JP6533676B2 - Water treatment apparatus and water treatment method - Google Patents

Water treatment apparatus and water treatment method Download PDF

Info

Publication number
JP6533676B2
JP6533676B2 JP2015053911A JP2015053911A JP6533676B2 JP 6533676 B2 JP6533676 B2 JP 6533676B2 JP 2015053911 A JP2015053911 A JP 2015053911A JP 2015053911 A JP2015053911 A JP 2015053911A JP 6533676 B2 JP6533676 B2 JP 6533676B2
Authority
JP
Japan
Prior art keywords
sludge
excess sludge
solid
mixing
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015053911A
Other languages
Japanese (ja)
Other versions
JP2016172237A5 (en
JP2016172237A (en
Inventor
正英 鈴木
正英 鈴木
葛 甬生
甬生 葛
昌次郎 渡邊
昌次郎 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2015053911A priority Critical patent/JP6533676B2/en
Publication of JP2016172237A publication Critical patent/JP2016172237A/en
Publication of JP2016172237A5 publication Critical patent/JP2016172237A5/ja
Application granted granted Critical
Publication of JP6533676B2 publication Critical patent/JP6533676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、水処理装置及び水処理方法に関し、特に、生物学的処理と嫌気性消化処理等の汚泥のエネルギー(燃料)化処理を組み合わせて有機性排水から有機物を分解及び回収する処理施設に利用可能な水処理装置及び水処理方法に関する。   The present invention relates to a water treatment apparatus and a water treatment method, and in particular to a treatment facility that combines organic treatment with energy (fuel) treatment of sludge such as biological treatment and anaerobic digestion treatment to decompose and recover organic matter from organic waste water The present invention relates to an available water treatment apparatus and a water treatment method.

下水などの有機性排水を処理する一般的な方法として、最初沈殿池などの第1の固液分離槽で流入排水中の固形物を粗取りし、その処理水を微生物が存在する反応槽で、酸素を供給しながら生物学的処理し、生物学的処理後の微生物を含む混合液を最終沈殿池などの第2の固液分離槽で固形物を分離して処理する方法が知られている。第1及び第2の固液分離槽で分離された固形物である有機性汚泥は、嫌気性消化槽によりメタン発酵されてメタンとして回収されるかあるいは乾燥及び炭化処理されてバイオマスとして燃料利用される。   As a general method of treating organic drainage such as sewage, solid matter in inflow drainage is roughly taken first by the first solid-liquid separation tank such as sedimentation tank, and the treated water is used in the reaction tank where microorganisms exist There is known a method of treating a mixture containing a microorganism after biological treatment and supplying biological treatment while supplying oxygen in a second solid-liquid separation tank such as a final sedimentation tank to separate solids. There is. The organic sludge, which is a solid separated in the first and second solid-liquid separation tanks, is methane-fermented in the anaerobic digester and recovered as methane, or dried and carbonized and used as biomass. Ru.

このような処理方法において、有機性排水が生物学的処理される前に有機性排水からより多くの有機物を回収することにより、メタン回収量や燃料熱量を増やす方法として、第1の固液分離槽の前に予備エアレーションタンクを設け、場合によっては余剰汚泥を混ぜて20〜30分程度曝気する方法がある(例えば、非特許文献1参照)。しかし、この方法では、予備エアレーションタンクとして20〜30分の滞留時間を有する水槽が必要であり、また十分な溶存酸素量(DO)を与えるための曝気装置や動力が必要となる。   In such a treatment method, the first solid-liquid separation is a method of increasing the amount of recovered methane and the amount of heat of fuel by recovering more organic matter from the organic wastewater before the organic wastewater is subjected to biological treatment. There is a method in which a preliminary aeration tank is provided in front of the tank, and in some cases, excess sludge is mixed and aerated for about 20 to 30 minutes (see, for example, Non-Patent Document 1). However, this method requires a water tank having a residence time of 20 to 30 minutes as a preliminary aeration tank, and also requires an aeration apparatus and power for giving a sufficient dissolved oxygen content (DO).

別の方法として第1の固液分離槽に余剰汚泥を混ぜるだけの方法もある(例えば、非特許文献2参照)。しかし、この方法では混合装置が無いために、十分な効果が得られない。   Another method is to mix excess sludge in the first solid-liquid separation tank (see, for example, Non-Patent Document 2). However, in this method, no sufficient effect can be obtained because there is no mixing device.

更に別の方法として第1の固液分離槽での分離効率を向上させるためにろ材を利用したろ過機能を持たせる方法もある。しかし、この方法では流入排水中の溶解性有機物までは除去することができない。   As another method, there is also a method of providing a filtration function using a filter medium in order to improve the separation efficiency in the first solid-liquid separation tank. However, this method can not remove the soluble organic matter in the inflow drainage.

更に別の方法として、2段活性汚泥法を用いる方法があるが、第一の曝気槽では20〜30分程度の滞留時間を有する水槽及び汚泥返送ラインが必要であり、第一の曝気槽に十分なDOを与えるための曝気装置や動力が必要となる。   Another method is to use a two-stage activated sludge method, but the first aeration tank requires a water tank having a residence time of about 20 to 30 minutes and a sludge return line, and Aeration equipment and power are needed to give sufficient DO.

尚、これらの処理方法を適用することにより、回収されるエネルギー量が増えるだけでなく、生物学的処理される有機物量が削減されることによる反応槽への酸素供給量が削減されるため、処理に必要なエネルギー量を削減する効果もある。   Note that applying these treatment methods not only increases the amount of energy recovered but also reduces the amount of oxygen supplied to the reaction tank due to the reduction of the amount of organic matter to be biologically treated, It also has the effect of reducing the amount of energy required for processing.

日本水道新聞社、「新下水道の常識:建設と管理」(1977年)、p.174〜175Nippon Suisan Shimbun, "Common sense of the new sewer: Construction and management" (1977), p. 174 to 175 日本水道協会、「下水道施設基準解説」(1964年)、p.152Japan Waterworks Association, "Sewer facilities standard commentary" (1964), p. 152

しかしながら、従来のいずれの方法も、装置全体からみた効率性や処理安定性に鑑みるとまだ検討の余地がある。例えば、第1の固液分離槽で有機性排水中の有機物が除去されすぎると、後段の生物学的処理において有機物負荷が小さくなりすぎて汚泥の沈降性が悪くなり、処理水中に含まれる浮遊物質(SS)濃度が高くなる場合がある。また、排水の窒素除去をする場合においても、第1の固液分離槽で有機性排水中の有機物が除去されすぎて、窒素除去に必要な有機物が不足すると、処理水の全窒素濃度(T−N)が悪化するため、装置全体で安定的な処理を行うことが難しくなる場合がある。   However, any of the conventional methods still needs to be considered in view of the efficiency and the processing stability as viewed from the entire apparatus. For example, if the organic matter in the organic drainage is removed too much in the first solid-liquid separation tank, the load on the organic matter becomes too small in the biological treatment of the latter stage and the sedimentation of the sludge worsens, and the suspension contained in the treated water Substance (SS) concentration may be high. In addition, when removing nitrogen from waste water, if the organic matter in the organic waste water is removed too much in the first solid-liquid separation tank and the organic matter necessary for removing nitrogen is insufficient, the total nitrogen concentration of the treated water (T Because of the deterioration in -N), it may be difficult to perform stable processing in the entire apparatus.

上記課題に鑑み、本発明は、装置全体で高効率且つ安定的な処理が可能な水処理装置及び水処理方法を提供する。   In view of the above problems, the present invention provides a water treatment device and a water treatment method capable of highly efficient and stable treatment in the entire device.

上記課題を解決するために本発明者らが鋭意検討した結果、第1の固液分離槽の前段に混合装置を設け、第1の固液分離槽の後段の処理で得られた余剰汚泥を混合装置へ返送して原水と混合させるとともに、制御装置によってその余剰汚泥の返送量を適切に制御することが有効であることを見いだした。   As a result of intensive investigations by the present inventors to solve the above problems, a mixing apparatus is provided at the front stage of the first solid-liquid separation tank, and excess sludge obtained by the processing at the rear stage of the first solid-liquid separation tank is It has been found that it is effective to return to the mixing device to mix with the raw water and to appropriately control the amount of excess sludge returned by the control device.

以上の知見を基礎として完成した本発明は一側面において、原水としての有機性排水を余剰汚泥と混合し、有機性排水中の有機物を余剰汚泥に吸着させる混合装置と、混合装置で得られた混合液を固液分離する第1の固液分離槽と、第1の固液分離槽で分離された分離汚泥を分解して燃料ガス又は汚泥燃料に変換する燃料化装置と、第1の固液分離槽で分離された分離液に生物学的処理を行う反応槽と、反応槽で得られた処理水を固液分離する第2の固液分離槽と、第2の固液分離槽及び/又は反応槽で得られた汚泥を、混合装置へ供給する余剰汚泥として返送する返送手段と、混合装置へ流入する有機性排水に対する余剰汚泥の混合比率を制御する制御装置とを備える水処理装置が提供される。   The present invention completed on the basis of the above findings is obtained in one aspect by a mixing device for mixing organic wastewater as raw water with excess sludge and adsorbing organic matter in organic wastewater to excess sludge, and the mixing device A first solid-liquid separation tank for solid-liquid separation of the mixed liquid, a fueling device for decomposing the separated sludge separated in the first solid-liquid separation tank and converting it into a fuel gas or sludge fuel, a first solid-liquid separation tank A reaction tank for performing biological treatment on the separated liquid separated in the liquid separation tank, a second solid-liquid separation tank for solid-liquid separation of treated water obtained in the reaction tank, a second solid-liquid separation tank, And / or a water treatment apparatus comprising: return means for returning sludge obtained in the reaction tank as excess sludge to be supplied to the mixing device, and a control device for controlling the mixing ratio of excess sludge to organic waste water flowing into the mixing device Is provided.

