JP6535190B2 - Method of determining adsorption state of organic matter adsorbed to resin particles and method of managing water treatment system - Google Patents

Method of determining adsorption state of organic matter adsorbed to resin particles and method of managing water treatment system Download PDF

Info

Publication number
JP6535190B2
JP6535190B2 JP2015059429A JP2015059429A JP6535190B2 JP 6535190 B2 JP6535190 B2 JP 6535190B2 JP 2015059429 A JP2015059429 A JP 2015059429A JP 2015059429 A JP2015059429 A JP 2015059429A JP 6535190 B2 JP6535190 B2 JP 6535190B2
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
water treatment
depth
treatment system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015059429A
Other languages
Japanese (ja)
Other versions
JP2016180594A (en
Inventor
晃彦 津田
晃彦 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2015059429A priority Critical patent/JP6535190B2/en
Publication of JP2016180594A publication Critical patent/JP2016180594A/en
Application granted granted Critical
Publication of JP6535190B2 publication Critical patent/JP6535190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、樹脂粒子に吸着した有機物の吸着状態判定方法に関する。また、本発明は、純水製造システムなどの水処理システムに使用されるイオン交換樹脂の汚染物質、特に処理水中に微量含まれる有機物汚染によるイオン交換樹脂の劣化状況を把握し、管理する方法に関する。   The present invention relates to a method of determining the adsorption state of an organic substance adsorbed to resin particles. In addition, the present invention relates to a method of grasping and managing the state of deterioration of ion exchange resin contaminants used in water treatment systems such as pure water production systems, particularly ion contamination resin due to organic contamination contained in a small amount in treated water. .

純水装置で使用するイオン交換樹脂が、処理原水中に含まれる有機物によって汚染され、薬品再生後の再生薬品の残留により採水開始までの時間が延長する事例がある。これまで有機物の構造に含まれるカルボン酸基に再生薬品のナトリウムが結合し、再生薬品の残留が高くなると考えられてきたが、原水に含まれる有機物は、フルボ酸やフミン酸といった土壌分解性の有機物であり、イオン交換樹脂の母体も有機物であるためイオン交換樹脂を直接分析し、有機物の特定や濃度を測定することは難しい。   There are cases in which the ion exchange resin used in the pure water system is contaminated with the organic substance contained in the treated raw water, and the time until the start of water collection is extended due to the remaining of the regenerated chemical after the chemical regeneration. So far, it has been considered that sodium of the regenerative medicine is bound to the carboxylic acid group contained in the structure of the organic substance, and the residual of the regenerative medicine becomes high, but the organic substance contained in the raw water is soil degradable such as fulvic acid and humic acid Since the substance is an organic substance and the matrix of the ion exchange resin is also an organic substance, it is difficult to analyze the ion exchange resin directly to measure the identification or concentration of the organic substance.

構造がある程度予測される有機物の吸着に関しては、特許文献1に表面分析法により試料の表面部分に吸着した物質の試料深さ方向の分布を測定することを特徴とする試料表面に吸着した物質の吸着状態判定方法が開示されている。この判定方法は、表面分析法として電子線プローブマイクロアナライザー法、二次イオン質量分析法、光電子分光法、光音響分光法、赤外全反射分光法(ATR法)、ラマン分光法が挙げられおり、特にATR法を使用した判定方法が開示されている。   Regarding the adsorption of organic substances whose structure is predicted to some extent, Patent Document 1 measures the distribution in the depth direction of the substance of the substance adsorbed on the surface portion of the sample by surface analysis, and is characterized by A suction state determination method is disclosed. This determination method includes an electron probe microanalyzer method, secondary ion mass spectrometry, photoelectron spectroscopy, photoacoustic spectroscopy, infrared total reflection spectroscopy (ATR method), and Raman spectroscopy as surface analysis methods. In particular, a determination method using the ATR method is disclosed.

特開2002−156327号公報JP, 2002-156327, A

しかしながら、特許文献1の方法は、原水中に含まれる有機物ではなく、多段に組み合わせた他のイオン交換樹脂からの構造既知あるいは予測可能な溶出物に対して効果を奏するものである。そのため、フルボ酸やフミン酸といった土壌分解性の有機物、特にこれらの酸性の無定形高分子有機物については十分な方法とはいえなかった。また、表面分析法の一例としてラマン分光法が記載されているが、詳細は不明である。   However, the method of Patent Document 1 exerts an effect on the elution of a known or predictable structure from another ion exchange resin combined in multiple stages instead of the organic matter contained in the raw water. Therefore, the method was not sufficient for soil-degradable organic substances such as fulvic acid and humic acid, in particular, these acidic amorphous polymeric organic substances. Moreover, although Raman spectroscopy is described as an example of a surface analysis method, the details are unknown.

原水中に含まれる有機物濃度は、TOCとしては数十μg/lと低いが、処理の過程で徐々にイオン交換樹脂に有機物が蓄積されると考えられるため、安定した運転管理を行うには、イオン交換樹脂への有機物吸着状況を把握することは重要である。   The concentration of organic substances contained in the raw water is as low as several tens of μg / l as TOC, but it is thought that organic substances will gradually accumulate in the ion exchange resin during the process of treatment. It is important to understand the state of organic substance adsorption to ion exchange resin.

