

Figure 0005910317
Figure 0005910317

2… 単板型セラミックコンデンサ
4… 保護樹脂
6,8… リード端子
10… 誘電体層
12,14… 端子電極
2 ... Single plate type ceramic capacitor 4 ... Protective resin 6, 8 ... Lead terminal 10 ... Dielectric layer 12, 14 ... Terminal electrode

Claims (4)

(Ba1−x−y ,Ca,Sr(Ti1−z−a ,Zr,Sn)Oの組成式で表わされる主成分と、第1副成分と、第2副成分と、第3副成分とを有する誘電体磁器組成物であって、
前記組成式中のxが0.03≦x≦0.30であり、
前記組成式中のyが0.00<y≦0.05であり、
前記組成式中のzが0.02<z≦0.2であり、
前記組成式中のaが0≦a≦0.2であり、
前記組成式中のz+aが0.04≦z+a≦0.3であり、
前記組成式中のmが0.97≦m≦1.03であり、
前記第1副成分は、酸化亜鉛であり、
前記第2副成分は、La、Pr、Pm、Nd、Sm、Eu、GdおよびYから選ばれる少なくとも1種の酸化物であり、
前記第3副成分は、Al、Ga、In、Mg、Cu、Ni、Co、FeおよびSiから選ばれる少なくとも1種の酸化物であり、
前記第1副成分が前記主成分100重量%に対して0.45〜10重量%含有されており、
前記第2副成分は前記主成分100重量%に対して酸化物換算で0.0重量%より多く、0.3重量%以下含有され、
前記第3副成分は前記主成分100重量%に対して酸化物換算で0.02〜1.5重量%含有されている誘電体磁器組成物。
(Ba 1-xy , Ca x , Sr y ) m (Ti 1-za , Zr z , Sn a ) O 3 , the first subcomponent, the second subcomponent A dielectric ceramic composition having a component and a third subcomponent,
X in the composition formula is 0.03 ≦ x ≦ 0.30,
Y in the composition formula is 0.00 <y ≦ 0.05,
Z in the composition formula is 0.02 <z ≦ 0.2,
A in the composition formula is 0 ≦ a ≦ 0.2,
Z + a in the composition formula is 0.04 ≦ z + a ≦ 0.3,
M in the composition formula is 0.97 ≦ m ≦ 1.03,
The first subcomponent is zinc oxide;
The second subcomponent is at least one oxide selected from La, Pr, Pm, Nd, Sm, Eu, Gd and Y;
The third subcomponent is at least one oxide selected from Al, Ga, In, Mg, Cu, Ni, Co, Fe and Si,
The first subcomponent is contained in an amount of 0.45 to 10% by weight with respect to 100% by weight of the main component,
The second subcomponent is more than 0.0 wt% and 0.3 wt% or less in terms of oxide with respect to 100 wt% of the main component,
The dielectric ceramic composition, wherein the third subcomponent is contained in an amount of 0.02 to 1.5 wt% in terms of oxide with respect to 100 wt% of the main component.
0.06≦z≦0.16である請求項1に記載の誘電体磁器組成物。2. The dielectric ceramic composition according to claim 1, wherein 0.06 ≦ z ≦ 0.16. 0.97≦m<1.00である請求項1または2に記載の誘電体磁器組成物。The dielectric ceramic composition according to claim 1, wherein 0.97 ≦ m <1.00. 請求項1〜3のいずれかに記載の誘電体磁器組成物で構成してある誘電体層を有する電子部品。 The electronic component which has a dielectric material layer comprised with the dielectric material ceramic composition in any one of Claims 1-3.
JP2012121096A 2012-05-28 2012-05-28 Dielectric porcelain composition and electronic component Active JP5910317B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012121096A JP5910317B2 (en) 2012-05-28 2012-05-28 Dielectric porcelain composition and electronic component
KR1020130058279A KR101432442B1 (en) 2012-05-28 2013-05-23 Dielectic ceramic composition and electronic device
CN201310203788.1A CN103449812B (en) 2012-05-28 2013-05-28 Dielectric ceramic composition and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012121096A JP5910317B2 (en) 2012-05-28 2012-05-28 Dielectric porcelain composition and electronic component

Publications (2)