本発明に係る水処理装置は一実施態様において、有機性排水の混合装置への供給流量を検出する原水流量計と、返送手段により返送される余剰汚泥の汚泥濃度を検出する余剰汚泥濃度計と、返送手段により返送される余剰汚泥の返送流量を検出する余剰汚泥流量計と、を備え、制御装置が、原水流量計、余剰汚泥濃度計及び余剰汚泥流量計の検出結果に基づいて、余剰汚泥の混合比率を制御する。   In one embodiment, the water treatment apparatus according to the present invention is a raw water flow meter that detects the supply flow rate of organic wastewater to a mixing apparatus, and an excess sludge concentration meter that detects the sludge concentration of excess sludge returned by return means. And a surplus sludge flow meter for detecting a return flow rate of surplus sludge returned by the return means, and the control device detects surplus sludge based on the detection results of the raw water flow meter, the surplus sludge concentration meter and the surplus sludge flow meter. Control the mixing ratio of

本発明に係る水処理装置は別の一実施態様において、有機性排水の混合装置への供給流量を検出する原水流量計と、有機性排水の有機物濃度を検出する原水有機物濃度計と、返送手段により返送される余剰汚泥の汚泥濃度を検出する余剰汚泥濃度計と、返送手段により返送される余剰汚泥の返送流量を検出する余剰汚泥流量計と、を備え、制御装置が、原水流量計、原水有機物濃度計、余剰汚泥濃度計及び余剰汚泥流量計の検出結果に基づいて、余剰汚泥の混合比率を制御する。   In another embodiment of the water treatment apparatus according to the present invention, a raw water flow meter for detecting the supply flow rate of the organic waste water to the mixing apparatus, a raw water organic matter concentration meter for detecting the organic substance concentration of the organic waste water, and return means And a surplus sludge flowmeter for detecting a return flow rate of surplus sludge returned by the return means, and the control device comprises a raw water flowmeter, a raw water flowmeter, and a surplus sludge flowmeter. The mixing ratio of excess sludge is controlled based on the detection results of the organic substance concentration meter, the excess sludge concentration meter and the excess sludge flow meter.

本発明に係る水処理装置は更に別の一実施態様において、第1の固液分離槽で分離された分離液の有機物濃度を検出する分離液有機物濃度検出器を更に備え、制御装置が、分離液有機物濃度検出器の検出結果に基づいて、余剰汚泥の混合比率を制御する。   In still another embodiment, the water treatment apparatus according to the present invention further comprises a separated liquid organic matter concentration detector for detecting the organic matter concentration of the separated liquid separated in the first solid-liquid separation tank, and the control device separates The mixing ratio of excess sludge is controlled based on the detection result of the liquid organic matter concentration detector.

本発明に係る水処理装置は更に別の一実施態様において、有機性排水及び/又は分離液のアンモニア性窒素濃度を検出するアンモニア性窒素濃度検出器を更に備え、制御装置が、アンモニア性窒素濃度検出器の検出結果に基づいて、余剰汚泥の混合比率を制御する。   In still another embodiment of the water treatment apparatus according to the present invention, the water treatment apparatus further comprises an ammoniacal nitrogen concentration detector for detecting the ammoniacal nitrogen concentration of the organic waste water and / or the separated liquid, and the control device controls the ammonia nitrogen concentration The mixing ratio of excess sludge is controlled based on the detection result of the detector.

本発明に係る水処理装置は更に別の一実施態様において、混合装置へ供給可能な余剰汚泥量を検出する余剰汚泥量検出器を更に備え、制御装置が、余剰汚泥量検出器が検出した余剰汚泥量が設定値以下となる場合に、混合装置へ返送する余剰汚泥の供給を停止するか又は余剰汚泥の供給量を低下させるように制御する。   In still another embodiment, the water treatment apparatus according to the present invention further includes an excess sludge amount detector that detects an excess sludge amount that can be supplied to the mixing device, and the controller detects the excess sludge amount detected by the excess sludge amount detector. When the amount of sludge becomes equal to or less than the set value, the supply of excess sludge to be returned to the mixing apparatus is stopped or controlled to reduce the supply amount of excess sludge.

本発明に係る水処理装置は更に別の一実施態様において、制御装置が、混合装置へ流入する有機性排水に対する余剰汚泥の混合比率が1.5[kg−汚泥SS/m3−原水]以下及び/又は3.0[kg−SS/m3−原水CODcr]以下となるように、余剰汚泥の供給を制御する。 In yet another embodiment of the water treatment apparatus according to the present invention, the control device controls the mixing ratio of excess sludge to organic wastewater flowing into the mixing apparatus to be 1.5 [kg-sludge SS / m 3 -raw water] or less. And / or the supply of excess sludge is controlled so as to be not more than 3.0 [kg-SS / m 3 -raw water CODcr].

本発明は別の一側面において、混合装置内で有機性排水を原水として余剰汚泥と混合し、有機性排水中の有機物を余剰汚泥に吸着させて混合液を得ることと、混合液を固液分離し、分離汚泥と分離液とを得ることと、分離汚泥を分解して燃料ガス又は汚泥燃料に変換することと、分離液に生物学的処理を行うことと、生物学的処理により得られた処理水を固液分離することと、処理水の固液分離によって得られた汚泥又は生物学的処理で得られた汚泥を余剰汚泥として混合装置へ返送することと、混合装置内で有機性排水に対して混合する余剰汚泥の混合比率を制御することを含む水処理方法が提供される。   In another aspect of the present invention, organic waste water is mixed as raw water with excess sludge in a mixing apparatus, and organic matter in the organic waste water is adsorbed onto excess sludge to obtain a mixed liquid, and the mixed liquid is solidified Separation, obtaining separated sludge and separated liquid, decomposing the separated sludge and converting it to fuel gas or sludge fuel, performing biological treatment on the separated liquid, and biological treatment Solid-liquid separation of treated water, returning sludge obtained by solid-liquid separation of treated water or sludge obtained by biological treatment as excess sludge to a mixing device, and organicity in the mixing device A water treatment method is provided that includes controlling the mixing ratio of excess sludge to be mixed with the drainage.

本発明によれば、装置全体で高効率且つ安定的な処理が可能な水処理装置及び水処理方法が提供できる。   According to the present invention, it is possible to provide a water treatment device and a water treatment method capable of highly efficient and stable treatment in the entire device.

本発明の実施の形態に係る水処理装置の一例を表す概略図である。It is the schematic showing the example of the water treatment apparatus which concerns on embodiment of this invention. 第1変形例に係る水処理装置の一例を表す概略図である。It is the schematic showing the example of the water treatment apparatus which concerns on a 1st modification.

以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであってこの発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment shown below exemplifies an apparatus and a method for embodying the technical idea of the present invention, and the technical idea of the present invention specifies the structure, arrangement and the like of the component parts as follows. It is not something to do.

図1に示すように、本発明の実施の形態に係る水処理装置は、有機性排水を余剰汚泥と混合し、有機性排水中の有機物を余剰汚泥に吸着させる混合装置1と、第1の固液分離槽2と、反応槽3と、第2の固液分離槽4と、燃料化装置6と、返送手段7と、制御装置10を備える。   As shown in FIG. 1, a water treatment apparatus according to an embodiment of the present invention comprises a mixing device 1 for mixing organic wastewater with excess sludge and adsorbing organic matter in the organic wastewater to excess sludge; A solid-liquid separation tank 2, a reaction tank 3, a second solid-liquid separation tank 4, a fueling apparatus 6, a return means 7, and a control apparatus 10 are provided.

本実施形態に係る水処理装置の流入原水としては、下水、屎尿、厨芥などの有機性物質を含有する有機性排水が利用可能である。以下に限定されるものではないが、典型的には、流入原水の水質として生物化学的酸素要求量(BOD)が100〜1000mg/L、化学的酸素要求量(CODcr)が200〜3000mg/L、浮遊物質(SS)が100〜1000mg/L程度の有機性排水が、本実施形態に係る水処理装置に好適に供給される。   As the inflowing raw water of the water treatment apparatus according to the present embodiment, organic waste water containing an organic substance such as sewage, manure and moss can be used. Although not limited to the following, typically, as the water quality of the influent raw water, the biochemical oxygen demand (BOD) is 100 to 1000 mg / L, and the chemical oxygen demand (CODcr) is 200 to 3000 mg / L The organic waste water having a suspended substance (SS) of about 100 to 1000 mg / L is suitably supplied to the water treatment apparatus according to the present embodiment.