本発明では、有機物によるイオン交換樹脂の吸着状況を判定する方法及びそれに処理原水中に微量含まれる酸性の無定形高分子有機物汚染の状況をこの吸着状態の判定方法に基づいて把握し、イオン交換樹脂の交換時期を管理する水処理システムの管理方法を提供することを目的とする。   In the present invention, a method of determining the adsorption state of the ion exchange resin by the organic matter and the state of the acidic amorphous polymer organic substance contamination contained in a small amount thereof in the raw water are grasped based on the determination method of the adsorption state. An object of the present invention is to provide a method of managing a water treatment system that manages the replacement time of resin.

本発明者が鋭意検討した結果、イオン交換樹脂の性能低下を引き起こす酸性の無定形高分子有機物と同等の性能低下挙動を示す構造既知の有機物を見出し、その有機物を用いて、有機物の吸着状態をラマン分光法にて評価する方法に到達したものである。   As a result of intensive investigations conducted by the present inventor, the present inventors have found an organic substance having a known structure that exhibits the same performance decline behavior as the acidic amorphous polymer organic substance causing performance decline of ion exchange resin, and using the organic substance, adsorption state of organic substance The method to be evaluated by Raman spectroscopy has been reached.

すなわち、本発明の一形態によれば、イオン交換樹脂粒子へのカルボン酸基含有芳香族化合物から選択される有機物の吸着状態を判定する方法であって、有機物を吸着したイオン交換樹脂粒子を半分に切断し、その断面に対して、該イオン交換樹脂粒子の表面から深さ方向の複数点をラマン分光法により測定してラマンスペクトルを取得し、前記ラマンスペクトルのバックグラウンドの強度の上昇が確認された深さを前記有機物による吸着深さと判定する吸着状態判定方法が提供される。 That is, according to one embodiment of the present invention, there is provided a method for determining the adsorption state of the organic material is selected from a carboxylic acid group-containing aromatic compound to the ion exchange resin particles, ion exchange resin particles with adsorbed organic matter half In the cross section, a plurality of points in the depth direction from the surface of the ion exchange resin particle are measured by Raman spectroscopy to acquire a Raman spectrum, and the increase in background intensity of the Raman spectrum is confirmed The adsorption state determination method which determines the said depth as the adsorption depth by the said organic substance is provided.

又、本発明の別の形態によれば、水処理システムに使用されるイオン交換樹脂の交換時期を決定する水処理システムの管理方法であって、
該水処理システムから外来有機物を吸着したイオン交換樹脂を抽出する第1工程と、
前記第1工程において抽出されたイオン交換樹脂のサンプル粒子を半分に切断し、その断面に対して、該イオン交換樹脂粒子の表面から深さ方向の複数点をラマン分光法により測定してラマンスペクトルを取得し、前記ラマンスペクトルのバックグラウンドの強度の上昇が確認された深さを前記外来有機物の吸着深さを判定する第2工程と、
前記第2工程において判定した吸着深さからイオン交換樹脂の交換時期を決定する第3工程とを含み、
前記外来有機物は、カルボン酸基含有芳香族化合物から選択される有機物である
水処理システムの管理方法が提供される。
Further, according to another aspect of the present invention, there is provided a method of managing a water treatment system for determining the replacement time of an ion exchange resin used in the water treatment system, comprising:
A first step of extracting an ion exchange resin having adsorbed foreign matter from the water treatment system;
A sample particle of the ion exchange resin extracted in the first step is cut in half, and a plurality of points in the depth direction from the surface of the ion exchange resin particle are measured by Raman spectroscopy with respect to the cross section And determining a depth at which an increase in background intensity of the Raman spectrum is confirmed as the second step of determining the adsorption depth of the foreign organic matter;
And a third step of determining the exchange time of the ion exchange resin from the adsorption depth determined in the second step ,
The method for managing a water treatment system is provided , wherein the foreign matter is an organic matter selected from carboxylic acid group-containing aromatic compounds .

本発明よれば、特定の有機物のイオン交換樹脂への吸着状態より、再生薬品の残留性が把握できるようになり、安定した水処理系の管理ができ、適切な交換時期の判断や決定ができるようになる。   According to the present invention, the residual property of the regenerated chemical can be grasped from the adsorption state of the specific organic substance to the ion exchange resin, the stable water treatment system can be managed, and the appropriate replacement time can be determined and determined. It will be.

指標有機物吸着前のイオン交換樹脂のラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum of ion exchange resin before index organic substance adsorption. 指標有機物を所定濃度で吸着させた際のイオン交換樹脂のラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum of ion exchange resin at the time of making a parameter | index organic substance adsorb | suck by predetermined | prescribed density | concentration. 指標有機物を別の所定濃度で吸着させた際のイオン交換樹脂のラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum of ion exchange resin at the time of making a parameter | index organic substance adsorb | suck by another predetermined density | concentration. イオン交換樹脂への吸着有機物量と60分後のイオン交換樹脂塔出口の電気伝導率の測定結果を示すグラフである。It is a graph which shows the measurement result of the amount of adsorption organic substances to ion exchange resin, and the electric conductivity of an ion exchange resin tower exit after 60 minutes. イオン交換樹脂への吸着有機物量と、60分後のイオン交換樹脂塔出口の電気伝導率の測定結果をまとめたグラフである。It is the graph which put together the measurement result of the amount of adsorption organic substances to ion exchange resin, and the electric conductivity of an ion exchange resin tower exit after 60 minutes.