Publication Number Publication Date
JP2013245150A JP2013245150A (en) 2013-12-09
JP5910317B2 true JP5910317B2 (en) 2016-04-27

Family

ID=49732709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012121096A Active JP5910317B2 (en) 2012-05-28 2012-05-28 Dielectric porcelain composition and electronic component

Country Status (3)

Country Link
JP (1) JP5910317B2 (en)
KR (1) KR101432442B1 (en)
CN (1) CN103449812B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6413861B2 (en) * 2015-03-18 2018-10-31 Tdk株式会社 Dielectric porcelain composition and electronic component
JP2017143090A (en) * 2016-02-08 2017-08-17 Tdk株式会社 Semiconductor ceramic composition and ptc thermistor
CN105924167A (en) * 2016-04-20 2016-09-07 苏州艾福电子通讯股份有限公司 Microwave dielectric ceramic powder, preparation method thereof, microwave dielectric ceramic and microwave component
CN105948743B (en) * 2016-04-29 2019-04-09 山东大学 A kind of modified codope titanium dioxide high dielectric ceramic material and its preparation method and application
CN110963796B (en) * 2019-12-25 2021-12-28 安徽大学 Giant dielectric constant low-loss X8R type ceramic capacitor material and preparation method thereof
CN111792930A (en) * 2020-06-24 2020-10-20 西安交通大学 Method for obtaining three-relaxation-state ferroelectric ceramic with wide temperature range and high dielectric constant

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678189B2 (en) * 1984-10-20 1994-10-05 京セラ株式会社 Non-reducing high dielectric constant dielectric ceramic composition
JP3640273B2 (en) * 1995-03-24 2005-04-20 Tdk株式会社 Multilayer varistor
JPH09241070A (en) * 1996-03-11 1997-09-16 Mitsubishi Materials Corp Dielectric porcelain composition
DE19630883A1 (en) * 1996-07-31 1998-02-05 Philips Patentverwaltung Component with a capacitor
JP2002050536A (en) * 2000-07-31 2002-02-15 Murata Mfg Co Ltd Reduction-resistant dielectric ceramic and laminated ceramic capacitor
JP5272754B2 (en) * 2008-02-05 2013-08-28 Tdk株式会社 Dielectric porcelain composition and electronic component
CN101786876B (en) * 2009-12-31 2012-07-04 西北大学 Barium titanate-based Y5V nano-powder and preparation method for ceramic material thereof

Also Published As

Publication number Publication date
KR101432442B1 (en) 2014-08-20
CN103449812B (en) 2014-12-10
JP2013245150A (en) 2013-12-09
KR20130133132A (en) 2013-12-06
CN103449812A (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5664228B2 (en) Dielectric porcelain composition and electronic component
JP5272754B2 (en) Dielectric porcelain composition and electronic component
JP7036022B2 (en) Dielectric Porcelain Compositions for Ceramic Electronic Components and Ceramic Electronic Components
JP5278682B2 (en) Dielectric porcelain composition and electronic component
JP5910317B2 (en) Dielectric porcelain composition and electronic component
JP5418323B2 (en) Dielectric porcelain composition and electronic component
JP2008174413A (en) Dielectric porcelain composition and electronic component
JP5012932B2 (en) Dielectric porcelain composition and electronic component
KR101767672B1 (en) Dielectric ceramic composition and electronic component
JP2007161538A (en) Reduction resistant dielectric ceramic composition, electronic component and laminated ceramic capacitor
JP4710574B2 (en) Dielectric porcelain composition and electronic component
JP6413862B2 (en) Dielectric porcelain composition and electronic component
JP5668569B2 (en) Dielectric porcelain composition and electronic component
JP2013523574A (en) Dielectric ceramic composition, method for producing dielectric ceramic composition, and electronic component
JP6020068B2 (en) Dielectric porcelain composition and electronic component
JP5035278B2 (en) Dielectric porcelain composition and electronic component
KR101429034B1 (en) Dielectric ceramic composition and electronic component
JP2007153710A (en) Dielectric porcelain composition and electronic component
JP2023117901A (en) Dielectric ceramic composition and single layer capacitor
JP5614503B2 (en) Dielectric porcelain composition and electronic component
JP2011198947A (en) Ceramic electronic component, and method of manufacturing ceramic electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150