本発明者らの鋭意検討の結果、上記有機性排水と余剰汚泥との混合時間は長くしても余剰汚泥への有機物吸着効果はあまり変わらないことが分かった。そのため、混合装置1の水理学的滞留時間(HRT)は20分未満、より好ましくは10分以内、更に好ましくは5分以内とすることが好ましい。混合装置1のHRTを短くすることにより混合装置1の装置サイズを小型化することができるため、装置全体としての省スペース化が図れ、装置構成面での効率化が図れる。   As a result of intensive studies by the present inventors, it was found that the organic material adsorption effect on the excess sludge does not change much even if the mixing time of the organic drainage and the excess sludge is increased. Therefore, the hydraulic retention time (HRT) of the mixing apparatus 1 is preferably less than 20 minutes, more preferably within 10 minutes, and still more preferably within 5 minutes. Since the device size of the mixing device 1 can be reduced by shortening the HRT of the mixing device 1, space saving can be achieved as the entire device, and efficiency can be improved in the device configuration.

図1に示す混合装置1は、更なる省スペース化のために、第1の固液分離槽2内に配置することにより、有機性排水と余剰汚泥との混合のための水槽を省略することも可能である。有機物吸着効果と装置小型化の両面を考慮すると、HRTの下限時間は例えば10秒以上、より好ましくは30秒以上とすることが好ましい。   The mixing apparatus 1 shown in FIG. 1 is arranged in the first solid-liquid separation tank 2 to further save space, thereby omitting a water tank for mixing organic drainage and excess sludge. Is also possible. In consideration of both the organic adsorption effect and the device miniaturization, the lower limit time of HRT is preferably 10 seconds or more, more preferably 30 seconds or more.

混合装置1で用いられる混合方法としては、例えば、攪拌装置による機械攪拌や、空気などを用いた散気板や水中エアレーターを通じた曝気方法、配管や水路を利用する方法、阻流壁を用いた混合方法が利用可能である。装置全体の省スペース化、装置簡略化の点を考慮すると、混合装置1内には、有機性排水と余剰汚泥を混合するための曝気装置は原則設けなくてもよいが、曝気装置を設ける場合には、混合装置1内のDOは、0.1mg/L以上、より好ましくは0.2mg/L以上となるように、混合装置1内への曝気量を調節することが好ましい。これにより、余剰汚泥が活性化して有機物除去能が向上するとともに、りんの発生を抑制できる。余剰汚泥と有機性排水との混合は、嫌気性条件下で行われることもまた可能である。   As a mixing method used in the mixing device 1, for example, mechanical stirring by a stirring device, aeration method using a diffuser plate using water or the like through an underwater aerator, a method using piping or a water channel, a baffle wall Mixed methods are available. In consideration of space saving of the entire apparatus and simplification of the apparatus, the aeration apparatus for mixing organic drainage and excess sludge may not be provided in principle in the mixing apparatus 1, but in the case of providing an aeration apparatus Preferably, the aeration amount into the mixing device 1 is adjusted so that DO in the mixing device 1 is 0.1 mg / L or more, more preferably 0.2 mg / L or more. As a result, the excess sludge is activated to improve the organic substance removal ability, and the generation of phosphorus can be suppressed. It is also possible that mixing of the excess sludge with the organic drainage takes place under anaerobic conditions.

第1の固液分離槽2は、混合装置1で得られた混合液を固液分離する装置であり、例えば最初沈殿池などが好適に利用される。固液分離の手段としては、重力沈降分離、遠心分離、浮上分離、凝集分離、膜分離等が利用可能である。分離効率を向上させるために、傾斜板や汚泥ブランケット層を用いてもよく、凝集剤を使ってもよい。第1の固液分離槽2で得られた分離液は配管を介して反応槽3へと送られる。第1の固液分離槽2で得られた分離汚泥は配管を介して燃料化装置6へと送られる。   The first solid-liquid separation tank 2 is an apparatus for solid-liquid separation of the liquid mixture obtained by the mixing device 1, and for example, a first settling tank is suitably used. As means for solid-liquid separation, gravity sedimentation, centrifugation, flotation, flocculation, membrane separation, etc. can be used. In order to improve separation efficiency, inclined plates or sludge blanket layers may be used, or coagulants may be used. The separated liquid obtained in the first solid-liquid separation tank 2 is sent to the reaction tank 3 through a pipe. The separated sludge obtained in the first solid-liquid separation tank 2 is sent to the fueling device 6 through a pipe.

燃料化装置6は、第1の固液分離槽で分離された分離汚泥を分解して燃料ガス又は汚泥燃料に変換するための装置である。燃料化装置6は分離汚泥を分解して燃料ガス又は汚泥燃料に変換する目的で設置される装置であれば特に限定されない。例えば、分離汚泥を嫌気性消化によりメタンガスを発生させる嫌気性消化槽、或いは分離汚泥を乾燥或いは炭化して燃料化する乾燥機又は炭化装置等も好適に利用される。燃料化装置6として嫌気性消化槽を用いる場合には、TS濃度1〜12wt%、より典型的には2〜8wt%、より典型的には3〜6wt%の濃縮汚泥を、水理学的滞留時間40日以内、より典型的には30日以内で、メタン転換率40%以上、より典型的には45%以上で処理可能な嫌気性消化槽が配置されることが好ましい。   The fueling device 6 is a device for decomposing the separated sludge separated in the first solid-liquid separation tank and converting it into a fuel gas or a sludge fuel. The fueling device 6 is not particularly limited as long as it is a device installed for the purpose of decomposing separated sludge and converting it into fuel gas or sludge fuel. For example, an anaerobic digestion tank that produces methane gas by anaerobic digestion of separated sludge, or a dryer or carbonization apparatus that dries or carbonizes the separated sludge to convert it into fuel is also suitably used. When an anaerobic digester is used as the fueling device 6, concentrated sludge having a TS concentration of 1 to 12 wt%, more typically 2 to 8 wt%, more typically 3 to 6 wt%, is hydraulically retained. Preferably, an anaerobic digester capable of processing methane conversion of 40% or more, more typically 45% or more, within 40 days of time, more typically 30 days or less, is provided.

燃料化装置6の前段には必要に応じて前処理装置5が配置されていてもよい。前処理装置5は特定しないが、濃縮装置や脱水装置などの第1の固液分離槽2からの分離汚泥の汚泥含水率を低減させる装置やアルカリ処理やオゾン処理などの燃料化を向上させる装置を単独又は組み合わせて利用してもよい。   A pretreatment device 5 may be disposed upstream of the fueling device 6 as necessary. Although the pretreatment device 5 is not specified, a device that reduces the sludge water content of the separated sludge from the first solid-liquid separation tank 2 such as a concentration device or a dewatering device, and a device that improves fueling such as alkali treatment or ozone treatment May be used alone or in combination.

反応槽3は、第1の固液分離槽で分離された分離液に生物学的処理を行うための装置である。生物学的処理としては、例えば、活性汚泥法(膜分離活性汚泥法、回分式活性汚泥法)、生物膜処理法(固定床型生物膜法、流動床型生物膜法)等を用いた好気性生物学的処理がある。活性汚泥法を用いる場合、反応槽3としては、標準活性汚泥法、嫌気好気法、循環式硝化脱窒法、ステップ流入式多段硝化脱窒法、A2O法などの従来の水処理方法を利用した装置を配置することができる。反応槽3は、反応槽3で発生した余剰汚泥を必要に応じて混合装置1へ返送するための返送手段7に接続されていてもよい。   The reaction tank 3 is an apparatus for performing biological treatment on the separated liquid separated in the first solid-liquid separation tank. As biological treatment, for example, activated sludge method (membrane separation activated sludge method, batch type activated sludge method), biofilm treatment method (fixed bed type biofilm method, fluidized bed type biofilm method) or the like is preferable. There are temper biological processes. When using an activated sludge method, as the reaction tank 3, an apparatus using a conventional water treatment method such as a standard activated sludge method, an anaerobic aerobic method, a circulating nitrification denitrification method, a step inflow multistage nitrification denitrification method, an A2O method Can be placed. The reaction tank 3 may be connected to a return means 7 for returning excess sludge generated in the reaction tank 3 to the mixing apparatus 1 as necessary.

第2の固液分離槽4は、反応槽3で得られた処理水を固液分離する装置であり、例えば最終沈殿池などが好適に用いられる。固液分離の手段としては、第1の固液分離槽2と同様の手段を採用することができる。反応槽3で得られた処理水は、第2の固液分離槽4において、処理水と分離汚泥とに固液分離される。第2の固液分離槽4の底部には、分離汚泥を抜き出すための返送手段7が接続されている。第2の固液分離槽4で得られた分離汚泥が、返送手段7を介して混合装置1に返送可能である。図示していないが、余剰汚泥を混合装置1へ返送しない場合に備え、余剰汚泥を燃料化装置6へ送るためのバイパスルートを設けておいてもよい。   The second solid-liquid separation tank 4 is an apparatus for solid-liquid separation of the treated water obtained in the reaction tank 3 and, for example, a final sedimentation tank is suitably used. As a means of solid-liquid separation, the same means as the first solid-liquid separation tank 2 can be adopted. The treated water obtained in the reaction tank 3 is solid-liquid separated into treated water and separated sludge in the second solid-liquid separation tank 4. At the bottom of the second solid-liquid separation tank 4, return means 7 for extracting separated sludge is connected. The separated sludge obtained in the second solid-liquid separation tank 4 can be returned to the mixing device 1 via the return means 7. Although not shown, it is possible to provide a bypass route for sending the excess sludge to the fueling device 6 in preparation for the case where the excess sludge is not returned to the mixing device 1.