フルボ酸やフミン酸といった土壌分解性の有機物は不定形であるため、これを直接用いて、イオン交換樹脂への吸着状況を確認することは極めて困難である。そこで、本発明ではこのような酸性の無定形高分子有機物と同等の性能低下挙動を示す構造既知の有機物を用いて、その吸着状況を把握し、それを実際の原水処理などの水処理システムに使用したイオン交換樹脂にも適用できることを見出した。   Since soil-degradable organic substances such as fulvic acid and humic acid are indeterminate, it is extremely difficult to confirm the adsorption state to the ion exchange resin by directly using this. Therefore, in the present invention, an adsorption state is grasped using an organic substance having a known structure that exhibits the same performance deterioration behavior as the acidic amorphous polymer organic substance, and it is used as a water treatment system such as actual raw water treatment. It has been found that it can be applied to the ion exchange resin used.

ここで、指標となる構造既知の有機物としては、カルボン酸基含有芳香族化合物、特にカルボン酸基とフェノール性水酸基をそれぞれ1つ以上有する化合物が同等の性能劣化挙動を示すことを見出した。中でも下記構造式に示す没食子酸鉄を指標化合物として用いるものである。   Here, as an organic substance with a known structure serving as an index, it has been found that a carboxylic acid group-containing aromatic compound, in particular, a compound having one or more carboxylic acid groups and one or more phenolic hydroxyl groups exhibits equivalent performance deterioration behavior. Among them, iron gallate represented by the following structural formula is used as an indicator compound.

Figure 0006535190
Figure 0006535190

没食子酸鉄(ビス(3,4,5−トリヒドロキシ安息香酸)鉄(II))は、万年筆などの黒色インク成分として古くから知られており、容易に入手することができる。   Iron gallate (bis (3,4,5-trihydroxybenzoic acid) iron (II)) has long been known as a black ink component such as a fountain pen and can be easily obtained.

本発明が適用されるイオン交換樹脂としては、陰イオン交換樹脂であり、特に弱塩基性の陰イオン交換樹脂である。また、イオン交換樹脂のベース樹脂としては、ポリアクリル系とポリスチレン系とがあるが、本発明ではポリスチレン系の弱塩基性の陰イオン交換樹脂に対して特に有効である。   The ion exchange resin to which the present invention is applied is an anion exchange resin, particularly a weakly basic anion exchange resin. Moreover, although there exist a polyacryl type and a polystyrene type as a base resin of ion exchange resin, it is especially effective with respect to the weakly basic anion exchange resin of a polystyrene type in this invention.

(測定方法およびイオン交換樹脂性能評価方法)
イオン交換樹脂の有機物汚染度合の測定法としては、ラマン分光法を用いる。ラマン分光法は、測定試料に特定の波長のレーザー光を照射し、試料から発するラマン散乱光を分光しスペクトル情報を得る分析法である。ラマン分光法では、レーザー光の種類やレーザー光の入射強度により試料の破壊等が生じるため、測定開始までの時間を一定に設定できることや試料が損傷しないレーザーの条件を設定する必要がある。
(Measurement method and ion exchange resin performance evaluation method)
Raman spectroscopy is used as a measurement method of the organic substance contamination degree of ion exchange resin. Raman spectroscopy is an analysis method in which a measurement sample is irradiated with laser light of a specific wavelength, and the Raman scattered light emitted from the sample is dispersed to obtain spectral information. In Raman spectroscopy, destruction or the like of the sample occurs depending on the type of laser light and the incident intensity of the laser light, so it is necessary to be able to set the time until the start of measurement constant and to set the conditions of the laser that will not damage the sample.

本発明では、水処理に使用したイオン交換樹脂から適宜抽出したイオン交換樹脂のサンプル粒子を半分に切断し、その断面をその表面から深さ方向に複数の点で測定し、その際のバックグラウンドの上昇を測定する。深さ方向の測定点は、測定装置の解像度に依存して決定することができ、例えば、1μm間隔、5μm間隔等の所定の間隔で測定すれば良い。なお、測定点はレーザースポットの中心点である。   In the present invention, the sample particles of the ion exchange resin appropriately extracted from the ion exchange resin used for water treatment are cut in half, and the cross section is measured at a plurality of points in the depth direction from the surface. Measure the rise of The measurement points in the depth direction can be determined depending on the resolution of the measurement apparatus, and may be measured at predetermined intervals such as 1 μm intervals or 5 μm intervals. The measurement point is the center point of the laser spot.