返送手段7は、第2の固液分離槽4で得られる汚泥を混合装置1へ供給する余剰汚泥として返送するための装置であり、配管等で構成される。返送手段7を介して混合装置1へ供給する余剰汚泥の量は、有機性排水の成分によっても異なるが、一般的な下水を処理する場合には、有機性排水に対する余剰汚泥の混合比率が1.5[kg−汚泥SS/m3−原水]以下、より好ましくは1.0[kg−汚泥SS/m3−原水]以下、更に好ましくは、0.51[kg−汚泥SS/m3−原水]以下となるように余剰汚泥を返送することが好ましい。なお、原水としての有機性排水に対する余剰汚泥の混合比率が0.01[kg−汚泥SS/m3−原水]以上となるように添加することが好ましく、より好ましくは0.05[kg−汚泥SS/m3−原水]以上となるように返送することが好ましい。 The return means 7 is a device for returning the sludge obtained in the second solid-liquid separation tank 4 as excess sludge to be supplied to the mixing device 1, and is constituted by piping and the like. The amount of excess sludge supplied to the mixing apparatus 1 via the return means 7 varies depending on the components of the organic wastewater, but when treating general sewage, the mixing ratio of the excess sludge to the organic wastewater is 1 .5 [kg-sludge SS / m 3 -raw water] or less, more preferably 1.0 [kg-sludge SS / m 3 -raw water] or less, still more preferably 0.51 [kg-sludge SS / m 3- It is preferable to return excess sludge so as to be equal to or less than the amount of raw water. In addition, it is preferable to add so that the mixing ratio of the excess sludge to organic drainage as raw water will be 0.01 [kg-sludge SS / m 3 -raw water] or more, more preferably 0.05 [kg-sludge] It is preferable to return so that it may become more than SS / m < 3 > -raw water.

返送手段7による余剰汚泥の供給は、連続的に行ってもよいし、汚泥負荷の高い時間にのみ一次的に余剰汚泥を送るようにしてもよい。連続的且つ定常的に余剰汚泥を添加する場合は、原水としての有機性排水に対する余剰汚泥の混合比率が0.01〜0.6[kg−汚泥SS/m3−原水]、より好ましくは0.05〜0.2[kg−汚泥SS/m3−原水]となるように添加することが好ましい。これにより、生物学的処理と汚泥のエネルギー処理とを組み合わせた装置全体において、より安定的且つ効率的に処理を進めることができる。一方、汚泥負荷の高い時間にのみ余剰汚泥を返送する場合には、原水としての有機性排水に対する余剰汚泥の混合比率が0.1〜1.5[kg−汚泥SS/m3−原水]、より好ましくは0.2〜1.0[kg−汚泥SS/m3−原水]となるように添加することが好ましい。 The supply of excess sludge by the return means 7 may be performed continuously, or the excess sludge may be temporarily sent only at a time when the sludge load is high. When excess sludge is continuously and constantly added, the mixing ratio of excess sludge to organic drainage as raw water is 0.01 to 0.6 [kg-sludge SS / m 3 -raw water], more preferably 0. .05~0.2 - is preferably added such that [kg-sludge SS / m 3 raw. As a result, the treatment can be carried out more stably and efficiently in the entire apparatus combining the biological treatment and the energy treatment of the sludge. On the other hand, when excess sludge is returned only during high sludge load time, the mixing ratio of excess sludge to organic drainage as raw water is 0.1 to 1.5 [kg-sludge SS / m 3 -raw water], more preferably 0.2 to 1.0 - preferably it is added in an amount of [kg-sludge SS / m 3 raw.

或いは、原水中のCODcrで余剰汚泥量を評価する場合には、3.0[kg−SS/kg−原水CODcr]以下、より好ましくは1.0[kg−SS/kg−原水CODcr]以下、更に好ましくは0.4[kg−SS/kg−原水CODcr]以下となるように返送することが好ましい。原水中のCODcrで余剰汚泥量を評価する場合の余剰汚泥量の混合比率は、0.02[kg−SS/kg−原水CODcr]以上、より好ましくは0.1[kg−SS/kg−原水CODcr]以上となるように返送することが好ましい。   Alternatively, in the case of evaluating the amount of excess sludge with CODcr in raw water, 3.0 [kg-SS / kg-raw water CODcr] or less, more preferably 1.0 [kg-SS / kg-raw water CODcr] or less, More preferably, it is returned so as to be 0.4 [kg-SS / kg-raw water CODcr] or less. The mixing ratio of excess sludge amount in the case of evaluating excess sludge amount by CODcr in raw water is 0.02 [kg-SS / kg-raw water CODcr] or more, more preferably 0.1 [kg-SS / kg-raw water It is preferable to return so that it becomes more than CODcr].

制御装置10は、ユーザが予め入力した設定条件と水処理装置内の各所に配置された第1の検出器11、第2の検出器12、第3の検出器13、第4の検出器14、第5の検出器15、第6の検出器16、第7の検出器17、第8の検出器18、及び第9の検出器19(図2参照)の少なくとも1つの検出結果に基づいて、返送手段7が混合装置1へ返送する余剰汚泥の供給量(供給流量)を制御することができる。   The control device 10 has the first detector 11, the second detector 12, the third detector 13, and the fourth detector 14 disposed at various places in the water treatment device and the setting conditions previously input by the user. , Fifth detector 15, sixth detector 16, seventh detector 17, eighth detector 18, and at least one detection result of ninth detector 19 (see FIG. 2). The supply amount (supply flow rate) of excess sludge returned to the mixing device 1 by the return means 7 can be controlled.

制御装置10は、第1の検出器11、第2の検出器12、第3の検出器13、第4の検出器14、第5の検出器15、第6の検出器16、第7の検出器17、第8の検出器18、第9の検出器19及び余剰汚泥供給調整器7aにそれぞれ電気的に接続されている。制御装置10には、タッチパネル等の入力手段やメモリなどの記憶手段が接続されており、所定の制御アルゴリズムに基づいて、余剰汚泥供給調整器7aに対し、所定の動作指令に関する制御信号を送出する。   The control device 10 includes a first detector 11, a second detector 12, a third detector 13, a fourth detector 14, a fifth detector 15, a sixth detector 16, and a seventh detector. It is electrically connected to the detector 17, the eighth detector 18, the ninth detector 19 and the surplus sludge supply regulator 7a. The control unit 10 is connected to an input unit such as a touch panel and a storage unit such as a memory, and sends a control signal related to a predetermined operation command to the surplus sludge supply regulator 7a based on a predetermined control algorithm. .

図1の例では第1〜第8の検出器11〜18がすべて図示された例を示しているが、制御装置10の制御態様や、反応槽3で行われる生物学的処理の特徴に応じて、第1〜第8の検出器11〜18をすべて配置しなくてもよいことは勿論である。   In the example of FIG. 1, the first to eighth detectors 11 to 18 are all illustrated, but according to the control mode of the control device 10 and the features of the biological processing performed in the reaction tank 3 Of course, it is not necessary to arrange all of the first to eighth detectors 11-18.

第1の検出器11は、流入原水としての有機性排水の混合装置1への供給流量を検出するための原水流量計が好適に利用可能である。第2の検出器12は、流入原水としての有機性排水の混合装置1への有機物濃度を検出する原水有機物濃度計であり、例えばCOD計が好適に利用可能である。第3の検出器13は、返送手段7により返送される余剰汚泥の濃度を検出する汚泥濃度計が好適に利用可能である。第4の検出器14は、返送手段7により返送される余剰汚泥の返送流量を検出する余剰汚泥流量計が好適に利用可能である。   As the first detector 11, a raw water flow meter for detecting the supply flow rate of the organic drainage as the inflowing raw water to the mixing device 1 can be suitably used. The second detector 12 is a raw water organic matter concentration meter that detects the concentration of organic matter to the mixing device 1 of organic waste water as inflowing raw water, and for example, a COD meter can be suitably used. As the third detector 13, a sludge densitometer that detects the concentration of excess sludge returned by the return means 7 can be suitably used. The 4th detector 14 can utilize suitably the excess sludge flowmeter which detects the return flow volume of the excess sludge returned by the return means 7. FIG.

第5の検出器15は、第1の固液分離槽2で得られた分離液の有機物濃度を検出するための装置であり、例えばCOD計等が好適に利用可能である。第6の検出器16は、第1の固液分離槽2で得られた分離液のアンモニア性窒素濃度を検出するための装置であり、例えばアンモニア計などが好適に利用可能である。第6の検出器16は、流入原水のアンモニア性窒素濃度を検出するために、混合装置1の前に配置してもよい。第7の検出器17は、反応槽3内の状態を検出する装置が用いられ、例えば、MLSS計等が好適に利用可能である。第8の検出器18は、第2の固液分離槽4内の余剰汚泥量を検出するための装置であり、例えば汚泥界面計等が好適に利用可能である。なお、余剰汚泥を反応槽3から抜き出す場合、第7の検出器17が第3の検出器13及び第8の検出器18の役割を兼ねることができる。   The fifth detector 15 is a device for detecting the organic substance concentration of the separated liquid obtained in the first solid-liquid separation tank 2 and, for example, a COD meter can be suitably used. The sixth detector 16 is a device for detecting the ammoniacal nitrogen concentration of the separated liquid obtained in the first solid-liquid separation tank 2, and an ammonia meter, for example, can be suitably used. The sixth detector 16 may be arranged in front of the mixing device 1 to detect the ammoniacal nitrogen concentration of the influent raw water. As the seventh detector 17, a device for detecting the state in the reaction tank 3 is used, and for example, an MLSS meter can be suitably used. The eighth detector 18 is a device for detecting the amount of excess sludge in the second solid-liquid separation tank 4, and, for example, a sludge interface meter can be suitably used. When excess sludge is extracted from the reaction tank 3, the seventh detector 17 can also serve as the third detector 13 and the eighth detector 18.

余剰汚泥供給調整器7aとしては、例えば、余剰汚泥の供給流量を制御可能な公知のポンプ、バルブ等が好適に利用可能である。余剰汚泥供給調整器7aは、制御装置10からの制御信号に基づいて、混合装置1へ供給する余剰汚泥の供給及び供給停止、或いは供給流量の変更が可能である。   As the excess sludge supply regulator 7a, for example, a known pump, valve or the like capable of controlling the supply flow rate of excess sludge can be suitably used. The excess sludge supply regulator 7 a can supply or stop the excess sludge to be supplied to the mixing device 1 or change the supply flow rate based on the control signal from the control device 10.

制御装置10は、水処理装置の各所に設けられた第1〜第9の検出器11〜19の検出結果を通じて、混合装置1へ返送すべき余剰汚泥の供給量を所定の範囲に制御することができる。   The control device 10 controls the supply amount of excess sludge to be returned to the mixing device 1 within a predetermined range through the detection results of the first to ninth detectors 11 to 19 provided in various places of the water treatment device. Can.

制御の一例を示すと、例えば、一般的な下水処理場では、原水(有機性排水)の流入原水の負荷の変動パターンはある程度決まっている。そのため、図1の制御装置10が、予め設定した時間毎に、返送手段7が返送する余剰汚泥の供給量(供給流量)を制御する。具体的には、余剰汚泥の平均供給量をQm3/hとした場合に、例えば0−3時=0.8Q、3−6時=0.6Q、6−9時=1.4Q、9−12時=1.2Q、12−15時=0.7Q、16−21時=1.0Q、21−24時=1.4Qであるという経験値データベースを、制御装置10が有するメモリに格納しておき、制御装置10が、その経験値データベースを読み出して、時間毎に余剰汚泥供給量を制御する手法である。その結果、比較的単純な制御によって、水処理装置全体で高効率且つ安定的な処理が可能となる。 As an example of control, for example, in a general sewage treatment plant, the fluctuation pattern of the load of inflowing raw water (organic drainage) is determined to some extent. Therefore, the control device 10 of FIG. 1 controls the supply amount (supply flow rate) of the excess sludge returned by the return means 7 every predetermined time. Specifically, assuming that the average supply amount of excess sludge is Qm 3 / h, for example, 0-3 o'clock = 0.8 Q, 3-6 o'clock = 0.6 Q, 6-9 o'clock = 1.4 Q, 9 Store the experience point database that -12 o'clock = 1.2 Q, 12-15 o'clock = 0.7 Q, 16-21 o'clock = 1.0 Q, 21-24 o'clock = 1.4 Q in the memory of control device 10 In addition, the control device 10 is a method of reading out the experience value database and controlling the excess sludge supply amount every hour. As a result, relatively simple control enables highly efficient and stable treatment throughout the water treatment apparatus.

或いは、有機性排水の混合装置1への供給流量を検出する第1の検出器(原水流量計)11と、返送手段7により返送される余剰汚泥の汚泥濃度を検出する第3の検出器(余剰汚泥濃度計)13と、返送手段7により返送される余剰汚泥の返送流量を検出する第4の検出器(余剰汚泥流量計)14の検出結果に基づいて、有機性排水に対する余剰汚泥の混合比率が混合装置1での有機物吸着に好ましい範囲(例えば1.5[kg−汚泥SS/m3−原水]以下)となるように、制御装置10が、余剰汚泥供給調整器7aを介して余剰汚泥の供給量を制御する。 Alternatively, a first detector (raw water flow meter) 11 for detecting the supply flow rate of the organic waste water to the mixing device 1 and a third detector (for detecting the sludge concentration of excess sludge returned by the return means 7 ( Based on the detection results of the excess sludge concentration meter 13 and the fourth detector (surplus sludge flow meter) 14 for detecting the return flow rate of excess sludge returned by the return means 7, mixing of excess sludge with organic waste water The control device 10 makes excess via the excess sludge supply regulator 7a such that the ratio is in a range (for example, 1.5 [kg-sludge SS / m 3 -raw water] or less) preferable for organic matter adsorption in the mixing apparatus 1 Control the amount of sludge supply.

例えば、第1の検出器11、第3の検出器13、第4の検出器14の検出結果を演算した結果が、混合比率の設定範囲よりも高くなる場合には、制御装置10によって、返送手段7による余剰汚泥の返送流量がより少なくなるようにし、逆に設定範囲よりも低くなる場合には、制御装置10によって、返送手段7による余剰汚泥の返送流量を多くなるように制御する。これにより、混合装置1への余剰汚泥の混合比率をより正確に制御することができるため、水処理装置全体で安定的な処理が行えるようになる。また、返送手段7を通じて返送される余剰汚泥の供給量(供給流量)を制御することで、第1の固液分離槽2で固液分離される分離液と分離汚泥とに含まれる有機物のバランスを良好に保つことができる。その結果、第1の固液分離槽2から得られる分離液の有機物負荷を適正な範囲に制御でき、反応槽3での反応をより安定的に進めることができる。   For example, when the calculation result of the detection results of the first detector 11, the third detector 13, and the fourth detector 14 becomes higher than the setting range of the mixing ratio, the control device 10 returns When the return flow rate of excess sludge by means 7 becomes smaller and conversely lower than the set range, the control device 10 controls the return flow rate of excess sludge by return means 7 to be large. As a result, the mixing ratio of the excess sludge to the mixing device 1 can be more accurately controlled, so that stable treatment can be performed in the entire water treatment device. Further, by controlling the supply amount (supply flow rate) of excess sludge returned through the return means 7, the balance of the organic matter contained in the separated liquid and separated sludge separated in the solid-liquid separation in the first solid-liquid separation tank 2 Can be kept good. As a result, the organic substance loading of the separated liquid obtained from the first solid-liquid separation tank 2 can be controlled to an appropriate range, and the reaction in the reaction tank 3 can be more stably advanced.

或いは、有機性排水の混合装置1への供給流量を検出する第1の検出器(原水流量計)11と、有機性排水の有機物濃度を検出する第2の検出器(原水有機物濃度計)12と、返送手段7により返送される余剰汚泥の汚泥濃度を検出する第3の検出器(余剰汚泥濃度計)13と、返送手段7により返送される余剰汚泥の返送流量を検出する第4の検出器(余剰汚泥流量計)14の検出結果に基づいて、有機性排水に対する余剰汚泥の混合比率が3.0[kg−SS/kg−原水CODcr]以下となるように、制御装置10が、余剰汚泥供給調整器7aを介して余剰汚泥の供給量を制御する。これによれば、原水中の有機物濃度を考慮したリアルタイムな制御が可能となるため、変動する有機性排水の有機物負荷に最適な余剰汚泥を添加することができ、反応槽3へ安定して最適な有機物負荷を与えることができるようになる。   Alternatively, a first detector (raw water flow meter) 11 for detecting the supply flow rate of the organic waste water to the mixing device 1 and a second detector (raw water organic matter concentration meter) 12 for detecting the organic substance concentration of the organic waste water A third detector (surplus sludge concentration meter) 13 for detecting the sludge concentration of surplus sludge returned by the return means 7 and a fourth detection for detecting the return flow rate of surplus sludge returned by the return means 7 The controller 10 sets the surplus so that the mixing ratio of the excess sludge to the organic waste water is 3.0 [kg-SS / kg-raw water CODcr] or less based on the detection result of the vessel (surplus sludge flow meter) 14 The amount of excess sludge supplied is controlled via the sludge supply regulator 7a. According to this, since real-time control in consideration of the organic substance concentration in the raw water becomes possible, it is possible to add the excess sludge which is optimal for the organic substance load of the fluctuating organic wastewater, and stably to the reaction tank 3 Will be able to provide an organic load.

或いは、第1の固液分離槽で分離された分離液の有機物濃度を検出する第5の検出器(分離液有機物濃度検出器)15の検出結果に基づいて、制御装置10が、余剰汚泥供給調整器7aを介して余剰汚泥の供給量を制御する。   Alternatively, the control device 10 supplies excess sludge based on the detection result of the fifth detector (separate liquid organic matter concentration detector) 15 that detects the organic matter concentration of the separated liquid separated in the first solid-liquid separation tank. The amount of excess sludge supplied is controlled via the regulator 7a.