通常、ラマン分光法ではバックグラウンドは補正して必要なピークを求めることで測定物質の構成を定性乃至は定量するものであり、バックグラウンドが大きすぎるもの(補正不可のもの)は測定対象としては適していないものと判断される。また、レーザー光の波長を変えるなどしてバックグラウンドの小さな条件を選択して測定される。   Usually, in Raman spectroscopy, the background is corrected and the required peak is determined to determine the composition of the test substance qualitatively or quantitatively. Those with too large a background (uncorrectable) are to be measured. It is judged to be unsuitable. In addition, the measurement is performed by selecting a small background condition by changing the wavelength of the laser light.

本発明では、補正前のバックグラウンドを測定し、例えば励起レーザー波長532nmにおけるラマンシフト2000cm−1付近の強度が有機物未吸着の場合と比較して顕著に上昇、例えばレーザー強度2.9mWにおいて強度が10000カウント超の点を吸着有機物の吸着深さと判定した。 In the present invention, the background before correction is measured, and for example, the intensity near a Raman shift of 2000 cm −1 at an excitation laser wavelength of 532 nm is significantly increased as compared to the case where no organic substance is adsorbed. A point exceeding 10000 counts was determined as the adsorption depth of the adsorbed organic matter.

本発明では、構造既知の指標化合物の吸着状態をラマン分光法で測定し、それに基づいて実機の有機物汚染状況を把握するものである。   In the present invention, the adsorption state of the indicator compound having a known structure is measured by Raman spectroscopy, and the organic matter contamination state of the actual machine is grasped based on it.

このように、本発明では指標有機物の選択と、ラマン分光法におけるバックグラウンド強度のイオン交換樹脂の深さ方向での変化という2つの新たな知見により、再生薬品の残留性を予測できるようになり、安定した水処理系の管理ができ、適切な交換時期の判断や決定ができるようになる。   As described above, in the present invention, two new findings, that is, the selection of the indicator organic substance and the change of the background intensity in the depth direction of the ion exchange resin in Raman spectroscopy, make it possible to predict the persistence of the regenerated chemical. Stable management of the water treatment system, and appropriate determination and timing of replacement will be possible.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to only these examples.

実施例1
イオン交換樹脂として弱塩基性ポリスチレン系陰イオン交換樹脂(アンバーライトIRA96SB、商品名、ダウ・ケミカル社製)を用いた。
Example 1
As an ion exchange resin, a weak base polystyrene type anion exchange resin (Amberlite IRA 96SB, trade name, manufactured by Dow Chemical Co., Ltd.) was used.

樹脂の深さ方向の評価のため、球体であるイオン交換樹脂を半分に切断し、樹脂の最表面から一定間隔でラマン分光測定を実施した。測定装置及び測定条件は以下の通り。   In order to evaluate the depth direction of the resin, the ion exchange resin, which is a sphere, was cut in half, and Raman spectroscopy measurement was performed at regular intervals from the outermost surface of the resin. The measurement equipment and measurement conditions are as follows.

測定機器:NRS−4100 日本分光株式会社製
レーザー波長:532nm
レーザー強度:2.9mW
対物レンズ:100倍
グレーティング:900l/mm
スリット幅:φ34μm
露光時間:10秒
積算回数:2回
測定待ち時間:10秒
Measuring instrument: NRS-4100 manufactured by Nippon Bunko Co., Ltd. Laser wavelength: 532 nm
Laser intensity: 2.9mW
Objective lens: 100 times Grating: 900 l / mm
Slit width: φ 34 μm
Exposure time: 10 seconds Integration number: 2 Measurement waiting time: 10 seconds