第1の固液分離槽で分離された分離液の有機物濃度は、原水に対する余剰汚泥の混合による有機物除去効果を反映したものである。このため、例えば、第5の検出器15で検出されるCODcr濃度が、設定値(設定範囲)よりも高くなりすぎる場合には、制御装置10によって、返送手段7による余剰汚泥の返送流量がより多くなるように制御し、第5の検出器15で検出されるCODcr濃度が、設定値(設定範囲)よりも低くなりすぎる場合には、制御装置10によって、返送手段7による余剰汚泥の返送流量を少なくなるように制御する。   The organic substance concentration of the separated liquid separated in the first solid-liquid separation tank reflects the organic substance removal effect by the mixing of the excess sludge with the raw water. For this reason, for example, when the CODcr concentration detected by the fifth detector 15 becomes excessively higher than the set value (set range), the controller 10 makes the return flow rate of excess sludge by the return means 7 more If the CODcr concentration detected by the fifth detector 15 is too low to be lower than the set value (set range), the control device 10 controls the amount of excess sludge returned by the return means 7 to be increased. Control to reduce

更には、分離液のアンモニア性窒素濃度を検出する第6の検出器(分離液アンモニア性窒素濃度検出器)16を更に備え、制御装置10が、第6の検出器16の検出結果に基づいて、余剰汚泥の混合比率を制御するようにしてもよい。これによれば、第1の固液分離槽2から得られる分離液の性状に応じて、余剰汚泥の返送流量を最適化することができる。第1〜第5の検出器11、12、13、14、15の検出結果と組み合わせることにより、より精密な制御が可能となる。   Furthermore, a sixth detector (separation liquid ammonia nitrogen concentration detector) 16 for detecting the ammoniacal nitrogen concentration of the separation liquid is further provided, and the control device 10 is based on the detection result of the sixth detector 16 The mixing ratio of excess sludge may be controlled. According to this, the return flow rate of excess sludge can be optimized according to the properties of the separated liquid obtained from the first solid-liquid separation tank 2. By combining with the detection results of the first to fifth detectors 11, 12, 13, 14, 15, more precise control becomes possible.

反応槽3内に配置された第7の検出器17には、反応槽3内の生物学的処理の状態が反映されるため、この反応槽3の処理に適した状態となるように、第7の検出器17の検出結果に応じて、制御装置10が、混合装置1への余剰汚泥の混合比率を制御するようにしてもよい。これにより、反応槽3内を安定した状態に保つことができ、全体としてより安定した処理が可能となる。   The seventh detector 17 disposed in the reaction vessel 3 reflects the state of the biological treatment in the reaction vessel 3, so that the seventh detector 17 is placed in a state suitable for the treatment of the reaction vessel 3. The control device 10 may control the mixing ratio of excess sludge to the mixing device 1 in accordance with the detection result of the detector 17. Thereby, the inside of the reaction tank 3 can be maintained in a stable state, and as a whole, more stable processing is possible.

第2の固液分離槽4に、混合装置1へ供給可能な余剰汚泥量を検出する第8の検出器(余剰汚泥量検出器)18を更に備え、制御装置10が、余剰汚泥量検出器18が検出した余剰汚泥量が設定値以下となる場合に、混合装置1へ返送する余剰汚泥の供給を停止するか又は余剰汚泥の供給量を低下させるように制御することも可能である。これによれば、余剰汚泥を供給する第2の固液分離槽4内に十分な余剰汚泥がない場合に、その余剰汚泥供給量を調整することができるため、装置全体の処理をより安定的に進めることができる。   The second solid-liquid separation tank 4 is further provided with an eighth detector (excess sludge amount detector) 18 for detecting the amount of excess sludge that can be supplied to the mixing device 1, and the control device 10 is an excess sludge amount detector It is also possible to control the supply of the excess sludge returned to the mixing apparatus 1 to be stopped or to reduce the supply amount of the excess sludge when the excess sludge amount detected by 18 becomes equal to or less than the set value. According to this, when there is not enough excess sludge in the second solid-liquid separation tank 4 which supplies excess sludge, the amount of excess sludge supply can be adjusted, so the treatment of the whole device is more stable. You can proceed to

このように、本発明の実施の形態に係る水処理装置によれば、制御装置10が、各検出器の検出結果に基づいて、混合装置1へ添加すべき余剰汚泥の供給量を適正範囲に制御することができる。その結果、流入原水(有機性排水)の流量及び濃度の変動に関わらず装置全体として水処理をより安定的に行うことができる。   As described above, according to the water treatment apparatus according to the embodiment of the present invention, the control device 10 sets the supply amount of excess sludge to be added to the mixing device 1 to an appropriate range based on the detection results of the respective detectors. Can be controlled. As a result, water treatment can be performed more stably in the entire apparatus regardless of fluctuations in the flow rate and concentration of the inflowing raw water (organic drainage).

制御装置10による制御方法の詳細は特に限定されない。例えば、各検出器に対して予めユーザが設定値(上限値H、下限値L)を定めておき、各検出器の検出結果が設定値に近づくように、制御装置10が余剰汚泥供給調整器7aを介して余剰汚泥の供給量を制御することによって、混合装置1への有機性排水に対する余剰汚泥の混合比率を変更することが可能である。制御装置10が余剰汚泥の混合汚泥比率の制御に利用する図1の検出器11〜18の検出値の優先順位は、反応槽3での処理態様に応じて、適宜ユーザが決定することができる。   The details of the control method by the control device 10 are not particularly limited. For example, the user predetermines set values (upper limit value H, lower limit value L) for each detector, and the controller 10 adjusts the excess sludge supply regulator so that the detection results of each detector approach the set value. By controlling the amount of excess sludge supplied through 7a, it is possible to change the mixing ratio of excess sludge to organic drainage to the mixing apparatus 1. The priority of the detection values of the detectors 11 to 18 of FIG. 1 used by the control device 10 to control the mixed sludge ratio of excess sludge can be appropriately determined by the user according to the processing mode in the reaction tank 3 .

(その他の実施の形態)
本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態及び運用技術が明らかとなろう。
(Other embodiments)
Although the present invention has been described by the above embodiment, it should not be understood that the description and the drawings, which form a part of this disclosure, limit the present invention. Various alternative embodiments and operation techniques will be apparent to those skilled in the art from this disclosure.

本実施形態に係る水処理装置では、原水の流量及び濃度の変動の他に、水温などの処理環境条件によって、各装置における各処理の処理状態が変化する場合がある。そのため、例えば、原水としての有機性排水又は反応槽3内の処理液の水温を検知する温度計を設け、検知された水温に基づいて制御値を補正することで、さらに精度の高い水処理を行うようにしてもよい。   In the water treatment apparatus according to the present embodiment, the treatment state of each treatment in each apparatus may change depending on the treatment environment conditions such as the water temperature, in addition to the fluctuation of the flow rate and concentration of the raw water. Therefore, for example, a thermometer for detecting the temperature of the organic drainage as raw water or the temperature of the treatment liquid in the reaction tank 3 is provided, and the control value is corrected based on the detected water temperature to perform water treatment with higher accuracy. You may do so.

反応槽3において回分式活性汚泥法を適用した処理を行う場合には、処理水の排出及び汚泥の引抜がバッチ式に行われる。そのため、図2に示すように、反応槽3の後段に汚泥を貯蔵する汚泥貯留槽(又は濃縮槽)8を設けることが必要となる。図2に示すような水処理装置においては、汚泥貯留槽8にMLSS計等の第9の検出器19を設け、第9の検出器19の検出結果に基づいて、混合装置1における余剰汚泥の混合比率がより好ましい範囲となるように、制御装置10が制御することが好ましい。これにより、回分式活性汚泥法を適用した処理を行う場合には、図1に示すように反応槽3に検出器を設ける場合に比べて、余剰汚泥の混合比率の制御が容易になる。   When the treatment to which the batch activated sludge method is applied is performed in the reaction tank 3, the discharge of treated water and the withdrawal of sludge are performed batchwise. Therefore, as shown in FIG. 2, it is necessary to provide the sludge storage tank (or concentration tank) 8 which stores sludge in the latter part of the reaction tank 3. In the water treatment apparatus as shown in FIG. 2, a ninth detector 19 such as an MLSS meter is provided in the sludge storage tank 8, and based on the detection result of the ninth detector 19, excess sludge in the mixing device 1 is It is preferable that the control device 10 controls so that the mixing ratio is in a more preferable range. Thereby, when performing the process which applies a batch type activated sludge method, control of the mixing ratio of excess sludge becomes easy compared with the case where a detector is provided in the reaction tank 3 as shown in FIG.

反応槽3において膜分離活性汚泥法を利用する場合、分離膜が反応槽内に設置される槽一体型、反応槽の後段に膜分離槽を設ける槽別置き型、或いは水槽を設けずにケーシング内に収納した分離膜を用いる槽外型などが用いられる。このような膜分離活性汚泥法を用いた反応槽3を有する水処理装置を制御する場合には、反応槽3から余剰汚泥を引き抜く場合に、第7の検出器17で検出されたMLSS濃度に基づく、余剰汚泥の混合装置1への供給制御を行うことで、反応槽3へ常時安定して最適な有機物負荷を与えることができる。   When the membrane separation activated sludge method is used in the reaction tank 3, the tank integral type in which the separation membrane is installed in the reaction tank, the tank separation type in which the membrane separation tank is provided in the latter stage of the reaction tank, or the casing without providing the water tank An outer tank type using a separation membrane housed inside is used. In the case of controlling a water treatment apparatus having a reaction tank 3 using such a membrane separation activated sludge method, the MLSS concentration detected by the seventh detector 17 when excess sludge is withdrawn from the reaction tank 3 By controlling the supply of surplus sludge to the mixing apparatus 1 based on the above, it is possible to always stably apply an optimum organic substance load to the reaction tank 3.

反応槽3において固定床型生物膜法を利用する場合、浮遊性微生物(MLSS)が無いため、第7の検出器17は設けずに、第8の検出器18による余剰汚泥量の検出結果に基づく、混合装置1への余剰汚泥の供給管理を行えば、より安定化した処理を行うことができる。このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論であり、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によって定められる。   When the fixed bed type biofilm method is used in the reaction tank 3, since there is no floating microorganism (MLSS), the seventh detector 17 is not provided, and the detection result of the excess sludge amount by the eighth detector 18 is used. Based on the above, if supply control of excess sludge to the mixing apparatus 1 is performed, more stabilized processing can be performed. Thus, it goes without saying that the present invention includes various embodiments and the like which are not described herein, and the technical scope of the present invention depends on the invention specific matters according to the scope of claims reasonable from the above description. It will be determined.

(実施例)
原水としてBOD濃度が180mg/L、SSが150mg/Lの有機性排水(下水)を、処理水量600L/dとして図1に示す水処理装置の混合装置1へ供給した。混合装置1での混合時間は5分間とした。第2の固液分離槽4(最終沈殿池)から余剰汚泥を供給した。本処理では、第2の固液分離槽4で発生した余剰汚泥を設定値200L/dで反応槽3へ返送するとともに、第2の固液分離槽4で発生した余剰汚泥を設定値12L/dで混合装置へ供給した。この際、第5の検出器15で得られた反応槽3のMLSS濃度に基づいて、有機性排水に対する余剰汚泥の混合比率が120(mg−SS/L−原水)となるように、混合装置1へ供給する余剰汚泥の供給量を制御した。
(Example)
An organic waste water (sewage) having a BOD concentration of 180 mg / L and an SS of 150 mg / L as raw water was supplied as the treated water amount 600 L / d to the mixing device 1 of the water treatment apparatus shown in FIG. The mixing time in the mixing apparatus 1 was 5 minutes. Excess sludge was supplied from the second solid-liquid separation tank 4 (final settling tank). In this process, excess sludge generated in the second solid-liquid separation tank 4 is returned to the reaction tank 3 with a set value of 200 L / d, and excess sludge generated in the second solid-liquid separation tank 4 is set to 12 L / d. The mixture was supplied to the mixing device at d. At this time, based on the MLSS concentration of the reaction tank 3 obtained by the fifth detector 15, the mixing apparatus is adjusted so that the mixing ratio of excess sludge to organic drainage is 120 (mg-SS / L-raw water). The amount of excess sludge supplied to 1 was controlled.

その結果、反応槽3へ流入する分離液のBODは80mg/L、SSは70mg/Lであった。また、反応槽3内のMLSS濃度は、平均で1800mg/Lであった。一方、混合装置1を設けずに余剰汚泥の供給制御を行わない従来の水処理装置では、反応槽3へ流入する分離液のBODが110g/L、SSは95mg/Lと高くなった。また、発生汚泥量は、混合装置1を設けず、余剰汚泥の供給制御を行わない従来の水処理装置に比べて95%程度となった。   As a result, the BOD of the separated liquid flowing into the reaction tank 3 was 80 mg / L and the SS was 70 mg / L. Moreover, the MLSS concentration in the reaction tank 3 was 1,800 mg / L on average. On the other hand, in the conventional water treatment apparatus in which the supply control of excess sludge is not performed without providing the mixing apparatus 1, the BOD of the separated liquid flowing into the reaction tank 3 is as high as 110 g / L and SS as 95 mg / L. Further, the amount of generated sludge was about 95% as compared with the conventional water treatment apparatus in which the mixing apparatus 1 was not provided and the supply control of excess sludge was not performed.

更に、第1の固液分離槽2で得られた汚泥に対し、燃料化装置6として嫌気性消化槽を使用して、TS濃度4wt%の濃縮汚泥を水理学的滞留時間30日で処理したところ、混合装置1を設けず、余剰汚泥の供給制御を行わない従来の水処理装置に比べてメタンガス発生量比率が25%増加し、処理効率を向上させることができた。   Furthermore, for the sludge obtained in the first solid-liquid separation tank 2, concentrated sludge with a TS concentration of 4 wt% was treated with a hydraulic retention time of 30 days using an anaerobic digester as the fueling device 6 By the way, compared with the conventional water treatment apparatus which does not provide the mixing apparatus 1 and does not perform supply control of excess sludge, the methane gas generation amount ratio increased 25%, and processing efficiency was able to be improved.

更に、混合装置1を設けずに余剰汚泥の供給制御を行わない従来の水処理装置の場合と、本実施形態に係る水処理装置の水処理装置を用いた場合の第2の固液分離槽4から分離された処理水の水質平均値を表1に示す。   Furthermore, the second solid-liquid separation tank using the water treatment apparatus of the water treatment apparatus according to the present embodiment and the conventional water treatment apparatus not performing supply control of excess sludge without providing the mixing apparatus 1 and the water treatment apparatus of the water treatment apparatus according to the present embodiment Table 1 shows the average water quality of treated water separated from No.4.

本実施形態に係る水処理装置及び水処理方法によれば、混合装置1で原水と余剰汚泥とを混合させることにより、原水中の有機物とSSの一部が余剰汚泥に吸着及び凝集されて、BOD及びSSの除去率が向上した。また、有機物除去率の向上によって、反応槽3に流入するBOD負荷が低下するため、生物学的処理に必要な曝気風量を大幅に低下し、動力の削減又は縮小が可能となることが分かる。また、従来法では、好気性分解されていた有機物を混合装置1で余剰汚泥に吸着させることで、燃料化装置6(ここでは嫌気性消化槽)で生成されるメタンガス発生量を増加させることができるとともに、処理系全体の汚泥発生量も低減させることができた。   According to the water treatment apparatus and the water treatment method according to the present embodiment, by mixing the raw water and the excess sludge in the mixing device 1, the organic matter in the raw water and a part of the SS are adsorbed and aggregated in the excess sludge, The removal rate of BOD and SS was improved. In addition, since the BOD load flowing into the reaction tank 3 is reduced by the improvement of the organic substance removal rate, it is understood that the amount of aeration air required for biological treatment is significantly reduced, and power reduction or reduction becomes possible. Further, in the conventional method, the amount of methane gas generated in the fueling device 6 (here, the anaerobic digestion tank) can be increased by adsorbing the aerobically decomposed organic matter to the excess sludge with the mixing device 1 As well as being able to reduce the amount of sludge generated in the entire treatment system.

1…混合装置
2…第1の固液分離槽
3…反応槽
4…第2の固液分離槽
5…前処理装置
6…燃料化装置
7…返送手段
7a…余剰汚泥供給調整器
10…制御装置
11…第1の検出器
12…第2の検出器
13…第3の検出器
14…第4の検出器
15…第5の検出器
16…第6の検出器
17…第7の検出器
18…第8の検出器
19…第9の検出器
DESCRIPTION OF SYMBOLS 1 ... Mixing apparatus 2 ... 1st solid-liquid separation tank 3 ... Reaction tank 4 ... 2nd solid-liquid separation tank 5 ... Pre-processing apparatus 6 ... Fuel-ized apparatus 7 ... Returning means 7a ... Excess sludge supply regulator 10 ... Control Device 11 ... first detector 12 ... second detector 13 ... third detector 14 ... fourth detector 15 ... fifth detector 16 ... sixth detector 17 ... seventh detector 18 ... 8th detector 19 ... 9th detector

Claims (6)