図1は、有機物汚染をされていないイオン交換樹脂のラマンスペクトル、図2は有機物をカーボン量として870mg/L−樹脂の濃度、図3は4400mg/L−樹脂の濃度で吸着させた、イオン交換樹脂のラマンスペクトルである。これらはいずれも補正前のデータである。図1には、ラマンシフト1600cm−1付近に樹脂特有のピークが確認される。このピークの左側の2000cm−1付近にブロードにやや膨らんだ領域があり、これがバックグラウンドのピーク強度を示している。通常、1,800〜2,800cm−1はラマン散乱がほとんど観察されない波数域(サイレント領域)である。有機物の吸着していないイオン交換樹脂のラマンスペクトル(図1)に対して、没食子酸鉄を吸着させたイオン交換樹脂のラマンスペクトル(図2,3)は、スペクトルのバックグラウンドが上昇しており、図2と図3でバックグラウンドの上昇が顕著になる深さが異なっていることから、バックグラウンドの上昇が顕著となる深さまで有機物が汚染されていると考えることができる。図2では、深さが5μmと10μmではラマンシフト2000cm−1の強度が顕著に上昇、所定値、例えば10000カウント超に上昇しており、15μmでは、1600cm−1付近に樹脂特有のピークが確認され、2000cm−1の強度が10000カウント以下であるので、有機物は深さ10μm以上15μm未満の範囲まで汚染していると判断できる。図3では、深さ15μmまでバックグラウンド強度の上昇が顕著(10000カウント超)となっており、深さ20μmでは1600cm−1付近に樹脂特有のピークが確認され、2000cm−1付近のバックグラウンド強度の上昇は少ない(10000カウント以下)。つまり、有機物は深さ15μm以上20μm未満の範囲まで汚染していると判断できる。なお、バックグラウンド強度の上昇高さ(カウント数)は適用するイオン交換樹脂や測定装置、測定条件によって異なるため、指標有機物を用いてそれぞれの樹脂ごとに及び/または装置ごとに適宜設定すれば良い。上記測定装置を用いた通常の測定であれば、図1の場合は、補正により1600cm−1付近のピーク強度(A)と2000cm−1付近のピーク強度(B)の比(A/B)は30以上であり、一方、図3の深さ20μmでの補正後の強度比(A/B)は6程度となる。通常、この強度比(SN比とも言う)が5以上であれば、測定可能と判断されるが、図3の深さ15μmでの補正後の強度比(A/B)は1未満となり、測定対象には適していない。ピーク強度比(A/B)が5未満の場合をバックグラウンドの上昇と定義すると、今回の補正前の測定データより2000cm−1付近のピーク強度(B)が10000カウント超をバックグラウンド上昇と定義できる。ラマン分光分析は従来、樹脂粒子の表面から測定するため、図2や図3に示すように有機物を吸着した樹脂粒子は有機物未吸着の材料の測定条件では測定対象としては適していないものと判断される。しかしながら、本発明では補正前のラマンスペクトルのバックグラウンドの挙動を判断材料とするため、測定条件は有機物未吸着の材料において決定でき、樹脂粒子の汚染状態を迅速に判断することができる。 1 is a Raman spectrum of an ion exchange resin not contaminated with organic matter, FIG. 2 is an organic matter adsorbed at a concentration of 870 mg / L-resin, and FIG. 3 is a concentration of 4400 mg / L-resin. It is a Raman spectrum of resin. These are all data before correction. The peak peculiar to resin is confirmed by Raman shift 1600 cm < -1 > vicinity in FIG. There is a broad, slightly bulging area near 2000 cm −1 on the left side of this peak, which indicates the peak intensity of the background. Usually, 1,800 to 2,800 cm −1 is a wave number region (silent region) where Raman scattering is hardly observed. The Raman spectrum (Figs. 2 and 3) of the ion exchange resin adsorbed with iron gallate is higher than the Raman spectrum (Fig. 1) of the ion exchange resin not adsorbed with organic matter. Since the depth at which the background rise is remarkable differs in FIGS. 2 and 3, it can be considered that the organic matter is contaminated to a depth at which the background rise becomes remarkable. In FIG. 2, at depths of 5 μm and 10 μm, the intensity of Raman shift 2000 cm −1 rises remarkably and rises to a predetermined value, for example, over 10000 counts, and at 15 μm, a peak peculiar to the resin is confirmed around 1600 cm −1 Since the strength of 2000 cm −1 is 10000 counts or less, it can be judged that the organic substance is contaminated to a depth of 10 μm or more and less than 15 μm. In Figure 3, increase in the background intensity to a depth 15μm has become remarkable (10000 counts greater), the resin specific peak was confirmed around 1600 cm -1 in depth 20 [mu] m, the background intensity in the vicinity of 2000 cm -1 The rise of is less (less than 10000 counts). That is, it can be determined that the organic matter is contaminated to a depth of 15 μm or more and less than 20 μm. In addition, since the rise height (count number) of background strength varies depending on the ion exchange resin, measuring device, and measurement conditions to be applied, it may be appropriately set for each resin and / or for each device using index organic substance . In the case of FIG. 1, the ratio (A / B) of the peak intensity (A) in the vicinity of 1600 cm −1 to the peak intensity (B) in the vicinity of 2000 cm −1 is corrected in the case of FIG. The intensity ratio (A / B) after correction at a depth of 20 μm in FIG. Normally, if this intensity ratio (also referred to as the SN ratio) is 5 or more, it is judged that measurement is possible, but the intensity ratio (A / B) after correction at a depth of 15 μm in FIG. Not suitable for subjects. When the peak intensity ratio (A / B) is less than 5 and defined as background rise, the peak intensity (B) near 2000 cm -1 is defined as more than 10000 counts as background rise from the measurement data before this correction it can. Since Raman spectroscopy is conventionally measured from the surface of resin particles, as shown in FIG. 2 and FIG. 3, it is determined that resin particles having adsorbed organic matter are not suitable for measurement under the measurement conditions of non-adsorbed organic material. Be done. However, in the present invention, since the behavior of the background of the Raman spectrum before correction is used as a judgment material, the measurement conditions can be determined for the non-organic-absorbed material, and the contamination state of the resin particles can be judged rapidly.

イオン交換樹脂の有機物の吸着量は、イオン交換樹脂一定量に没食子酸鉄を一定量添加した状態で、所定時間振とうし、没食子酸鉄を吸着させ、イオン交換樹脂と水溶液を分離した後にTOC濃度を測定し、添加量との差(没食子酸鉄の添加濃度−TOC濃度)から算出したものである。   The adsorption amount of the organic substance of the ion exchange resin is determined by shaking the iron exchange resin for a predetermined time while adding a fixed amount of iron gallate to a fixed amount of ion exchange resin, adsorbing the iron gallate, and separating the ion exchange resin and the aqueous solution The concentration was measured and calculated from the difference from the addition amount (addition concentration of iron gallate-TOC concentration).

次に、イオン交換樹脂の再生薬品の残留性と有機物濃度の評価法を説明する。先ず、イオン交換樹脂に没食子酸鉄を一定量吸着させた樹脂(作成方法に関しては、上記のラマン法による試料の作成法と同様)を樹脂搭に充填した後、その樹脂搭に再生薬品を樹脂の約5倍量通薬した。次に、樹脂搭に一定流速で純水を流し、充填された樹脂に対して純水洗浄を行った。そして、純水洗浄を開始してから60分後に樹脂搭の出口から流れる水の電気伝導率を測定した。再生薬品を通薬する工程において、樹脂からの没食子酸鉄の脱離が考えられるため、樹脂を通過した薬液を回収し、その通過した薬液中のTOC量を測定することで樹脂の残留有機物量(有機物濃度)を算出した。   Next, the evaluation method of the persistence and the organic substance concentration of the regenerated chemical | medical agent of ion exchange resin is demonstrated. First, after filling a resin tower with a resin in which a certain amount of gallic acid iron is adsorbed to an ion exchange resin (the preparation method is the same as the sample preparation method according to the Raman method above) Approximately 5 times the amount of Next, pure water was flowed through the resin column at a constant flow rate, and the filled resin was washed with pure water. Then, 60 minutes after the pure water cleaning was started, the electric conductivity of the water flowing from the outlet of the resin tower was measured. In the process of replenishing the regenerative medicine, desorption of iron gallate from the resin is considered, so the chemical solution that has passed through the resin is recovered, and the amount of residual organic matter in the resin is measured by measuring the TOC amount in the chemical solution that has passed through The (organic matter concentration) was calculated.

図4に残留有機物濃度と、純水洗浄を開始してから60分後のイオン交換樹脂塔出口から流れる水の電気伝導率の測定結果を示す。図4の横軸は、1回目の有機物吸着後の1回目の通液−純水洗浄後(1−1)、2回目の有機物吸着後の1回目の通液−純水洗浄後(2−1)、2回目の通液−純水洗浄後(2−2)、3回目の通液−純水洗浄後(2−3)等を意味する。図5は、図4の結果に基づき、イオン交換樹脂塔の出口から流れる水の電気伝導率を横軸に示し、樹脂の残留有機物量を縦軸に示したものである。図4及び図5を参照すると、樹脂の残留有機物量(有機物濃度)は、イオン交換樹脂塔の出口から流れる水の電気伝導率にほぼ正比例することが分かる。すなわち、この電気伝導率の変動は、フルボ酸やフミン酸といった土壌分解性の有機物に影響を受けており、このことから、没食子酸鉄が指標化合物として使用できることが確認された。   FIG. 4 shows the measurement results of the residual organic substance concentration and the electric conductivity of water flowing from the outlet of the ion exchange resin tower 60 minutes after the start of the pure water washing. The horizontal axis in FIG. 4 indicates the first passing of liquid after the first adsorption of organic matter-after pure water washing (1-1), and the first passing of the second flow of organic substance after adsorption-after pure water cleaning (2- 1) After the second flow-through of pure water cleaning (2-2), the third flow-through of pure water after cleaning (2-3) and the like. FIG. 5 shows the electric conductivity of water flowing from the outlet of the ion exchange resin tower on the horizontal axis and the amount of residual organic matter of the resin on the vertical axis based on the results of FIG. Referring to FIGS. 4 and 5, it can be seen that the amount of residual organic matter (organic matter concentration) of the resin is approximately in direct proportion to the electrical conductivity of the water flowing from the outlet of the ion exchange resin tower. That is, the change of the electric conductivity is influenced by the soil degradable organic matter such as fulvic acid and humic acid, and it was confirmed from this that iron gallate can be used as an indicator compound.

この指標を用いて、実際の原水処理においては、イオン交換樹脂のラマンスペクトルにおけるバックグラウンドの上昇の深さが、指標化合物を用いて決定された性能低下の基準値に応じた深さ以上に確認された場合に性能低下と判断し、交換時期を管理することが可能となる。   Using this indicator, in actual raw water treatment, the depth of background rise in the Raman spectrum of the ion exchange resin is confirmed to be more than the depth corresponding to the reference value of the performance degradation determined using the indicator compound It is possible to judge the performance decline and manage the replacement time.

本発明に係る吸着状態判定方法は、イオン交換樹脂に限定されず樹脂粒子全般に対して有機物の吸着状態の把握に利用することができる。   The adsorption state determination method according to the present invention is not limited to the ion exchange resin, and can be used for grasping the adsorption state of an organic substance to resin particles in general.