原水としての有機性排水を余剰汚泥と混合し、前記有機性排水中の有機物を前記余剰汚泥に吸着させる混合装置と、
前記混合装置で得られた混合液を固液分離する第1の固液分離槽と、
前記第1の固液分離槽で分離された分離汚泥を分解して燃料ガス又は汚泥燃料に変換する燃料化装置と、
前記第1の固液分離槽で分離された分離液に生物学的処理を行う反応槽と、
前記反応槽で得られた処理水を固液分離する第2の固液分離槽と、
前記第2の固液分離槽及び/又は前記反応槽で得られた汚泥を、前記混合装置へ供給する前記余剰汚泥として返送する返送手段と、
前記混合装置へ流入する前記有機性排水に対する前記余剰汚泥の混合比率を制御する制御装置と
を備え、前記混合装置の水理学的滞留時間が10分以内である水処理装置。
A mixing device for mixing organic wastewater as raw water with excess sludge and adsorbing organic matter in the organic wastewater to the excess sludge;
A first solid-liquid separation tank for solid-liquid separation of the liquid mixture obtained by the mixing device;
A fueling device for decomposing separated sludge separated in the first solid-liquid separation tank and converting it into fuel gas or sludge fuel;
A reaction vessel for biological treatment of the separated liquid separated in the first solid-liquid separation tank;
A second solid-liquid separation tank for solid-liquid separation of treated water obtained in the reaction tank;
Return means for returning the sludge obtained in the second solid-liquid separation tank and / or the reaction tank as the excess sludge to be supplied to the mixing device;
Wherein a control device for controlling the mixing ratio of the excess sludge, the mixed hydraulic retention time der Ru water treatment device within 10 minutes of the device to the organic waste water flowing into the mixing device.
前記有機性排水の前記混合装置への供給流量を検出する原水流量計と、
前記返送手段により返送される前記余剰汚泥の汚泥濃度を検出する余剰汚泥濃度計と、
前記返送手段により返送される前記余剰汚泥の返送流量を検出する余剰汚泥流量計と、
を備え、
前記制御装置が、前記原水流量計、前記余剰汚泥濃度計及び前記余剰汚泥流量計の検出結果に基づいて、前記余剰汚泥の混合比率を制御する請求項1に記載の水処理装置。
A raw water flow meter for detecting the supply flow rate of the organic drainage to the mixing device;
A surplus sludge densitometer for detecting the sludge concentration of the surplus sludge returned by the return means;
A surplus sludge flowmeter for detecting a return flow rate of the surplus sludge returned by the return means;
Equipped with
The water treatment apparatus according to claim 1, wherein the control device controls the mixing ratio of the excess sludge based on detection results of the raw water flow meter, the excess sludge densitometer, and the excess sludge flow meter.
前記有機性排水の前記混合装置への供給流量を検出する原水流量計と、
前記有機性排水の有機物濃度を検出する原水有機物濃度計と、
前記返送手段により返送される前記余剰汚泥の汚泥濃度を検出する余剰汚泥濃度計と、
前記返送手段により返送される前記余剰汚泥の返送流量を検出する余剰汚泥流量計と、
を備え、
前記制御装置が、前記原水流量計、前記原水有機物濃度計、前記余剰汚泥濃度計及び前記余剰汚泥流量計の検出結果に基づいて、前記余剰汚泥の混合比率を制御する請求項1に記載の水処理装置。
A raw water flow meter for detecting the supply flow rate of the organic drainage to the mixing device;
A raw water organic matter concentration meter for detecting the organic matter concentration of the organic drainage;
A surplus sludge densitometer for detecting the sludge concentration of the surplus sludge returned by the return means;
A surplus sludge flowmeter for detecting a return flow rate of the surplus sludge returned by the return means;
Equipped with
The water according to claim 1, wherein the control device controls the mixing ratio of the excess sludge based on detection results of the raw water flow meter, the raw water organic matter concentration meter, the excess sludge concentration meter, and the excess sludge flow meter. Processing unit.
混合装置内で有機性排水を原水として余剰汚泥と水理学的滞留時間10分以内で混合し、前記有機性排水中の有機物を前記余剰汚泥に吸着させて混合液を得ることと、
前記混合液を固液分離し、分離汚泥と分離液とを得ることと、
前記分離汚泥を分解して燃料ガス又は汚泥燃料に変換することと、
前記分離液に生物学的処理を行うことと、
前記生物学的処理により得られた処理水を固液分離することと、
前記処理水の固液分離によって得られた汚泥又は前記生物学的処理で得られた汚泥を余剰汚泥として前記混合装置へ返送することと、
前記混合装置内で前記有機性排水に対して混合する前記余剰汚泥の混合比率を制御すること
を含む水処理方法。
Mixing organic sludge as raw water in the mixing apparatus with excess sludge and a hydraulic residence time within 10 minutes, and adsorbing the organic matter in the organic wastewater to the excess sludge to obtain a mixed solution;
Solid-liquid separation of the mixed liquid to obtain separated sludge and separated liquid;
Decomposing the separated sludge and converting it into fuel gas or sludge fuel;
Performing biological treatment on the separated liquid;
Solid-liquid separation of treated water obtained by the biological treatment;
Returning the sludge obtained by solid-liquid separation of the treated water or the sludge obtained by the biological treatment as excess sludge to the mixing device;
Controlling the mixing ratio of the excess sludge to be mixed with the organic drainage in the mixing device.
前記反応槽内の生物学的処理の状態を検出するMLSS計を含む検出器を更に備え、前記制御装置が、前記MLSS計を含む検出器の検出結果に基づいて、前記余剰汚泥の混合比率を制御することを含む請求項1記載の水処理装置。The detector further includes a detector including an MLSS meter for detecting the state of biological treatment in the reaction tank, and the control device controls the mixing ratio of the excess sludge based on the detection result of the detector including the MLSS meter. The water treatment system of claim 1 including controlling. 前記有機性排水及び/又は前記分離液のアンモニア性窒素濃度を検出するアンモニア性窒素濃度検出器を更に備え、It further comprises an ammoniacal nitrogen concentration detector for detecting the ammoniacal nitrogen concentration of the organic waste water and / or the separated liquid,
前記制御装置が、前記アンモニア性窒素濃度検出器の検出結果に基づいて、前記余剰汚泥の混合比率を制御することを含む請求項1に記載の水処理装置。The water treatment apparatus according to claim 1, wherein the control device includes controlling a mixing ratio of the excess sludge based on a detection result of the ammoniacal nitrogen concentration detector.
JP2015053911A 2015-03-17 2015-03-17 Water treatment apparatus and water treatment method Active JP6533676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015053911A JP6533676B2 (en) 2015-03-17 2015-03-17 Water treatment apparatus and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015053911A JP6533676B2 (en) 2015-03-17 2015-03-17 Water treatment apparatus and water treatment method

Publications (3)

Publication Number Publication Date
JP2016172237A JP2016172237A (en) 2016-09-29
JP2016172237A5 JP2016172237A5 (en) 2018-01-25
JP6533676B2 true JP6533676B2 (en) 2019-06-19

Family

ID=57008666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015053911A Active JP6533676B2 (en) 2015-03-17 2015-03-17 Water treatment apparatus and water treatment method

Country Status (1)

Country Link
JP (1) JP6533676B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102203751B1 (en) * 2018-06-11 2021-01-14 연세대학교 원주산학협력단 Sludge reduction and its sewage treatment system
JP7157009B2 (en) * 2019-06-19 2022-10-19 株式会社クボタ Water treatment method and water treatment equipment

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284847A (en) * 1976-01-07 1977-07-14 Hitachi Ltd Controlling device for active sludge water treating apparatus
JPS52111267A (en) * 1976-03-16 1977-09-17 Chiyuuetsu Koubo Kougiyou Kk Method of treating waste water
JPS54127154A (en) * 1978-03-27 1979-10-02 Meidensha Electric Mfg Co Ltd Automatic control system for activated sludge process
JPS5889992A (en) * 1981-11-25 1983-05-28 Nishihara Environ Sanit Res Corp Treatment for night soil
JPS5955391A (en) * 1982-09-22 1984-03-30 Kurita Water Ind Ltd Treatment of activated sludge
JPH04293598A (en) * 1991-03-20 1992-10-19 Kyodo Kumiai Inbaiomento Solid-liquid separation method for fermentable organic liquid matter and sludge treatment apparatus using the same method
JP3164850B2 (en) * 1991-08-31 2001-05-14 日本アルシー株式会社 Activated sludge treatment method
JP3137690B2 (en) * 1991-08-31 2001-02-26 日本アルシー株式会社 Activated sludge treatment method
JP3672091B2 (en) * 2001-12-28 2005-07-13 株式会社荏原製作所 Organic wastewater treatment method and equipment
DE102005040849A1 (en) * 2005-08-29 2007-03-01 Ingenieurgesellschaft für Wasser und Entsorgung mbH Processing waste water, with simultaneous production of biogas, includes supplying partially purified waste water and/or clarified sludge, plus solid biomass, to fermenter of biogas plant
JP5119200B2 (en) * 2009-05-18 2013-01-16 神鋼環境メンテナンス株式会社 Operation method of sewage treatment facility
JP2016172236A (en) * 2015-03-17 2016-09-29 水ing株式会社 Apparatus and method for treating water

Also Published As

Publication number Publication date
JP2016172237A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
WO2019169980A1 (en) Anaerobic ammonia oxidation-based sewage treatment process using mbr
EP2323954B1 (en) Methods for processing organic waste
JP6081623B2 (en) Wastewater treatment system
JP6749313B2 (en) Water treatment method and water treatment device
EP2603464A1 (en) Treatment of municipal wastewater with anaerobic digestion
JP2008284427A (en) Apparatus and method for treating waste water
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
JP2016172236A (en) Apparatus and method for treating water
Ding et al. A novel integrated vertical membrane bioreactor (IVMBR) for removal of nitrogen from synthetic wastewater/domestic sewage
CN102603128A (en) Method for advanced treatment and recycling of landfill leachate
JP2018138292A (en) Water treatment method and apparatus
CN111908618A (en) High ammonia-nitrogen concentration effluent disposal system
WO2018237151A1 (en) System and method for continuous processing of organic waste with undigested solids recirculation
JP6084150B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP6533676B2 (en) Water treatment apparatus and water treatment method
Sheldon et al. Treatment of paper mill effluent using an anaerobic/aerobic hybrid side-stream membrane bioreactor
KR102108870B1 (en) Membrane Treatment Device for Eliminating Nitrogen and/or Phosphorus
JP5900098B2 (en) Nitrogen and phosphorus removal apparatus and method
JP2011200767A (en) Wastewater treating method and wastewater treatment system
JP7488130B2 (en) Sewage treatment device and sewage treatment method
KR20150066055A (en) System for Anaerobic Digestion of High Concentration Organic Wastes
JP2005103375A (en) Methane fermentation treatment method and apparatus
JP2006281095A (en) Method for treating organic waste
KR20090085918A (en) Method of reducing return water and sludge in sewage treatment plant
JP4747567B2 (en) Nitrogen-containing wastewater treatment method and treatment equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R150 Certificate of patent or registration of utility model

Ref document number: 6533676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250