Claims (6)

イオン交換樹脂粒子へのカルボン酸基含有芳香族化合物から選択される有機物の吸着状態を判定する方法であって、有機物を吸着したイオン交換樹脂粒子を半分に切断し、その断面に対して、該イオン交換樹脂粒子の表面から深さ方向の複数点をラマン分光法により測定してラマンスペクトルを取得し、前記ラマンスペクトルのバックグラウンドの強度の上昇が確認された深さを前記有機物による吸着深さと判定する吸着状態判定方法。 A method of determining the adsorption state of an organic substance selected from carboxylic acid group-containing aromatic compounds on ion exchange resin particles, which comprises cutting ion exchange resin particles having adsorbed organic substances in half and comparing the cross section with the cross section The Raman spectrum is acquired by measuring a plurality of points in the depth direction from the surface of the ion exchange resin particle by Raman spectroscopy, and the depth at which the increase in background intensity of the Raman spectrum is confirmed is the adsorption depth by the organic substance The adsorption state determination method to determine. 前記バックグラウンドの強度は、励起レーザー波長532nmにおけるラマンシフト2000cm−1付近の強度である請求項1に記載の吸着状態判定方法。 The adsorption state determination method according to claim 1, wherein the intensity of the background is an intensity near a Raman shift of 2000 cm −1 at an excitation laser wavelength of 532 nm. 水処理システムに使用されるイオン交換樹脂の交換時期を決定する水処理システムの管理方法であって、
該水処理システムから外来有機物を吸着したイオン交換樹脂を抽出する第1工程と、
前記第1工程において抽出されたイオン交換樹脂のサンプル粒子を半分に切断し、その断面に対して、該イオン交換樹脂粒子の表面から深さ方向の複数点をラマン分光法により測定してラマンスペクトルを取得し、前記ラマンスペクトルのバックグラウンドの強度の上昇が確認された深さを前記外来有機物の吸着深さを判定する第2工程と、
前記第2工程において判定した吸着深さからイオン交換樹脂の交換時期を決定する第3工程とを含み、
前記外来有機物は、カルボン酸基含有芳香族化合物から選択される有機物である
水処理システムの管理方法。
A method of managing a water treatment system, which determines a replacement time of ion exchange resin used in the water treatment system, comprising:
A first step of extracting an ion exchange resin having adsorbed foreign matter from the water treatment system;
A sample particle of the ion exchange resin extracted in the first step is cut in half, and a plurality of points in the depth direction from the surface of the ion exchange resin particle are measured by Raman spectroscopy with respect to the cross section And determining a depth at which an increase in background intensity of the Raman spectrum is confirmed as the second step of determining the adsorption depth of the foreign organic matter;
And a third step of determining the exchange time of the ion exchange resin from the adsorption depth determined in the second step ,
The method for managing a water treatment system, wherein the foreign matter is an organic matter selected from carboxylic acid group-containing aromatic compounds .
前記バックグラウンドの強度は、励起レーザー波長532nmにおけるラマンシフト2000cmThe background intensity is a Raman shift of 2000 cm at an excitation laser wavelength of 532 nm. −1-1 付近の強度である請求項3に記載の水処理システムの管理方法。The method of managing a water treatment system according to claim 3, wherein the strength is in the vicinity. 前記第3工程は、前記吸着深さから、イオン交換樹脂の再生薬品の残留性を把握することによって、イオン交換樹脂の交換時期を決定する請求項3又は4に記載の水処理システムの管理方法。 The management method of the water treatment system according to claim 3 or 4 , wherein the third step determines the replacement time of the ion exchange resin by grasping the residual property of the regenerated chemical of the ion exchange resin from the adsorption depth. . 構造既知のカルボン酸基含有芳香族化合物である指標有機物を所定濃度で吸着させたイオン交換樹脂をイオン交換樹脂塔に充填し、前記イオン交換樹脂に再生薬品通液し、前記イオン交換樹脂に対して純水洗浄を行い、前記純水洗浄を開始してから所定時間経過後の前記イオン交換樹脂塔の出口から流れる液の電気伝導率を測定し、前記電気伝導率が基準値を超える際の前記イオン交換樹脂に残留する指標有機物濃度を求める第4工程と
前記指標有機物の濃度を変えて繰り返し測定したラマン分光法におけるバックグラウンドの上昇傾向に基づき、前記第4工程により求めた残留する指標有機物の前記濃度に対応する吸着深さを決定する第5工程と、
をさらに有し、
前記第3工程は、前記第2工程において求めた外来有機物の吸着深さが前記第5工程において決定された吸着深さ以上であると確認された場合に、イオン交換樹脂の性能低下と判断し、前記水処理システムのイオン交換樹脂の交換を行う請求項に記載の水処理システムの管理方法。
An ion exchange resin in which an index organic substance, which is a carboxylic acid group-containing aromatic compound having a known structure , is adsorbed at a predetermined concentration is packed in an ion exchange resin tower, a regeneration agent is passed through the ion exchange resin, and the ion exchange resin is The pure water washing is performed, and the electric conductivity of the liquid flowing from the outlet of the ion exchange resin tower is measured after a predetermined time has elapsed since the pure water washing was started, and the electric conductivity exceeds a reference value a fourth step asking you to concentration indicators organic matter remaining on the ion exchange resin,
A fifth step of determining the adsorption depth based on said rise of background in repeated with varying concentrations of indicators organics measured Raman spectroscopy, corresponds to the concentration of the indicator organic matter remaining was determined by the fourth step ,
And have
In the third step, when it is confirmed that the adsorption depth of the foreign organic substance determined in the second step is equal to or greater than the adsorption depth determined in the fifth step, it is determined that the performance of the ion exchange resin is degraded. The method for managing a water treatment system according to claim 5 , wherein the ion exchange resin of the water treatment system is replaced.
JP2015059429A 2015-03-23 2015-03-23 Method of determining adsorption state of organic matter adsorbed to resin particles and method of managing water treatment system Active JP6535190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015059429A JP6535190B2 (en) 2015-03-23 2015-03-23 Method of determining adsorption state of organic matter adsorbed to resin particles and method of managing water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015059429A JP6535190B2 (en) 2015-03-23 2015-03-23 Method of determining adsorption state of organic matter adsorbed to resin particles and method of managing water treatment system

Publications (2)

Publication Number Publication Date
JP2016180594A JP2016180594A (en) 2016-10-13
JP6535190B2 true JP6535190B2 (en) 2019-06-26

Family

ID=57132674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015059429A Active JP6535190B2 (en) 2015-03-23 2015-03-23 Method of determining adsorption state of organic matter adsorbed to resin particles and method of managing water treatment system

Country Status (1)

Country Link
JP (1) JP6535190B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6586404B2 (en) * 2016-09-27 2019-10-02 日東電工株式会社 OPTICAL LAMINATE AND LIQUID CRYSTAL DISPLAY DEVICE USING THE OPTICAL LAMINATE

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3627961B2 (en) * 1998-11-20 2005-03-09 東光電気株式会社 Through-type current transformer
JP4945025B2 (en) * 1998-12-21 2012-06-06 エボテック・アーゲー Scanning microscope method with high axial resolution
JP5412896B2 (en) * 2009-03-13 2014-02-12 株式会社明電舎 Chemical species determination method and chemical species determination device

Also Published As

Publication number Publication date
JP2016180594A (en) 2016-10-13

Similar Documents

Publication Publication Date Title
Gorzalski et al. Elemental composition of membrane foulant layers using EDS, XPS, and RBS
Regadio et al. Direct analysis of metal ions in solutions with high salt concentrations by total reflection X-ray fluorescence
Arima et al. Water adsorption, solvation, and deliquescence of potassium bromide thin films on SiO2 studied by ambient-pressure X-ray photoelectron spectroscopy
JP6719292B2 (en) Method for evaluating organic matter in water in water treatment system and water treatment system
Fontàs et al. Novel and selective procedure for Cr (VI) determination by X-ray fluorescence analysis after membrane concentration
JP6535190B2 (en) Method of determining adsorption state of organic matter adsorbed to resin particles and method of managing water treatment system
JP6581372B2 (en) Adsorption state determination method for organic substances adsorbed on resin particles
KR101305993B1 (en) Method for mesuring biochemical oxygen demand
Mackenbach et al. Application of a Tenax model to assess bioavailability of polychlorinated biphenyls in field sediments
Mohadesi et al. Multiwalled carbon nanotube modified with 1-(2-pyridylazo)-2-naphthol for stripping voltammetric determination of Pb (II)
Marguí et al. High-energy polarized-beam energy-dispersive X-ray fluorescence analysis combined with activated thin layers for cadmium determination at trace levels in complex environmental liquid samples
Ferreira da Silva et al. On the size of ions solvated in helium clusters
KR102028432B1 (en) Methods for surface-enhanced Raman scattering using three-dimensional porous nanoplasmonic network
Ghasemi et al. Solvent bar microextraction combined with high‐performance liquid chromatography for preconcentration and determination of pramipexole in biological samples
Liu et al. Remove legacy perfluoroalkyl acids and emerging per-and polyfluoroalkyl ether acids by single-use and regenerable anion exchange resins: Rapid small-scale column tests and model fits
KR20170003625A (en) Method for eliminating metal ions from a viscous organic solution
CN108020533B (en) Graphene quantum dot-based in-situ living body quantitative analysis method for heterocyclic polycyclic aromatic hydrocarbon adsorbed on plant root surface by fluorescence quenching method
Silanpää et al. Natural Organic Matter in Water: Characterization, Treatment Methods, and Climate Change Impact
Hamed et al. Sorbent extraction behavior of cesium and strontium from nitric acid solutions using a new high thermal stability material
dos Santos et al. A study on tree bark samples for atmospheric pollution monitoring
JP3633195B2 (en) Ion exchange resin performance evaluation method and water treatment system management method
JP4441894B2 (en) Method for determining adsorption state of substance adsorbed on sample surface and management method for water treatment system
Bali et al. Elemental concentration in renal stones by wavelength dispersive X‐ray fluorescence spectrometry
CN105181673A (en) Detection method of propanethiol
Schendorf Effect of borohydride reduction and pH on the optical properties of humic substances

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190531

R150 Certificate of patent or registration of utility model

Ref document number: 6535190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250